

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PE-DyRA: DYNAMIC RANK ADAPTATION FOR PARAMETER-EFFICIENT FINE-TUNING VIA IMPORTANCE-AWARE PRUNING AND EXPANSION

Anonymous authors

Paper under double-blind review

ABSTRACT

As large language models grow in scale, full-parameter fine-tuning for downstream tasks incurs substantial computational and storage costs. Low-Rank Adaptation (LoRA) provides a parameter-efficient paradigm for model adaptation, but its fixed-rank allocation cannot adapt to the heterogeneous importance of different layers or the evolving requirements across training stages, resulting in either redundancy or insufficient capacity. In this paper, we introduce Dynamic Rank Adaptation via Importance-Aware Pruning and Expansion (PE-DyRA), a novel framework that dynamically allocates ranks through importance score-based pruning and expansion. PE-DyRA introduces three key innovations: 1) A parameter importance evaluation measure based on gradient information and input activations to enable more stable ranking; 2) A bidirectional rank adjustment mechanism that dynamically prunes and expands ranks based on importance, enabling flexible allocation and improved parameter utilization; 3) The PE-DyRA framework can be used as a paradigm to achieve better results on benchmark methods such as DoRA, PiSSA, and QLoRA. Extensive experiments demonstrate the effectiveness of PE-DyRA, surpassing baseline methods. Furthermore, theoretical analysis demonstrates that PE-DyRA has better parameter efficiency.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Dubey et al., 2024; Guo et al., 2025) have become the core infrastructure of natural language processing, advancing performance from general-purpose inference to domain-specific applications (Ziems et al., 2023; Brown et al., 2020). However, the training and full parameter tuning of these models require huge computing resources and storage overhead (Raffel et al., 2020). Therefore, parameter-efficient fine-tuning methods for large-scale pre-trained models have become a research hotspot (Liu et al., 2022).

Low-Rank Adaptation (LoRA)(Hu et al., 2022) reduces computational cost by decomposing model weights into trainable low-rank matrices. However, its fixed-rank allocation limits adaptability and parameter efficiency (Yang et al., 2024), as different layers contribute unequally to downstream tasks. Kalajdzievski (2023) showed that increasing the rank of LoRA with proper scaling can significantly improve performance. Yet higher ranks incur substantial memory overhead, which has motivated the development of dynamic rank adaptation methods. DyLoRA (Valipour et al., 2023) employs random truncation to enable flexible inference-time rank selection, while IncreLoRA (Zhang et al., 2023a) incrementally allocates more parameters to important modules. AdaLoRA (Zhang et al., 2023b) prunes ranks via importance-based masking. AutoLoRA(Zhang et al., 2024) automates rank selection via meta-learned pruning of redundant singular components. TriAdaptLoRA (Liang et al., 2025) proposes an adaptive rank-growth strategy governed by dynamic thresholds. While the aforementioned methods are effective, they face two key limitations. First, they are restricted to either pruning or expansion. As shown in Figure 1a, pruning alone achieves high utilization but few effective ranks, whereas expansion increases effective ranks but with low utilization. Second, existing approaches primarily rely on weight or gradient magnitudes to assess parameter importance, often neglecting input activations, which play a crucial role in neuron outputs.

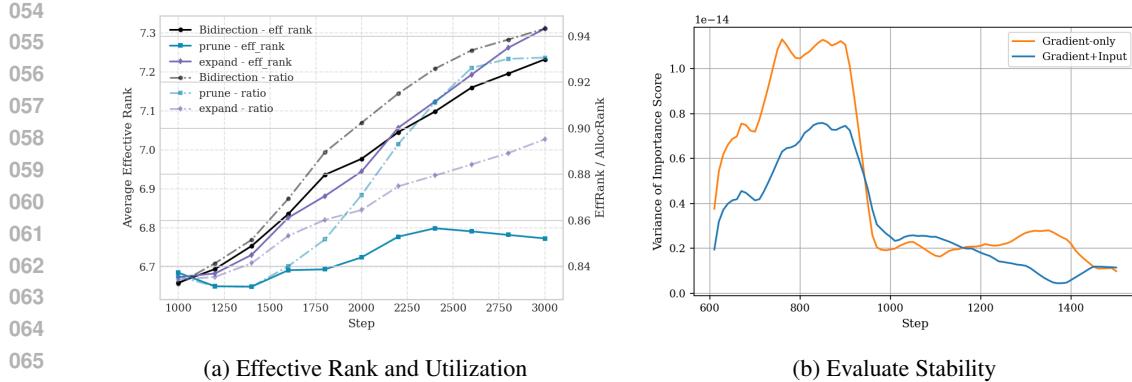


Figure 1: Analysis of importance-guided dynamic rank allocation. (a) Effective rank and utilization ratio across training steps. (b) Stability evaluation of rank adaptation during training.

Table 1: Comparison of dynamic rank adaptation methods.

Method	Importance Basis	Adaptation	Frequency
DyLoRA (Valipour et al., 2023)	Multi-rank joint training	No adjustment	Static
IncreLoRA (Zhang et al., 2023a)	Gradient	Expansion	Periodic
AdaLoRA (Zhang et al., 2023b)	Gradient	Pruning	Periodic
AutoLoRA (Zhang et al., 2024)	Meta-learning	Pruning	Post-optimization
TriAdaptLoRA (Liang et al., 2025)	Frobenius norms	Expansion	Periodic
Ours	Gradient + Input	Bidirectional	Periodic

To address these limitations, we propose a novel dynamic rank assignment strategy that enables more efficient optimization of low-rank adapters through importance-based evaluation and adaptive rank adjustment. At scheduled intervals, parameter efficiency is improved by pruning redundant ranks and expanding those in critical layers. This strategy maintains both high effective rank and utilization during training (Figure 1a), and its bidirectional adjustment surpasses approaches restricted to pruning or expansion. For parameter importance evaluation, we combine gradient information, reflecting parameter sensitivity, with input activations, reflecting data dependence, to obtain a more accurate and fine-grained assessment. See Figure 1b, incorporating the input leads to a more stable evaluation throughout training. Table 1 provides a comparative overview of dynamic rank adaptation methods, demonstrating the advantages of our approach. We evaluate PE-DyRA across diverse tasks and model scales, consistently demonstrating superior performance over existing approaches.

The main contributions of this work are as follows:

- 1) A bidirectional rank adjustment mechanism that dynamically prunes and expands ranks based on importance, enabling flexible allocation and improved parameter utilization.
- 2) We propose an enhanced importance metric that integrates gradient-based parameter sensitivity with input activation information for more stable ranking.
- 3) PE-DyRA framework can be used as a paradigm on benchmark methods such as DoRA, PiSSA, and QLoRA to achieve better results.
- 4) Experimental results across diverse tasks demonstrate the effectiveness of PE-DyRA over baseline methods, while theoretical analysis confirms its superior parameter efficiency.

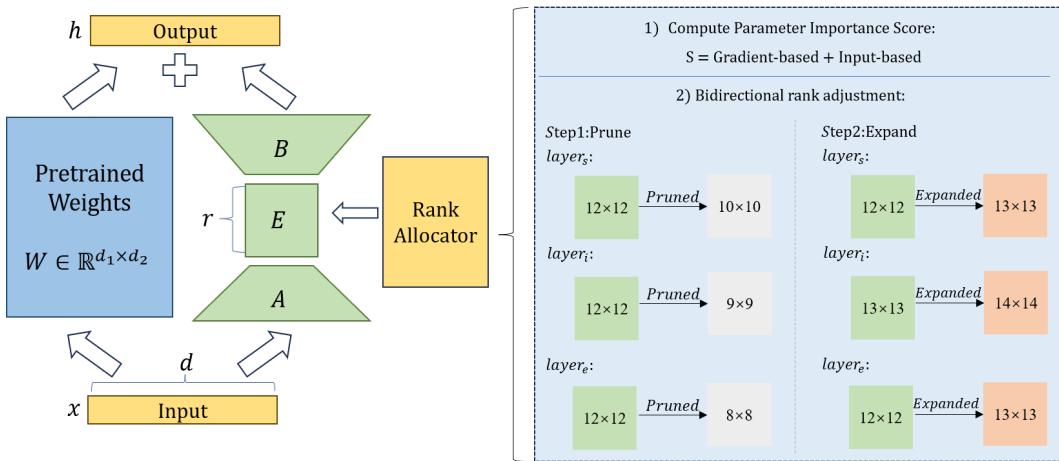
2 RELATED WORK

Low-Rank Adaptation. PEFT methods have evolved from adapter layers (Houlsby et al., 2019) and prompt tuning (Lester et al., 2021) to LoRA (Hu et al., 2022). The key insight of LoRA is that weight updates during adaptation can be effectively represented using low-rank decompositions.

108 PiSSA (Meng et al., 2024) leverages principal SVD to initialize LoRA by truncating pre-trained
 109 weights, thereby accelerating fine-tuning convergence. QLoRA (Dettmers et al., 2023) extends
 110 LoRA with 4-bit quantization and gradient dequantization, enabling efficient fine-tuning of large
 111 models. DoRA (Liu et al., 2024) decomposes the weight update into two independent components,
 112 amplitude and direction, and applies LoRA adaptation only to the direction component.

113 **Dynamic Rank Adaptation Methods.** Standard LoRA uses fixed-rank matrices, whereas recent
 114 work explores dynamic rank adaptation to optimize allocation during training. AdaLoRA (Zhang
 115 et al., 2023b) adapts ranks via a three-term SVD formulation with importance-based pruning and
 116 orthogonality regularization, but requires a large initial parameter space. DyLoRA (Valipour et al.,
 117 2023) enables flexible rank selection during inference by training a unified model across multiple
 118 candidate ranks simultaneously. IncreLoRA (Zhang et al., 2023a) instead adopts a progressive rank
 119 expansion strategy, gradually increasing the model capacity. SoRA (Ding et al., 2023) induces sparsity
 120 within LoRA modules. TriAdaptLoRA (Liang et al., 2025) draws on neuroscience principles to
 121 introduce an adaptive rank-growth strategy controlled by dynamic thresholds. These methods illustrate
 122 various strategies for dynamic LoRA rank allocation to balance efficiency and performance.

123 3 METHOD



141 Figure 2: Overview of the proposed dynamic rank adjustment framework. (Left) The base architecture
 142 with rank allocation. (Right) The two-step bidirectional rank adjustment procedure: (1)
 143 compute parameter importance score S based on both gradient and input information; (2) prune
 144 ranks in less important layers and expand them in more critical ones, enabling adaptive allocation of
 145 model capacity.

146 In this section, we propose PE-DyRA, a novel parameter-efficient fine-tuning method based on a
 147 dynamic rank adjustment framework that aims to dynamically optimize the assignment of trainable
 148 parameters. The overall architecture of PE-DyRA is shown in Figure 2. Firstly, the incremental
 149 weight matrix of LoRA layer is decomposed into SVD form, and the rank allocator performs a bi-
 150 directional adjustment on the rank size of each layer by calculating the importance score, pruning off
 151 redundant ranks and then expanding in more critical layers, and finally performing a final warmup.
 152 To prevent the adaptive capacity from being completely pruned, the minimum rank is set to 1 to
 153 maintain minimal adaptability.

155 3.1 SVD-FORM ADAPTATION

157 We parameterize the weight increment in the form of singular value decomposition, and represent
 158 the incremental update of the pre-trained weight matrix as

$$159 \mathbf{W} = \mathbf{W}^{(0)} + \Delta = \mathbf{W}^{(0)} + \mathbf{A} \mathbf{E} \mathbf{B} \quad (1)$$

160 where $\mathbf{A} \in \mathbb{R}^{d_1 \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times d_2}$ are learnable factor matrices, $\mathbf{E} = \text{diag}(e_1, \dots, e_r)$ is a trainable
 161 diagonal matrix of singular values.

Similar to the existing work AdaLoRA (Zhang et al., 2023b), we still adopt the concept of triples. For a LoRA layer with rank r , each rank’s corresponding triple is treated as the fundamental unit for computing importance scores and performing rank adjustments. It can be expressed as $\mathcal{G}_i = (\mathbf{a}_i, e_i, \mathbf{b}_i)$ for $i = 1, \dots, r$, where \mathbf{a}_i and \mathbf{b}_i are the i -th column of \mathbf{A} and the i -th row of \mathbf{B} , respectively.

At step t , the set of triples is $\mathcal{G}^{(t)} = \{G_1^{(t)}, G_2^{(t)}, \dots, G_{r^{(t)}}^{(t)}\}$. We compute an importance score for each triple: $S_i^{(t)} = f(\mathbf{a}_i^{(t)}, e_i^{(t)}, \mathbf{b}_i^{(t)})$, where $f(\cdot)$ integrates gradient-based and input-based sensitivities. Based on $S_i^{(t)}$, we update the triple set by pruning and expansion: $\mathcal{G}^{(t+1)} = (\mathcal{G}^{(t)} \setminus \mathcal{G}_{\text{pruned}}^{(t)}) \cup \mathcal{G}_{\text{expanded}}^{(t)}$, where $\mathcal{G}_{\text{pruned}}^{(t)}$ contains the least important triples to be removed, and $\mathcal{G}_{\text{expanded}}^{(t)}$ introduces new triples initialized for critical directions.

To maintain decomposition stability, we apply spectral regularization (Zhang et al., 2023b):

$$\mathcal{R}_{\text{orth}} = \|\mathbf{A}^\top \mathbf{A} - \mathbf{I}_r\|_F^2 + \|\mathbf{B}^\top \mathbf{B} - \mathbf{I}_r\|_F^2 \quad (2)$$

3.2 PARAMETER IMPORTANCE EVALUATION

3.2.1 GRADIENT-BASED PARAMETER IMPORTANCE ESTIMATION

Inspired by AdaLoRA (Zhang et al., 2023b) and Platon (Zhang et al., 2022), we quantify parameter sensitivity using the absolute product of weights and gradients, and apply exponential moving average (EMA) smoothing across training iterations. Due to the high variability and uncertainty, the quantification of uncertainty is also performed. The final importance score is defined as the product of smoothed sensitivity and uncertainty:

$$\begin{cases} \text{Sensitivity: } \bar{I}_{(w_{ij})}^{(t)} = \beta_1 \bar{I}_{(w_{ij})}^{(t-1)} + (1 - \beta_1) \left| w_{ij}^{(t)} \cdot \nabla_{w_{ij}} L^{(t)} \right| \\ \text{Uncertainty: } \bar{U}_{(w_{ij})}^{(t)} = \beta_2 \bar{U}_{(w_{ij})}^{(t-1)} + (1 - \beta_2) \left| \left| w_{ij}^{(t)} \cdot \nabla_{w_{ij}} L^{(t)} \right| - \bar{I}_{(w_{ij})}^{(t)} \right| \\ \text{Importance: } \mathcal{S}_{(w_{ij})}^{(t)} = \bar{I}_{(w_{ij})}^{(t)} \cdot \bar{U}_{(w_{ij})}^{(t)} \end{cases} \quad (3)$$

where $\beta_1, \beta_2 \in [0, 1]$ are EMA coefficients.

Gradient-Aware Triple Importance. During training, we observe that the gradients of the factor matrices A and B , which correspond to the left and right singular matrices, are typically smaller by orders of magnitude compared to those of the core matrix E . This indicates that the update of the core matrix plays a more critical role in the optimization process (see Figure 11 in Appendix I).

Consequently, when evaluating the importance of a triple, we do not rely on a uniform linear combination of its constituent importance scores. Instead, we introduce a **gradient-aware weighting scheme**, where the contribution of each component is scaled according to the relative magnitude of its gradient. Formally, the triple-level importance score at step t is defined as

$$S_{G_i}^{(t)} = \omega_E^{(t)} \cdot \mathcal{S}(E_i) + \omega_A^{(t)} \cdot \mathcal{S}(A_i) + \omega_B^{(t)} \cdot \mathcal{S}(B_i), \quad (4)$$

where the adaptive weights are computed as

$$\omega_X^{(t)} = \frac{\|\nabla_X L^{(t)}\|_2}{\|\nabla_A L^{(t)}\|_2 + \|\nabla_E L^{(t)}\|_2 + \|\nabla_B L^{(t)}\|_2}, \quad X \in \{A, E, B\}. \quad (5)$$

This formulation ensures that components with stronger optimization impact, particularly the core matrix, receive larger weights in the triple-level importance score. As a result, the aggregated importance evaluation better reflects the actual training dynamics and guides more effective rank allocation during dynamic adjustment.

For detailed empirical results validating the proposed gradient-aware weighting scheme, please refer to Appendix F.

3.2.2 INPUT-BASED PARAMETER IMPORTANCE ESTIMATION

Notably, on datasets with diverse input distributions, the input activations can vary from token to token. So input activations also play an equally critical role in determining the actual output of a

216 neuron. The contribution to the neuron output is determined jointly by magnitude of weight and the
 217 scale of the corresponding input activation.

218 Motivated by pruning metrics such as Wanda (Sun et al., 2024), we extend the importance estimation
 219 to the LoRA decomposition. Let X denote the input activations. Given the input representation
 220 $X \in \mathbb{R}^{N \times d}$ (where $N = \text{batch_size} \times \text{seq_len}$, and d is the hidden dimension), we
 221 compute the L2 norm along the batch and token dimension for each feature dimension: $\|X_j\|_2 =$
 222 $\frac{1}{N} \sum_{i=1}^N x_{ij}^2$, $j = 1, \dots, d$. This preserves per-feature energy, reflecting the relative contribution
 223 of each input dimension. Then we apply exponential moving average(EMA) to this. For $A \in \mathbb{R}^{d_1 \times r}$,
 224 the importance of each element is expressed as $S_{ij} = |W_{ij}| \cdot \|X_j\|_2$. The importance score for each
 225 triplet is defined as

$$227 \quad S_{G_i}^{inp} = |e_i| \cdot \sum_{k=1}^{d_1} S_{ki} \cdot \|\mathbf{B}_{i:}\|_2, \quad i = 1, \dots, r, \quad (6)$$

230 As shown in Algorithm 1 in Appendix I.3, the procedure of computing the overall importance score
 231 is illustrated.

232 **Layer-level Importance.** For a LoRA layer with r ranks, corresponding to triples $\{G_1, G_2, \dots,$
 233 $G_r\}$, the layer-level importance score is defined as

$$235 \quad S_{\text{layer}} = \frac{1}{r} \sum_{i=1}^r S(G_i), \quad (7)$$

238 where $S(G_i)$ denotes the importance score of the i -th triple at the rank-level.

239 3.3 BIDIRECTIONAL RANK ADJUSTMENT STRATEGY

240 **Pruning Phase.** During the pruning phase, we first compute the importance score for each rank-
 241 level triple $G = (A, E, B)$. All triples are sorted according to their importance scores, and the k
 242 triples with the lowest aggregated scores are selected for removal: $\mathcal{P} = \operatorname{argmin}_{\mathcal{S}, |\mathcal{S}|=k} \sum_{G \in \mathcal{S}} S(G)$
 243 , where \mathcal{P} denotes the set of pruned ranks.

244 **Expansion Phase.** In the expansion phase, we perform layer-level importance evaluation by
 245 aggregating rank-level scores. Based on these layer-level scores, we execute a global ranking
 246 across all layers and adopt a strict rank-conservation strategy: the k rank resources removed
 247 in the pruning phase are reassigned to the top- k layers with the highest $S_{\text{layer}}^{(\ell)}$ values: $\mathcal{E} =$
 248 $\operatorname{argmax}_{\mathcal{S}, |\mathcal{S}|=k} \sum_{\ell \in \mathcal{S}} S_{\text{layer}}^{(\ell)}$, where \mathcal{E} denotes the set of expanded layers.

249 Under the constraint of a fixed total rank budget, the bidirectional adjustment strategy removes
 250 less important redundant parameters and reallocates them to more critical LoRA layers, thereby
 251 improving parameter efficiency and enhancing model performance.

252 For detailed bidirectional rank adjustment strategy, please refer to Algorithm 2 in the appendix I.3.

253 3.4 PARAMETRIC EFFICIENCY ANALYSIS

254 **Theorem 3.1** (Pareto-Optimal Parameter Efficiency under Rank Allocation Constraints). *Consider*
 255 L LoRA layers, each assigned a rank r_l , under a fixed total rank budget R_{total} : $\sum_{l=1}^L r_l = R_{\text{total}}$.
 256 Let G_l denote the importance score of layer l . The necessary condition for Pareto-optimal parameter
 257 efficiency is:

$$258 \quad r_l \propto G_l^{2/3} \quad (8)$$

259 That is, layers with higher importance scores should be assigned more ranks.

260 **Inference: Dynamic vs. Static Strategy** A dynamic rank adjustment strategy that updates r_l
 261 in response to changes in G_l during training can iteratively approach the Pareto-optimal condition
 262 equation 8. Static strategies, which fix $\{r_l\}$ at initialization, cannot adapt to evolving layer impor-
 263 tance, and thus are generally less efficient in parameter utilization and model performance. See
 264 Appendix B for the complete derivation.

270 Table 2: Performance comparison of different PEFT methods on GLUE benchmark (rank $r = 8$).
271

273 Method	SST-2	MNLI	CoLA	QNLI	MRPC	QQP	RTE	STS-B	All
274	Acc.	Acc.	Mcc.	Acc.	Acc.	Acc.	Acc.	Corr.	Avg.
275 LoRA	95.18	89.74	69.33	93.90	89.70	91.99	86.28	91.66	88.473
276 PiSSA	95.53	90.30	71.41	94.07	90.20	91.92	88.09	91.54	89.133
277 LoRA+	95.3	90.28	70.25	94.01	90.93	92.09	86.28	91.54	88.835
278 AdaLoRA	95.53	90.50	69.02	94.42	90.93	92.03	87.00	91.77	88.9
279 DyLoRA	95.18	89.51	69.82	94.29	89.95	91.97	85.92	91.74	88.547
280 IncreLoRA	95.72	90.62	70.20	94.36	90.11	91.91	86.88	91.38	88.898
281 RandLoRA	95.98	89.96	68.22	93.74	90.69	92.06	86.28	91.34	88.534
282 TriAdaptLoRA	95.68	90.64	71.6	94.37	90.77	92.09	87.84	91.79	89.348
283 PE-DyRA	95.98	90.38	71.43	94.53	91.18	92.14	88.09	91.98	89.464

284
285
286 4 EXPERIMENTS
287288 4.1 MODELS AND DATASETS
289290 **Natural Language Understanding (NLU).** We adopt **DeBERTa-v3-base** (He et al., 2021) and
291 fine-tune it on the **GLUE benchmark** (Wang et al., 2019), using eight tasks from the benchmark.292 **Mathematical Reasoning and Code Generation.** We employ **LLaMA-2-7B** (Touvron et al., 2023)
293 and **LLaMA-3-8B** (Dubey et al., 2024) for evaluation on **mathematical reasoning**, where the mod-
294 els are fine-tuned on MetaMathQA (Yu et al., 2024) and assessed on GSM8K (Cobbe et al., 2021)
295 and MATH (Hendrycks et al., 2021). For **code generation**, the models are fine-tuned on CodeFeed-
296 back (Zheng et al., 2024) and evaluated on HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
297 2021).298 **Summarization.** We use **BART-large** (Lewis et al., 2019) for summarization on **XSum** (Narayan
299 et al., 2018), which evaluate the ability to generate concise and faithful summaries.
300301 4.2 BASELINES
302303 We compare our method against a broad range of parameter-efficient fine-tuning (PEFT) approaches,
304 including **LoRA** and its variants, as well as **dynamic rank adaptation methods**:
305

- 306 • **LoRA-based methods:** LoRA (Hu et al., 2022), LoRA+ (Hayou et al., 2024)
307 , PiSSA (Meng et al., 2024), DoRA (Liu et al., 2024), RandLoRA (Albert et al., 2025),
308 QLoRA (Dettmers et al., 2023), RaSA (He et al., 2025).
- 309 • **Dynamic rank methods:** AdaLoRA (Zhang et al., 2023b), IncreLoRA (Zhang et al.,
310 2023a), DyLoRA (Valipour et al., 2023), TriAdaptLoRA (Liang et al., 2025).

312 4.3 RESULTS
313314 **Natural Language Understanding.** Table 2 reports the performance of different PEFT methods
315 on eight tasks from the GLUE benchmark with rank of $r = 8$. Overall, our method consistently out-
316 performs existing baselines, achieving the highest average score (89.464%), demonstrating superior
317 generalization across both sentence-level and sentence-pair classification tasks. For example, on the
318 MRPC task, our method achieves 91.18% accuracy, which is 0.25% higher than the best-performing
319 baseline (AdaLoRA, 90.93%).320 **Mathematical Reasoning and Code Generation.** As shown in Table 3, our method (PE-DyRA)
321 achieves the best performance on both LLaMA2-7B and LLaMA3-8B. On LLaMA2-7B, the overall
322 average score of 34.69% surpasses the strongest baseline DoRA (33.99%) by nearly +0.7 points. On
323 LLaMA3-8B, PE-DyRA also delivers the best average score (65.09%), demonstrating consistent
advantages in both mathematical reasoning and code generation.

324 Table 3: Performance comparison of different PEFT methods on LLaMA2-7B and LLaMA3-8B.
325

326 Model	327 Method	328 #Params(%)	329 GSM8K	330 MATH	331 HumanEval	332 MBPP	333 Avg
334 LLaMA2-7B	LoRA	0.15	52.90	7.60	26.0	34.7	30.3
	DoRA	0.17	56.09	9.76	31.7	38.4	33.99
	QLoRA	0.28	50.32	6.12	24.8	32.8	28.51
	RaSA	0.15	56.41	9.72	28.0	36.2	32.58
	AdaLoRA	0.22	52.01	8.26	26.2	35.2	30.42
	PE-DyRA	0.15	56.25	10.12	33.5	38.9	34.69
335 LLaMA3-8B	LoRA	0.13	81.27	39.04	64.0	69.0	63.33
	DoRA	0.15	81.42	37.22	65.2	72.0	63.96
	QLoRA	0.23	81.12	39.58	67.1	70.6	64.6
	RaSA	0.13	80.97	36.18	67.1	69.6	63.46
	AdaLoRA	0.20	81.04	39.62	65.9	72.0	64.64
	PE-DyRA	0.13	80.82	40.24	67.1	72.2	65.09

339
340
341
342 **Summarization.** Table 4 shows the results on summarization task. Compared with LoRA and
343 AdaLoRA, our method (PE-DyRA) achieves the best performance across all Rouge metrics while
344 using the same parameter budget as LoRA (2.06M).

345
346 Table 4: Performance comparison of different PEFT methods on XSum.
347

348 Method	349 #Params	350 Rouge-1	351 Rouge-2	352 Rouge-L	353 Rouge-Lsum
LoRA	2.06M	43.6283	20.4566	35.6239	35.6194
AdaLoRA	3.09M	43.9557	20.5627	35.6264	35.6129
PE-DyRA	2.06M	44.0444	20.8523	35.9616	35.9602

354
355
356

4.4 PE-DYRA AS A GENERAL PARADIGM

357
358 To further validate the generality of our proposed method, we integrate PE-DyRA into several rep-
359 resentative PEFT approaches, including PiSSA, DoRA, and QLoRA, across both natural language
360 understanding (NLU) and code generation tasks. The results are reported in Table 11 and Table 12
361 in Appendix I.2.

362 On the DeBERTa-v3-base NLU benchmark, PE-DyRA consistently improves PiSSA, achieving an
363 average accuracy of 89.29%. For LLaMA models on code generation, PE-DyRA also provides
364 significant gains. On LLaMA2-7B, PE-DyRA+DoRA improves MBPP by 1.3% over DoRA. On
365 LLaMA3-8B, PE-DyRA+QLoRA achieves 74.3% on MBPP, outperforming QLoRA by 3.7%.

366 These results suggest that PE-DyRA can be applied as a paradigm to existing PEFT methods, im-
367 proving their performance across different models and tasks. This highlights its wide applicability
368 and generalization ability.

370
371

4.5 ANALYSIS

372
373

4.5.1 ABLATION STUDY ON BIDIRECTIONAL STRATEGIES

374
375 We propose a bidirectional rank adjustment strategy and validate it via an ablation study. From
376 Table 5, compared with Prune-only or Expand-only variants, our method (PE-DyRA) balances pa-
377 rameter allocation and model capacity, achieving superior performance without increasing the total
number of training parameters.

378 Table 5: Performance comparison with different strategies.
379

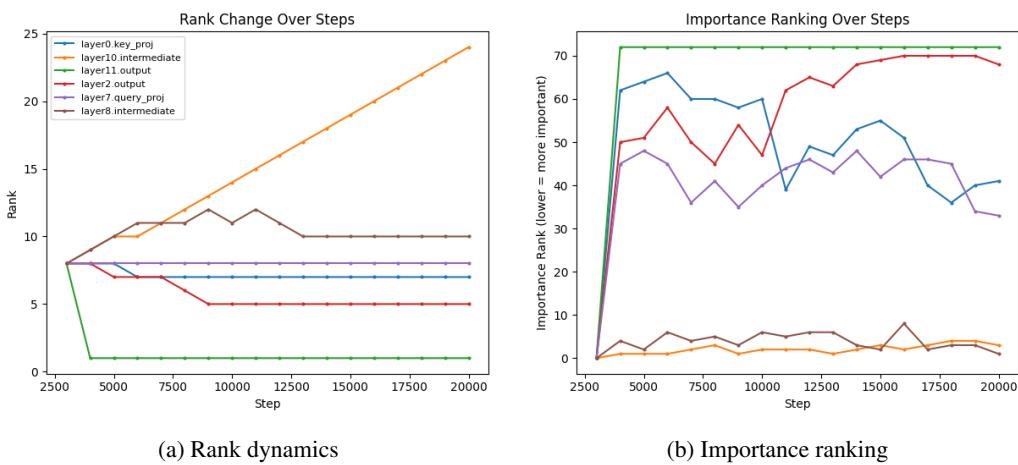
380 Method	381 MRPC	382 STS-B	383 RTE	384 CoLA	385 SST-2	386 QNLI	387 QQP	388 MNLI	389 Avg
390 LoRA	391 89.70	392 91.66	393 86.28	394 69.33	395 95.18	396 93.90	397 91.99	398 89.74	399 88.473
400 +Prune	401 90.20	402 91.80	403 87.36	404 70.19	405 95.53	406 94.34	407 92.13	408 90.37	409 88.99
410 +Expand	411 90.69	412 91.72	413 88.09	414 70.21	415 95.30	416 94.51	417 92.46	418 90.30	419 89.16
420 PE-DyRA	421 91.18	422 91.98	423 88.09	424 71.43	425 95.98	426 94.53	427 92.14	428 90.38	429 89.464

386
387 4.5.2 ABLATION OF INPUT-BASED IMPORTANCE
388389 To investigate the effect of input-based importance calculation in PE-DyRA, we conduct an ablation
390 study on LLaMA2-7B across code generation benchmarks. We conducted experiments on two ways,
391 without input-based importance and with input-based importance, and analyzed the results.392 Table 6: Ablation study on input-based importance calculation in PE-DyRA.
393

394 Model	395 Variant	396 Humaneval	397 Humaneval+	398 MBPP	399 MBPP+
400 LLaMA2-7B	401 w/o input-based	402 32.3	403 29.3	404 38.4	405 29.9
406	407 with input-based	408 33.5	409 30.5	410 38.9	411 32.5

400 As shown in Table 6, incorporating input-based importance calculation improves performance on
401 benchmarks, highlighting its effectiveness in PE-DyRA.

402 4.5.3 LAYER-WISE RANK DYNAMICS

403 To analyze the dynamic rank adjustment mechanism, we track the evolution of allocated ranks and
404 corresponding importance rankings for representative layers during training (Figure 3, (a) rank dy-
405 namics; (b) importance ranking, where smaller values denote higher importance).424 Figure 3: Evolution of dynamic rank allocation and layer importance during training.
425426 We observe clear differences across layers. `layer10.intermediate` consistently maintains
427 high importance throughout training, leading to an increase in its allocated rank. In contrast,
428 `layer11.output` exhibits low importance and rapidly reduces its rank at the beginning of training.
429 Other layers show fluctuating importance rankings, resulting in relatively stable rank changes.
430 Notably, `layer8.intermediate` remains among the top in importance ranking, causing its rank
431 to increase at each update; however, the number of its ranks fluctuates up and down over time. This
432 suggests that certain triples at the rank level have low importance and are thus pruned.

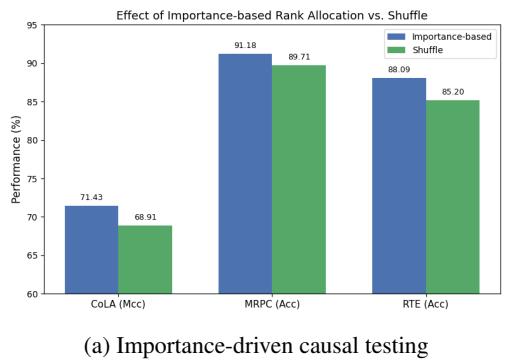
432 4.5.4 PERFORMANCE UNDER DIFFERENT RANK BUDGETS
433

434 As shown in Table 13 in Appendix I.2, we also test the fine-tuning performance of the proposed
435 method on some datasets with different rank budgets. It can be observed that the proposed method
436 achieves performance improvement under different budgets.

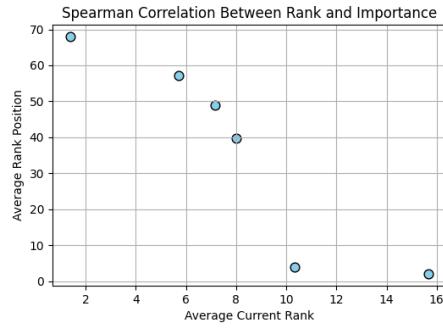
438 4.5.5 ABLATION STUDY ON RANK ADJUSTMENT SIZE
439

440 Our method performs rank updates every T steps, where the adjustment size (number of ranks
441 pruned/expanded) critically affects performance. We evaluate adjustment sizes $\{4, 8, 12, 24\}$ on
442 DeBERTaV3-base with initial rank $r = 8$ to analyze this effect.

443 As shown in Table 14 in Appendix I.2, when the dynamic rank adjustment is small, the model’s
444 ability to improve is limited; when it is large, pruning trained ranks and introducing new ones can
445 destabilize training. The optimal adjustment value depends on both the model architecture and the
446 initial rank size.

448 4.5.6 IMPORTANCE-DRIVEN CAUSAL TESTING AND SPEARMAN CORRELATION
449
450
451

(a) Importance-driven causal testing



(b) Spearman correlation

464 Figure 4: Effectiveness of importance-guided dynamic rank allocation. (a) Causal test comparing
465 importance-based allocation with random shuffle. (b) Spearman correlation between mean allocated
466 rank and mean importance ranking.

467
468 In Figure 4a, we test causality by randomizing the importance order during training, making rank ad-
469 justment random. The resulting performance drop across datasets confirms that importance-to-rank
470 assignment is indeed effective. In Figure 4b, we analyze the correlation between layer importance
471 and assigned rank. The strong Spearman correlation confirms that dynamic rank assignment aligns
472 well with learned importance.

474 5 CONCLUSION AND FUTURE WORK
475
476

478 This study proposes PE-DyRA, an efficient dynamic rank adjustment method that improves parame-
479 ter utilization. Experiments demonstrate that PE-DyRA outperforms existing fine-tuning approaches
480 across diverse tasks, validating its effectiveness for large-scale models under limited resources.

481 However, there is still much future work to be done in this research. The size of the adjusted rank
482 in the update is currently fixed as a parameter, and it can be extended to an adaptive method to
483 determine the size of the adjusted rank in the update independently. In the future, we will explore
484 more appropriate measures of importance, apply our method to larger models, and extend it to
485 various tasks such as federation, multi-task, and domain adaptation. These promising challenges
remain to be explored in future research efforts.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Paul Albert, Frederic Z. Zhang, Hemanth Saratchandran, Cristian Rodriguez-Opazo, Anton van den
492 Hengel, and Ehsan Abbasnejad. RandloRA: Full rank parameter-efficient fine-tuning of large
493 models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
494 <https://openreview.net/forum?id=Hn5eoTunHN>.

495 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
496 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
497 models. *arXiv preprint arXiv:2108.07732*, 2021.

498 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
499 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
500 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

501 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
502 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
503 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

504 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
505 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
506 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

507 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
508 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

509 Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
510 Sparse low-rank adaptation of pre-trained language models. In Houda Bouamor, Juan Pino, and
511 Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
512 guage Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 4133–4145. Associa-
513 tion for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.252. URL
514 <https://doi.org/10.18653/v1/2023.emnlp-main.252>.

515 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
516 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
517 *arXiv e-prints*, pp. arXiv–2407, 2024.

518 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
519 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
520 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

521 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large mod-
522 els. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
523 July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=NEv8YqBROO>.

524 Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
525 pre-training with gradient-disentangled embedding sharing. *arXiv preprint arXiv:2111.09543*,
526 2021.

527 Zhiwei He, Zhaopeng Tu, Xing Wang, Xingyu Chen, Zhipie Wang, Jiahao Xu, Tian Liang, Wen-
528 xiang Jiao, Zhuosheng Zhang, and Rui Wang. RaSA: Rank-sharing low-rank adaptation. In
529 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=GdXI5zCoAt>.

530 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
531 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
532 preprint arXiv:2103.03874*, 2021.

540 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 541 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 542 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

543 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 544 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

545 Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. *arXiv preprint*
 546 *arXiv:2312.03732*, 2023.

547 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 548 tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
 549 *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7-11 November, 2021*, pp. 3045–
 550 3059. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.
 551 243. URL <https://doi.org/10.18653/v1/2021.emnlp-main.243>.

552 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
 553 Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
 554 training for natural language generation, translation, and comprehension. *arXiv preprint*
 555 *arXiv:1910.13461*, 2019.

556 Yao Liang, Yuwei Wang, and Yi Zeng. Triadapltora: Brain-inspired triangular adaptive low-rank
 557 adaptation for parameter-efficient fine-tuning. *arXiv preprint arXiv:2501.08008*, 2025.

558 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 559 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 560 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022.

561 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 562 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first*
 563 *International Conference on Machine Learning*, 2024.

564 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
 565 vectors adaptation of large language models. *Advances in Neural Information Processing Systems*,
 566 37:121038–121072, 2024.

567 Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
 568 mary! topic-aware convolutional neural networks for extreme summarization. *arXiv preprint*
 569 *arXiv:1808.08745*, 2018.

570 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 571 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 572 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

573 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
 574 for squad. *arXiv preprint arXiv:1806.03822*, 2018.

575 Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning ap-
 576 proach for large language models. In *The Twelfth International Conference on Learning Rep-
 577 resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 578 <https://openreview.net/forum?id=PxoFut3dWW>.

579 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 580 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 581 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

582 Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
 583 efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Andreas
 584 Vlachos and Isabelle Augenstein (eds.), *Proceedings of the 17th Conference of the European
 585 Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, May
 586 2-6, 2023*, pp. 3266–3279. Association for Computational Linguistics, 2023. doi: 10.18653/V1/
 587 2023.EACL-MAIN.239. URL <https://doi.org/10.18653/v1/2023.eacl-main.239>.

594 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
 595 GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
 596 *7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,*
 597 *May 6-9, 2019.* OpenReview.net, 2019. URL <https://openreview.net/forum?id=rJ4km2R5t7>.

599 Menglin Yang, Jialin Chen, Yifei Zhang, Jiahong Liu, Jiasheng Zhang, Qiyao Ma, Harshit Verma,
 600 Qianru Zhang, Min Zhou, Irwin King, et al. Low-rank adaptation for foundation models: A
 601 comprehensive review. *arXiv preprint arXiv:2501.00365*, 2024.

602 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
 603 Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
 604 questions for large language models. In *The Twelfth International Conference on Learning*
 605 *Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.* OpenReview.net, 2024. URL
 606 <https://openreview.net/forum?id=N8N0hgNDrt>.

607 Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang Jiang, Bowen Wang, and Yiming Qian. In-
 608 crelora: Incremental parameter allocation method for parameter-efficient fine-tuning. *arXiv*
 609 *preprint arXiv:2308.12043*, 2023a.

610 Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
 611 Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
 612 importance. In *International conference on machine learning*, pp. 26809–26823. PMLR, 2022.

613 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
 614 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *The Eleventh In-
 615 ternational Conference on Learning Representations*, 2023b. URL <https://openreview.net/forum?id=lq62uWRJjiY>.

616 Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automatically tun-
 617 ing matrix ranks in low-rank adaptation based on meta learning. In Kevin Duh, Helena Gómez-
 618 Adorno, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American*
 619 *Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
 620 ume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 5048–5060.
 621 Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.282.
 622 URL <https://doi.org/10.18653/v1/2024.naacl-long.282>.

623 Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhui Chen,
 624 and Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refine-
 625 ment. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Asso-
 626 ciation for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, Au-
 627 gust 11-16, 2024*, pp. 12834–12859. Association for Computational Linguistics, 2024. doi: 10.
 628 18653/V1/2024.FINDINGS-ACL.762. URL <https://doi.org/10.18653/v1/2024.findings-acl.762>.

629 Noah Ziems, Wenhao Yu, Zhihan Zhang, and Meng Jiang. Large language models are built-in
 630 autoregressive search engines. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki
 631 (eds.), *Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada,*
 632 *July 9-14, 2023*, pp. 2666–2678. Association for Computational Linguistics, 2023. doi: 10.
 633 18653/V1/2023.FINDINGS-ACL.167. URL <https://doi.org/10.18653/v1/2023.findings-acl.167>.

634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 A THE USE OF LARGE LANGUAGE MODELS
649

650 A large language model (LLM) was used to assist in refining the writing style and polishing the
651 language of this paper. We gratefully acknowledge its contribution in improving the readability and
652 clarity of the manuscript. All LLM-generated content was reviewed and corrected by the authors to
653 maintain accuracy and preserve the original meaning.

654
655 B PROOF OF PARETO-OPTIMAL PARAMETER EFFICIENCY
656

657 We formalize the rank allocation problem under a fixed total rank budget R_{total} using a Lagrangian
658 framework. Consider L LoRA layers, each assigned a rank $r_l > 0$, with layer importance scores
659 $G_l > 0$. We assume that the layer-wise contribution to the overall loss can be approximated as

$$660 \quad 661 \quad 662 \quad L(\{r_l\}) = \sum_{l=1}^L \frac{G_l}{\sqrt{r_l}}, \quad (9)$$

663 subject to the total rank budget constraint
664

$$665 \quad 666 \quad 667 \quad \sum_{l=1}^L r_l = R_{\text{total}}. \quad (10)$$

668 Our goal is to minimize equation 9 subject to equation 10, yielding the most parameter-efficient rank
669 allocation.

670 **Lagrangian formulation.** We construct the Lagrangian
671

$$672 \quad 673 \quad 674 \quad \mathcal{J}(\{r_l\}, \lambda) = \sum_{l=1}^L G_l r_l^{-1/2} + \lambda \left(\sum_{l=1}^L r_l - R_{\text{total}} \right), \quad (11)$$

675 where λ is the Lagrange multiplier for the total rank constraint.

676 **Optimality condition.** Taking the derivative of equation 11 with respect to r_l and setting it to zero
677 for optimality, we obtain

$$678 \quad 679 \quad \frac{\partial \mathcal{J}}{\partial r_l} = -\frac{1}{2} G_l r_l^{-3/2} + \lambda = 0. \quad (12)$$

680 Equation equation 12 implies that
681

$$682 \quad G_l r_l^{-3/2} = 2\lambda, \quad \forall l. \quad (13)$$

683 Since the right-hand side is independent of l , we have
684

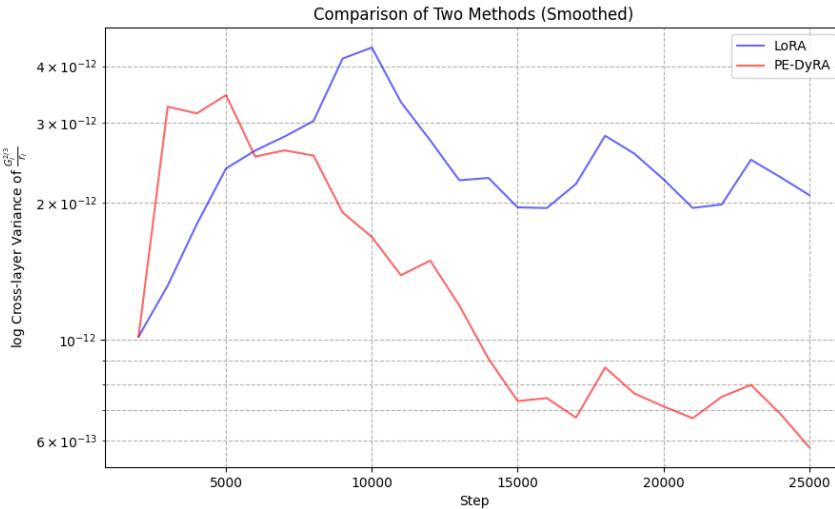
$$685 \quad r_l^{3/2} \propto G_l \quad \Rightarrow \quad r_l \propto G_l^{2/3}. \quad (14)$$

686 **Global optimality.** Each term $G_l r_l^{-1/2}$ is strictly convex in $r_l > 0$, so the total objective equation 9
687 is strictly convex, and the constraint equation 10 is linear. Therefore, any stationary point satisfying
688 equation 13 is the unique global minimizer. Thus, this is the globally Pareto-optimal rank allocation.

689 **Implications.** Compared to any static allocation (uniform $r_l = R_{\text{total}}/L$), the dynamic allocation
690 achieves a strictly lower loss in equation 9 whenever the importance scores G_l are not all equal. This
691 formally establishes that allocating ranks proportionally to $G_l^{2/3}$ is Pareto-optimal under the given
692 model.

693 For the SST-2 dataset, both LoRA(using SVD triples) and PE-DyRA methods are used to verify
694 the above results, and the following graphs are plotted: The horizontal axis is the step during the
695 training process; The vertical axis is the log variance of $G_l^{2/3}/r_l$ across layers (which indicates how
696 much the value deviates from the constant across layers).

697 As shown in Figure 5, under the dynamic strategy, the cross-layer variance of $G_l^{2/3}/r_l$ gradually
698 decreases during training, indicating that the model progressively approaches the Pareto optimal
699 condition. Moreover, the variance under the dynamic strategy is consistently lower than that of the
700 static LoRA strategy, suggesting that the dynamic rank adjustment achieves a more Pareto-efficient
701 parameter allocation.

Figure 5: Comparison of Cross-layer variance of $G_l^{2/3}/r_l$ during SST-2 training.

C ADDITIONAL EXPERIMENTS ON SQuAD v2.0

To further illustrate the performance difference between LoRA and PE-DyRA, we provide a bar chart comparison of representative evaluation metrics, including HasAns F1, NoAns F1, Exact Match, and Overall F1 on SQuAD v2.0.

As shown in Figure 6, PE-DyRA matches LoRA on HasAns F1 while substantially improving NoAns F1, leading to higher Exact Match and Overall F1. This demonstrates that PE-DyRA maintains strong performance on answerable questions and enhances robustness on unanswerable ones.

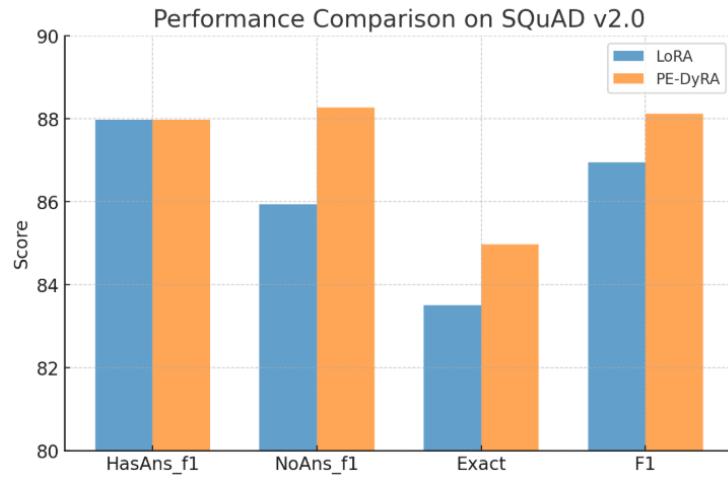


Figure 6: Comparison of evaluation metrics between LoRA and PE-DyRA on SQuAD v2.0.

D THE RESULTING RANK DISTRIBUTION

Methods were applied to SST-2 using the DeBERTaV3-base model and the respective final rank distributions were saved.

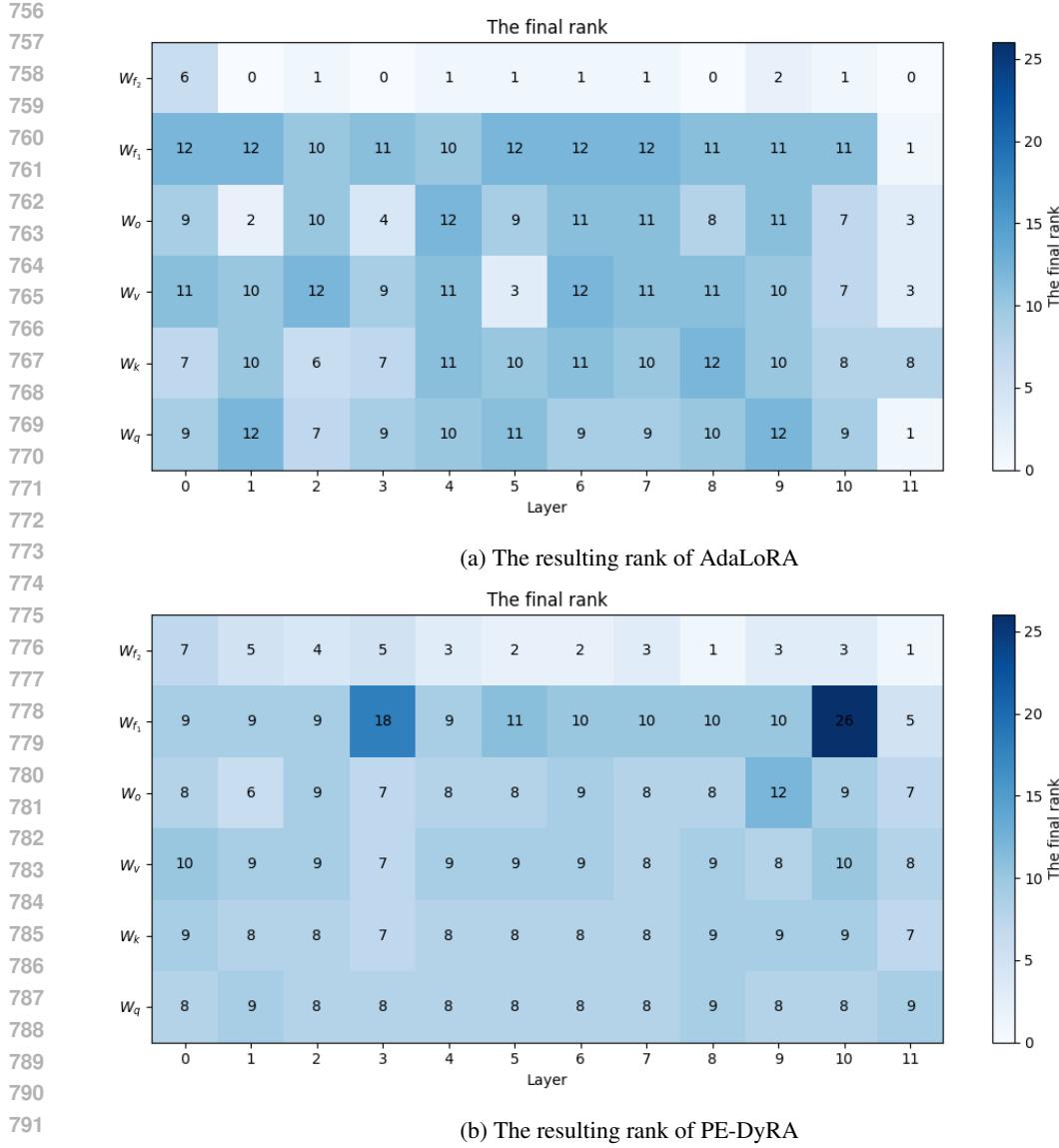


Figure 7: Comparative rank allocation patterns across model layers.

As shown in Figure 7, in the case of limited resources, the proposed method tends to produce relatively concentrated rank distributions. This may be one of the reasons why it is more effective in low-resource settings: by prioritizing assigning higher ranks to critical modules, methods are able to maintain adequate representation of important modules even with a limited parameter budget, thus achieving superior overall performance.

E EXPERIMENTAL SETTINGS

E.1 TRAINING DETAILS ON GLUE BENCHMARK

In the GLUE Benchmark, the model we used was DebertaV3-Base, with a rank size of 8. The specific details of the experimental hyperparameters are shown in the table 7.

Table 7: Hyper-parameter setup of PE-DyRA for GLUE benchmark.

Dataset	learning rate	batch size	# epochs	γ	t_i	Δ_T	t_f	k
MNLI	5×10^{-4}	32	7	0.1	3000	1000	65000	12
RTE	1.2×10^{-3}	32	50	0.3	300	100	2600	12
QNLI	9×10^{-4}	32	5	0.1	1000	500	10000	12
MRPC	1×10^{-3}	32	30	0.1	600	150	1100	12
QQP	6×10^{-4}	32	9	0.1	5000	1000	80000	12
SST-2	8×10^{-4}	32	24	0.1	1000	1000	25000	12
CoLA	1×10^{-3}	32	35	0.1	700	100	7000	12
STS-B	2.2×10^{-3}	32	25	0.3	800	200	1500	12

Table 8: Hyper-parameter setup of PE-DyRA for mathematical reasoning and code generation.

Model	Dataset	learning rate	batchsize	# epochs	t_i	Δ_T	t_f	k
LLaMA2-7B	MetaMath	2×10^{-4}	16	5	2000	1000	11250	12
	Python	2×10^{-4}	16	5	2000	1000	12765	12
LLaMA3-8B	MetaMath	5×10^{-5}	16	5	2000	1000	11250	12
	Python	1×10^{-4}	16	5	2000	1000	12765	12

E.2 TRAINING DETAILS ON MATHEMATICAL REASONING AND CODE GENERATION

In the Mathematical Reasoning and Code Generation task, the LLaMA2-7B and LLaMA3-8b models were used, with an initial rank size of 4. The specific details of the experimental hyperparameters are shown in the table 8.

E.3 TRAINING DETAILS ON SUMMARIZATION AND QA

Table 9: Hyper-parameter setup of PE-DyRA for summarization and QA.

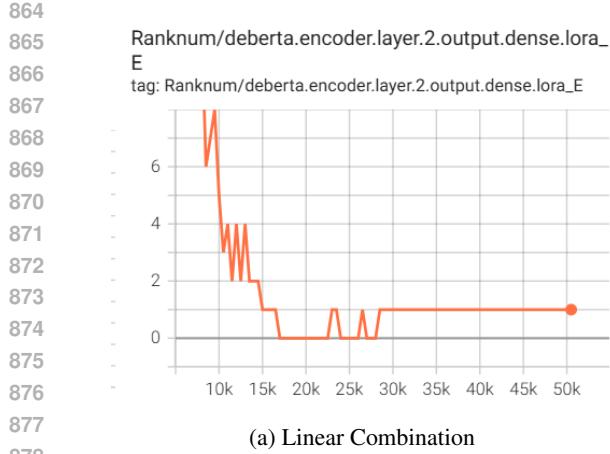
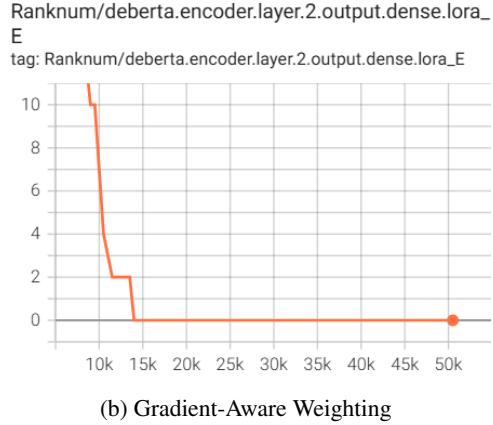
Dataset	learning rate	batch size	# epochs	γ	t_i	Δ_T	t_f	k
XSum	2×10^{-4}	24	25	0.1	6000	1500	180000	12
SQuAD v2.0	1.2×10^{-3}	16	25	0.1	5000	1000	190000	12

For the summary and question-answering tasks, the XSum dataset uses the BART-large model, while the SQuAD v2.0 (Rajpurkar et al., 2018) uses the DebertaV3-Base model. The initial rank size used is 4. The specific details of the experimental hyperparameters are shown in the table 9.

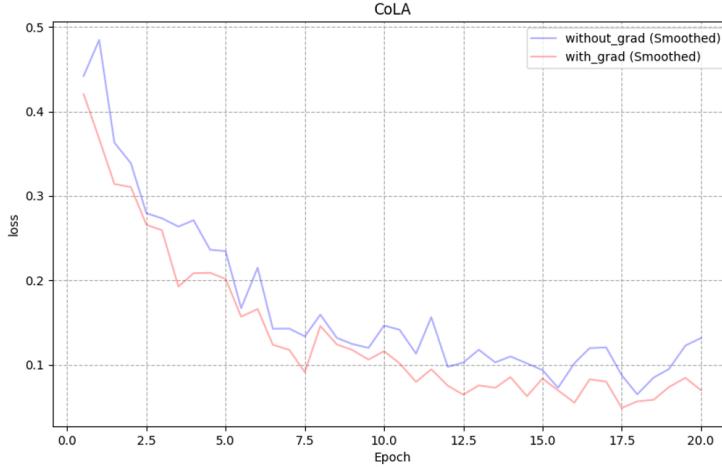
F EMPIRICAL VALIDATION OF GRADIENT-AWARE WEIGHTING

To validate the proposed gradient-aware weighting scheme for triple importance scores, we track rank evolution during training using a temporary zero-masking strategy with initialized. As shown in Figure 8, with a simple linear combination of importance scores(Figure 8a), pruned ranks often reactivate, indicating unstable importance evaluation. In contrast, the gradient-aware scheme(Figure 8b) keeps pruned ranks consistently suppressed, better reflecting optimization dynamics and this is consistent with the effect we want.

As shown in Figure 9, we monitor the change in loss for both cases with and without using the gradient-aware weighting scheme. Through the loss change during training, it can be seen that using gradient information weighting can accelerate the optimization and make the optimization process more stable.



879 Figure 8: Comparison of rank evolution under two importance aggregation schemes: (a) linear
880 combination leads to unstable pruning with ranks repeatedly reappearing, while (b) gradient-aware
881 weighting yields stable pruning dynamics.



898 Figure 9: Training loss comparison with/without gradient weighting

901 G TIME–MEMORY–ACCURACY COMPARISON

903 Table 10: Comparison of training time, memory usage, and accuracy among different methods.

905
906

Dataset	Method	#Params	Runtime/epoch(s)	Peak Memory Δ	Acc (%)
SST-2	LoRA	1.33M	220.64	4306MB	95.18
	AdaLoRA	1.99M	403.09	4321MB	95.53
	PE-DyRA	1.33M	341.22	4315MB	95.98
	LoRA	1.33M	31.40	11439MB	89.70
MRPC	AdaLoRA	1.99M	38.99	11461MB	90.93
	PE-DyRA	1.33M	37.23	11446MB	91.18
	LoRA	1.33M	21.65	11439MB	86.28
RTE	AdaLoRA	1.99M	26.65	11461MB	87.00
	PE-DyRA	1.33M	26.79	11446MB	88.09

916 As shown in Table 10, our proposed PE-DyRA achieves consistently higher accuracy than LoRA and
917 AdaLoRA while maintaining comparable parameter scale and memory usage. Notably, PE-DyRA

918 substantially reduces runtime (e.g., 220.64s vs. 341.22s on SST-2), demonstrating the effectiveness
 919 of dynamic rank adjustment.
 920

922 H ORTHOGONALITY REGULARIZATION LOSS

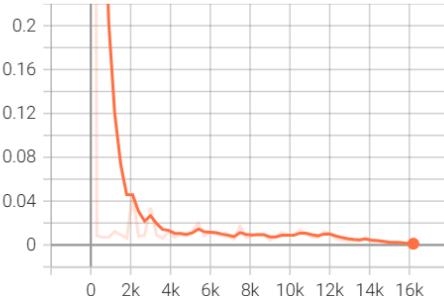
924
 925 In the main text, we introduced the orthogonality regularization term, as defined in equation 2,
 926 which encourages the low-rank factors \mathbf{A} and \mathbf{B} to remain close to an orthogonal basis, thereby
 927 stabilizing training. The overall training objective can then be written as: $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{train}} + \lambda \mathcal{R}_{\text{orth}}$,
 928 where $\mathcal{L}_{\text{train}}$ denotes the standard training loss, and λ is the regularization coefficient.
 929

930 Orth_regu_loss/deberta.encoder.layer.0.intermediate.

931 dense.lora_A

932 tag:

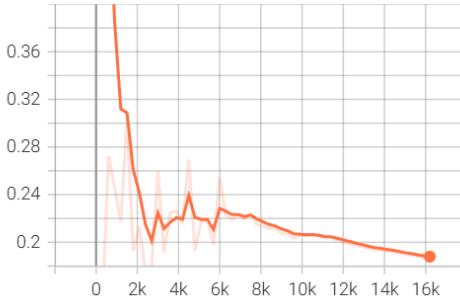
933 Orth_regu_loss/deberta.encoder.layer.0.intermediate.dense.lo
 934 ra_A



941 (a) $\mathcal{R}_{\text{orth}}$ of LoRA-A in a specific layer

935 train/orth_regu_loss

936 tag: train/orth_regu_loss



942 (b) Overall training orthogonal loss

943 Figure 10: Dynamics of orthogonal regularization during training.

948 Figure 10 shows that the orthogonal loss decreases rapidly within each layer early in training and
 949 then stabilizes, indicating effective local enforcement of orthogonality. Globally, despite layer-wise
 950 fluctuations, the model consistently maintains orthogonality throughout training, demonstrating that
 951 the regularization stabilizes both local representations and overall low-rank adaptation.

953 I ADDITIONAL FIGURES ALGORITHMS AND TABLES

956 I.1 FIGURES

958 Figure 11 is mentioned in Section 3.2.1.

961 I.2 TABLES

963 Table 11: DeBERTa-v3-base NLU benchmark results.

966 Method	967 QNLI	968 MRPC	969 QQP	969 STS-B	969 MNLI	969 SST-2	969 CoLA	969 RTE	969 Avg
PiSSA	94.07	90.20	91.92	91.54	90.30	95.53	71.41	88.09	89.13
PE-DyRA+PiSSA	94.36	90.44	92.25	91.81	90.22	95.98	72.28	87.00	89.29

970 Table 11 and Table 12 reports the detailed results corresponding to Section 4.4.

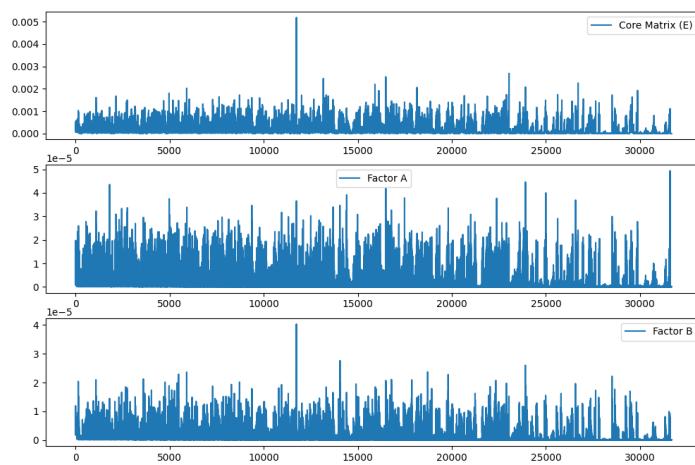


Figure 11: The gradient changes of the core matrix and factor matrix during the training process.

Table 12: LLaMA models code generation results.

Model	Method	Performance	
		MBPP	MBPP+
LLaMA2-7B	DoRA	38.4	28.3
	PE-DyRA+DoRA	39.7	31.2
	QLoRA	32.8	27.0
	PE-DyRA+QLoRA	34.7	27.0
LLaMA3-8B	DoRA	72.0	61.4
	PE-DyRA+DoRA	73.0	63.0
	QLoRA	70.6	60.6
	PE-DyRA+QLoRA	74.3	63.8

Table 13: Performance under different rank budgets.

Dataset	Method	rank=4	rank=8	rank=16	rank=32
CoLA	LoRA	68.57	69.33	71.03	69.92
	PE-DyRA	71.43	71.43	71.80	70.85
STS-B	LoRA	91.5	91.66	91.62	91.52
	PE-DyRA	91.83	91.98	91.81	91.98
MRPC	LoRA	90.44	89.70	89.22	90.2
	PE-DyRA	91.18	91.18	90.2	90.44

Table 13 reports the detailed results corresponding to Section 4.5.4.

Table 14 reports the detailed results corresponding to Section 4.5.5.

I.3 THE ALGORITHM FOR COMPUTING IMPORTANCE SCORE AND BIDIRECTIONAL RANK ADJUSTMENT STRATEGY

1026

1027

Table 14: Performance comparison with different rank adjustment sizes.

1028

1029

1030

1031

1032

1033

1034

1035

1036

Algorithm 1 Computation of Overall Triple Importance Score

1037

Require: Parameters $\Theta = \{A, E, B\}$, input activations X , loss L

1039

Ensure: Overall importance score S

1040

1: Step 1: Gradient-based triple importance

1041

2: Compute component-level scores $S_A^{\text{grad}}, S_E^{\text{grad}}, S_B^{\text{grad}}$ using ∇L

1042

3: **for all** $K \in \{A, E, B\}$ **do**

1043

4: Compute sensitivity score: $S_K^{\text{grad}} \leftarrow f_{\text{grad}}(K, \nabla_K L)$

1044

5: **end for**

1045

6: Fuse scores with gradient-aware weights:

1046

$$S_{G_i}^{\text{grad}} \leftarrow \omega_A S_{A_i}^{\text{grad}} + \omega_E S_{E_i}^{\text{grad}} + \omega_B S_{B_i}^{\text{grad}}, \text{ where } \omega_K = \frac{\|\nabla_K L\|}{\sum_{H \in \{A, E, B\}} \|\nabla_H L\|}$$

1047

7: Step 2: Input-based triple importance

1048

8: Compute input-based scores S^{inp} from X

1049

$$S_{G_i}^{\text{inp}} = |e_i| \cdot \sum_{k=1}^{d_1} S_{ki} \cdot \|\mathbf{B}_i\|_2, \quad i = 1, \dots, r,$$

1050

9: Step 3: Final aggregation

1051

10: Compute overall score:

1052

$$S_{G_i} = \alpha \cdot S_{G_i}^{\text{grad}} + (1 - \alpha) \cdot S_{G_i}^{\text{inp}}, \text{ where } \alpha \text{ is appropriately chosen within } [0.0, 1.0].$$

1053

11: **return** S

1054

1055

1056

Algorithm 2 Bidirectional Rank Adjustment Strategy

1057

1058

1: **Input:** LoRA layers with rank-level triples $\{G_i = (A_i, E_i, B_i)\}$, total rank r , pruning size k

1059

2: **Output:** Updated low-rank matrix $\Delta W_{\text{adjusted}}$

1060

3:

1061

4: Step 1: Compute importance scores

1062

5: Compute rank-level importance scores $S(G_i)$ for all triples G_i

1063

6: (computation procedure detailed in Algorithm 1).

1064

7:

1065

8: Step 2: Pruning Phase

1066

9: Select the k triples with the lowest importance scores:

1067

$$\mathcal{P} = \operatorname{argmin}_{\mathcal{S}, |\mathcal{S}|=k} \sum_{G \in \mathcal{S}} S(G)$$

1068

11: Retain the remaining triples:

1069

$$\Delta W_{\text{pruned}} = \sum_{i \in \mathcal{K}} r_i, \quad \mathcal{K} = \{i \mid i \notin \mathcal{P}\}$$

13:

1070

14: Step 3: Expansion Phase

1071

15: For each layer ℓ , compute layer-level importance score:

1072

$$S_{\text{layer}}^{(\ell)} = \frac{1}{r_\ell} \sum_{i=1}^{r_\ell} S(G_i)$$

1073

17: Select top- k layers for expansion:

1074

$$\mathcal{E} = \operatorname{argmax}_{\mathcal{S}, |\mathcal{S}|=k} \sum_{\ell \in \mathcal{S}} S_{\text{layer}}^{(\ell)}$$

1075

19: Expand ranks on selected layers:

1076

$$\Delta W_{\text{adjusted}} = \Delta W_{\text{pruned}} + \sum_{j \in \mathcal{E}} r_j^{\text{new}}$$

1077

21:

1078

22: **return** $\Delta W_{\text{adjusted}}$

1079