
Under review as a conference paper at ICLR 2023

MABA-NET: MASKED ADDITIVE BINARY ACTIVA-
TION NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite significant reduction in memory footprint and computational cost, binary
neural networks suffer from noticeable accuracy degradation compared to real-
valued counterparts. A few works have attempted to narrow the accuracy gap by
increasing the representation bit-width or the network width/depth, but they come
at the expense of increased memory and/or compute. In this work, we find that the
imbalanced ratio of activations to weights may be the main cause of degraded per-
formance and increased memory overhead. We propose Masked Additive Binary
Activation Network (MABA-Net) to reduce approximation errors and the activa-
tion bit-width, with minimum increase in the activation size. MABA-Net balances
the ratio of the activation size to the weight size, leading to significant memory
saving on large CNNs. We demonstrate MABA-Net’s superior performance on
the ImageNet dataset under various network configurations. Experimental results
show that MABA-Net achieves competitive accuracy without increase of compu-
tational cost, while reducing memory usage compared to state-of-the-art. We will
release the codes upon acceptance.

1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved great success in a wide range of applications
but it comes at the expense of large memory and compute consumption. Subsequently, it is partic-
ularly challenging to deploy such networks on resource-limited devices. Neural network compres-
sion (Han et al. (2016b)) has emerged as a mainstream technique to reduce memory and compute, by
either quantizing real-valued weights and activations to low precision numbers (Zhou et al. (2016))
or pruning redundant weights from the network (Li et al. (2016)). An extreme form of quantization is
Binary Neural Networks (BNNs) (Courbariaux et al. (2015; 2016)), which replace slow real-valued
matrix multiplication with high-speed bit-wise XNOR and POPCOUNT operations. BNNs have
demonstrated their potentials in fast and efficient inference.

Despite the promising advantages over real-valued neural network in terms of memory and compute,
vanilla BNNs (Courbariaux et al. (2015; 2016)) suffer from significant accuracy degradation, mainly
due to the approximation error caused by real-to-binary projections. A common way to mitigate the
accuracy drop is designing compact and efficient networks (Bulat et al. (2021); Liu et al. (2020);
Bethge et al. (2021)). However, it is difficult to systematically measure the benefits of each com-
ponent, such as scaling factor and skip connections. Another way is increasing the binary network
width (Lin et al. (2017); Zhuang et al. (2019); Zhu et al. (2019)) but it comes at the expense of
increased memory and compute.

Matrix-vector multiplication is a basic building block in machine learning models, especially in
CNNs. During the matrix multiplication, the memory access is usually the bottleneck, especially
when the matrix is larger than the cache capacity (Han et al. (2016a)). On generic CPUs and GPUs,
this problem is usually approached by reusing the parameters through batching. However, batching
is unsuitable for real-time applications that are latency-sensitive, e.g., pedestrian detection in au-
tonomous driving, because batching substantially increases latency. In this work, we target real time
applications. Therefore, we focus on the case of batch size = 1.

An important observation that we made is that, the large memory overhead for such extreme latency-
sensitive cases is probably due to the imbalanced ratio of activation size (number of activations)
to weight size (number of weights). For example, the number of convolutional activations is 1{6

1

Under review as a conference paper at ICLR 2023

weights(original)activations(original)total(original)weights(ours)activations(ours)total(ours)
9408 802816 812224 9408 802816 812224
36864 200704 237568 18432 401408 419840
36864 200704 237568 18432 401408 419840
36864 200704 237568 18432 401408 419840
36864 200704 237568 18432 401408 419840
73728 100352 174080 36864 200704 237568
147456 100352 247808 73728 200704 274432
8192 100352 108544 8192 100352 108544

147456 100352 247808 73728 200704 274432
147456 100352 247808 73728 200704 274432
294912 50176 345088 147456 100352 247808
589824 50176 640000 294912 100352 395264
32768 50176 82944 32768 50176 82944
589824 50176 640000 294912 100352 395264
589824 50176 640000 294912 100352 395264
1179648 25088 1204736 589824 50176 640000
2359296 25088 2384384 1179648 50176 1229824
131072 25088 156160 131072 25088 156160
2359296 25088 2384384 1179648 50176 1229824
2359296 25088 2384384 1179648 50176 1229824

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#V
ar

ia
bl

es

Layer Number

ResNet18
activations(ours)
weights(ours)
total(ours)
activations(original)
weights(original)
total(original)

activations (ours) weights (ours) total (ours)
activations
(original) weights (original) total (original)Layer Number

770432 4608 775040 401408 73728 475136 1
1195264 9216 1204480 401408 147456 548864 2

612864 16384 629248 401408 65536 466944 3
599552 9216 608768 200704 147456 348160 4
401152 18432 419584 200704 294912 495616 5
393472 65536 459008 200704 262144 462848 6
401152 18432 419584 200704 294912 495616 7
401152 18432 419584 200704 294912 495616 8
395520 65536 461056 200704 262144 462848 9
299264 36864 336128 100352 589824 690176 10
200704 73728 274432 100352 1179648 1280000 11
199680 262144 461824 100352 1048576 1148928 12
200704 73728 274432 100352 1179648 1280000 13
200704 73728 274432 100352 1179648 1280000 14
200704 262144 462848 100352 1048576 1148928 15
200192 73728 273920 100352 1179648 1280000 16
200704 73728 274432 100352 1179648 1280000 17
200704 262144 462848 100352 1048576 1148928 18
200704 73728 274432 100352 1179648 1280000 19
200192 73728 273920 100352 1179648 1280000 20
200704 262144 462848 100352 1048576 1148928 21
200704 73728 274432 100352 1179648 1280000 22
197632 73728 271360 100352 1179648 1280000 23
200192 262144 462336 100352 1048576 1148928 24
199680 73728 273408 100352 1179648 1280000 25
197632 73728 271360 100352 1179648 1280000 26
199168 262144 461312 100352 1048576 1148928 27
148736 73728 222464 50176 1179648 1229824 28
149504 147456 296960 50176 2359296 2409472 29
100352 1048576 1148928 50176 4194304 4244480 30

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4.50E+06

0 5 10 15 20 25 30 35

#V
ar

ia
bl

es

Layer Number

EBN
activations (ours)
weights (ours)
total (ours)
activations (original)
weights (original)
total (original)

Figure 1: Distribution of activation and weight across layers for ResNet18 (He et al. (2016)) and
EBN (Bulat et al. (2021)).

to 1{7 of the weights for ResNet-like architectures on ImageNet Bulat et al. (2021) (see Fig. 1).
In particular, the activation size at most of the layers is an order of magnitude smaller than that
of the weight size. We hypothesise that the relatively small size of activations might cause more
severe information bottleneck issue after activation binarization, compared with weight binarization.
Naturally, by balancing the activations and weights, we can make the network less prone to accuracy
loss brought by activation binarization. The experimental results shown in Table 2 suggest that by
doing so, our method alleviates the information loss issue caused by activation binarization.

In this paper, we propose a multi-branch bit-aware binary activation network with spatial masking
to balance the distribution of binarized weights and activations. Our idea motivates from the fixed-
point binary representation. For example, the floating point number 0.7865 can be expressed as
0.7865 “ 2´1 ` 2´3 ` 2´4 “ 0.10112. We select a subset of the bits of the binary fixed-point
representation to approximate the real-valued activations using matrix multiplication approximation
algorithms. In the end, the activations can be approximated by an additive multi-branch network
where each branch represents a bit in the fixed-point representation.

Different from ABCNet (Lin et al. (2017)), where the bases and the binary representations are learnt
without differentiating the role of different branches, our method assigns different power-of-two val-
ues to distinguish the branches, and thus there is no redundant information among different branches.
To further reduce the activation memory, we propose to add a spatial masking to the channels of the
activations. Finally, experiments on the large-scale dataset demonstrate that our proposed methods
maintain the accuracy without an increase in both computational budget and memory usage.

Our contributions are three-fold:

• We propose the Masked Additive Binary Activation Network (MABA-Net) to moderately
increase the size of binarized activations, by approximating real-valued activations as the
sum of masked binary activations weighted by power-of-2 factors. Compared to previous
approaches, our method offers significantly reduced approximation error and fewer bit-
widths for binarized activations simultaneously, resulting in smaller accuracy gap to full-
precision counterparts.

• By integrating our proposed methods with various network architectures, the distributions
of activations to weights becomes balanced, leading to significant savings of total memory.

• Extensive evaluations on ImageNet demonstrate that MABA-Net obtains comparable or
better accuracy than state-of-the-art without an increase in computational cost, while with
up to 3ˆ reduction in memory footprint.

2 RELATED WORK

2.1 BINARY NEURAL NETWORKS

Binary Neural Networks, as the extreme case of neural network quantization, suffers from significant
degradation. Many researchers have explored how to address the gap.

Network architecture One direction is to explore the network architecture to improve the BNN
performance. For example, ReActNet (Liu et al. (2020)), Bi-Real-Net (Liu et al. (2018)), Real-
to-Bin (Martinez et al. (2020)) and MeliusNet (Bethge et al. (2021)) through modified classical

2

Under review as a conference paper at ICLR 2023

network (e.g., MobileNet, ResNet) to improve the accuracy. EBN (Bulat et al. (2021)), Phan et al.
(2020) and Kim et al. (2020a) introduce to search the optimal architecture for BNN to improve the
performance. BENN(Zhu et al. (2019)), GroupNet (Zhuang et al. (2019)) and ABCNet (Lin et al.
(2017)) propose to expand the block structure to improve the performance. Our methods propose to
widen the activation but not the weights through designed additive bit-wise branches to improve the
performance. To be fair, we conduct extensive comparison with different network settings.

Training strategy and tricks Another direction is investigating how different training scheme and
tricks affect the performance of BNNs. For instance, ReActNet, Real-to-Bin, EBN and BCNN (Red-
fern et al. (2021)) adopt a two-stage training strategy. XNORNet (Rastegari et al. (2016)), XNOR-
Net++ (Bulat & Tzimiropoulos (2019)) and EBN design different scaling factors to avoid inconsis-
tency between the binarized representations and the full-precision data. Liu et al. (2021), Ajanthan
et al. (2021) investigate different optimizers to improve the performance. For the activation function,
Bi-Real-Net replace ReLU with Htanh while (Tang et al. (2017)) instead use PReLU for BNNs. Our
method investigates the training strategy in the experiments.

Gradient approximation STE roughly sets the gradients of the binarized value to the full-precision
data as 1, which brings information loss in the weight update of the back-propagation, and thus many
research efforts design various surrogate gradients to address the issue such as BinaryDuo (Kim
et al. (2020b)), BiRealNet (Liu et al. (2018)), and IR-Net (Qin et al. (2020)). For example, Liu
et al. (2022) proposes a generalized straight-through estimator (G-STE) for intractable backward
derivative calculation to output uniform quantized values. Instead, our method alleviates the STE
issue by replacing the sign function as truncation.

Power-of-Two Quantization Many researchers have explored how to conduct Power-Of-Two quan-
tization as it can convert the multiplication to hardware efficient bit-shift. For example, Gudovskiy
& Rigazio (2017) quantizes the weights as a sum of power-of-two values. While APoT Li et al.
(2020), based on the distributions of weights and activations, constrains all quantization levels as
the sum of Powers-of-Two terms. Yao et al. (2022) dynamically adjusts the Power-of-Two scales of
the whole network instead of statically determining them layer by layer in the post-training quanti-
zation. DeepShift Elhoushi et al. (2021) proposes to replace multiplications in convolutional layers
and fully connected layers with bitwise shift and sign flipping by quantizing the weights during both
training and inference. Instead, to binarize the network, our method represents the real value into
power-of-two bases with binary representations.

2.2 NETWORK PRUNING

Pruning Mask Mask has been a handy tool in learning the importance of sub-structure of neu-
ral network during pruning. In fact, it enables researchers to explore the effectiveness of pruning at
different granularity (He et al. (2017),Liu et al. (2017),Lemaire et al. (2019),Chin et al. (2020),Kusu-
pati et al. (2020)). Masks at filter, channel or stripe level enables the network to learn a structure
that is hardware friendly, whereas masks at weight level may produce a sparser network, but such
unstructured pruning network might require dedicated hardware for inference.

Pruning in BNN On the contrary, BNN has not received many attentions in the field of network
pruning because BNN is already a compact model. Furthermore, it is not the top priority for BNN
to further compress the model and reduce compute when there is a large performance gap remained
as compared to its real-value counterpart. However, as BNN’s performance keeps improving with
the help of recently devised techniques, it makes sense to consider the question whether we can
maintain BNN’s performance with less memory and computation cost.

3 PRELIMINARY

3.1 BINARIZED APPROXIMATION

Let Wr and Xr represent the real-valued weights and input activations for a layer. Binary network
attempts to approximate Wr and Xr with the binarized weights Wb and activations Xb (Rastegari
et al. (2016); Bulat & Tzimiropoulos (2019); Xu & Cheung (2019)) as below.

Wr « αWb “ α ¨ signpWrq, (1)

Xr « βXb “ β ¨ signpXrq, (2)

3

Under review as a conference paper at ICLR 2023

where signp¨q denotes the sign function, α and β are learnable scaling factors that match the bina-
rized values to the same scale as the real values. Compared to the full-precision network, the binary
network not only reduces the memory footprint by 32ˆ, but also replaces the multiply-accumulate
(MAC) convolutional operation between Wb and Xb with the XNOR-popcount operation as below:

Wb ⊛Xb “ wb ¨ xb “ popcountpxnorpwb,xbqq (3)

where wb and xb are the flattened vector representations of Wb and Xb, and ¨ here denotes the dot
product. The replacement reduces the number of operations by 43ˆ (Fromm et al. (2020)).

3.2 BACK-PROPAGATION WITH BINARIZATION

In general, the quantization function has the gradients of zeros almost everywhere and thus it is
impossible to directly apply the back-propagation to train the network. To overcome this issue, a
classical way is using the empirical straight-through estimator (Bengio et al. (2013b)) to re-define
the gradients. Namely, the derivative of the binarized value zb to the real value zr is an identity
mapping, namely Bzb

Bzr
« 1. Accordingly, the derivative of the loss L to zr can be approximated by

BL
Bzr

“
BL
Bzb

Bzb
Bzr

«
BL
Bzb

. (4)

4 METHOD

4.1 BINARIZE WEIGHTS

Following Liu et al. (2018), we binarize the weights of each convolutional layer with a magnitude-
based scaling factor as below:

Wb “
||Wr||1

|Wr|
signpWrq (5)

where |Wr| denotes the number of entries in Wr, the updating of Wr is computed as follows:

Wt`1
r “ Wt

r ´ η
BL

BWt
b

BWt
b

BWt
r

(6)

where BWt
b

BWt
r

“
||Wt

r||1

|Wt
r|

¨
BsignpWt

rq

BWt
r

. Because the derivative of signp¨q function is almost zero ev-

erywhere and thus preventing the flow of gradients, conventional methods approximate BsignpWt
rq

BWt
r

with the identity mapping, namely BsignpWt
rq

BWt
r

“ 1. As empirically not cancelling the gradients when
weights is too large significantly worsen the performance, most methods include a clipping to cancel
the gradients when weights is too large. Therefore, we define an indicator function 1|Wt

r|ă1 to set

the gradients of the weights that are outside of the range to 0. Consequently, the final form of BWt
b

BWt
r

can be approximated by ||Wt
r||1

|Wt
r|

¨ 1|Wt
r|ă1.

4.2 BINARIZE ACTIVATIONS

In many hardware, the floating-point is represented by the IEEE-754 standard (Kahan (1996)) for
arithmetic. Our idea motivates from the fixed-point representation (Gupta et al. (2015)), which has a
fixed number of bits for the integral and fractional parts. For example, 0.7865 “ 2´1`2´3`2´4, is
0.10112. Mathematically, the activation Xr can be represented as the matrix multiplication between
a binary matrix XB P t0, 1uNˆ31 and a basis vector D “ r2´1, 2´2, 2´3, ..., 2´31sT . We can
approximate Xr by approximating the matrix multiplication of XBD as below:

Xr “ XBD « XbQ (7)

where Xb P t0, 1uNˆS is the subset of XB , and the corresponding basis vector Q and S denotes
the bit-width. We use the importance sampling approach (Mahoney et al. (2011); Drineas et al.
(2006)) to compute the optimal Xb and Q by minimizing the expectation of MSE (mean squre
error) as Ep||XBD´XbQ||2F q where || ¨ ||F denotes the Frobenius norm. We revise the importance
sampling algorithm by selecting the index it with top S probabilities as in Algorithm 1. The detailed
derivation is shown in Appendix A.1. In the end, the real value Xr is represented as:

4

Under review as a conference paper at ICLR 2023

Algorithm 1: Activation Approximation by Importance Sampling

1 Input: The binary matrix XB P p0, 1q
Nˆ31, the vector D “ r2´1, 2´2, ..., 2´31

s
T , the bit-width S.

2 Output: The binary matrix Xb P t0, 1u
NˆS , the column vector Q;

3 for t “ 1 to S do

4 Pick it P t1, ..., 31u with the top t probability pit , where pit “
∥Xpitq

B
∥¨Dpitq

ř

l∥X
plq

B
∥¨Dplq

, Xpitq

B denotes the it

row of XB and Dpitq denotes the it column of D.

5 Set the tth column of Xb as Xptq

b “ X
pitq

B and the tth row of Q as Qptq “
Dpitq

Spit

6 return C and Q

Xr «
1

S

S
ÿ

t“1

1

pit
2´itX

pitq

b (8)

We can make some simplification to the expression above to not only construct a more succinct ex-
pression, but also make the approximation more hardware friendly by removing unnecessary floating
point operations. Firstly, we can remove 1

S from the above expression because it is a constant and
can be infused into the weights. Secondly, we ask the question if we can remove 1

pit
, which is a float-

ing point number, from the expression. To answer this question, we resolve to empirical evidence;
we conducted experiments that are with 1

pit
and without 1

pit
. Our experiment results show that 1

pit

does not affect model’s performance when S is kept small, which is the case in our implementation
with S “ 2 or 3. Therefore, we approximate the Xr as following:

Xr «

S
ÿ

t“1

2´itX
pitq

b (9)

As Xr is in fixed-point representation, we can obtain Xb by bit-shifting shown in Appendix A.1.

Furthermore, we can obtain the gradients BX
pitq

b

BXr
“ 2it .

As the network usually has a ReLU as the activation function, we only consider binarizing the
non-negative activations. Following Hubara et al. (2016), we set a bounded range for the real-
valued activations Xr as Xr “ clippXr, r0, 1sq to cancel the gradient when Xr is too large, which
significantly worsens the performance.

4.3 SPATIAL MASKING

The increase in bit-width for binarized activations may introduce information redundancy, mean-
while linearly increases the activation size and the number of binary operations (BOPS). To re-
duce the redundancy, save the memory and the computation cost, a trainable binary mask variable
M P RWˆH is applied to each spatial position pw, hq of the binarized activations Xb P RCˆWˆH

where C, W and H denote the number of channels, the width and height of input activations. If
Mw,h “ 0, the whole channel of the activation features at location pw, hq are totally removed; other-
wise, the features are kept in memory and involved in the computation process. The higher sparsity
the binary masks, the smaller the activation size is.

To reduce the activation size, we introduce a BOPS-aware sparsity loss on the binary mask variables
M to explicitly enforce it moving to 0 during training.

LS “

ř

l
||Ml

||1
W lˆHl ˆ BOPSl

ř

l BOPSl
(10)

where Ml denotes the binary mask variables of the binazied activations at the lth layer. BOPSl

denotes the number of binary operations at the lth layer. The entry value of M is either 0 or 1 and
thus the L1-norm of M corresponding to the left activations. For simplicity, we apply STE (Bengio
et al. (2013a)) on the training of these mask variables. To generate the binarized entry of M, we
assign Mw,h “ 1 if M ą 0 else 0. In the backward pass, the gradients are approximated by the
identity mapping. Note that there is memory overhead introduced by the binary mask variables
themselves, with W ˚ H ˚ S parameters per layer (S ď 3 in our experiments), which is negligible
compared to size of weights and activations.

5

Under review as a conference paper at ICLR 2023

。。。

。。。

Additive binarization Group convolution Spatial masking

clip

Figure 2: Our framework of the Masked Additive Binary Activations with grouped convolutions.

4.4 OBJECTIVE FUNCTION

The overall framework is shown in Fig. 2. Structurally, it is a multi-branch network where each
branch contributes to a specific impact, different from ABCNet without differentiating the role of
different branches. To reduce the model parameters, we apply group convolutions to the 3 ˆ 3
convolutional layer in the residual block.

The final objective function is as below:

min
tW,Mu

LE ` λLS (11)

where LE is the cross-entropy loss, and LS is the sparsity regularization term to enforce the MABA-
Net to meet the pre-defined computational budget. λ is to control the impact of the sparsity loss.

4.5 COMPUTATION COST

In this paper, the binarization of activations is unipolar quantization where bits with value 0 represent
0 and bits with value 1 represent 1; while the binarization of weights is bipolar quantization where
bits with value 0 represent -1 and bits with value 1 represent 1 (Xu & Cheung (2019); Fromm et al.
(2020)). Hence, the convolution of Xb and Wb can be computed as follows.

Wb ⊛Xb “ popcount(AND(Xb,Wbqq ´ sizepWbq (12)

where sizepWbq denotes the number of elements in Wb and thus is a constant number. As compared
to Eq. (3), the number of binary operations does not increase.

5 EXPERIMENTS

We perform ablation study of our method on ImageNet ILSVRC 2012 in Section 5.1, then in Sec-
tion 5.2 we compare our method with state-of-the-art on ImageNet for image classification. It is
worth noting that we do not use sophisticated training techniques such as knowledge distillation and
gradient approximation for binary weights. For binary network training on ImageNet, we set the
initial learning rate as 0.001, with a cosine learning rate scheduler. We train the models for 150
epochs with the Adam optimizer, batch size 256, and weight decay 5e-6. For our proposed methods,
the binary mask variables are updated together with weights without warm up.

5.1 ABLATION STUDY

5.1.1 WHICH TRAINING STRATEGY IS BETTER

Binarization of real-valued weights/activations both introduce approximation error to the informa-
tion flow, which in turn results in accuracy degradation. Fig. 3 shows the validation accuracy curves
when training binary EBN and RealToBinary network for the ImageNet under three settings: (1)
Train from scratch for 150 epochs by binarizing weights and activations simultaneously; (2) BAN-
BWN: two-stage training by binarizing the activations for the first 75 epochs then binarizing the
weights for the second 75 epochs; (3) BWN-BAN: two-stage training by binarizing weights for the
first 75 epochs then binarizing activations for the second 75 epochs. As one can see, BWN-BAN

6

Under review as a conference paper at ICLR 2023

0

10

20

30

40

50

60

70

80

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

A
cc
ur
ac
y

Epochs

EBN

BAN -> BWN (Acc: 67.7)
BWN -> BAN (Acc: 67.1)
Scratch train (Acc: 67.4)

Scratch train (Acc: 67.4)
11.96

19.466
28.656
30.958

36.11
38.454
41.368
41.806
45.272
47.574
46.882
50.418
51.728
51.772
53.116
51.618

53.88
53.272
53.352

53.59
53.724
55.498
54.826
55.244
55.698
55.894
55.564
57.214
56.302
56.742
57.474
57.492
57.372
57.346
57.632
58.544
58.366
58.182
58.582

58.61
58.274
58.924

59.09
59.092

58.63
59.442

0

10

20

30

40

50

60

70

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

A
cc
ur
ac
y

Epochs

RealToBinary

BAN -> BWN (Acc: 63.6)
BWN -> BAN (Acc: 60.6)
Scratch train (Acc: 61.6)

Figure 3: Training curves of EBN and RealToBinary. The final accuracy of a method is in its legend.

APoT ABCNet LQNets DoRefaNet Ours
Quantization non-uniform learnable learnable uniform uniform

Clip Yes Yes No Yes Yes
Binarized Yes Yes Yes Yes Yes

Binary representation Fixed Learned Fixed Fixed Fixed
Base p2´1, 2´2, 2´3

q Learned Learned p 1
22´1

, 1
21´1

q p2´1, 2´2
q

Accuracy 62.9 36.0 61.5 62.3 62.6

Table 1: Comparison results between various methods for ImageNet classification using RealToBi-
nary by setting the number of groups as 2 and activation bit-width as 2 for the 3*3 convolution.

caused a significant accuracy drop when binarizing the activations at the 76th training epoch after
the 1st stage of binarizing weights and the drop is much greater than the case of weight binarization
in BAN-BWN. Though the accuracy of BWN-BAN restores gradually, we observe that it performs
significantly worse than the other two cases, in which BAN-BWN is slightly better than Train from
scratch. This may explain why the state-of-the-art methods ReActNet (Liu et al. (2020)) and Real-
ToBinary (Martinez et al. (2020)) adopted the BAN-BWN training strategy. It might be due to that
activations are more sensitive to binarization as compared to the weights, and searching the optimal
parameters from quantizing activations is easier.

5.1.2 COMPARISON WITH BENCHMARK QUANTIZATION METHODS

To compare with various benchmark quantization approaches, we conduct experiments on ImageNet
with the network RealToBinary by setting activation as 2 bits for 3*3 convolution with the number
of group convolutions as 2. Tab. 1 shows the comparison results. APoT, DoRefaNet and ours
have fixed base and binary representation. Although APoT requires 2-bit representation, it indeed
requires 3 bits when it is expressed in terms of binary representation. The detailed proof is shown in
Appendix A.2. ABCNet and LQNets learn the bases by a data-driven way. Our experiments shows
that ABCNet learns the same bases for different branches as it does not differentiate the branches,
leading to a poor performance. A detailed analysis of a poor performance of ABCNet is shown in
Appendix A.3. LQNets has quite different bases for different layers, shown in Fig. 4f. DoRefaNet
has pre-defined bases and binary representation. Our method has learnt the base as p2´1, 2´2q,
identified as uniform quantization. Furthermore, our proposed methods show the best result with
2-bit binary representation.

5.1.3 HOW IS THE MSE

Fig. 4 shows the mean square error (MSE) between original unquantized activation distribution and
the corresponding quantized values of various methods under the RealToBinary network setting.
The MSE is measured on 1st batch of each epoch for the training dataset at the 1st stage BAN,
i.e., quantizing activation with full-precision weights, of the training stage across all the layers. It
shows that the MSE of the first several layers is significant among different methods. It might be
due to that the real value first passes through a clip function and then do binarization. The real
value which is outside of the clipping range without quantization will have larger MSE. Due to
the gradient vanishing issue, for the first several layers, it might be difficult to use the data-driven
way to enforce the data locating in the clipping range. In particular, LQNets has much larger MSE
as compared to other methods for the first several layers, which might indicate the importance of
clipping function. Furthermore, the learnt bases of LQNets, like the MSE distribution, are quite

7

Under review as a conference paper at ICLR 2023

(a) (b) (c)

(d) (e)

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Va
lu

e

Layer Number

basis_1
basis_2

(f)

Figure 4: MSE of various methods on RealToBinary network. (f) shows the learned basis of LQNets.

large for the first several layers, shown in Fig. 4f. Furthermore, we observe that the MSE increases
as the epoch increases for some layers. It might indicate that the binarization is diverging with the
epoch increases, but due to the clipping, the divergence is not infinite.

5.1.4 WHAT IS THE EFFECT OF THE BIT-WIDTH AND GROUPED CONVOLUTION

To investigate the effect of the bit-width and grouped convolution to the accuracy and computational
cost, we conduct experiments on the network EBN (Bulat et al. (2021). We evaluate the effect of bit-
widths for binarized activations N and number of groups for convolutions G using our MABA-Net,
with binary mask disabled. We conduct experiments by varying N and G on the backbone network
architecture EBN (Bulat et al. (2021)), with configuration t1, 2, 6, 2ut2ut4, 8, 8, 16u. As shown in
Fig. 5, we set the number of bits for activations of 3 ˆ 3 convolutions and 1 ˆ 1 convolutions as
t1, 2, 3u. For the default number of groups for convolution layers in each block (i.e., t4, 8, 8, 16u),
we further increase the numbers by 2ˆ, 4ˆ or 8ˆ. For instance, the number of groups is increased
to t16, 32, 32, 64u for the case of 4ˆ. As one can see, there is a clear trade-off between network
accuracy and the total number of binary operations (BOPS) in a model. Among different group
settings, we find that the bit-width configuration p3, 2q is the optimal trade-off between accuracy
and BOPS. Though the total number of 1ˆ 1 convolutions is much less than the 3ˆ 3 convolutions,
adding 1 more bit to 1 ˆ 1 convolutions boosts the accuracy while at the expense of significant
increase in BOPS, mainly due to reason that the 1 ˆ 1 convolutions are not grouped convolutions.
E.g., with group size increased by 4ˆ, adding 1 bit for the 1 ˆ 1 convolutions from (3, 2) to (3, 3)
introduces more BOPS than adding 1 bit for the 3 ˆ 3 convolutions from (2, 3) to (3, 3).

5.2 COMPARISON WITH THE STATE-OF-THE-ART

To make fair comparison, we compare our proposed methods with state-of-the-art in two network
settings: 1) ResNet18: the network architecture is ResNet18 and 2) ResNet-FP: the ResNet variants.
We only change the way of binarizing the weights and activations in corresponding network settings.
For the 1st network setting, we compare with BNN (Courbariaux et al. (2016)), XNORNet (Raste-
gari et al. (2016)), CCNN (Xu & Cheung (2019)), Rethink. BNN (Helwegen et al. (2019)), XNOR-
NET++ (Bulat & Tzimiropoulos (2019)), IR-Net (Qin et al. (2020)). For the 2nd network setting,
we compare with different networks: Bi-Real Net (Liu et al. (2018)), RealToBinary (Martinez et al.
(2020)), EBN (Bulat et al. (2021)), ReActNet-A (Liu et al. (2020)). In particular, for Bi-Real Net,
RealToBinary and ReActNet-A, we simply set the number of group convolutions for 3*3 convolu-
tions as 2 and the bit-width for the activation as 2. While for EBN, we conduct a fine-grained search,
shown in Section 5.1.4.

8

Under review as a conference paper at ICLR 2023

1.5 2.0 2.5 3.0
BOPS

66.5

67.5

a
c
c
(%

)

(3, 2)

(3, 3)

(3, 3)

(3, 2)

(3, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(2, 3)

8×
4×
2×

Figure 5: Effect of bit-widths for binarized activations and number of groups for convolutions in
our MABA-Net trained on ImageNet. p¨, ¨q denotes the number of bits for activations of 3 ˆ 3
convolutions and 1 ˆ 1 convolutions, respectively. On top of the network EBN, we further increase
the number of groups by 2ˆ, 4ˆ or 8ˆ.

Table 2: Comparison with state-of-the-art binary networks on ImageNet.

Architecture Accuracy (%) Operations Memory

Top-1 Top-5 BOPS
ˆ109

FLOPS
ˆ108

W
ˆ107

A
ˆ107

Total
ˆ107

ResNet18

BNN 42.2 69.2 1.7 1.3 1.2 0.2 1.4
XNOR-Net 51.2 73.2 1.7 1.3 1.2 0.2 1.4
CCNN 54.2 77.9 1.7 1.3 1.2 0.2 1.4
Rethink. BNN 56.6 79.4 1.7 1.3 1.2 0.2 1.4
XNOR-Net++ 57.1 79.9 1.7 1.4 1.2 0.2 1.4
IR-Net 58.1 80.0 1.7 1.3 1.2 0.2 1.4
Ours 59.1 83.9 1.7 1.3 0.6 0.4 1.0

ResNet-FP

Bi-Real Net 56.4 79.5 1.7 1.5 1.2 0.2 1.4
Bi-Real Net (Ours) 58.9 81.3 1.7 1.5 0.6 0.4 1.0
Bi-Real Net (Ours) 56.7 79.8 1.6 1.5 0.6 0.4 1.0
RealToBinary 60.9 - 1.7 1.5 1.2 0.2 1.4
RealToBinary (Ours) 60.9 82.6 1.6 1.5 0.6 0.4 1.0
RealToBinary (Ours) 62.4 82.7 1.7 1.5 0.6 0.4 1.0
EBN 67.5 87.5 1.7 1.1 3.4 0.5 3.9
EBN (Ours) 67.7 87.4 1.7 1.1 0.4 1.0 1.4
ReActNet-A 65.4 - 4.8 0.2 2.9 0.5 3.4
ReActNet-A (Ours) 65.7 86.1 4.8 0.2 1.5 1.0 2.5

As shown in Tab. 2, for different network settings, our method improves on top of the currently best
performing methods with a large margin with less memory cost. The sizes of weights and activations
are balanced, shown in Fig. 1. Although our method does increase the activation size, by 2ˆ, the
run-time memory of both weights and activations largely reduces.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose MABA-Net to approximate real-valued activations by accumulating a
limited set of binary activations weighted by power-of-2 factors. A trainable binary mask variable is
attached to each spatial position in each set of the binary activations, as an indicator to keep or drop
activation features at the spatial position, with negligible overhead for storage of the mask variables.
By integrating MABA-Net with a deeper and wider grouped convolutional network, we address
the problem of unbalanced distribution of binarized activations/weights, which in turn improves
accuracy without incurring an increase in both computational budget and memory usage. In the
future, we will explore how to binarize the first several layers to improve the performance and also
explore other computational and memory saving techniques such as filter pruning, and incorporate
advanced training techniques such as knowledge distillation, to further improve the performance.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Thalaiyasingam Ajanthan, Kartik Gupta, Philip Torr, Richad Hartley, and Puneet Dokania. Mirror
descent view for neural network quantization. In International Conference on Artificial Intelli-
gence and Statistics, pp. 2809–2817. PMLR, 2021.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv:1308.3432, 2013a.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013b.

Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel. Meliusnet: An
improved network architecture for binary neural networks. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 1439–1448, 2021.

Adrian Bulat and Georgios Tzimiropoulos. XNOR-Net++: Improved binary neural networks. In
BMVC, 2019.

Adrian Bulat, Brais Martinez, and Georgios Tzimiropoulos. High-capacity expert binary networks.
In ICLR, 2021.

Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model com-
pression via learned global ranking. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1518–1528, 2020.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In NeurIPS, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1
or -1. arXiv preprint arXiv:1602.02830, 2016.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006.

Mostafa Elhoushi, Zihao Chen, Farhan Shafiq, Ye Henry Tian, and Joey Yiwei Li. Deepshift: To-
wards multiplication-less neural networks. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 2359–2368, 2021.

Joshua Fromm, Meghan Cowan, Matthai Philipose, Luis Ceze, and Shwetak Patel. Riptide: Fast
end-to-end binarized neural networks. In Proceedings of Machine Learning and Systems 2020,
2020.

Denis Gudovskiy and Luca Rigazio. ShiftCNN: Generalized low-precision architecture for inference
of convolutional neural networks. arXiv preprint arXiv:1706.02393, 2017.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pp. 1737–1746.
PMLR, 2015.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243–254, 2016a.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In ICLR, 2016b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397,
2017.

10

Under review as a conference paper at ICLR 2023

Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng, and Roeland
Nusselder. Latent weights do not exist: Rethinking binarized neural network optimization. In
NeurIPS, 2019.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

William Kahan. Ieee standard 754 for binary floating-point arithmetic. Lecture Notes on the Status
of IEEE, 754(94720-1776):11, 1996.

Dahyun Kim, Kunal Pratap Singh, and Jonghyun Choi. Learning architectures for binary networks.
In European Conference on Computer Vision, pp. 575–591. Springer, 2020a.

Hyungjun Kim, Kyungsu Kim, Jinseok Kim, and Jae-Joon Kim. Binaryduo: Reducing gra-
dient mismatch in binary activation network by coupling binary activations. arXiv preprint
arXiv:2002.06517, 2020b.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
International Conference on Machine Learning, pp. 5544–5555. PMLR, 2020.

Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin. Structured pruning of neural networks with
budget-aware regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9108–9116, 2019.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, 2016.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks. In ICLR, 2020. URL https://openreview.
net/forum?id=BkgXT24tDS.

Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional neural network. In
NeurIPS, pp. 345–353, 2017.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-Real
Net: Enhancing the performance of 1-bit CNNs with improved representational capability and
advanced training algorithm. In ECCV, pp. 747–763, 2018.

Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards precise
binary neural network with generalized activation functions. In ECCV, 2020.

Zechun Liu, Zhiqiang Shen, Shichao Li, Koen Helwegen, Dong Huang, and Kwang-Ting Cheng.
How do adam and training strategies help bnns optimization. In International Conference on
Machine Learning, pp. 6936–6946. PMLR, 2021.

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P Xing, and Zhiqiang Shen. Nonuniform-to-
uniform quantization: Towards accurate quantization via generalized straight-through estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4942–4952, 2022.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations and Trends®
in Machine Learning, 3(2):123–224, 2011.

Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary neural
networks with real-to-binary convolutions. ICLR, 2020.

Hai Phan, Zechun Liu, Dang Huynh, Marios Savvides, Kwang-Ting Cheng, and Zhiqiang Shen.
Binarizing mobilenet via evolution-based searching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13420–13429, 2020.

11

Under review as a conference paper at ICLR 2023

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan
Song. Forward and backward information retention for accurate binary neural networks. In CVPR,
pp. 2250–2259, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
classification using binary convolutional neural networks. In ECCV, 2016.

Arthur J Redfern, Lijun Zhu, and Molly K Newquist. Bcnn: A binary cnn with all matrix ops
quantized to 1 bit precision. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4604–4612, 2021.

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high
accuracy? In Thirty-First AAAI conference on artificial intelligence, 2017.

Zhe Xu and Ray CC Cheung. Accurate and compact convolutional neural networks with trained
binarization. BMVC, 2019.

Hongyi Yao, Pu Li, Jian Cao, Xiangcheng Liu, Chenying Xie, and Bingzhang Wang. Rapq: Res-
cuing accuracy for power-of-two low-bit post-training quantization. In Lud De Raedt (ed.), Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22,
pp. 1573–1579. International Joint Conferences on Artificial Intelligence Organization, 7 2022.
doi: 10.24963/ijcai.2022/219. URL https://doi.org/10.24963/ijcai.2022/219.
Main Track.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR, abs/1606.06160,
2016.

Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per network or
more networks per bit? In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4923–4932, 2019.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Structured binary neural
networks for accurate image classification and semantic segmentation. In CVPR, 2019.

12

Under review as a conference paper at ICLR 2023

Additive binarization

Quantized level:

Quantized level:

Quantized level:

Figure 6: APoT decomposition in binary encodings.

A APPENDIX

A.1 BINARIZE ACTIVATIONS

Importance sampling Different from the standard importance sampling approaches of approximat-
ing the matrix multiplication, which randomly select the index it based on the probability distribu-
tion of pit , we select the index it with the top probabilities to make it deterministic.

Besides, the approximation algorithm sets the tth column of Xb as Xptq
b “ X

pitq

B {
a

Spit and the tth

row of Q as Qptq “ Dpitq{
?
Spit. As in the matrix multiplication of Xb and Q, only the elemnts of

tth column of Xb multiplies with the elements of the tth row of Q, we merge the numerator of Xb

to Q and get Xptq
b “ X

pitq

B , Qptq “ Dpitq{Spit .

Binary matrix computation When representing the real-valued Xr in fixed-point binary presenta-
tion, the binary matrix Xb can be computed as below:

X
pitq

b “ pXr ăă itqq & 1 (13)

Through shifting Xr by it bits and bit-wise AND operation with 1, the it
th most significant bit is

obtained. For example, 0.7865 represented in binary format is 0.10112. If we left shifting 0.10112
by 3 bits, and bit-wise AND with 1, we will get the 3rd most significant bit.

A.2 APOT VS OURS

APoT defines a quantized value set U and then selects the quantized value that is closest to the real
value x. When only 2 bits are used, APoT has quantization levels: U “ t0, 2´1, 2´2, 2´3u. APoT
then selects the base that results in smallest quantization error. The procedure can be succinctly
expressed with following formula:

x̂ “ r0, 2´1, 2´2, 2´3s
looooooooomooooooooon

Basis

¨

»

—

—

—

—

—

–

1targmin
0ďiď3

|x´Ui|“0u

1targmin
0ďiď3

|x´Ui|“1u

1targmin
0ďiď3

|x´Ui|“2u

1targmin
0ďiď3

|x´Ui|“3u

fi

ffi

ffi

ffi

ffi

ffi

fl

loooooooooooomoooooooooooon

binary representation

(14)

Where x is the real-value input of APoT quantization, x̂ is the quantized output, and 1p¨q is an
indicator function to select the base that has the smallest quantization error.

As illustrated in Fig. 6, APoT requires 3 binary activations bases, which correspond to the
bases t2´1, 2´2, 2´3u. Although APoT only uses 2-bit representation in the case, it indeed requires
3 bits when it is expressed in terms of binary representation. This is due to the intrinsic nature
of APoT quantization which is not tailored for binary quantization. In contrast, with tailored

13

Under review as a conference paper at ICLR 2023

0.5 − %!"# 0.5 − %!

+1

−1

!$
(!"#) = #$%&(! − 0.5 − ,!"#)

!$
(!) = #$%&(! − 0.5 − ,!)

Figure 7: Visualization of xi
b and xi`1

b given the same x.

binarization technique for activation, our method achieves comparable performance to APoT with
only 2 binary branches, resulting in 1 bit reduction, as shown in Table 1.

A.3 ABCNET VS OURS

Given a real-valued input x, ABCNet compute the binarized value xi
b of the i branch as follows:

xi
b “ signphvipxq ´ p0.5 ´ viqq (15)

where vi is the shifting scalar for the ith branch and hvipxq “ clippx ` vi, p0, 1qq. Suppose the
scalar parameters vi is sorted, namely, vi ă vi`1. As shown in Fig. 7, given the same input x, xi

b

and xi`1
b are different only when 0.5´ vi`1 ď x ă 0.5´ vi in Eq. 16. If vi and vi`1 are very close,

branches i and i ` 1 will have a lot of same values and thus are highly correlated.

$

&

%

xi
b “ xi`1

b “ 1 when x ě 0.5 ´ vi
xi
b “ xi`1

b “ ´1 when x ă 0.5 ´ vi`1

xi
b “ ´1, xi`1

b “ 1 when 0.5 ´ vi`1 ď x ă 0.5 ´ vi

(16)

ABCNet does not specify the gradient for the shifting parameter vi; however, it can be deduced as
follow: BL

Bvi
“ BL

BXi
b

ˆ 10ďXr´viď1 where L denotes the loss function, Xi
b denotes the binarized

activations of the ith branch and Xr denotes the real-valued activations. For simplification, we
assume branch i and branch j has the same scaling factor and then BL

BXi
b

= BL
BXj

b

. Therefore, if vi and

vj are initialised close to each other, their gradients, BL
Bvi

and BL
Bvj

, will be close. Thus if vi and vj are

kept close, based on Eq. (15), Xi
b and Xj

b are also close. This effect extends to the learning of the
scaling factor βi, too. The gradient of βi is calculated as follows: BL

Bβi
“ BL

BA
ˆ BA

Bβi
“ BL

BA
ˆ Xi

b,

where A “
ř

i βi ˚ Xi
b. If Xi

b and Xj
b are close to each other, then the gradients of βi and βj are

also close. So the learnt βi and βj would be close. In the end, we can see that the performance of
ABCNet is really affected by the initialization of the shifting parameter and the scaling factor.

A.4 SPATIAL MASK VISUALIZATION

Our proposed spatial masking belongs to the category of structured pruning as it prunes the whole
channel of the activations when the mask equals to 0. Fig. 8 shows the pruning ratio of the learnt
spatial masking and corresponding BOPS of our proposed methods across different layers on EBN
network with the optimal setting of 3 branches for the 3 ˆ 3 convolutions, 2 branches for 2 ˆ 2
convolutions and 4ˆ grouped convolutions for 3ˆ 3 convolutions. We make few observations from
the plot. Firstly, the activation of the first and last several network layers are pruned more than other
layers. Secondly, it shows that the activation of the layer with larger computational cost (BOPS) are
pruned more than other layers, which is consistent with our motivation of computation cost based
pruning. Thirdly, we observe that the branch with smaller base has larger pruning ratio. It might
be due to that the branch of the larger base plays a more important role in approximating the real
values.

14

Under review as a conference paper at ICLR 2023

Prune on FilterSkeleton1 2⁻² branch
module.layer1.0.conv1.FilterSkeleton1 3136 447 0.14253827
module.layer1.0.conv2.FilterSkeleton1 3136 747 0.23820153
module.layer1.0.conv3.FilterSkeleton1 3136 1443 0.46014031
module.layer2.0.conv1.FilterSkeleton1 3136 163 0.05197704
module.layer2.0.conv2.FilterSkeleton1 784 1 0.00127551
module.layer2.0.conv3.FilterSkeleton1 784 168 0.21428571
module.layer2.1.conv1.FilterSkeleton1 784 8 0.01020408
module.layer2.1.conv2.FilterSkeleton1 784 16 0.02040816
module.layer2.1.conv3.FilterSkeleton1 784 162 0.20663265
module.layer3.0.conv1.FilterSkeleton1 784 24 0.03061224
module.layer3.0.conv2.FilterSkeleton1 196 3 0.01530612
module.layer3.0.conv3.FilterSkeleton1 196 4 0.02040816
module.layer3.1.conv1.FilterSkeleton1 196 0 0
module.layer3.1.conv2.FilterSkeleton1 196 0 0
module.layer3.1.conv3.FilterSkeleton1 196 6 0.03061224
module.layer3.2.conv1.FilterSkeleton1 196 2 0.01020408
module.layer3.2.conv2.FilterSkeleton1 196 0 0
module.layer3.2.conv3.FilterSkeleton1 196 7 0.03571429
module.layer3.3.conv1.FilterSkeleton1 196 1 0.00510204
module.layer3.3.conv2.FilterSkeleton1 196 1 0.00510204
module.layer3.3.conv3.FilterSkeleton1 196 1 0.00510204
module.layer3.4.conv1.FilterSkeleton1 196 3 0.01530612
module.layer3.4.conv2.FilterSkeleton1 196 1 0.00510204
module.layer3.4.conv3.FilterSkeleton1 196 11 0.05612245
module.layer3.5.conv1.FilterSkeleton1 196 2 0.01020408
module.layer3.5.conv2.FilterSkeleton1 196 1 0.00510204
module.layer3.5.conv3.FilterSkeleton1 196 6 0.03061224
module.layer4.0.conv1.FilterSkeleton1 196 0 0
module.layer4.0.conv2.FilterSkeleton1 49 5 0.10204082
module.layer4.0.conv3.FilterSkeleton1 49 0 0
module.layer4.1.conv1.FilterSkeleton1 49 9 0.18367347
module.layer4.1.conv2.FilterSkeleton1 49 3 0.06122449
module.layer4.1.conv3.FilterSkeleton1 49 4 0.08163265

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

0

0.1

0.2

0.3

0.4

0.5

0.6

1 6 11 16 21 26 31

Pr
un

in
g

pe
rc

en
ta

ge

Layer Number

2⁻¹ branch 2⁻² branch 2⁻³ branch BOPS

Figure 8: Visualization of the pruning ratio of the learnt spatial masking and corresponding BOPS
of our proposed methods across different layers on EBN network.

15

