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ABSTRACT

Code translation, the process of converting code between programming languages
(PLs), is essential for modernizing legacy systems and ensuring cross-platform
compatibility. Despite recent advancements, automated code translation, includ-
ing methods based on large language models (LLMs), still encounters challenges
due to syntactic and semantic mismatches between PLs. In this paper, we in-
troduce INTERTRANS, an LLM-based automated code translation approach that,
unlike existing methods, leverages intermediate translations to bridge the syntac-
tic and semantic gaps between source and target PLs. INTERTRANS uses a novel
Tree of Code Translation (ToCT) algorithm to plan transitive intermediate trans-
lation sequences between a given source and target PL, then validates them in a
specific order. We evaluate INTERTRANS with three open LLMs on three bench-
marks involving six PLs. Results demonstrate an absolute improvement of 18.3%
to 43.3% in Computation Accuracy (CA) for INTERTRANS compared to Direct
Translation with 10 attempts. The best-performing variant of INTERTRANS (us-
ing the Magicoder LLM) achieved an average CA of 87.3%-95.4% across three
benchmarks.

1 INTRODUCTION

Automatically translating source code between different programming languages (PLs) can signif-
icantly reduce the time and effort required for software development teams. In the literature, re-
searchers have proposed various automated code translation methods. Data-driven learning-based
approaches (Roziere et al., 2021; Szafraniec et al.) have shown impressive improvements over tra-
ditional rule-based methods (c2r, 2024; cxg, 2024; sha, 2024).

Large language models (LLMs) have demonstrated strong performance across various software en-
gineering tasks (Fan et al., 2023). However, recent studies reveal that LLM-based automated code
translation, particularly with open-source models, remains far from production-ready, achieving cor-
rect translations in only 2.1% to 47.3% of cases (Pan et al., 2024; Yang et al., 2024). These studies
found that many errors in LLM-generated code translations stem from the models’ lack of under-
standing of syntactic and semantic discrepancies between source and target languages, which can
vary significantly across different pairs. For instance, 80% of the errors in translating from C++
to Go are due to syntactic and semantic differences, while only 23.1% of such errors occur when
translating from C++ to C (Pan et al., 2024). This variation is intuitive, as certain PLs naturally share
more similarities in syntax and semantics than others.

A similar phenomenon has been observed in machine translation for human languages, where trans-
lating between certain languages is easier than others (Kolovratnık et al., 2009). To improve trans-
lations for challenging language pairs, a common strategy is to use parallel corpora with a pivot
(bridge) language (Kim et al., 2019). In fact, traditional statistical machine translation between
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non-English languages, such as French to German, often involves pivoting through English (Wu &
Wang, 2007). This approach remains effective with the rise of multilingual neural machine transla-
tion models. For instance, in a recent work by Meta (Fan et al., 2021), training language pairs were
collected based on linguistic families and bridge languages, facilitating translation across numerous
language pairs without exhaustively mining every possible pair.

Inspired by this idea, this paper explores the potential of leveraging transitive intermediate trans-
lations from a source PL into other PLs before translating to the desired target PL, an idea not
previously explored in the field of automated code translation. For example, to translate a program
written in Python to Java, we might first translate it from Python to C++ and then from C++ to
Java, as illustrated in Figure 1. This process is done through prompting, without additional training
data, thanks to code LLMs that are pre-trained on text and code across multiple PLs and naturally
possess multilingual capabilities. While this idea is inspired by machine translation, its potential in
the inference stage of LLM-based translation approaches has not been explored.

INTERTRANS, our novel LLM-based code translation approach that enhances source-target trans-
lations via transitive intermediate translations, operates in two stages. In the first stage, a method
called Tree of Code Translations (ToCT) generates a translation tree containing all potential trans-
lation paths for a specific source-target PL pair, conditioned to a set of pre-defined intermediate PLs
and the maximum number of intermediate translations to be explored. In the second stage, transla-
tion paths are turned into LLM prompts that are executed in a breadth-first order. INTERTRANS then
uses a readily available test suite to validate whether the generated translation to the target language
is correct, enabling early termination of translation path exploration if a successful path is found
before completely exploring the translation tree.

To evaluate the effectiveness of INTERTRANS, we conducted experiments using three code LLMs:
Code Llama (Roziere et al., 2023), Magicoder (Wei et al., 2023), and StarCoder2 (Lozhkov et al.,
2024)) on 4,926 translation problems sourced from three datasets, i.e., CodeNet (Puri et al., 2021),
HumanEval-X (Zheng et al., 2023), and TransCoder (Roziere et al., 2020). Each translation prob-
lem aims to translate a program writing in a source PL to a target PL. These problems involve
30 different source-target PL pairs across six languages: C++, JavaScript, Java, Python, Go, and
Rust. Our results show that INTERTRANS consistently outperforms direct translation (i.e., without
intermediate language translation) with 10 attempts, achieving an absolute Computational Accu-
racy (CA) improvement of 18.3% to 43.3% (median: 28.6%) across the three LLMs and datasets.
Through ablation studies, we analyzed the effects of varying the number and selection of interme-
diate languages on INTERTRANS’s performance. Generally, increasing the number of intermediate
translations enhances CA, though the benefits taper off after three translations. Similarly, incorpo-
rating more intermediate languages is advantageous, but gains slow after including three languages.
The effectiveness of specific intermediate PLs varies across translation pairs, with notable patterns
observed in translations from C++/Python to Java via Rust and from Rust to Go via C++. The main
contributions of this paper are as follows:

• We present the first study demonstrating that intermediate translations based on existing PLs can
enhance the performance of LLM-based code translation.

• We propose ToCT, a novel planning algorithm designed to explore intermediate translations effec-
tively. We also introduce INTERTRANS, an LLM-based code translation approach that uses ToCT
and is orthogonal to existing approaches for code translation.

• We conducted a comprehensive empirical study to evaluate INTERTRANS. Our results highlight
the effectiveness of INTERTRANS in enhancing LLM-based code translation. We also provide
insights for the practical application of INTERTRANS.

The code for implementing INTERTRANS, the datasets, and the notebooks for generating the ex-
periment results are available at: https://github.com/RISElabQueens/InterTrans/
tree/paper.

2 INTERTRANS

INTERTRANS translates programs from a source to a target language using an LLM and a series of
transitive intermediate translations. The input of INTERTRANS includes: (1) a LLM, (2) a program
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Figure 1: Running example of INTERTRANS with maxDepth=3 for translating Python to Java, show-
ing a successful translation through C++ after exploring various translation paths. Red nodes rep-
resent unsuccessful translations, blue nodes indicate explored translations, green nodes denote suc-
cessful translations, and grey nodes are skipped translations. The number along with each edge is
the execution order of the translations.

Ps written in a source language Ls, (3) the target language Lt, (4) a non-empty intermediate PL
set L which contains Ls but excludes Lt, (5) a hyper-parameter maxDepth, which determines the
maximum number of transitive intermediate translations. INTERTRANS utilizes a readily available
test suite to evaluate the accuracy of the generated program(s) TP written in the target language, i.e.,
TP = {Pt|Pt ∈ PPs,Lt

∧ s ̸= t}, where PPs,Lt
is the set of programs written in Lt that represent

translation candidates for Ps.

Given a translation problem aimed at converting a source program Ps into a target language Lt, IN-
TERTRANS operates in two stages. In Stage 1, it constructs all possible translation (PL) paths using
a novel approach called the Tree of Code Translations (ToCT), which identifies potential sequences
of transitive translations from Ls to Lt via intermediate languages from the set L. Stage 2 then
uses the source program Ps and the PL paths generated from Stage 1 to perform inferences with
an LLM to generate a set of target programs TP written in Lt. These programs, each correspond-
ing to a translation path, are generated and verified sequentially against a test suite. The algorithm
terminates when a successful translation is identified, indicated by a Pt that passes the test suite.
The following subsections provide detailed descriptions of each stage, accompanied by a running
example.

2.1 STAGE 1: GENERATING TREE OF CODE TRANSLATIONS (TOCT)

Algorithm 1 ToCT path generation algorithm
Input: Ls: Source programming language, Lt: Target programming language, maxDepth: Maxi-

mum depth of the tree, L = {Li}: A set of intermediate languages.
Output: All paths from Ls to Lt

1: Initialize an empty list paths
2: Initialize a queue Q
3: Enqueue ([Ls], 0) into Q
4: while Q is not empty do
5: (currentPath, currentDepth)← Dequeue Q
6: currentLang ← last element of currentPath
7: if currentLang = targetLang then
8: Append currentPath to paths
9: else if currentDepth < maxDepth then

10: for lang ∈ {Lt} ∪ L do
11: if lang ̸= currentLang then
12: newPath← currentPath+ [lang]
13: Enqueue (newPath, currentDepth+ 1) into Q

14: return paths

Algorithm 1 specifies how ToCT creates (plans) translation PL paths for a given translation PL pair
utilizing a set of intermediate languages. Since ToCT operates at the level of translation PL pairs,
this planning algorithm only needs to run once for all translation problems involving the same source
and target languages.
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In ToCT, the intermediate language set L includes the source language Ls but excludes the target
language Lt. This is because Lt should be the final target and should not occur as an intermediate
step in the translation process, while we should allow Ls to appear in intermediate translations
(for cases where a source program can be “simplified” by translating to and from another PL). For
example, in Figure 1 we aim to translate a Python program to Java, and we consider a maximum
depth (maxDepth) of 3, meaning that at most three edges can be included in a translation path. The
set of intermediate languages includes: Python, Rust, JavaScript, C++, and Go.

2.2 STAGE 2: SEQUENTIAL VERIFICATION OF TOCT

For a specific translation problem, the second stage of the INTERTRANS approach (see Algorithm 2)
takes the ToCT-generated plan for the problem’s source and target PL, i.e., the list paths from
Algorithm 1, to (1) determine the order of the paths that will be verified, (2) generate the translations
using an LLM and a prompt template PromptT , and (3) evaluate the translations to the target
language using the given test suite T .

Algorithm 2 Algorithm for executing ToCT-generated plans

Input: Ps: An input source program, paths: A list of translation PL paths generated by ToCT,
LLM : a LLM that can generate code into {Lt}∪L, PromptT : A prompt template for the spe-
cific LLM, T : a test suite for evaluating the computational accuracy of the generated translation
to target PL Lt.

Output: Successful translation, if any, from Ls to Lt for Ps

1: Sort paths by their length in ascending order
2: for path p ∈ paths do
3: for edge Ek ∈ p do
4: if Ek is already processed then
5: continue with cached output
6: else
7: Retrieve extracted source code from Ek−1

8: Create a new prompt using PromptT
9: Perform translation using LLM and the prompt

10: Extract source code from inference output
11: if Failed extracting source code then
12: break continue with the next path p

13: Save the extracted code for Ek to cache
14: if Target language of Ek = Lt then
15: Verify this translation using the test suite T
16: if Test suite passes then
17: return the translation found
18: return the translation failed

3 EXPERIMENTAL SETUP

3.1 BENCHMARK DATASET COLLECTION AND PRE-PROCESSING

Our experiment dataset consists of 4,926 translation problems across 30 source-target translation PL
pairs involving six PLs - C++, Go, Java, JavaScript, Python, and Rust. When creating our experiment
dataset, we considered three existing datasets. Below, we describe the creation of our experimental
datasets from these sources.

TransCoder: The original TransCoder dataset (Roziere et al., 2020) was created by manually col-
lecting coding problems and solutions written in C++, Java, and Python from GeeksforGeeks 2024.
Recently, Yang et al. 2024 discovered quality issues in this dataset and subsequently conducted a
manual verification and curation of the dataset to ensure its correctness. In this study, we reused
their curated version, containing a total of 2,826 translation problems and corresponding test suites.
We employed the full version of this dataset for comparisons with SOTA learning-based approaches.
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HumanEval-X: HumanEval-X (Zheng et al., 2023) extends the python-only code generation eval-
uation dataset HumanEval (Chen et al., 2021) with additional canonical solutions and test cases in
six PLs: C++, Go, Java, JavaScript, Python, and Rust. We created translation pairs for all 164 tasks
in HumanEval-X across the six languages, resulting in 4,920 translation problems. Due to computa-
tional constraints (particularly required by the ablation studies performed to understand the impact
of varying variables on the performance of INTERTRANS), we randomly sampled 1,050 translation
problems, stratified across the 30 source-target translation pairs, ensuring a 99.9% confidence level.

CodeNet: CodeNet (Puri et al., 2021) contains programs written in 55 programming languages for
learning and evaluating coding tasks and was adopted in a recent empirical study by Pan et al. 2024
on LLM introduced translation bugs. Programming tasks in CodeNet are verified by matching the
program outputs with the expected results. For our study, we selected tasks with three test cases to
ensure adequate test suite coverage, resulting in 1,112 programming tasks. From these tasks, we
generated 15,660 translation problems by concentrating on the six PLs featured in HumanEval-X,
removing problems with a file size exceeding 1KB (as a proxy for token length, to prevent inputting
into the prompt problems longer than the model’s token limit) and ensuring that each translated code
snippet could be assessed using three test cases. We created a subset of 1,050 pairs from this dataset
using stratified random sampling, ensuring a 99.9% confidence level.

3.2 SELECTED LARGE LANGUAGE MODELS

Magicoder (Wei et al., 2023): An open-source collection of LLMs trained on 75K synthetic
instruction-response pairs and includes multiple model variants with different base models. All
Magicoder models have around 7B parameters. We use the Magicoder-S-DS variant 2024.

StarCoder2 (Lozhkov et al., 2024): An open-source collection of LLMs offered by the BigCode
project (BigCode Project, 2024). StarCoder2 has instruction-tuned versions ranging from 1B to 34B
parameters. We use the StarCoder2-15B variant 2024.

CodeLlama (Roziere et al., 2023): An open-source collection of LLMs offered by Meta based on
Llama 2, specialized in code generation, with 7B, 13B, and 34B parameters. We use the CodeLlama-
13B variant 2024.

We chose these models because of their proven effectiveness in code generation tasks and their
open-source nature, which promotes accessibility and collaborative development.

3.3 EVALUATION METRICS

Similar to recent studies on LLM-based code translation (Pan et al., 2024; Yang et al., 2024), we
adopt execution-based evaluation metrics, i.e., Computational Accuracy (CA) (Roziere et al., 2020).
CA assesses whether a transformed target program produces the same outputs as the source function
when given identical inputs. CA on a benchmark is the ratio of translation problems that have
correctly translated to the target language.

3.4 COMPARED APPROACHES

Direct translation (CA@1 and CA@10): We compare INTERTRANS with direct translation
by evaluating performance with a single attempt (CA@1) and multiple attempts (CA@10). For
CA@10, a single prompt is used to generate ten translation candidates. The translation is consid-
ered successful if any of these ten attempts result in a correct translation.

Non-LLM SOTA approaches: TransCoder (Roziere et al., 2020) is an unsupervised model pre-
trained with cross-lingual language modeling, denoising auto-encoding, and back-translation, lever-
aging a vast amount of monolingual samples. TransCoder-IR (Szafraniec et al.), an incremental
improvement, introduces the idea of using a low-level compiler Intermediate Representation (IR)
to enhance translation performance. In addition to TransCoder’s pretraining tasks, TransCoder-IR
includes translation language modeling, translation auto-encoding, and IR generation. TransCoder-
ST (Roziere et al., 2021) is another enhanced version of TransCoder that uses automatically gen-
erated test cases to filter invalid translations, improving performance. These models are trained on
only a few PLs, i.e., Python, C++, and Java.
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Table 1: Performance of InterTrans compared with Direct Translation. Abs Diff and Rel Diff mean
the absolute difference and relative difference compared to Direct (CA@10). The source language
column includes all PLs of a dataset. The set of target languages for a given source language includes
all PLs of a dataset, except the source language.
Dataset Source

language
Total
samples

CA@K (percentage)
Code Llama Magicoder StarCoder2
Direct
(CA@1)

Direct
(CA@10)

INTER
TRANS

Abs.
diff.

Rel.
diff.

Direct
(CA@1)

Direct
(CA@10)

INTER
TRANS

Abs.
diff.

Rel.
diff.

Direct
(CA@1)

Direct
(CA@10)

INTER
TRANS

Abs.
diff.

Rel.
diff.

CodeNet C++ 175 32.0 42.9 61.1 18.3 42.7 50.3 50.9 88.0 37.1 73.0 29.1 40.0 81.7 41.7 104.3
Go 175 30.3 34.3 61.1 26.9 78.3 50.9 53.1 85.7 32.6 61.3 45.7 50.3 85.1 34.9 69.3
Java 175 25.7 38.9 55.4 16.6 42.6 45.1 45.7 85.1 39.4 86.2 36.6 41.1 85.7 44.6 108.3
JavaScript 175 22.3 33.7 64.6 30.9 91.5 50.9 50.9 87.4 36.6 71.9 24.0 25.7 82.9 57.1 222.2
Python 175 14.3 19.4 57.1 37.7 194.1 41.1 42.3 91.4 49.1 116.2 38.3 44.0 87.4 43.4 98.7
Rust 175 29.7 38.3 65.1 26.9 70.1 50.9 51.4 86.3 34.9 67.8 36.0 45.1 83.4 38.3 84.8

Total/Average 1,050 25.7 34.6 60.8 26.2 75.8 48.2 49.0 87.3 38.3 78.1 35.0 41.0 84.4 43.3 105.6

HumanEval-X C++ 175 70.3 78.9 91.4 12.6 15.9 73.1 74.3 97.7 23.4 31.5 61.1 66.9 86.3 19.4 29.1
Go 175 64.0 71.4 90.3 18.9 26.4 62.9 64.0 98.3 34.3 53.6 52.0 55.4 83.4 28.0 50.5
Java 175 58.3 68.0 87.4 19.4 28.6 65.7 67.4 93.1 25.7 38.1 46.9 48.6 86.3 37.7 77.6
JavaScript 175 57.1 73.1 93.1 20.0 27.3 60.6 60.6 96.0 35.4 58.5 44.0 44.0 80.6 36.6 83.1
Python 175 53.7 64.6 82.3 17.7 27.4 61.7 62.9 89.7 26.9 42.7 36.6 36.6 77.1 40.6 110.9
Rust 175 59.4 72.0 93.7 21.7 30.2 71.4 72.0 97.7 25.7 35.7 52.6 54.3 81.1 26.9 49.5

Total/Average 1,050 60.5 71.3 89.7 18.4 25.8 65.9 66.9 95.4 28.6 42.7 48.9 51.0 82.5 31.5 61.9

TransCoder C++ 946 73.9 75.9 93.2 17.3 22.8 67.9 67.9 92.7 24.8 36.6 63.5 65.2 93.8 28.5 43.8
Java 931 77.7 79.5 94.8 15.4 19.3 77.4 77.4 91.9 14.5 18.7 79.3 79.9 95.1 15.1 19.0
Python 949 67.3 69.3 91.6 22.2 32.1 33.5 33.5 87.8 54.3 161.9 73.9 74.6 92.7 18.1 24.3

Total/Average 2,826 72.9 74.9 93.2 18.3 24.5 59.5 59.5 90.8 31.3 52.6 72.2 73.2 93.8 20.6 28.2

GPT-3.5 and its enhanced version: GPT-3.5 is a powerful closed LLM provided by OpenAI that
is capable of code generation. We consider the gpt-3.5-turbo-0613 version. UniTrans with GPT-
3.5 is an enhanced version designed for code translation, proposed by Yang et al. 2024. UniTrans
generates test cases to aid LLMs in repairing errors by integrating test execution error messages into
prompts. Despite UniTrans with GPT-3.5 requiring additional program repair and extra test cases,
we include it as a baseline since it represents the state-of-the-art performance on the TransCoder
dataset.

3.5 IMPLEMENTATION

Our scalable reference implementation of the INTERTRANS algorithms is written in Go and im-
plemented as a client (Python) and server (engine written in Go) architecture that communicates
over gRPC 2024. The INTERTRANS engine utilizes vLLM (Kwon et al., 2023) as the inference
engine. The computational infrastructure used for our experiments consists of 6x NVIDIA RTX
A6000 GPUs on an AMD EPYC Server with 128 CPU cores. To ensure deterministic inference
results from vLLM across all experiments involving InterTrans, we randomly generated a fixed ran-
dom seed for inference. We configure the decoder parameters with top-p set to 0.95, top-k set to 10,
and the temperature set to 0.7 for both our approach and the direct translation. When evaluating the
baseline performance of direct translation with CA@1 and CA@10, we do not fix the seed to ensure
we generate diverse candidates. The selection of top-p, top-k, and temperature aligns with recent
studies on code LLMs (Dilhara et al., 2024).

4 RESULTS AND ANALYSIS

4.1 RQ1: EFFECTIVENESS OF INTERTRANS

Approach: In INTERTRANS, the maxDepth is set to 4, allowing for a maximum of four translations
(edges) in a translation PL path. This parameter enables us to explore various translation paths (with
85 maximum attempts). The six PLs of the CodeNet and HumanEval-X benchmarks, i.e., Python,
C++, JavaScript, Java, Rust, and Go, serve as intermediate languages. While the TransCoder dataset
includes only Python, C++, and Java, additional languages like Rust, JavaScript, and Go can be used
as intermediates. This flexibility is possible because INTERTRANS does not verify the correctness
of intermediate translations unless they result in a program written in the target language.

Results: Table 1 presents the comparison of INTERTRANS with direct translation (CA@1 and
CA@10) across the three datasets, for the three base LLMs. We calculated both absolute and relative
differences with CA@10, as the latter serves as a stronger direct translation baseline. As shown in
Table 1, INTERTRANS consistently surpasses direct translation (CA@1 and CA@10) across all three

6



Table 2: CA performance of INTERTRANS and other baselines on TransCoder data set. We adopt
the numbers of baseline performance from Yang et al. 2024. A “–” means there is no reported
performance on the specific pair.

Models C++ to
Python

Python
to C++

Java
to C++

C++ to
Java

Java to
Python

Python
to Java

Avg.

TransCoder 36.6 30.4 27.8 49.8 – – 36.2
TransCoder-IR – – 41.0 40.5 – – 45.8
TransCoder-ST 46.3 47.8 49.7 64.7 – – 52.2
GPT-3.5 87.1 89.5 92.9 82.2 89.2 74.9 86.0
UniTrans w/ GPT-3.5 88.8 94.2 94.9 85.5 91.2 81.3 87.9

InterTrans w/ StarCoder2 93.3 94.4 96.1 94.2 94.0 91.1 93.8

datasets and all studied LLMs. It achieves an absolute improvement of 18.3% to 43.3% compared
to direct CA@10.

Table 2 displays the comparison of INTERTRANS (with StarCoder2) against non-LLM SOTA ap-
proaches, GPT-3.5 and its enhanced version on the TransCoder dataset. The results show that our
approach outperforms all others across all six source-target PL pairs (93.8%). The second best
performance (87.9%) is achieved by UniTrans with GPT-3.5. All the LLM-based approaches con-
sidered in Table 2 perform consistently better than the TransCoder models, further showcasing the
promising potential of LLMs in automated code translation.

4.2 RQ2: IMPACT OF VARYING maxDepth

Approach: INTERTRANS utilizes two hyper-parameters, one of which is maxDepth. This param-
eter controls the depth of the translation tree generated by Algorithm 1. In this research question,
we investigate how this parameter affects the performance of INTERTRANS. Specifically, we vary
maxDepth from 1 (direct translation) to 4. We conducted pairwise comparisons across different
depths (1 vs. 2, 1 vs. 3, 1 vs. 4, 2 vs. 3, 2 vs. 4, and 3 vs. 4) to evaluate the significance of the
performance changes (i.e., the number of successful and unsuccessful translations) using the Chi-
Square statistical test. To account for multiple comparisons across levels within the same model and
dataset, we apply the Bonferroni correction to an alpha level of 0.05.

Results: We observe that as the maxDepth increases, the performance of INTERTRANS consis-
tently improves, although the rate of improvement slows down towards longer paths. For instance,
on HumanEval-X, increasing the maxDepth from 1 to 2 results in an absolute improvement of
23.7% for Code Llama, from 2 to 3 results in an improvement of 6.6%, and from 3 to 4, the improve-
ment is 3.2%. Similar patterns are observed across all nine combinations of models and datasets.

Regarding the statistical tests performed, we find that for all datasets and models, there is a statis-
tically significant improvement in terms of CA as the depth increases. Exceptions to this trend are
noted for Code Llama and StarCoder2 in the TransCoder dataset, where there is no significant in-
crease in the CA metric when increasing the depth from 3 to 4, and for Code Llama and Magicoder
in the HumanEval-X dataset with the same depth change. In other words, out of 54 comparisons
(6 depth changes × 9) conducted, only 4 cases of increasing the depth do not lead to a statistically
significant improvement in performance, all involving an increase from depth 3 to 4.

4.3 RQ3: IMPACT OF VARYING THE INTERMEDIATE PROGRAMMING LANGUAGES

Approach: Besides maxDepth, the other hyper-parameter of INTERTRANS is the set of intermedi-
ate PLs considered, which determines the width of the translation tree created by ToCT. In this RQ,
we investigate the impact of reducing the set and specific types of intermediate PLs by addressing
the following two sub-RQs:

• RQ3.1: How does the number of available intermediate PLs influence the performance of INTER-
TRANS?

• RQ3.2: How does the removal of a specific intermediate PL affect the performance of INTER-
TRANS?
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Figure 2: HeatMap showing the mean absolute decrease in CA (%) when removing a programming
language from the intermediates used in our approach, compared to not removing any PL (across all
datasets and models). Framed cells annotated with “(sig.)” indicate statistically significant results.
The “n” value in the x-axis labels indicates the sample size for each translation pair. For each
translation pair, one cell is empty because (by definition) the target PL can not be removed.

To address the above two sub-RQs, we first conducted an ablation study across all possible combi-
nations of intermediate PLs from the experiments conducted in RQ1 and RQ2, using a maxDepth
of 4 with six PLs. Each ablation involves the removal of all translation paths that contain a sub-
set of the set of intermediate PLs. In particular, for each translation, we computed all 31 possible
combinations of removing 1 to 5 PLs from the intermediates (i.e. all combinations of intermediate
PLs, except those that include the target language). We then removed the edges that involve each
individual set and measured whether the translation remained successful (i.e., at least one translation
path leads to a correct translation). This ablation was performed for each sample of the nine exper-
iments (3 datasets and 3 LLMs), and we recorded which removed sets caused the translation to be
unsuccessful. For this analysis, we leveraged the data we generated during our evaluation described
in Section 4.1, where we recorded the execution result of all translation paths in the translation trees.

To answer RQ3.1 in specific, we aggregated the results from the 458,118 translations (4,926 tasks
from 3 datasets, each with 31 removal combinations using 3 different models) based on the number
of intermediate PLs removed, i.e., the cardinality of the set of removed PLs. This analysis helps us
understand the overall impact of the number of intermediate languages on translation success rate.

Additionally, in RQ3.2, to investigate whether specific languages are more impactful as intermedi-
ates, we analyzed the results from the translations of RQ3.1 that are associated with the removal of
a single intermediate PL. We then calculated the mean absolute decrease in translation success for
each of the 30 PL pairs in our experiments, caused by the removal of each specific PL. The heatmap
in Figure 2 shows the mean absolute decrease in CA when a PL is removed from each of the 30
translation pairs. Darker cells indicate a greater loss in CA, highlighting which PLs are more critical
for maintaining high translation accuracy. This heatmap also shows the results of a statistical signif-
icance test (Chi-squared Goodness of Fit) we conducted by comparing the the number of successful
and unsuccessful translations before (control group) and after (experimental group) the removal of a
specific PL (alpha = 0.05, Bonferroni-corrected). In the heatmap, we highlight the cells associated
with statistically significant differences.

Results of RQ3.1: We observe that the inclusion of more intermediate PLs consistently improves
the translation accuracy of INTERTRANS. For instance, for Magicoder on CodeNet, increasing from
zero to one intermediate PL results in a significant improvement of 9.3% in CA (from 47.2% to
56.5%). Similarly, adding a second intermediate PL increases the CA metric by 12.9%, and a third
intermediate PL results in a 9.2% increase. However, beyond this point, the incremental gains begin
to diminish. Adding a fourth intermediate PL yields a 5.6%, while the addition of a fifth intermediate
PL results in a relatively smaller increase of 3.2%. This trend suggests that while the inclusion of
intermediate PLs is beneficial for improving translation accuracy, the marginal returns decrease as
more intermediate PLs are added. The most substantial gains are observed when moving from zero
to three intermediates, after which the improvements become more modest.

Results of RQ3.2: Figure 2 demonstrates that the importance of intermediate PLs varies across
different translation pairs. For instance, when translating a program written in C++ to Java (second
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column of the heatmap), removing Rust as an intermediate PL resulted in a 17.4% decrease in
successful translations. In contrast, removing any other PL only led to a decrease ranging from
3.1% to 6.8%. This emphasizes the critical role of certain intermediate PLs in achieving accurate
translations.

5 THREATS TO VALIDITY

Internal Validity: We performed the translation only once for each translation problem, using a
fixed random seed for study LLMs when reporting the performance of INTERTRANS. This design
reduces the risk of selecting a favorable seed across all nine experiments. Nonetheless, this does
not affect the comparison between INTERTRANS with direct translation, or the empirical analysis
of varying parameters, which are our main goals. Another threat to internal validity arises from
potential data leakage in LLMs, meaning there could be an overlap between the training data of the
studied LLMs and the evaluation dataset used in this work. However, this issue would impact all
baseline models, not just INTERTRANS, ensuring that the relative performance comparisons between
models in our study remain valid.

External Validity: Potential threats to external validity may arise from the selection of target PLs,
LLMs, evaluation datasets, and compared approaches The source-target PL pairs we considered in-
clude all those concerned in recent work on LLM-based code generation by Pan et al. 2024 and Yang
et al. 2024. For dataset selection, our evaluation set is sourced from three well-known benchmarks.
Two of these benchmarks were used in the previously mentioned studies, and the third allows for a
fair comparison with non-LLM-based models, such as the TransCoder family and GPT-3.5.

Construct Validity: Similar to prior studies (Pan et al., 2024; Yang et al., 2024), we only consider
execution-based evaluation metric, i.e., CA. While execution-based metrics align better with our
goal to investigate the capability of LLMs in generating translated code that is functionally equal
to the source program, its reliability will be impacted by the effectiveness of output control and the
quality of test cases. To mitigate these threats, we applied output control following the best practices
suggested by Macedo et al. 2024. For the evaluation datasets, we ensured that each translation
problem included three test cases. This threshold is also used in literature (Austin et al., 2021)
to balance computational cost and test suite coverage. The other two datasets provide more test
cases. For instance, each translation problem in HumanEval-X contains an average of 7.7 test cases.
However, not all translation failures may be captured even with these mitigation approaches.

6 RELATED WORK

Automated code translation approaches generally fall into two categories: rule-based methods and
data-driven learning-based methods. Rule-based automated code translation approaches (c2r, 2024;
cxg, 2024; sha, 2024; j2c, 2024) utilize program analysis techniques and handcrafted rules to trans-
late code between programming languages (PLs). However, these tools often produce non-idiomatic
translations and are expensive to develop (Szafraniec et al.). Learning-based approaches aim to ad-
dress these limitations by leveraging large-scale data. Techniques in this category have evolved
significantly, starting with statistical learning techniques (Nguyen et al., 2013; 2014; Karaivanov
et al., 2014), progressing to neural network approaches (Chen et al., 2018), and more recently, to
pre-trained model-based (Lachaux et al., 2021; Roziere et al., 2021; Szafraniec et al.; Jiao et al.,
2023) and LLM-based methods (Pan et al., 2024; Yang et al., 2024). Our proposed INTERTRANS is
also a LLM-based code translation approach. It is unique among existing methods as it is the first
study to explore the potential of leveraging intermediate PLs for code translation.

7 CONCLUSION

This work explores the potential of leveraging the multilingual capabilities of LLMs to enhance
automated code translation through transitive intermediate translations. We propose INTERTRANS,
a novel approach that utilizes a planning algorithm (ToCT) to generate candidate translation paths,
which are then evaluated sequentially. Through extensive empirical studies on three benchmarks,
our results demonstrate the promise of INTERTRANS with an absolute improvement boosting of
18.3% to 43.3% in Computation Accuracy (CA) over direct translation with ten attempts. With only
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a readily available open-source LLM, e.g., Magicoder, INTERTRANS achieved an average CA of
87.3%-95.4% on three benchmark datasets. INTERTRANS not only enhances translation accuracy,
but also provides a new direction for future research in leveraging and interpreting multilingual
LLMs for diverse coding tasks.
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