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ABSTRACT

The objective of the collaborative perception task is to enhance the individual
agent’s perception capability through message communication among neighbor-
ing agents. A central challenge lies in optimizing the inherent trade-off between
perception ability and communication cost. To tackle this bottleneck issue, we
argue that a good message unit should encapsulate both semantic and structural
information in a sparse format, a feature not present in prior approaches. In this
paper, we innovatively propose a compact message unit, namely point cluster,
whose core idea is to represent potential objects efficiently with explicitly decou-
pled low-level structure information and high-level semantic information. Build-
ing upon this new message unit, we propose a comprehensive framework CPPC
for communication-efficient collaborative perception. The core principle of CPPC
is twofold: first, through strategical point sampling, structure information can be
well preserved with a few key points, which can significantly reduce communica-
tion cost; second, the sequence format of point clusters enables efficient message
aggregation by set matching and merging, thereby eliminating unnecessary com-
putation generated when aligning squared BEV maps, especially for long-range
collaboration. To handle time latency and pose errors encountered in real-world
scenarios, we also carefully design parameter-free solutions that can adapt to dif-
ferent noisy levels without finetuning. Experiments on serval widely recognized
collaborative perception benchmarks showcase the superior performance of our
method compared to the previous state-of-the-art approaches.

1 INTRODUCTION

Collaborative perception aims to enhance the perception capabilities of individual agents by utilizing
complementary information exchanged between surrounding agents. This approach offers a novel
strategy to address several inherent challenges of single-agent perception He et al. (2017); Cheng
et al. (2022), including occlusion and long-range limitations. There is a pressing need for related
methods and systems across a wide spectrum of practical applications, such as vehicle-to-everything
autonomous driving Yu et al. (2022), automated multi-robot warehouse systems Li et al. (2020),
and multi-UAVs for search and rescue Scherer et al. (2015). Recent efforts have made valuable
contributions in terms of high-quality real and simulated datasets Yu et al. (2022); Xu et al. (2022b);
Li et al. (2022); Xu et al. (2022a; 2023b), as well as effective solutions Xu et al. (2023a); Li et al.
(2021a); Wang et al. (2020); Xu et al. (2022a); Hu et al. (2022); Chen et al. (2019a); Xu et al.
(2022b) for collaborative perception.

The paramount challenge in this field involves optimizing perceptual ability in the face of lim-
ited communication bandwidth in real-world scenarios, i.e., communication-efficiency. Based on
the type of observation transmission medium (i.e., message unit), previous studies can be catego-
rized into three types: early collaboration with raw point cloud data Chen et al. (2019b); Arnold
et al. (2020), late collaboration using bounding boxes Shi et al. (2022); Zeng et al. (2020); Rauch
et al. (2012); Glaser & Kira (2023), and intermediate collaboration through bird’s eye view (BEV)
maps Xu et al. (2022b;a; 2023a); Hu et al. (2022). Early collaboration can simplify subsequent
analyses and enrich information for downstream models. Despite fostering high performance, this
approach incurs huge bandwidth consumption due to the transmission of complete raw observa-
tions. Late collaboration ensures efficient economic bandwidth consumption; however, it suffers
from performance bottlenecks and reduced robustness due to scarce object information. Intermedi-
ate collaboration compresses representative information into BEV feature maps, resulting in reduced
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communication bandwidth compared to early collaboration, while also enhancing perception capa-
bilities in comparison to late collaboration. Despite significant development, the manual projection
of point clouds to BEV feature maps suffers from quantization error Shi et al. (2019) and creates
a bottleneck in collaboration, hindering these methods from effectively completing 3D structural
information for precise object boundary predictions.

Considering the above issues, we innovatively propose a compact message unit, called point cluster,
which describes objects with point coordinates representing the object structure, a cluster center
representing the object position, and cluster feature representing the high-level semantics of the
object. The point cluster has several merits compared to existing message units: 1) Unlike raw point
clouds, point clusters intrinsically capture only the foreground objects within a scene in a sparse
manner, leading to efficient communication; 2) In contrast to bounding boxes, point clusters offer
sufficient information about potential objects, enabling more robust aggregation and decoding for
enhanced regression accuracy; 3) Compared to BEV maps, point clusters explicitly preserve the
structural information of objects in original coordinate space, enabling fine-grained point alignment
and complementary structure information fusion between different agents.

To fully unleash the potential of this powerful message unit, we propose CPPC, a comprehensive
Collaborative Perception framework based on Point Cluster that revolutionizes existing communica-
tion mechanism, while featuring low bandwidth usage, high-performance perception, and real-noise
robustness. The main body of our CPPC includes two key modules: 1) a point cluster packing mod-
ule, which flexibly controls the number of points contained in each point cluster while maintaining
their geometric structure to cope with different bandwidth constraints; 2) a point cluster aggregation
module, which integrates point clusters from other agents with set matching and merging to achieve
a comprehensive understanding of the surrounding scene for the ego agent. In addition to optimizing
bandwidth and performance trade-off, our CPPC also has careful designs for two common robust-
ness challenges, i.e., pose error Lu et al. (2023) and time delay Lei et al. (2022); Wei et al. (2024),
benefited from the low-level information in point cluster. To explicitly solve the pose error, we pro-
pose to reformulate cluster centers as vertices of a graph and optimize to promote pose consistency
between agents and point clusters. In order to compensate for the time latency, we link point clus-
ters of the same object along the time dimension and measure its speed for position prediction in the
current timestamp.

As an intermediate collaboration method, using point cluster as message unit gives our CPPC three
distinct advantages compared with previous methods based on BEV map: 1) Decoupling of struc-
ture and semantic information allows our CPPC to efficiently represent each potential object with
a few key points and significantly fewer feature channels, all while avoiding the loss of high-level
information during message packing. 2) The computational complexity of our CPPC during mes-
sage aggregation is efficiently related to the number of possible objects in the scene, rather than
quadratically related to the perception range, which is more suitable for long-range collaboration.
3) Our graph optimization and speed estimation methods possess a strong generalization capability
as they do not rely on any training parameters during the optimization process. This enables our
method to adapt to varying levels of noise with ease. To validate the effectiveness of our proposed
CPPC, we conduct experiments on three popular collaborative perception benchmarks, V2X-Set Xu
et al. (2022a), OPV2V Xu et al. (2022b), and DAIR-V2X Yu et al. (2022). Our method achieves
the new state-of-the-art performances with significant performance gains of 5.7%, 7.3% and 12.8%
on the strict mAP@0.7 metric, respectively. Not only that, we also contributes this community a
series of new metrics to demonstrate the benefits of different message units brings across various
collaboration phases in a fine-grained manner, where our CPPC still achieves the best performance.

2 PROBLEM FORMULATION
Suppose there are Nagent agents present in the scene, whose observations and the ground truth an-
notation are denoted as {X i}Ni=1 and {Yi}Ni=1, respectively. Collaborative perception aims to maxi-
mize the perception performance of all agents while taking into account the constraint on available
bandwidth β, which can be formulated as:

argmax
θ,M

N∑
i=1

g(Φθ(X i;t, {Mj;t−τj→i;t

}Nj=1,j ̸=i),Yi;t), s.t.
N∑
i=1

N∑
j=1,j ̸=i

|Mj;t−τj→i;t

| ≤ β. (1)

Here, θ denotes trainable parameters of the network Φ and g(·, ·) is the evaluation metric.
Mj;t−τj→i;t

is the message transmitted from the j-th agent at the timestamp t − τ j→i;t and re-
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Figure 1: Illustration of using BEV map and point cluster as message units for intermediate collaboration.
ceived by the i-th agent at the timestamp t, where τ j→i;t is the transmission latency. It includes
the j-th agent’s extracted collaborative message units M j and 6DoF pose ξj . Note that 1) there is
no collaboration when β = 0 and the objective reflects the single-agent perception performance; 2)
when accounting for pose error, it is necessary to correct the pose ξj for feature alignment; 3) we
will omit the superscripts t related to the timestamp in the following when τ = 0 for simplicity.

Existing intermediate collaboration approaches employing dense BEV maps as basic message units
have several limitations: 1) Object feature destruction during message packing (Figure 1 (a)). Chan-
nel compression Xu et al. (2022a) enables the sender to preserve spatially complete scene informa-
tion, while the receiver may suffer from object feature degradation during reconstruction due to
heterogeneity representation across channels. In contrast, spatial selection Hu et al. (2022); Wang
et al. (2023b) transmits only informative regions pointed out by spatial confidence maps, which
may result in potential object loss when bandwidth constraints become more stringent. 2) Inefficient
message aggregation for long-range collaboration (Figure 1 (b)). Collaboration can bring a larger
perception range to the ego agent, but computational complexity also grows quadratically with the
expansion of dense BEV feature maps. Moreover, limited by the square map structure and convo-
lution operation requirements, the received BEV features are inevitably filled to the same shape for
aggregation with zero paddings, resulting in unnecessary calculation on non-overlapped areas. 3)
Implicit structure representation communication (Figure 1 (c)). The voxelization operation sacrifices
3D geometric details in comparison to the raw point clouds. While aggregating BEV representations
from different agents can enhance the response of potential object regions, the precision of predicted
box boundaries may be constrained by incomplete object structure modeling.

Our CPPC based on point clusters for communication can overcome these issues: 1) Object fea-
ture preservation during message packing. (Figure 1 (d)). Point clusters inherently contain only
the information of foreground objects present in the scene, eliminating the need for filtering out
irrelevant backgrounds by handcrafted rules. Moreover, we can control the transmission bandwidth
by explicitly reducing the number of points, as opposed to implicitly compressing feature channels.
2) Range-irrelevant efficient message aggregation (Figure 1 (e)). The number of point clusters is
more related to the number of objects in the scene rather than the collaboration range. Furthermore,
point clusters can be conveniently associated with the same object and aggregated through set merg-
ing, without the need for padding to the same shape of joint field of view. 3) Explicit structure
representation communication ((Figure 1 (f))). Point clusters fully preserve the geometric struc-
tural information of objects in the original coordinate space, enabling fine-grained point alignment
and complementary structure information fusion between different agents, which can improve the
precision of predictions.
3 METHOD
To begin with, we will present an overview of our CPPC framework in §3.1. The we describe details
about how we encode, pack, and aggregate point clusters in §3.3 and §3.4, respectively. Finally, we
will address time latency and pose error problems to improve our method’s robustness in §3.5.
3.1 OVERVIEW

Figure 2 illustrates the overall architecture of our proposed method. Initially, the raw point clouds
of all agents are processed by a shared Point Cluster Encoder (PCE), which segments foreground
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Figure 2: Overview of our CPPC system, including a shared PCE module to extract point clusters
from raw point clouds, a PCP module to selectively packing informative point clusters, and a PCA
to complete object information. Pose error and time latency are revised before aggregation phase.

points on the surface of objects and divides them into clusters based on the distance metric. From
each of these point clusters, we extract and formulate the point coordinates, the center coordinates,
and the cluster feature as corresponding intermediate representations. Then we propose a Point
Cluster Packing (PCP) module to filter noisy background clusters and correct the involved points of
foreground clusters via proposal generation. The reduction in bandwidth usage of the point cluster
can be achieved by decreasing the number of included points. After receiving messages from other
agents, we address the pose error and time latency with parameter-free approaches and then align
the coordinate space of point clusters from multiple agents via pose transformation, which allows
the ego agent to obtain an agent-cluster graph as the comprehensive scene representation from its
own coordinate space. As for message aggregation, we propose a Point Cluster Aggregation (PCA)
module, where point cluster matching is performed to find point clusters belonging to the same
object and merge them into a new point cluster that contains complete object information with linear
complexity. Finally, we refine cluster features of point clusters via point-based operators, based on
which we output the final detection results.
3.2 POINT CLUSTER ENCODER

Since the original BEV representations for collaborative perception suffer from object feature de-
struction, inefficient message aggregation for long-range collaboration, and implicit structure rep-
resentation communication, we propose a brand new representation called point cluster to address
these issues. We adopt the encoder-decoder point cloud backbone Shi et al. (2020b) based on 3D
sparse convolution and deconvolution as the sparse voxel feature extractor. To construct each point
feature, we concatenate the voxel feature where the point is located and the corresponding off-
set from the point to the voxel center. These point features are then passed through a MLP for
foreground segmentation. Since objects are naturally well-separated, 3D box annotations in au-
tonomous driving scenes directly provide semantic masks for supervision Shi et al. (2019). We use
focal loss Lin et al. (2017) for segmentation loss, denoted as Lseg. For foreground points, we use
another MLP to predict their offsets to the corresponding object centers, which is supervised by L1
loss Ren et al. (2015), denoted as Lcenter. Next, we measure the distance among the predicted centers
of foreground points, where two points belong to the same point cluster if their predicted centers’
Euclidean distance is smaller than a certain threshold ϵpoint.

After we can directly extract cluster features via point-based operators, such as PointNet Qi et al.
(2017a), DGCNN Wang et al. (2019), Meta-Kernel Fan et al. (2021), and SIR Fan et al. (2022). We
select SIR in this paper and stack L1 layers to encode all cluster features in parallel. To express
more clearly, we take the processing process of the q-th cluster in the l-th SIR layer as an example.
Concretely, assume there are Nq

point foreground points, we denote the included point coordinates

and features as P q ∈ RNq
point×3 and F q;l

point ∈ RNq
point×D, respectively, where D is number of feature

channels. We take the average coordinates of all predicted cluster centers as the cluster center,
denoted as Cq ∈ R1×3. The processing process of SIR can be formulated as:

F̃ q;l
point = MLP([F q;l

point;P
q ⊖Cq]),F k;l+1

point = MLP([F̃ q;l
point;maxpool(F̃ q;l

point)]), (2)

where [; ] denotes concatenation along the channel dimension, ⊖ means applying subtraction on
each point in P q , and F q;l+1

point ∈ RNq
point×D is the processed point cluster feature. We concatenate

{F q;l
point}

L1

l=1 along the channel dimension, and apply linear transformation and max-pooling on it to
obtain the final cluster feature F q ∈ R1×D.
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3.3 POINT CLUSTER PACKING

The intermediate representations of point clusters extracted from PCE by the i-th agent can be for-
mulated as:

M i = {mi;q}N
i
cluster

q=1 = {(P i;q,Ci;q,F i;q)}N
i
cluster

k=1 , (3)
where mi;q is the representation of the q-th cluster, N i

cluster is the number of point clusters extracted
by the i-th agent, P i;q denotes the set of included point coordinates, Ci;q denotes the cluster center,
and F i;q denotes the cluster feature. However, during the point cluster grouping process, errors
may occur, resulting in the loss of points on the object’s surface and the inclusion of background
distractors. In order to correct this issue, we propose to generate a proposal bounding box for each
cluster. To achieve this, we feed the cluster features to two separate MLPs for proposal classification
and regression. During the training phase, clusters are classified as positive if their predicted centers
are located in the ground truth bounding boxes. We adopt L1 loss Ren et al. (2015) and focal
loss Lin et al. (2017) as regression loss Lreg and classification loss Lcls, respectively. After proposal
generation, we only retain point clusters with positive proposals. The point coordinates in these
clusters are overridden with the coordinates of points within the positive proposals. Consider there
are N i

cluster+ positive clusters, we modify the formulation of Mi as following:

M i = {mi;q}N
i
cluster+

q=1 = {(P i;q,Ci;q,F i;q,Bi;q)}N
i
cluster+

q=1 , (4)

where Bi;q = (x̂, ŷ, ẑ, ĥ, ŵ, l̂,α, ĉ) includes the center coordinates, the size, the yaw angle and
the confidence score of the proposal bounding box of the q-th cluster. The final message distributed
can be formulated as Mi = (M i, ξi), where ξi is the 6DoF pose used for pose transforming in the
later aggregation phase.

Optimizing the trade-off between perception performance and communication bandwidth is vital
in collaborative perception. Unlike BEV maps, our point clusters are inherently sparse in the spa-
tial dimensions. Therefore, the communication cost in our method is mainly on the point coor-
dinates (i.e. thousands of 3-dimensional coordinates) rather than the object features (i.e. one 128-
dimensional features). Considering that the geometric structure of the object can be represented
by keypoints, we propose Semtanic and Distribution guided Farthest Point Sampling (SD-FPS) to
compress the transmission data, which can effectively exclude raw points with ambiguous semantic
features or redundant structural features. Specifically, not only considering the distance dpoint be-
tween points like naive farthest point sampling, but also we select keypoints based on the object’s
semantic confidence score sf and distribution density score sd. The semantic confidence score is
derived from segmentation head in PCE, with a higher score indicating richer semantic information
for distinguishing objects. The distribution density score for point p is inversely proportional to its
density estimation: 1

|N (p)|
∑

q∈N (p) K(p, q), where N (p) is a point set in the nearby area of p,
and K(·, ·) is a gaussian kernel function to measure the similarity between position of two points.
Thus, a lower sd indicates removing it will not significantly affect the object’s shape. We show the
algorithm details of applying SD-FPS on the q-th cluster of the i-th agent in Appendix A.1.

3.4 POINT CLUSTER AGGREGATION

After message communication, we need to appropriately aggregate point clusters from surrounding
agents to form a holistic perception. We take the aggregation process from the j-th agent to the
i-th agent as an example, which can be extended to all agents easily. Firstly, we align the coordinate
space of M j to that of M i through the transform matrix calculated from ξi and ξj . The transformed
message units from the j-th agent are denoted as M j→i. Similar to the foreground point grouping
process, we match M i and M j→i based on their clusters’ centers, where the q-th point cluster of
the i-th agent mi;q and the r-th point cluster of the j-th agent mj→i;r belong to the same object if
their centers’ distance ∥Ci;q−Cj→i;r∥2 is less than a predefined threshold ϵagg. After matching, we
organize all point clusters as two disjoint sets Munique and Mshare. The set Munique comprises point
clusters exclusively observed by a single agent, which do not need to be involved in the following
aggregation process. Differently, Mshare is the set of tuples including point clusters belonging to the
same object in the scene. We combine each tuple to form a novel point cluster that encompasses
comprehensive low-level and high-level object information. In detail, assume that mi;q and mj→i;r

belong to the s-th object in the scene, the aggregated point cluster m̈s = (P̈ s, C̈s, F̈ s, B̈s) can be
formulated as follows:

P̈ s = P i;q ∪ P j→i;r, C̈s =
Ci;q +Cj→i;r

2
, (5)
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F̈ s = avgpool(F i;q,F j→i;r), B̈s =

{
Bi;q, if ĉi;q − ĉj→i;r ≥ 0

Bj→i;r, otherwise
, (6)

Since there are no convolution operations and unnecessary zero-padding, the computational com-
plexity of aggregating point clusters in our PCA is only strongly related to the number of potential
objects, which is more efficient for long-range collaboration than BEV-based aggregation methods.

3.5 ROBUSTNESS

In realistic communication settings, the presence of pose error and time latency is unavoidable and it
leads to misalignment of point clouds that significantly affect the reliability of transferred informa-
tion in collaborative perception. Benefiting from the low-level object information in point clusters,
we propose parameter-free approaches that can generalize to different noise settings. For simplicity,
we take the correction processes that happen between the i-th (ego) and j-th agents as an example.

Pose Correction. To address this issue, we propose to align the clusters from different agents
belonging to the same object. After receiving the message from the j-th agent, we first align the
coordinate space of M j to the i-th agent with relative pose ξj→i = (ξi)

−1 ◦ ξj , where ◦ means
multiplying their homogeneous transformation matrices. We denote mi;q and mj→i;r as point
clusters belonging to the s-th unique object in the scene after spatial cluster matching with threshold
ϵpose. In the following, we simplify each pose in 2D space. The pose of the s-th unique object is
defined as χs = ξi ◦ (Ci;q +Cj→i;r)/2. Inspired by CoAlign Lu et al. (2023), we define the pose
consistency error vector as ejs = Cj;r ◦ ((ξj)−1 ◦ χs), which is zero when there is no pose error.
The overall optimization problem can be formatted as follows:

{(χs)
′
, (ξj)

′} = arg
{ξj ,χs}

min

Nagent∑
j=1

Nobject∑
s=1

(ejs)
T
ejs. (7)

Different from existing BEV-based methods that need additional detection results for pose correc-
tion, we can directly utilize low-level information contained in the point cluster.

Latency Compensation. SyncNet Lei et al. (2022) proposes to complete BEV maps at the current
timestamp using locally stored historical BEV maps from other agents. Differently, we propose to
directly predict the location of point clusters in the current timestamp via speed estimation based
on the low-level coordinate information, which is more efficient and interpretable. We denote the
received point clusters from the j-th agent at the t-th timestamp as M j;t−τj→i;t

, where τ j→i;t is
the time latency. The stored point clusters from the j-th agent during the last communication round
are denoted as M j;t′ , where t′ < t − τ j→i;t. Similar to the spatial matching process in 3.4, we
match point clusters along the time dimension by measuring whether their Euclidean distance is in a
predefined range [ϵlatency, ϵlatency]. Assume mj;r;t′ and mj;q;t−τj→i;t

belong to the same object, we

can infer its speed vj;q;t−τj→i;t

and offset ∆dj;q;t−τj→i;t

cluster to the current timestamp t as follows:

vj;q;t−τj→i;t

=
∥Cj;q;t−τj→i;t −Cj;r;t′∥2

t− τ j→i;t − t′
,∆dj;q;t−τj→i;t

cluster = vj;q;t−τj→i;t

× τ j→i;t. (8)

Finally, we can obtain the estimated point cluster mj;q;t at the t-th timestamp by coordinates trans-
lation with ∆dj;q;t−τj→i;t

cluster .

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We conducted experiments on three widely used benchmarks for collaborative perception, i.e.,
V2XSet Xu et al. (2022a), OPV2V Xu et al. (2022b), and DAIR-V2X-C Yu et al. (2022). We
follow previous works Hu et al. (2022); Xu et al. (2022a) to select one of the agents in the scene
as the ego agent, whose detection results are assessed by Average Precision (AP) at Intersection-
over-Union (IoU) thresholds of 0.5 and 0.7, denoted as AP@0.5 and AP@0.7. Nevertheless, they
treat all elements in the scenario uniformly, disregarding the input of collaborative participants. To
compare the collaborative perception ability of different methods in a more fine-grained manner, we
calculate the number of points observed by the ego agent Nego in all target objects and categorize
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them as: 1) Single-agent Perception of Other agents (SP-O), which signifies objects that are scarcely
perceived by the ego agent; 2) Single-agent Perception of Ego agent (SP-E), which denotes objects
that are more effectively scanned by the individual agent, with additional information provided by
other agents primarily serving as supplementary; 3) Collaborative Perception (CP), which indicates
objects that are partially observable by the individual agent and require assistance from other agents
to obtain comprehensive information about the objects. We evaluate the AP@0.7 of each group,
denoted as APSP-O, APCP, and APSP-E, respectively.

4.2 IMPLEMENTATION DETAILS

Z
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Figure 3: Illustration of histogram of all targets and
proportions of those belonging to SP-O, SP-E, and CP
categories in the test set of DAIR-V2X-C.

We set the perception range along the x,
y, and z-axis to [−140.8m, 140.8m] ×
[−40m, 40m] × [−3m, 1m] for V2XSet
and [−100.8m, 100.8m] × [−40m, 40m] ×
[−3m, 1m] for DAIR-V2X-C, respectively.
The communication results measure message
size in bytes using a logarithmic scale with
base 2. The thresholds ϵagg, ϵpose, ϵlatency, and
ϵlatency for cluster matching are set as 0.6, 1.5,
0.5 and 2.0, respectively. The number of SIR
layers is L1 = 6 in PCE and L2 = 3 during
message decoding. The channel number of
cluster features is D = 128. Adam Kingma
& Ba (2014) is employed as the optimizer for
training our model end-to-end on NVIDIA
Tesla V100 GPUs, with a total of 35 epochs. The initial learning rate is set as 0.001 and we reduce
it by 10 after 20 and 30 epochs, respectively. Our method is implemented with PyTorch.

Table 1: Comparison with state-of-the-art methods on the test sets of
V2XSet, OPV2V, and DAIR-V2X-C on perfect setting. The second
highest performance accuracy is highlighted in blue in the table.

V2XSet OPV2V DAIR-V2X-CMethod AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7
DiscoNet Li et al. (2021a) 90.78 83.81 86.2 73.3 69.28 58.56

V2X-ViT Xu et al. (2022a) 89.03 79.02 91.4 82.3 73.98 61.50
Where2comm Hu et al. (2022) 85.03 76.77 - - 71.48 60.36

OPV2V Xu et al. (2022b) 91.88 84.75 89.9 76.5 66.07 50.92
CoBEVT Xu et al. (2023a) 90.33 82.69 - - 63.90 51.67

CoAlign Lu et al. (2023) - - 94.5 86.8 74.60 60.40
Ours 92.83 89.55 94.6 93.1 76.89 69.39

Table 2: Comparison with state-of-
the-art methods on the test set of
DAIR-V2X-C with different target
categories.

MetricMethod APSP-O APCP APSP-E

Where2comm 38.54 73.17 67.18
V2X-ViT 36.85 74.94 67.27

Ours 40.13 82.63 76.72

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS
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Figure 4: Comparison with state-of-the art methods considering (a) performance-bandwidth trade-
off, (b) time latency, (c) positional error, and (d) heading error.
As shown in Table 1, our CPPC outperforms previous BEV-based approaches on the test sets of all
evaluated benchmarks, indicating the effectiveness of adopting point cluster as the basic collabora-
tive message unit in both simulated and realistic scenarios. Our CPPC outperforms other methods
significantly in the most stringent metric AP@0.7, and is 5.7%, 7.3%, and 12.8% higher than the
previous best OPV2V, CoAlign, and V2X-ViT on V2XSet, OPV2V, and DAIR-V2X-C, respectively,
demonstrating its ability to accurately locate the correct object through collaborative perception and
regress a more precise bounding box to cover the object. In addition, we compare our point cluster
aggregation method with late collaboration, which directly use B̈s for point clusters matching the
same potential objects, i.e., in Mshare, and B for objects exclusively observed by a single agent,
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i.e., in Munique, as the final outputs, respectively. Our method improves late collaboration by 15.0%
and 68.2% on V2X-Set and DAIR-V2X on AP@0.7. This finding confirms that our PCA module
can effectively utilize rich object information—specifically, semantic features and structural infor-
mation—in point clusters received from surrounding agents, enabling the discovery of objects that
cannot be accurately detected by individual agents.

We explore the performance-bandwidth trade-off of our CPPC and previous typical methods in Fig-
ure 4 (a). Thanks to the sparse nature of point clusters, the communication volume is under 16
even if we pack all cluster points, which is close to the lower bound of bandwidth usage of other
methods. Under the same communication volume, our method achieves significant performance im-
provements of around absolute 10.0 AP@0.7. The little performance drops with bandwidth decrease
indicate that appropriate point sampling strategies can reduce representation redundancy.

Time latency poses a pervasive challenge in real-world V2X communication, leading to asynchro-
nization between ego features and received collaborative features. We compare the model robustness
against time latency ranging from 0 to 500ms in Figure 4 (b). Compared to previous interme-
diate methods, our CPPC achieves superior performance, with similar AP degradation as latency
increases. It is worth noting that both V2X-ViT and Where2comm need to be finetuned with data
on different noisy levels, while our CPPC can adapt to arbitrary noise levels in a zero-shot manner.

Collaborative agents depend on precise pose data from others to transform coordinates of re-
ceived messages. Despite advanced localization technologies like GPS, pose error is unavoid-
able. Therefore, collaborative approaches need to be resilient to localization errors. We compare
different methods with pose noises following Gaussian distribution with standard deviations from
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} for positional error (m) (Figure 4 (c)) and heading error (◦) (Figure 4
(d)), respectively. Results show that there is no significant AP drop, which validates that our CPPC
can handle large noise disturbances without further finetuning and additional model parameters.

The existing evaluation metrics in collaborative perception treat all objects equally, which is not
conducive to fine-grained analysis. As shown in Table 2, we split targets into different categories
based on the number of points scanned by the ego agent and evaluate AP@0.7 for each category,
denoted as APSP-O, APCP, and APSP-E. Experimental results demonstrate the superiority of our CPPC
over the state-of-the-art BEV-based approaches across all evaluation metrics. In detail, high APSP-O
means that our PCP module can keep more complete object information since we avoid feature
destruction caused by channel compression and spatial selection. The results in the 2-nd column
demonstrate the significant improvement of our CPPC over BEV-based methods in terms of the
APCP metric. This indicates that utilizing point clusters as the basic collaborative message unit is
advantageous for both message packing and aggregation phases, resulting in enhanced collaboration
compared to earlier techniques relying on dense BEV maps.

4.4 ABLATION STUDIES

Table 3: Different numbers of feature channels in PCE.
Channel NumberMetric 8 16 32 64 96 128

AP@50 74.41 75.32 77.12 76.63 77.40 77.30
AP@70 64.79 67.08 69.32 68.92 69.55 69.43

Number of Feature Channels in PCE. We
assess AP@50 and AP@70 using various chan-
nel numbers of cluster features in PCE on the
test set of DAIR-V2X-C in Table 3. The re-
sults indicate that there is no notable decrease
in performance when the number of channels is
reduced to 16. We argued that since we explicitly include structure representation in point clusters,
the semantic information can be compressed to a large extent, leading to small bandwidth consump-
tion. In contrast to prior approaches that compress solely before the message packing phase, our
framework incorporates a small number of channels throughout the entire encoding phase, thereby
decreasing network size and computational overhead without destroying object features across chan-
nels (3-rd and 4-st rows).

Table 4: Different sampling ratios and methods.
RatioMethod

1/128 1/64 1/32 1/16 1/8 1/4

RPS 64.60 65.46 67.12 67.80 68.61 68.75
FPS 65.39 66.32 67.43 68.52 69.14 69.36

S-FPS 66.21 67.08 68.04 69.01 69.05 68.96
D-FPS 65.65 66.52 67.51 68.57 69.21 69.46

SD-FPS 66.12 67.03 68.08 69.22 69.19 69.41

Sampling Point Clusters with Different Ra-
tios and Methods. We evaluate AP@70 of
different sampling ratios and methods during
message packing on the test set of DAIR-V2X-
C in Table 4. The ratio is the number of sam-
ple points divided by the total number of points.
The first and second rows represent the baseline
methods of random sampling and basic FPS. The second, third, and fourth rows represent the results
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Table 6: Ablation experiments on ϵpoint, ϵagg, ϵpose, and ϵlatency.

ϵpoint ϵagg ϵpose ϵlatency
0.1 0.2 0.3 0.4 0.5 0.3 0.4 0.5 0.6 0.7 1.0 1.5 2.0 1.5 2.0 2.5

AP@0.5 91.94 92.01 91.92 91.75 91.47 91.97 91.95 91.99 92.01 91.97 89.86 90.00 89.80 72.50 72.69 72.68
AP@0.7 89.88 89.99 89.78 89.73 89.51 89.79 89.86 89.88 89.99 89.95 86.63 87.37 86.93 64.44 64.61 64.59

of introducing the semantic score, density score, and their joint application. It can be seen that the
semantic score performs better than the baseline under smaller sampling ratios, because it preserves
the semantic of object categories in extremely sparse structure. The density score performs better
than the baseline under larger sampling ratios, because it can remove local redundant information.
By combining the two scores, our method has significant performance advantages over the baseline
at all sampling ratios. Moreover, SD-FPS does not incur significant time costs, less than 3% of
time consumption in entire pipeline (Details in Apendix C.3). The reason is that our method applies
SD-FPS to each point cluster, which contains limited object-level points (about average 102 points
in the V2X-Set dataset) rather than large-scale scene-level points (about average 104 points in the
V2X-Set dataset).

Table 5: Lower bound for matching during latency
compensation.

Time Latency
ϵlatency 100 200 300 400 500

0 76.36/67.97 75.23/66.08 74.13/64.61 73.19/63.57 71.84/62.79
0.1 76.34/67.93 75.20/66.09 74.15/64.60 73.20/63.53 71.82/62.80
0.2 76.34/67.88 75.21/66.06 74.13/64.59 73.17/63.46 72.37/64.00
0.3 76.34/67.86 75.19/66.00 74.14/64.60 73.19/63.50 72.72/64.46
0.4 76.42/68.01 75.26/66.05 74.11/64.58 73.50/64.42 72.76/64.47
0.5 76.44/68.01 75.35/65.54 74.36/65.18 73.79/64.82 72.75/64.48

Ablation on Hyperparameters We evaluate
AP@0.5/AP@0.7 of different lower bounds
ϵlatency for matching during latency compensa-
tion in Table 5. In line with Figure 4 (b),
an increase in time latency may result in per-
formance degradation due to notable position
shifts that complicate temporal alignment. If
our method encounters relatively high time la-
tency (e.g., 300ms, 400ms, and 500ms), performance significantly decreases when ϵlatency = 0 or
is very low. Our research revealed that certain vehicles remain stationary, rendering the assumption
of uniform motion in Section 3.5 invalid. By adjusting ϵlatency as demonstrated in the 3-rd, 4-th, and
5-th columns, we can mitigate this issue by filtering out stationary targets during latency compen-
sation. Other involved hyperparameters i.e., ϵpoint, ϵagg, ϵpose, and ϵlatency, in our CPPC are evaluated
with different values in Table 6.
4.5 QUALITATIVE ANALYSIS

w/o collaboration w/ collaboration

(b)

(a)

Figure 5: Qualitative comparison results of our CPPC
with and without collaboration on the test sets of (a)
V2XSet and (b) DAIR-V2X-C, respectively. The green
bounding boxes represent the ground-truth, and the red
ones depict our predictions.

As shown in Figure 5, we show qualitative eval-
uation of our CPPCw/ and w/o collaboration on
the test sets of both V2XSet and DAIR-V2X-C
datasets. We can observe that the absence of
collaboration leads to the overlooking of many
objects to the ego agent’s inability to perceive
sufficient information regarding long-range or
obscured targets. These issue can be effectively
addressed using our message packing and ag-
gregation mechanisms based on point clusters.

We also visualize the detection results before
and after latency compensation on the test set
of the DAIR-V2X-C dataset in Figure 6. The
latency results in a delay of point clusters from
road infrastructure (marked by yellow dots)
compared to the point clusters from the ego car
(marked by blue dots) at the current timestamp.
Consequently, the ego car erroneously detects
them as distinct objects, resulting in an escalation of false-positive predictions. After refinement by
our latency compensation module, the delayed point clusters can be adjusted to the correct positions,
enhancing the detection results. Further, we illustrate the detection results before and after pose cor-
rection on the test set of the V2XSet dataset in Figure 7. By aligning clusters among all agents, we
can correct the noisy poses and obtain bounding boxes with high precision.

5 RELATED WORK

5.1 COLLABORATIVE PERCEPTION

Collaborative perception can be systematically classified into three primary types based on distinct
fusion stages: early Chen et al. (2019b); Arnold et al. (2020), intermediate, and late Shi et al. (2022);
Zeng et al. (2020); Rauch et al. (2012); Glaser & Kira (2023) collaboration. We focus on interme-
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Before Refinement After Refinement

Figure 6: Qualitative comparison results of our
CPPC before and after latency compensation.

Before Refinement After Refinement

Figure 7: Qualitative comparison results before and
after pose correction.

diate collaboration in this paper, which enables the exchange of intermediate features created by the
involved agents and has demonstrated significant potential in recent years. Considering the band-
width constraints in practical application scenarios, various cooperation strategies are proposed to
decide who Liu et al. (2020b), when Liu et al. (2020a), and where Hu et al. (2022); Wang et al.
(2023b) to communicate. After receiving features from other agents, existing methods adopt atten-
tion mechanism Xu et al. (2022b;a; 2023a); Zhang et al. (2022a); Wang et al. (2023a); Yang et al.
(2023), graph neural network Wang et al. (2020); Li et al. (2021a), maxout Bai et al. (2022); Guo
et al. (2021); Qiao & Zulkernine (2023), and addition Marvasti et al. (2020) to aggregate comple-
mentary scene information. This paper proposes a novel collaborative message unit named point
cluster and demonstrates its superiority over the BEV map for collaborative perception.

5.2 SPARSE DETECTORS

To address quantization errors caused by voxelization, point-based detectors Shi et al. (2019); Yang
et al. (2020); Qi et al. (2019); Zhang et al. (2022b); Qi et al. (2017b); Fan et al. (2022); Chen
et al. (2023); Huang et al. (2023) have emerged as a popular research topic. PointRCNN Shi et al.
(2019) is recognized as groundbreaking research in the advancement of this line of work. Taking
inspiration from Hough voting, VoteNet Qi et al. (2019) initially casts votes for object centroids and
subsequently generates high-quality proposals based on the voted center. FSD Fan et al. (2022) is
the pioneering fully sparse 3D object detector, which treats instances as groups and gets rid of the
dependence on the neighborhood query. In this paper, we study the shortcomings of BEV-based
collaboration methods and propose the point cluster as the collaborative message unit, which keeps
the low-level structure information to support effective and efficient collaboration.

6 CONCLUSION AND DISCUSSION

In this paper, we concentrate on the multi-agent collaborative perception task, illustrating that current
approaches are hampered by the inherent limitations of existing message units leading to sub-optimal
collaboration. To handle this issue, we create a brand new message unit for collaborative perception,
namely point cluster, and based on this we further present a novel collaborative framework CPPC.
The core idea of CPPC involves representing scenes through object-level point clusters, which are
sparse and encompass comprehensive information about objects. These clusters can be compressed
efficiently without losing geometric or high-level object information and can be integrated through
set matching and merging. To deal with time latency and pose errors encountered in real environ-
ments, we align point clusters from spatial and temporal dimensions and propose parameter-free
solutions for them. Extensive experiments on two collaborative perception benchmarks show our
method outperforms previous state-of-the-art methods.

Limitation and future work. Collaborative perception contributes to the societal benefit of en-
hancing the safety and reliability of mutli-agent system. By leveraging the low-level information
within point clusters, we introduce parameter-free solutions to enhance the robustness of our ap-
proach. Despite good results, we may need to manually adjust hyperparameters when facing a new
environment. In the future, we plan to address this issue using novel techniques specifically designed
for adapting to environmental changes. In addition, we also plan to extend our CPPC to handle tasks
considering temporal modeling, like tracking and forecasting Yu et al. (2023).
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A METHOD DETAILS

A.1 ALGORITHM: SEMTANIC AND DISTRIBUTION GUIDED FARTHEST POINT SAMPLING

Algorithm 1 Semantic and Distribution guided Farthest Point Sampling Algorithm. Npoint is the number of
input points and Nsample = Npoint × ζ is the number of sampled points controlled by a predefined sampling rate
ζ.

Input: coordinates P = {p1, . . . ,pNfg} ∈ RNpoint×3;
semantic scores Sf = {s1

f , . . . , s
Npoint
f } ∈ RNpoint ;

distribution scores Sd = {s1
d , . . . , s

Npoint
d } ∈ RNpoint .

Output: sampled key point set P̃ = {p̃1, . . . , p̃Nsample}
1: initialize an empty sampling point set P̃
2: initialize a distance array Dpoint of length Npoint with all +∞
3: initialize a visit array V of length Npoint with all zeros
4: for n = 1 to Nsample do
5: if n = 1 then
6: o = argmax({(sk

f )
λs · (sk

d )
λd |V k = 0}Npoint

k=1 )
7: else
8: D̃point = {(sk

f )
λs · (sk

d )
λd · dk

point|V k = 0}Npoint
k=1

9: o = argmax(D̃point)
10: end if
11: add P o to P̃ , V o = 1
12: for u = 1 to N do
13: du

point = min(du
point, ∥pu − po∥)

14: end for
15: end for
16: return P̃

A.2 POINT CLUSTER DECODING

We denote the intermediate representation of point clusters in the scene after aggregation as M̈ =

{m̈s}Nobject
s=1 , where Nobject = ∥Munique∥ + ∥Mshare∥ is the potential object number in the scene

observed by all involved agents. Different from BEV-based message aggregation methods, P̈ s
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contains complete low-level structure information, which can be utilized to enhance the precision
of the proposal bounding box B̈. In detail, we apply an additional SIR module that includes L2

layers on M̈ , which predicts the box residual ∆res to its corresponding ground truth box. For each
point cluster m̈s, we generate its point feature F̈ s

point by concatenating its offsets from the cluster
proposal B̈s and the cluster feature F̈ s. This introduces the proposal boundary information to the
SIR module, which can handle the size ambiguity problem to a certain extent Li et al. (2021b). We
define the residual loss Lres as the L1 distance between ∆res and the ground-truth residual ∆̂res.
In addition, we define the soft classification label as min(1,max(0, 2u − 0.5)) following previous
works Shi et al. (2020a;b), where u is the 3D Intersection-of-Union (IoU) between the predicted
proposal and the ground truth. We adopt cross-entroy loss as the IoU loss Liou. Considering all
losses in our framework, the total training loss L can be formulated as:

L = Lseg + Lcenter + Lreg + Lcls + Lres + Liou. (9)

B DATASETS

DAIR-V2X-C Yu et al. (2022) is the first to provide a large-scale collection of real-world scenar-
ios for vehicle-infrastructure collaborative autonomous driving. It contains 38,845 frames of point
cloud data annotated with almost 464k 3D bounding boxes representing objects in 10 different
classes. Since the original DAIR-V2X-C does not include objects beyond the camera’s view, we
have adopted the complemented annotations encompassing the 360-degree detection range, which
are relabeled by Hu et al. Hu et al. (2022).

V2XSet Xu et al. (2022a) is a large-scale V2X perception dataset founded on CARLA Dosovitskiy
et al. (2017) and OpenCDA Xu et al. (2021), which explicitly takes into account real-world noises
like localization error and transmission latency. V2XSet has 11,447 frames (6,694/ 1,920/2,833
for train/validation/test respectively) captured in 55 representative simulation scenes that cover the
most common driving scenarios in real life. Each scene typically involves 2-7 agents engaged in
collaborative perception.

OPV2V Xu et al. (2022b) is a vehicle-to-vehicle collaborative perception dataset, cosimulated by
OpenCDA Xu et al. (2021) and Carla Dosovitskiy et al. (2017), which includes 12K frames of 3D
LiDAR point clouds and RGB images with 230K annotated 3D boxes.

C EXPERIMENTS

C.1 COMMUNICATION VOLUME.

In real-world applications, collaborative perception methods must achieve a delicate equilibrium be-
tween communication volume and precision due to the typically limited and variable communication
bandwidth. The communication volume is calculated as follows:

Comm = log2(N × C × 16/8), (10)

where N represents the number of collaborative message units, C represents the number of channels,
and the data is transmitted in fp16 data type, resulting in minimal performance impact. The volume
in bits is then converted to bytes using the logarithm base 2.

C.2 COMPUTATIONAL COMPLEXITY OF POINT CLUSTER AGGREGATION

The computational complexity discussed primarily aims to demonstrate the efficiency of message
aggregation based on sparse point clusters in comparison to dense BEV map representations. The
computational complexity of message aggregation based on point clusters is solely related to the
number of potential objects, which is significantly smaller than the scale of the quadratic relationship
with the collaboration scope.

Assume there are Nagent agents in the scene, so each tuple in Mshare contains at most Nagent matched
point clusters. According to eq (5) and eq (6), the computational complexity of aggregating single
tuple in Mshare is O(max1≤i≤Nagent |P i|+Nagent + CNagent +Nagent), where P i is the set of points
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in point cluster and and C is the channel number of cluster features. After point sampling during
point cluster packing, |P i| can be reduced significantly as shown in Table 4. And Table 3 shows that
C can also be reduced to a small constant. Overall, the computational complexity of aggregating
single tuple in Mshare can be reduced to O(D), where D is a constant. Assume there are Nobject
possible objects in the scene, there are at most Nobject tuples in Mshare, while Munique = ∅. The
computational complexity of aggregating all tuples is O(DNobject).

C.3 ADDITIONAL ABLATION STUDIES

Table 7: Features for object pose calculation during pose correction. “0.1” label of each column
means experiments with standard deviation 0.1 for both heading error (◦) and positional error (m).

Pose ErrorFeature 0.1 0.2 0.3 0.4 0.5
Point Center 75.13/45.44 76.89/46.59 78.50/48.20 79.60/51.03 78.90/52.07

Cluster Center 90.22/86.95 90.34/87.01 90.04/87.06 90.10/87.06 89.97/86.94

Features for Object Pose Calculation during Pose Correction. We evaluate AP@0.5/AP@0.7
of different features for object pose calculation during pose correction in Table 7. “Point Center”
denotes representing the object pose with the mean coordinates of cluster points. “Cluster Center”
denotes representing the object pose with the estimated cluster center. The experiments demon-
strate that utilizing the “Point Center” method for determining the object’s pose correction results
in notable performance deterioration. Due to Lidar typically scanning objects partially, directly rep-
resenting a point cluster by averaging the coordinates of all cluster points can lead to a significant
offset from the true object center.

Filtering background information. We evaluate the recall of points belonging to target objects
after segmentation. The results demonstrate that segmentation can recall more than 90% of target
object points. This finding confirms that point clusters generated from segmentation results can ef-
fectively represent potential object parts, enabling the fusion module to complete object information
utilizing information from all agents and achieve better performance.

Table 8: Time cost (ms) analysis.

CPPCV2X-ViT Total PCE PCP PCA Decoder Others
153.31 79.52 53.71 3.21 9.69 12.70 0.21

Table 9: Different point-based operators.

AP@0.5 AP@0.7
PointNet 89.67 85.82
DGCNN 91.39 87.68

Meta-Kernel 91.52 88.48
SIR 92.01 89.99

Inference time cost analysis. We evaluate the time cost of our method’s entire pipeline and com-
pare it with one of the state-of-the-art methods in Table 8, i.e., V2X-ViT. Comparing the first and
second columns, the results show that our method significantly reduces the time cost compared with
previous collaborative sensing methods, indicating the efficiency of communication with our new
message unit point cluster. Moreover, the collaborative modules (PCP and PCA) occupy a relatively
small portion of our entire pipeline, which verifies collaboration based on point cluster can impose
little additional burden on existing single-vehicle detectors.

Different point-based operators. We evaluate AP@70 of different existing point-based operators
on V2XSet in Table 9, where SIR achieves the best performance.
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C.4 QUALITATIVE COMPARISON

OursWhere2commV2X-VIT

(a)

(c)

(b)

(d)

Figure 8: Qualitative comparison results of our CPPC with state-of-the-art methods on V2XSet (a, b) and
DAIR-V2X-C (c, d). The green bounding boxes represent the ground-truth, and the red ones depict predictions.
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