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ABSTRACT

As large language models grow in scale, full-parameter fine-tuning for down-
stream tasks incurs substantial computational and storage costs. Low-Rank Adap-
tation (LoRA) provides a parameter-efficient paradigm for model adaptation, but
its fixed-rank allocation cannot adapt to the heterogeneous importance of differ-
ent layers or the evolving requirements across training stages, resulting in either
redundancy or insufficient capacity. In this paper, we introduce Dynamic Rank
Adaptation via Importance-Aware Pruning and Expansion (PE-DyRA), a novel
framework that dynamically allocates ranks through importance score-based prun-
ing and expansion. PE-DyRA introduces three key innovations: 1) A parameter
importance evaluation measure based on gradient information and input activa-
tions to enable more stable ranking; 2) A bidirectional rank adjustment mecha-
nism that dynamically prunes and expands ranks based on importance, enabling
flexible allocation and improved parameter utilization; 3)The PE-DyRA frame-
work can be used as a paradigm to achieve better results on benchmark methods
such as DoRA, PiSSA, and QLoRA. Extensive experiments demonstrate the ef-
fectiveness of PE-DyRA, surpassing baseline methods. Furthermore, theoretical
analysis demonstrates that PE-DyRA has better parameter efficiency.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Dubey et al., 2024; Guo et al., 2025) have
become the core infrastructure of natural language processing, advancing performance from general-
purpose inference to domain-specific applications (Ziems et al., 2023; Brown et al., 2020). However,
the training and full parameter tuning of these models require huge computing resources and storage
overhead (Raffel et al., 2020). Therefore, parameter-efficient fine-tuning methods for large-scale
pre-trained models have become a research hotspot (Liu et al., 2022).

Low-Rank Adaptation (LoRA)(Hu et al., 2022) reduces computational cost by decomposing model
weights into trainable low-rank matrices. However, its fixed-rank allocation limits adaptability and
parameter efficiency (Yang et al., 2024), as different layers contribute unequally to downstream
tasks. Kalajdzievski (2023) showed that increasing the rank of LoRA with proper scaling can signif-
icantly improve performance. Yet higher ranks incur substantial memory overhead, which has mo-
tivated the development of dynamic rank adaptation methods. DyLoRA (Valipour et al., 2023) em-
ploys random truncation to enable flexible inference-time rank selection, while IncreLoRA (Zhang
et al., 2023a) incrementally allocates more parameters to important modules.AdaLoRA (Zhang et al.,
2023b) prunes ranks via importance-based masking. AutoLoRA(Zhang et al., 2024) automates rank
selection via meta-learned pruning of redundant singular components. TriAdaptLoRA (Liang et al.,
2025) proposes an adaptive rank-growth strategy governed by dynamic thresholds. While the afore-
mentioned methods are effective, they face two key limitations. First, they are restricted to either
pruning or expansion. As shown in Figure 1a, pruning alone achieves high utilization but few ef-
fective ranks, whereas expansion increases effective ranks but with low utilization. Second, existing
approaches primarily rely on weight or gradient magnitudes to assess parameter importance, often
neglecting input activations, which play a crucial role in neuron outputs.
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(a) Effective Rank and Utilization (b) Evaluate Stability

Figure 1: Analysis of importance-guided dynamic rank allocation. (a) Effective rank and utilization
ratio across training steps. (b) Stability evaluation of rank adaptation during training.

Table 1: Comparison of dynamic rank adaptation methods.

Method Importance Basis Adaptation Frequency

DyLoRA (Valipour et al., 2023) Multi-rank joint training No adjustment Static
IncreLoRA (Zhang et al., 2023a) Gradient Expansion Periodic
AdaLoRA (Zhang et al., 2023b) Gradient Pruning Periodic
AutoLoRA (Zhang et al., 2024) Meta-learning Pruning Post-optimization
TriAdaptLoRA (Liang et al., 2025) Frobenius norms Expansion Periodic
Ours Gradient + Input Bidirectional Periodic

To address these limitations, we propose a novel dynamic rank assignment strategy that enables more
efficient optimization of low-rank adapters through importance-based evaluation and adaptive rank
adjustment. At scheduled intervals, parameter efficiency is improved by pruning redundant ranks
and expanding those in critical layers. This strategy maintains both high effective rank and utiliza-
tion during training(Figure 1a), and its bidirectional adjustment surpasses approaches restricted to
pruning or expansion. For parameter importance evaluation, we combine gradient information, re-
flecting parameter sensitivity, with input activations, reflecting data dependence, to obtain a more
accurate and fine-grained assessment. See Figure 1b, incorporating the input leads to a more stable
evaluation throughout training. Table 1 provides a comparative overview of dynamic rank adapta-
tion methods, demonstrating the advantages of our approach. We evaluate PE-DyRA across diverse
tasks and model scales, consistently demonstrating superior performance over existing approaches.

The main contributions of this work are as follows:

1) A bidirectional rank adjustment mechanism that dynamically prunes and expands ranks based on
importance, enabling flexible allocation and improved parameter utilization.

2) We propose an enhanced importance metric that integrates gradient-based parameter sensitivity
with input activation information for more stable ranking.

3) PE-DyRA framework can be used as a paradigm on benchmark methods such as DoRA, PiSSA,
and QLoRA to achieve better results.

4) Experimental results across diverse tasks demonstrate the effectiveness of PE-DyRA over baseline
methods, while theoretical analysis confirms its superior parameter efficiency.

2 RELATED WORK

Low-Rank Adaptation. PEFT methods have evolved from adapter layers (Houlsby et al., 2019)
and prompt tuning (Lester et al., 2021) to LoRA (Hu et al., 2022). The key insight of LoRA is that
weight updates during adaptation can be effectively represented using low-rank decompositions.

2
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PiSSA (Meng et al., 2024) leverages principal SVD to initialize LoRA by truncating pre-trained
weights, thereby accelerating fine-tuning convergence. QLoRA (Dettmers et al., 2023) extends
LoRA with 4-bit quantization and gradient dequantization, enabling efficient fine-tuning of large
models. DoRA (Liu et al., 2024) decomposes the weight update into two independent components,
amplitude and direction, and applies LoRA adaptation only to the direction component.

Dynamic Rank Adaptation Methods. Standard LoRA uses fixed-rank matrices, whereas recent
work explores dynamic rank adaptation to optimize allocation during training. AdaLoRA (Zhang
et al., 2023b) adapts ranks via a three-term SVD formulation with importance-based pruning and
orthogonality regularization, but requires a large initial parameter space. DyLoRA (Valipour et al.,
2023) enables flexible rank selection during inference by training a unified model across multiple
candidate ranks simultaneously. IncreLoRA (Zhang et al., 2023a) instead adopts a progressive rank
expansion strategy, gradually increasing the model capacity. SoRA (Ding et al., 2023) induces spar-
sity within LoRA modules. TriAdaptLoRA (Liang et al., 2025) draws on neuroscience principles to
introduce an adaptive rank-growth strategy controlled by dynamic thresholds. These methods illus-
trate various strategies for dynamic LoRA rank allocation to balance efficiency and performance.

3 METHOD

Figure 2: Overview of the proposed dynamic rank adjustment framework. (Left) The base archi-
tecture with rank allocation. (Right) The two-step bidirectional rank adjustment procedure: (1)
compute parameter importance score S based on both gradient and input information; (2) prune
ranks in less important layers and expand them in more critical ones, enabling adaptive allocation of
model capacity.

In this section, we propose PE-DyRA, a novel parameter-efficient fine-tuning method based on a
dynamic rank adjustment framework that aims to dynamically optimize the assignment of trainable
parameters. The overall architecture of PE-DyRA is shown in Figure 2. Firstly, the incremental
weight matrix of LoRA layer is decomposed into SVD form, and the rank allocator performs a bidi-
rectional adjustment on the rank size of each layer by calculating the importance score, pruning off
redundant ranks and then expanding in more critical layers, and finally performing a final warmup.
To prevent the adaptive capacity from being completely pruned, the minimum rank is set to 1 to
maintain minimal adaptability.

3.1 SVD-FORM ADAPTATION

We parameterize the weight increment in the form of singular value decomposition, and represent
the incremental update of the pre-trained weight matrix as

W = W(0) +∆ = W(0) +AEB (1)

where A ∈ Rd1×r and B ∈ Rr×d2 are learnable factor matrices, E = diag(e1, . . . , er) is a trainable
diagonal matrix of singular values.

3
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Similar to the existing work AdaLoRA (Zhang et al., 2023b), we still adopt the concept of triples.
For a LoRA layer with rank r, each rank’s corresponding triple is treated as the fundamental unit
for computing importance scores and performing rank adjustments. It can be expressed as Gi =(
ai, ei,bi

)
for i = 1, . . . , r, where ai and bi are the i-th column of A and the i-th row of B,

respectively.

At step t, the set of triples is G(t) = {G(t)
1 , G

(t)
2 , . . . , G

(t)

r(t)
}. We compute an importance score

for each triple:S(t)
i = f(a

(t)
i , e

(t)
i ,b

(t)
i ), where f(·) integrates gradient-based and input-based

sensitivities. Based on S
(t)
i , we update the triple set by pruning and expansion: G(t+1) =(

G(t) \ G(t)pruned

)
∪ G(t)expanded, where G(t)pruned contains the least important triples to be removed, and

G(t)expanded introduces new triples initialized for critical directions.

To maintain decomposition stability, we apply spectral regularization (Zhang et al., 2023b):

Rorth = ∥A⊤A− Ir∥2F + ∥B⊤B− Ir∥2F (2)

3.2 PARAMETER IMPORTANCE EVALUATION

3.2.1 GRADIENT-BASED PARAMETER IMPORTANCE ESTIMATION

Inspired by AdaLoRA (Zhang et al., 2023b) and Platon (Zhang et al., 2022), we quantify parameter
sensitivity using the absolute product of weights and gradients, and apply exponential moving av-
erage (EMA) smoothing across training iterations. Due to the high variability and uncertainty, the
quantification of uncertainty is also performed. The final importance score is defined as the product
of smoothed sensitivity and uncertainty:

Sensitivity: I
(t)

(wij) = β1I
(t−1)

(wij) + (1− β1)
∣∣∣w(t)

ij · ∇wij
L(t)

∣∣∣
Uncertainty: U

(t)

(wij) = β2U
(t−1)

(wij) + (1− β2)
∣∣∣∣∣∣w(t)

ij · ∇wij
L(t)

∣∣∣− I
(t)

(wij)

∣∣∣
Importance: S(t)(wij)

= I
(t)

(wij) · U
(t)

(wij)

(3)

where β1, β2 ∈ [0, 1) are EMA coefficients.

Gradient-Aware Triple Importance. During training, we observe that the gradients of the factor
matrices A and B, which correspond to the left and right singular matrices, are typically smaller by
orders of magnitude compared to those of the core matrix E. This indicates that the update of the
core matrix plays a more critical role in the optimization process (see Figure 11 in Appendix I).

Consequently, when evaluating the importance of a triple, we do not rely on a uniform linear com-
bination of its constituent importance scores. Instead, we introduce a gradient-aware weighting
scheme, where the contribution of each component is scaled according to the relative magnitude of
its gradient. Formally, the triple-level importance score at step t is defined as

S
(t)
Gi

= ω
(t)
E · S(Ei) + ω

(t)
A · S(Ai) + ω

(t)
B · S(Bi), (4)

where the adaptive weights are computed as

ω
(t)
X =

∥∇XL(t)∥2
∥∇AL(t)∥2 + ∥∇EL(t)∥2 + ∥∇BL(t)∥2

, X ∈ {A,E,B}. (5)

This formulation ensures that components with stronger optimization impact, particularly the core
matrix, receive larger weights in the triple-level importance score. As a result, the aggregated impor-
tance evaluation better reflects the actual training dynamics and guides more effective rank allocation
during dynamic adjustment.

For detailed empirical results validating the proposed gradient-aware weighting scheme, please refer
to Appendix F.

3.2.2 INPUT-BASED PARAMETER IMPORTANCE ESTIMATION

Notably, on datasets with diverse input distributions, the input activations can vary from token to
token. So input activations also play an equally critical role in determining the actual output of a
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neuron. The contribution to the neuron output is determined jointly by magnitude of weight and the
scale of the corresponding input activation.

Motivated by pruning metrics such as Wanda (Sun et al., 2024), we extend the importance esti-
mation to the LoRA decomposition. Let X denote the input activations. Given the input rep-
resentation X ∈ RN×d (where N = batch size × seq len, and d is the hidden dimension), we
compute the L2 norm along the batch and token dimension for each feature dimension: ∥Xj∥2 =
1
N

∑N
i=1 x

2
ij , j = 1, . . . , d. This preserves per-feature energy, reflecting the relative contribution

of each input dimension. Then we apply exponential moving average(EMA) to this. For A ∈ Rd1×r,
the importance of each element is expressed as Sij = |Wij | · ∥Xj∥2. The importance score for each
triplet is defined as

Sinp
Gi

= |ei| ·
d1∑
k=1

Ski · ∥Bi:∥2, i = 1, . . . , r, (6)

As shown in Algorithm 1 in Appendix I.3, the procedure of computing the overall importance score
is illustrated.

Layer-level Importance. For a LoRA layer with r ranks, corresponding to triples {G1, G2, . . . ,
Gr}, the layer-level importance score is defined as

Slayer =
1

r

r∑
i=1

S(Gi), (7)

where S(Gi) denotes the importance score of the i-th triple at the rank-level.

3.3 BIDIRECTIONAL RANK ADJUSTMENT STRATEGY

Pruning Phase. During the pruning phase, we first compute the importance score for each rank-
level triple G = (A,E,B). All triples are sorted according to their importance scores, and the k
triples with the lowest aggregated scores are selected for removal: P = argminS, |S|=k

∑
G∈S S(G)

, where P denotes the set of pruned ranks.

Expansion Phase. In the expansion phase, we perform layer-level importance evaluation by
aggregating rank-level scores. Based on these layer-level scores, we execute a global ranking
across all layers and adopt a strict rank-conservation strategy: the k rank resources removed
in the pruning phase are reassigned to the top-k layers with the highest S

(ℓ)
layer values: E =

argmaxS, |S|=k

∑
ℓ∈S S

(ℓ)
layer, where E denotes the set of expanded layers.

Under the constraint of a fixed total rank budget, the bidirectional adjustment strategy removes
less important redundant parameters and reallocates them to more critical LoRA layers, thereby
improving parameter efficiency and enhancing model performance.

For detailed bidirectional rank adjustment strategy, please refer to Algorithm 2 in the appendix I.3.

3.4 PARAMETRIC EFFICIENCY ANALYSIS

Theorem 3.1 (Pareto-Optimal Parameter Efficiency under Rank Allocation Constraints). Consider
L LoRA layers, each assigned a rank rl, under a fixed total rank budget Rtotal:

∑L
l=1 rl = Rtotal.

Let Gl denote the importance score of layer l. The necessary condition for Pareto-optimal parameter
efficiency is:

rl ∝ G
2/3
l (8)

That is, layers with higher importance scores should be assigned more ranks.

Inference: Dynamic vs. Static Strategy A dynamic rank adjustment strategy that updates rl
in response to changes in Gl during training can iteratively approach the Pareto-optimal condition
equation 8. Static strategies, which fix {rl} at initialization, cannot adapt to evolving layer impor-
tance, and thus are generally less efficient in parameter utilization and model performance. See
Appendix B for the complete derivation.

5
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Table 2: Performance comparison of different PEFT methods on GLUE benchmark (rank r = 8).

Method SST-2 MNLI CoLA QNLI MRPC QQP RTE STS-B All
Acc. Acc. Mcc. Acc. Acc. Acc. Acc. Corr. Avg.

LoRA 95.18 89.74 69.33 93.90 89.70 91.99 86.28 91.66 88.473
PiSSA 95.53 90.30 71.41 94.07 90.20 91.92 88.09 91.54 89.133
LoRA+ 95.3 90.28 70.25 94.01 90.93 92.09 86.28 91.54 88.835
AdaLoRA 95.53 90.50 69.02 94.42 90.93 92.03 87.00 91.77 88.9
DyLoRA 95.18 89.51 69.82 94.29 89.95 91.97 85.92 91.74 88.547
IncreLoRA 95.72 90.62 70.20 94.36 90.11 91.91 86.88 91.38 88.898
RandLoRA 95.98 89.96 68.22 93.74 90.69 92.06 86.28 91.34 88.534
TriAdaptLoRA 95.68 90.64 71.6 94.37 90.77 92.09 87.84 91.79 89.348
PE-DyRA 95.98 90.38 71.43 94.53 91.18 92.14 88.09 91.98 89.464

4 EXPERIMENTS

4.1 MODELS AND DATASETS

Natural Language Understanding (NLU). We adopt DeBERTa-v3-base (He et al., 2021) and
fine-tune it on the GLUE benchmark (Wang et al., 2019), using eight tasks from the benchmark.

Mathematical Reasoning and Code Generation. We employ LLaMA-2-7B (Touvron et al., 2023)
and LLaMA-3-8B (Dubey et al., 2024) for evaluation on mathematical reasoning, where the mod-
els are fine-tuned on MetaMathQA (Yu et al., 2024) and assessed on GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). For code generation, the models are fine-tuned on CodeFeed-
back (Zheng et al., 2024) and evaluated on HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021).

Summarization. We use BART-large (Lewis et al., 2019) for summarization on XSum (Narayan
et al., 2018), which evaluate the ability to generate concise and faithful summaries.

4.2 BASELINES

We compare our method against a broad range of parameter-efficient fine-tuning (PEFT) approaches,
including LoRA and its variants, as well as dynamic rank adaptation methods:

• LoRA-based methods: LoRA (Hu et al., 2022), LoRA+ (Hayou et al., 2024)
, PiSSA (Meng et al., 2024), DoRA (Liu et al., 2024), RandLoRA (Albert et al., 2025),
QLoRA (Dettmers et al., 2023), RaSA (He et al., 2025).

• Dynamic rank methods: AdaLoRA (Zhang et al., 2023b), IncreLoRA (Zhang et al.,
2023a), DyLoRA (Valipour et al., 2023), TriAdaptLoRA (Liang et al., 2025).

4.3 RESULTS

Natural Language Understanding. Table 2 reports the performance of different PEFT methods
on eight tasks from the GLUE benchmark with rank of r = 8. Overall, our method consistently out-
performs existing baselines, achieving the highest average score (89.464%), demonstrating superior
generalization across both sentence-level and sentence-pair classification tasks. For example, on the
MRPC task, our method achieves 91.18% accuracy, which is 0.25% higher than the best-performing
baseline (AdaLoRA, 90.93%).

Mathematical Reasoning and Code Generation. As shown in Table 3, our method (PE-DyRA)
achieves the best performance on both LLaMA2-7B and LLaMA3-8B. On LLaMA2-7B, the overall
average score of 34.69% surpasses the strongest baseline DoRA (33.99%) by nearly +0.7 points. On
LLaMA3-8B, PE-DyRA also delivers the best average score (65.09%), demonstrating consistent
advantages in both mathematical reasoning and code generation.
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Table 3: Performance comparison of different PEFT methods on LLaMA2-7B and LLaMA3-8B.

Model Method #Params(%) GSM8K MATH HumanEval MBPP Avg
LoRA 0.15 52.90 7.60 26.0 34.7 30.3
DoRA 0.17 56.09 9.76 31.7 38.4 33.99

LLaMA2-7B QLoRA 0.28 50.32 6.12 24.8 32.8 28.51
RaSA 0.15 56.41 9.72 28.0 36.2 32.58

AdaLoRA 0.22 52.01 8.26 26.2 35.2 30.42
PE-DyRA 0.15 56.25 10.12 33.5 38.9 34.69

LoRA 0.13 81.27 39.04 64.0 69.0 63.33
DoRA 0.15 81.42 37.22 65.2 72.0 63.96

LLaMA3-8B QLoRA 0.23 81.12 39.58 67.1 70.6 64.6
RaSA 0.13 80.97 36.18 67.1 69.6 63.46

AdaLoRA 0.20 81.04 39.62 65.9 72.0 64.64
PE-DyRA 0.13 80.82 40.24 67.1 72.2 65.09

Summarization. Table 4 shows the results on summarization task. Compared with LoRA and
AdaLoRA, our method (PE-DyRA) achieves the best performance across all Rouge metrics while
using the same parameter budget as LoRA (2.06M).

Table 4: Performance comparison of different PEFT methods on XSum.

Method #Params Rouge-1 Rouge-2 Rouge-L Rouge-Lsum
LoRA 2.06M 43.6283 20.4566 35.6239 35.6194
AdaLoRA 3.09M 43.9557 20.5627 35.6264 35.6129
PE-DyRA 2.06M 44.0444 20.8523 35.9616 35.9602

4.4 PE-DYRA AS A GENERAL PARADIGM

To further validate the generality of our proposed method, we integrate PE-DyRA into several rep-
resentative PEFT approaches, including PiSSA, DoRA, and QLoRA, across both natural language
understanding (NLU) and code generation tasks. The results are reported in Table 11 and Table 12
in Appendix I.2.

On the DeBERTa-v3-base NLU benchmark, PE-DyRA consistently improves PiSSA, achieving an
average accuracy of 89.29%. For LLaMA models on code generation, PE-DyRA also provides
significant gains. On LLaMA2-7B, PE-DyRA+DoRA improves MBPP by 1.3% over DoRA. On
LLaMA3-8B, PE-DyRA+QLoRA achieves 74.3% on MBPP, outperforming QLoRA by 3.7%.

These results suggest that PE-DyRA can be applied as a paradigm to existing PEFT methods, im-
proving their performance across different models and tasks. This highlights its wide applicability
and generalization ability.

4.5 ANALYSIS

4.5.1 ABLATION STUDY ON BIDIRECTIONAL STRATEGIES

We propose a bidirectional rank adjustment strategy and validate it via an ablation study. From
Table 5, compared with Prune-only or Expand-only variants, our method (PE-DyRA) balances pa-
rameter allocation and model capacity, achieving superior performance without increasing the total
number of training parameters.

7
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Table 5: Performance comparison with different strategies.

Method MRPC STS-B RTE CoLA SST-2 QNLI QQP MNLI Avg
LoRA 89.70 91.66 86.28 69.33 95.18 93.90 91.99 89.74 88.473
+Prune 90.20 91.80 87.36 70.19 95.53 94.34 92.13 90.37 88.99
+Expand 90.69 91.72 88.09 70.21 95.30 94.51 92.46 90.30 89.16
PE-DyRA 91.18 91.98 88.09 71.43 95.98 94.53 92.14 90.38 89.464

4.5.2 ABLATION OF INPUT-BASED IMPORTANCE

To investigate the effect of input-based importance calculation in PE-DyRA, we conduct an ablation
study on LLaMA2-7B across code generation benchmarks. We conducted experiments on two ways,
without input-based importance and with input-based importance, and analyzed the results.

Table 6: Ablation study on input-based importance calculation in PE-DyRA.

Model Variant Humaneval Humaneval+ MBPP MBPP+

LLaMA2-7B w/o input-based 32.3 29.3 38.4 29.9
with input-based 33.5 30.5 38.9 32.5

As shown in Table 6, incorporating input-based importance calculation improves performance on
benchmarks, highlighting its effectiveness in PE-DyRA.

4.5.3 LAYER-WISE RANK DYNAMICS

To analyze the dynamic rank adjustment mechanism, we track the evolution of allocated ranks and
corresponding importance rankings for representative layers during training (Figure 3, (a) rank dy-
namics; (b) importance ranking, where smaller values denote higher importance).

(a) Rank dynamics (b) Importance ranking

Figure 3: Evolution of dynamic rank allocation and layer importance during training.

We observe clear differences across layers. layer10.intermediate consistently maintains
high importance throughout training, leading to an increase in its allocated rank. In contrast,
layer11.output exhibits low importance and rapidly reduces its rank at the beginning of train-
ing. Other layers show fluctuating importance rankings, resulting in relatively stable rank changes.
Notably, layer8.intermediate remains among the top in importance ranking, causing its rank
to increase at each update; however, the number of its ranks fluctuates up and down over time. This
suggests that certain triples at the rank level have low importance and are thus pruned.

8
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4.5.4 PERFORMANCE UNDER DIFFERENT RANK BUDGETS

As shown in Table 13 in Appendix I.2, we also test the fine-tuning performance of the proposed
method on some datasets with different rank budgets. It can be observed that the proposed method
achieves performance improvement under different budgets.

4.5.5 ABLATION STUDY ON RANK ADJUSTMENT SIZE

Our method performs rank updates every T steps, where the adjustment size (number of ranks
pruned/expanded) critically affects performance. We evaluate adjustment sizes {4, 8, 12, 24} on
DeBERTaV3-base with initial rank r = 8 to analyze this effect.

As shown in Table 14 in Appendix I.2, when the dynamic rank adjustment is small, the model’s
ability to improve is limited; when it is large, pruning trained ranks and introducing new ones can
destabilize training. The optimal adjustment value depends on both the model architecture and the
initial rank size.

4.5.6 IMPORTANCE-DRIVEN CAUSAL TESTING AND SPEARMAN CORRELATION

(a) Importance-driven causal testing (b) Spearman correlation

Figure 4: Effectiveness of importance-guided dynamic rank allocation. (a) Causal test comparing
importance-based allocation with random shuffle. (b) Spearman correlation between mean allocated
rank and mean importance ranking.

In Figure 4a, we test causality by randomizing the importance order during training, making rank ad-
justment random. The resulting performance drop across datasets confirms that importance-to-rank
assignment is indeed effective. In Figure 4b, we analyze the correlation between layer importance
and assigned rank. The strong Spearman correlation confirms that dynamic rank assignment aligns
well with learned importance.

5 CONCLUSION AND FUTURE WORK

This study proposes PE-DyRA, an efficient dynamic rank adjustment method that improves parame-
ter utilization. Experiments demonstrate that PE-DyRA outperforms existing fine-tuning approaches
across diverse tasks, validating its effectiveness for large-scale models under limited resources.

However, there is still much future work to be done in this research. The size of the adjusted rank
in the update is currently fixed as a parameter, and it can be extended to an adaptive method to
determine the size of the adjusted rank in the update independently. In the future, we will explore
more appropriate measures of importance, apply our method to larger models, and extend it to
various tasks such as federation, multi-task, and domain adaptation. These promising challenges
remain to be explored in future research efforts.
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A THE USE OF LARGE LANGUAGE MODELS

A large language model (LLM) was used to assist in refining the writing style and polishing the
language of this paper. We gratefully acknowledge its contribution in improving the readability and
clarity of the manuscript. All LLM-generated content was reviewed and corrected by the authors to
maintain accuracy and preserve the original meaning.

B PROOF OF PARETO-OPTIMAL PARAMETER EFFICIENCY

We formalize the rank allocation problem under a fixed total rank budget Rtotal using a Lagrangian
framework. Consider L LoRA layers, each assigned a rank rl > 0, with layer importance scores
Gl > 0. We assume that the layer-wise contribution to the overall loss can be approximated as

L({rl}) =
L∑

l=1

Gl√
rl
, (9)

subject to the total rank budget constraint
L∑

l=1

rl = Rtotal. (10)

Our goal is to minimize equation 9 subject to equation 10, yielding the most parameter-efficient rank
allocation.

Lagrangian formulation. We construct the Lagrangian

J ({rl}, λ) =
L∑

l=1

Glr
−1/2
l + λ

(
L∑

l=1

rl −Rtotal

)
, (11)

where λ is the Lagrange multiplier for the total rank constraint.

Optimality condition. Taking the derivative of equation 11 with respect to rl and setting it to zero
for optimality, we obtain

∂J
∂rl

= −1

2
Glr

−3/2
l + λ = 0. (12)

Equation equation 12 implies that
Glr

−3/2
l = 2λ, ∀l. (13)

Since the right-hand side is independent of l, we have

r
3/2
l ∝ Gl =⇒ rl ∝ G

2/3
l . (14)

Global optimality. Each term Glr
−1/2
l is strictly convex in rl > 0, so the total objective equation 9

is strictly convex, and the constraint equation 10 is linear. Therefore, any stationary point satisfying
equation 13 is the unique global minimizer. Thus, this is the globally Pareto-optimal rank allocation.

Implications. Compared to any static allocation (uniform rl = Rtotal/L), the dynamic allocation
achieves a strictly lower loss in equation 9 whenever the importance scores Gl are not all equal. This
formally establishes that allocating ranks proportionally to G

2/3
l is Pareto-optimal under the given

model.

For the SST-2 dataset, both LoRA(using SVD triples) and PE-DyRA methods are used to verify
the above results, and the following graphs are plotted: The horizontal axis is the step during the
training process; The vertical axis is the log variance of G2/3

l /rl across layers (which indicates how
much the value deviates from the constant across layers).

As shown in Figure 5, under the dynamic strategy, the cross-layer variance of G2/3
l /rl gradually

decreases during training, indicating that the model progressively approaches the Pareto optimal
condition. Moreover, the variance under the dynamic strategy is consistently lower than that of the
static LoRA strategy, suggesting that the dynamic rank adjustment achieves a more Pareto-efficient
parameter allocation.
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Figure 5: Comparison of Cross-layer variance of G2/3
l /rl during SST-2 training.

C ADDITIONAL EXPERIMENTS ON SQUAD V2.0

To further illustrate the performance difference between LoRA and PE-DyRA, we provide a bar
chart comparison of representative evaluation metrics, including HasAns F1, NoAns F1, Exact
Match, and Overall F1 on SQuAD v2.0.

As shown in Figure 6, PE-DyRA matches LoRA on HasAns F1 while substantially improving
NoAns F1, leading to higher Exact Match and Overall F1. This demonstrates that PE-DyRA main-
tains strong performance on answerable questions and enhances robustness on unanswerable ones.

Figure 6: Comparison of evaluation metrics between LoRA and PE-DyRA on SQuAD v2.0.

D THE RESULTING RANK DISTRIBUTION

Methods were applied to SST-2 using the DeBERTaV3-base model and the respective final rank
distributions were saved.
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(a) The resulting rank of AdaLoRA

(b) The resulting rank of PE-DyRA

Figure 7: Comparative rank allocation patterns across model layers.

As shown in Figure 7, in the case of limited resources, the proposed method tends to produce rel-
atively concentrated rank distributions. This may be one of the reasons why it is more effective in
low-resource settings: by prioritizing assigning higher ranks to critical modules, methods are able to
maintain adequate representation of important modules even with a limited parameter budget, thus
achieving superior overall performance.

E EXPERIMENTAL SETTINGS

E.1 TRAINING DETAILS ON GLUE BENCHMARK

In the GLUE Benchmark, the model we used was DebertaV3-Base, with a rank size of 8. The
specific details of the experimental hyperparameters are shown in the table 7.
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Table 7: Hyper-parameter setup of PE-DyRA for GLUE benchmark.

Dataset learning rate batch size # epochs γ ti ∆T tf k
MNLI 5× 10−4 32 7 0.1 3000 1000 65000 12
RTE 1.2× 10−3 32 50 0.3 300 100 2600 12
QNLI 9× 10−4 32 5 0.1 1000 500 10000 12
MRPC 1× 10−3 32 30 0.1 600 150 1100 12
QQP 6× 10−4 32 9 0.1 5000 1000 80000 12
SST-2 8× 10−4 32 24 0.1 1000 1000 25000 12
CoLA 1× 10−3 32 35 0.1 700 100 7000 12
STS-B 2.2× 10−3 32 25 0.3 800 200 1500 12

Table 8: Hyper-parameter setup of PE-DyRA for mathematical reasoning and code generation.

Model Dataset learning rate batchsize # epochs ti ∆T tf k

LLaMA2-7B
MetaMath 2× 10−4 16 5 2000 1000 11250 12

Python 2× 10−4 16 5 2000 1000 12765 12

LLaMA3-8B
MetaMath 5× 10−5 16 5 2000 1000 11250 12

Python 1× 10−4 16 5 2000 1000 12765 12

E.2 TRAINING DETAILS ON MATHEMATICAL REASONING AND CODE GENERATION

In the Mathematical Reasoning and Code Generation task, the LLaMA2-7B and LLaMA3-8b mod-
els were used, with an initial rank size of 4. The specific details of the experimental hyperparameters
are shown in the table 8.

E.3 TRAINING DETAILS ON SUMMARIZATION AND QA

Table 9: Hyper-parameter setup of PE-DyRA for summarization and QA.

Dataset learning rate batch size # epochs γ ti ∆T tf k
XSum 2× 10−4 24 25 0.1 6000 1500 180000 12
SQuAD v2.0 1.2× 10−3 16 25 0.1 5000 1000 190000 12

For the summary and question-answering tasks, the XSum dataset uses the BART-large model, while
the SQuAD v2.0 (Rajpurkar et al., 2018) uses the DebertaV3-Base model. The initial rank size used
is 4. The specific details of the experimental hyperparameters are shown in the table 9.

F EMPIRICAL VALIDATION OF GRADIENT-AWARE WEIGHTING

To validate the proposed gradient-aware weighting scheme for triple importance scores, we track
rank evolution during training using a temporary zero-masking strategy with initialized. As shown in
Figure 8, with a simple linear combination of importance scores(Figure 8a), pruned ranks often reac-
tivate, indicating unstable importance evaluation. In contrast, the gradient-aware scheme(Figure 8b)
keeps pruned ranks consistently suppressed, better reflecting optimization dynamics and this is con-
sistent with the effect we want.

As shown in Figure 9, we monitor the change in loss for both cases with and without using the
gradient-aware weighting scheme. Through the loss change during training, it can be seen that using
gradient information weighting can accelerate the optimization and make the optimization process
more stable.
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(a) Linear Combination (b) Gradient-Aware Weighting

Figure 8: Comparison of rank evolution under two importance aggregation schemes: (a) linear
combination leads to unstable pruning with ranks repeatedly reappearing, while (b) gradient-aware
weighting yields stable pruning dynamics.

Figure 9: Training loss comparison with/without gradient weighting

G TIME–MEMORY–ACCURACY COMPARISON

Table 10: Comparison of training time, memory usage, and accuracy among different methods.

Dataset Method #Params Runtime/epoch(s) Peak Memory ∆ Acc (%)
LoRA 1.33M 220.64 4306MB 95.18

SST-2 AdaLoRA 1.99M 403.09 4321MB 95.53
PE-DyRA 1.33M 341.22 4315MB 95.98
LoRA 1.33M 31.40 11439MB 89.70

MRPC AdaLoRA 1.99M 38.99 11461MB 90.93
PE-DyRA 1.33M 37.23 11446MB 91.18
LoRA 1.33M 21.65 11439MB 86.28

RTE AdaLoRA 1.99M 26.65 11461MB 87.00
PE-DyRA 1.33M 26.79 11446MB 88.09

As shown in Table 10, our proposed PE-DyRA achieves consistently higher accuracy than LoRA and
AdaLoRA while maintaining comparable parameter scale and memory usage. Notably, PE-DyRA
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substantially reduces runtime (e.g., 220.64s vs. 341.22s on SST-2), demonstrating the effectiveness
of dynamic rank adjustment.

H ORTHOGONALITY REGULARIZATION LOSS

In the main text, we introduced the orthogonality regularization term, as defined in equation 2,
which encourages the low-rank factors A and B to remain close to an orthogonal basis, thereby
stabilizing training. The overall training objective can then be written as:Ltotal = Ltrain + λRorth,
where Ltrain denotes the standard training loss, and λ is the regularization coefficient.

(a) Rorth of LoRA-A in a specific layer (b) Overall training orthogonal loss

Figure 10: Dynamics of orthogonal regularization during training.

Figure 10 shows that the orthogonal loss decreases rapidly within each layer early in training and
then stabilizes, indicating effective local enforcement of orthogonality. Globally, despite layer-wise
fluctuations, the model consistently maintains orthogonality throughout training, demonstrating that
the regularization stabilizes both local representations and overall low-rank adaptation.

I ADDITIONAL FIGURES ALGORITHMS AND TABLES

I.1 FIGURES

Figure 11 is mentioned in Section 3.2.1.

I.2 TABLES

Table 11: DeBERTa-v3-base NLU benchmark results.

Method QNLI MRPC QQP STS-B MNLI SST-2 CoLA RTE Avg
PiSSA 94.07 90.20 91.92 91.54 90.30 95.53 71.41 88.09 89.13

PE-DyRA+PiSSA 94.36 90.44 92.25 91.81 90.22 95.98 72.28 87.00 89.29

Table 11 and Table 12 reports the detailed results corresponding to Section 4.4.
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Figure 11: The gradient changes of the core matrix and factor matrix during the training process.

Table 12: LLaMA models code generation results.

Model Method Performance
MBPP MBPP+

LLaMA2-7B DoRA 38.4 28.3
PE-DyRA+DoRA 39.7 31.2
QLoRA 32.8 27.0
PE-DyRA+QLoRA 34.7 27.0

LLaMA3-8B DoRA 72.0 61.4
PE-DyRA+DoRA 73.0 63.0
QLoRA 70.6 60.6
PE-DyRA+QLoRA 74.3 63.8

Table 13: Performance under different rank budgets.

Dataset Method rank=4 rank=8 rank=16 rank=32

CoLA LoRA 68.57 69.33 71.03 69.92
PE-DyRA 71.43 71.43 71.80 70.85

STS-B LoRA 91.5 91.66 91.62 91.52
PE-DyRA 91.83 91.98 91.81 91.98

MRPC LoRA 90.44 89.70 89.22 90.2
PE-DyRA 91.18 91.18 90.2 90.44

Table 13 reports the detailed results corresponding to Section 4.5.4.

Table 14 reports the detailed results corresponding to Section 4.5.5.

I.3 THE ALGORITHM FOR COMPUTING IMPORTANCE SCORE AND BIDIRECTIONAL RANK
ADJUSTMENT STRATEGY
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Table 14: Performance comparison with different rank adjustment sizes.

Dataset k=4 k=8 k=12 k=24

SST-2 (Acc.) 95.18 95.52 95.98 95.18
RTE (Acc.) 85.92 87.36 88.09 87.84
STS-B (Corr.) 91.39 91.50 91.98 91.22

Algorithm 1 Computation of Overall Triple Importance Score

Require: Parameters Θ = {A,E,B}, input activations X , loss L
Ensure: Overall importance score S

1: Step 1: Gradient-based triple importance
2: Compute component-level scores Sgrad

A , Sgrad
E , Sgrad

B using ∇L
3: for all K ∈ {A,E,B} do
4: Compute sensitivity score: Sgrad

K ← fgrad(K,∇KL)
5: end for
6: Fuse scores with gradient-aware weights:

Sgrad
Gi
← ωAS

grad
Ai

+ ωES
grad
Ei

+ ωBS
grad
Bi

, where ωK = ∥∇KL∥∑
H∈{A,E,B} ∥∇HL∥

7: Step 2: Input-based triple importance
8: Compute input-based scores Sinp from X

Sinp
Gi

= |ei| ·
∑d1

k=1 Ski · ∥Bi:∥2, i = 1, . . . , r,

9: Step 3: Final aggregation
10: Compute overall score:

SGi = α · Sgrad
Gi

+ (1− α) · Sinp
Gi

, where α is appropriately chosen within [0.0, 1.0].
11: return S

Algorithm 2 Bidirectional Rank Adjustment Strategy

1: Input: LoRA layers with rank-level triples {Gi = (Ai, Ei, Bi)}, total rank r, pruning size k
2: Output: Updated low-rank matrix ∆Wadjusted
3:
4: Step 1: Compute importance scores
5: Compute rank-level importance scores S(Gi) for all triples Gi

6: (computation procedure detailed in Algorithm 1).
7:
8: Step 2: Pruning Phase
9: Select the k triples with the lowest importance scores:

10: P = argminS,|S|=k

∑
G∈S S(G)

11: Retain the remaining triples:
12: ∆Wpruned =

∑
i∈K ri, K = {i | i /∈ P}

13:
14: Step 3: Expansion Phase
15: For each layer ℓ, compute layer-level importance score:
16: S

(ℓ)
layer =

1
rℓ

∑rℓ
i=1 S(Gi)

17: Select top-k layers for expansion:
18: E = argmaxS,|S|=k

∑
ℓ∈S S

(ℓ)
layer

19: Expand ranks on selected layers:
20: ∆Wadjusted = ∆Wpruned +

∑
j∈E r

new
j

21:
22: return ∆Wadjusted
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