Under review as a conference paper at ICLR 2026

PE-DYRA: DYNAMIC RANK ADAPTATION FOR
PARAMETER-EFFICIENT FINE-TUNING VIA
IMPORTANCE-AWARE PRUNING AND EXPANSION

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models grow in scale, full-parameter fine-tuning for down-
stream tasks incurs substantial computational and storage costs. Low-Rank Adap-
tation (LoRA) provides a parameter-efficient paradigm for model adaptation, but
its fixed-rank allocation cannot adapt to the heterogeneous importance of differ-
ent layers or the evolving requirements across training stages, resulting in either
redundancy or insufficient capacity. In this paper, we introduce Dynamic Rank
Adaptation via Importance-Aware Pruning and Expansion (PE-DyRA), a novel
framework that dynamically allocates ranks through importance score-based prun-
ing and expansion. PE-DyRA introduces three key innovations: 1) A parameter
importance evaluation measure based on gradient information and input activa-
tions to enable more stable ranking; 2) A bidirectional rank adjustment mecha-
nism that dynamically prunes and expands ranks based on importance, enabling
flexible allocation and improved parameter utilization; 3)The PE-DyRA frame-
work can be used as a paradigm to achieve better results on benchmark methods
such as DoRA, PiSSA, and QLoRA. Extensive experiments demonstrate the ef-
fectiveness of PE-DyRA, surpassing baseline methods. Furthermore, theoretical
analysis demonstrates that PE-DyRA has better parameter efficiency.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al.l 2023; Dubey et al.l 2024; |Guo et al., |2025) have
become the core infrastructure of natural language processing, advancing performance from general-
purpose inference to domain-specific applications (Ziems et al.,|2023;Brown et al.,|2020). However,
the training and full parameter tuning of these models require huge computing resources and storage
overhead (Raffel et al., 2020). Therefore, parameter-efficient fine-tuning methods for large-scale
pre-trained models have become a research hotspot (Liu et al.| [2022).

Low-Rank Adaptation (LoRA)(Hu et al., 2022) reduces computational cost by decomposing model
weights into trainable low-rank matrices. However, its fixed-rank allocation limits adaptability and
parameter efficiency (Yang et al., 2024)), as different layers contribute unequally to downstream
tasks. |Kalajdzievski|(2023)) showed that increasing the rank of LoRA with proper scaling can signif-
icantly improve performance. Yet higher ranks incur substantial memory overhead, which has mo-
tivated the development of dynamic rank adaptation methods. DyLoRA (Valipour et al.| [2023) em-
ploys random truncation to enable flexible inference-time rank selection, while IncreLoRA (Zhang
et al.,[2023a) incrementally allocates more parameters to important modules.AdalLoRA (Zhang et al.,
2023b) prunes ranks via importance-based masking. AutoLoRA(Zhang et al.,|2024) automates rank
selection via meta-learned pruning of redundant singular components. TriAdaptLoRA (Liang et al.,
2025)) proposes an adaptive rank-growth strategy governed by dynamic thresholds. While the afore-
mentioned methods are effective, they face two key limitations. First, they are restricted to either
pruning or expansion. As shown in Figure pruning alone achieves high utilization but few ef-
fective ranks, whereas expansion increases effective ranks but with low utilization. Second, existing
approaches primarily rely on weight or gradient magnitudes to assess parameter importance, often
neglecting input activations, which play a crucial role in neuron outputs.

Under review as a conference paper at ICLR 2026

le—14

3| —e— Bidirection - eff rank A
73 = 0.94 Gradient-only

—=— prune - eff rank - - Gradientonly
—— expand - eff rank PR / 10 —— Gradient+Input
72| .. Bidirection - ratio o 092 :

N 7
=~ prune - ratio -~
+-- expand - ratio s

P

<

0.8

0.6

0.4

Average Effective Rank
o =
© >
O
N,
N,
A N
\,
\
o) o
o © ©
& & 8
EffRank / AllocRank

Variance of Importance Score

v
6.8 K/ ,) :
// . /_//\\- 02
6.7 ><’,_/;__, 0.84
0.0
1000 1250 1500 1750 2000 2250 2500 2750 3000 600 800 1000 1200 1400
Step Step
(a) Effective Rank and Utilization (b) Evaluate Stability

Figure 1: Analysis of importance-guided dynamic rank allocation. (a) Effective rank and utilization
ratio across training steps. (b) Stability evaluation of rank adaptation during training.

Table 1: Comparison of dynamic rank adaptation methods.

Method Importance Basis Adaptation Frequency
DyLoRA (Valipour et al.|[2023) Multi-rank joint training No adjustment Static
IncreLoRA (Zhang et al.|[2023a) Gradient Expansion Periodic
AdaL.oRA (Zhang et al.|[2023b) Gradient Pruning Periodic
AutoLoRA (Zhang et al.|[2024) Meta-learning Pruning Post-optimization
TriAdaptLoRA (Liang et al.|[2025) Frobenius norms Expansion Periodic
Ours Gradient + Input Bidirectional Periodic

To address these limitations, we propose a novel dynamic rank assignment strategy that enables more
efficient optimization of low-rank adapters through importance-based evaluation and adaptive rank
adjustment. At scheduled intervals, parameter efficiency is improved by pruning redundant ranks
and expanding those in critical layers. This strategy maintains both high effective rank and utiliza-
tion during training(Figure [Ta)), and its bidirectional adjustment surpasses approaches restricted to
pruning or expansion. For parameter importance evaluation, we combine gradient information, re-
flecting parameter sensitivity, with input activations, reflecting data dependence, to obtain a more
accurate and fine-grained assessment. See Figure[Ib] incorporating the input leads to a more stable
evaluation throughout training. Table [I] provides a comparative overview of dynamic rank adapta-
tion methods, demonstrating the advantages of our approach. We evaluate PE-DyRA across diverse
tasks and model scales, consistently demonstrating superior performance over existing approaches.

The main contributions of this work are as follows:

1) A bidirectional rank adjustment mechanism that dynamically prunes and expands ranks based on
importance, enabling flexible allocation and improved parameter utilization.

2) We propose an enhanced importance metric that integrates gradient-based parameter sensitivity
with input activation information for more stable ranking.

3) PE-DyRA framework can be used as a paradigm on benchmark methods such as DoRA, PiSSA,
and QLoRA to achieve better results.

4) Experimental results across diverse tasks demonstrate the effectiveness of PE-DyRA over baseline
methods, while theoretical analysis confirms its superior parameter efficiency.

2 RELATED WORK

Low-Rank Adaptation. PEFT methods have evolved from adapter layers (Houlsby et al., [2019)
and prompt tuning (Lester et al., 2021)) to LoRA (Hu et al.| 2022)). The key insight of LoRA is that
weight updates during adaptation can be effectively represented using low-rank decompositions.

Under review as a conference paper at ICLR 2026

PiSSA (Meng et al., [2024) leverages principal SVD to initialize LoRA by truncating pre-trained
weights, thereby accelerating fine-tuning convergence. QLoRA (Dettmers et al., 2023) extends
LoRA with 4-bit quantization and gradient dequantization, enabling efficient fine-tuning of large
models. DoRA (Liu et al.,|2024) decomposes the weight update into two independent components,
amplitude and direction, and applies LoRA adaptation only to the direction component.

Dynamic Rank Adaptation Methods. Standard LoRA uses fixed-rank matrices, whereas recent
work explores dynamic rank adaptation to optimize allocation during training. AdaLLoRA (Zhang
et al., [2023b)) adapts ranks via a three-term SVD formulation with importance-based pruning and
orthogonality regularization, but requires a large initial parameter space. DyLoRA (Valipour et al.,
2023) enables flexible rank selection during inference by training a unified model across multiple
candidate ranks simultaneously. IncreLoRA (Zhang et al.,[2023a) instead adopts a progressive rank
expansion strategy, gradually increasing the model capacity. SoRA (Ding et al.,2023) induces spar-
sity within LoRA modules. TriAdaptLoRA (Liang et al.l[2025) draws on neuroscience principles to
introduce an adaptive rank-growth strategy controlled by dynamic thresholds. These methods illus-
trate various strategies for dynamic LoRA rank allocation to balance efficiency and performance.

3 METHOD

h Output 1) Compute Parameter Importance Score:

D S = Gradient-based + Input-based
ﬁ % 2) Bidirectional rank adjustment:

Stepl:Prune Step2:Expand
) layers: layers:
Pretrained

Weights [12x12 £THmed, 16,10 lax1p Bpamded s
g r-| g {—| Rank

Allocator | —

layer;: layer;:

@ txiz 99 131y PR 14
% d ﬁ layer,: layer,:

W € Rdaxdz

Expanded
x lox1p Fruned, g 2x12 P 13x13

Figure 2: Overview of the proposed dynamic rank adjustment framework. (Left) The base archi-
tecture with rank allocation. (Right) The two-step bidirectional rank adjustment procedure: (1)
compute parameter importance score S based on both gradient and input information; (2) prune
ranks in less important layers and expand them in more critical ones, enabling adaptive allocation of
model capacity.

In this section, we propose PE-DyRA, a novel parameter-efficient fine-tuning method based on a
dynamic rank adjustment framework that aims to dynamically optimize the assignment of trainable
parameters. The overall architecture of PE-DyRA is shown in Figure |2| Firstly, the incremental
weight matrix of LoRA layer is decomposed into SVD form, and the rank allocator performs a bidi-
rectional adjustment on the rank size of each layer by calculating the importance score, pruning off
redundant ranks and then expanding in more critical layers, and finally performing a final warmup.
To prevent the adaptive capacity from being completely pruned, the minimum rank is set to 1 to
maintain minimal adaptability.

3.1 SVD-FORM ADAPTATION
We parameterize the weight increment in the form of singular value decomposition, and represent
the incremental update of the pre-trained weight matrix as

W=WO®4+A=wO_AEB (1)

where A € R4 %" and B € R"*% are learnable factor matrices, E = diag(ey, . . ., e,.) is a trainable
diagonal matrix of singular values.

Under review as a conference paper at ICLR 2026

Similar to the existing work AdaLoRA (Zhang et al.,2023b), we still adopt the concept of triples.
For a LoRA layer with rank r, each rank’s corresponding triple is treated as the fundamental unit
for computing importance scores and performing rank adjustments. It can be expressed as G; =

(ai7 e, bi) for ¢ =1,...,r, where a; and b; are the ¢-th column of A and the i-th row of B,
respectively.
At step ¢, the set of triples is Q {th), Gét), cee fo(z)} We compute an importance score

O pt)), where f(-) integrates gradient-based and input-based

’7.72

for each triple:Sl-(t = f(
sensitivities. Based on S , we update the triple set by pruning and expansion: G(+1)

(G \ glﬁfgned) gexpandw where G pruned CONtains the least important triples to be removed, and

®) ;
Gexpanded introduces new triples initialized for critical directions.

To maintain decomposition stability, we apply spectral regularization (Zhang et al.,|2023b):
Ron = |ATA ~ L |7 + |B'B — L% 2)

3.2 PARAMETER IMPORTANCE EVALUATION
3.2.1 GRADIENT-BASED PARAMETER IMPORTANCE ESTIMATION

Inspired by AdaLLoRA (Zhang et al.,2023b) and Platon (Zhang et al., 2022)), we quantify parameter
sensitivity using the absolute product of weights and gradients, and apply exponential moving av-
erage (EMA) smoothing across training iterations. Due to the high variability and uncertainty, the
quantification of uncertainty is also performed. The final importance score is defined as the product
of smoothed sensitivity and uncertainty:

Sensitivity: I(w” 5118,) 1)) +(1-p1) ‘wg) . VwijL(t))

Uncertainty: U(BU) = BQU (w;)) + (1= B2) HUJS) . vU)ijL(t)‘ —TEBU)

t OB 0
Importance: S((w)”) Tiwy Ulwiy)

where (1, 32 € [0,1) are EMA coefficients.

3)

Gradient-Aware Triple Importance. During training, we observe that the gradients of the factor
matrices A and B, which correspond to the left and right singular matrices, are typically smaller by
orders of magnitude compared to those of the core matrix E. This indicates that the update of the
core matrix plays a more critical role in the optimization process (see Figure[IT]in Appendix [I).

Consequently, when evaluating the importance of a triple, we do not rely on a uniform linear com-
bination of its constituent importance scores. Instead, we introduce a gradient-aware weighting
scheme, where the contribution of each component is scaled according to the relative magnitude of
its gradient. Formally, the triple-level importance score at step ¢ is defined as

S¢) = wi - S(E) + Wi’ -S(4) + wiy -S(By), (4)
where the adaptive We1ghts are computed as
VL

O — [Vx L9l X € {A,E, B}. (5)

w -)
X VALO |y + [VEL®O ||y + VLW ||

This formulation ensures that components with stronger optimization impact, particularly the core
matrix, receive larger weights in the triple-level importance score. As a result, the aggregated impor-
tance evaluation better reflects the actual training dynamics and guides more effective rank allocation
during dynamic adjustment.

For detailed empirical results validating the proposed gradient-aware weighting scheme, please refer
to Appendix [F|

3.2.2 INPUT-BASED PARAMETER IMPORTANCE ESTIMATION

Notably, on datasets with diverse input distributions, the input activations can vary from token to
token. So input activations also play an equally critical role in determining the actual output of a

Under review as a conference paper at ICLR 2026

neuron. The contribution to the neuron output is determined jointly by magnitude of weight and the
scale of the corresponding input activation.

Motivated by pruning metrics such as Wanda (Sun et al., [2024), we extend the importance esti-
mation to the LoRA decomposition. Let X denote the input activations. Given the input rep-
resentation X € RV*? (where N = batch_size x seq_len, and d is the hidden dimension), we
compute the L2 norm along the batch and token dimension for each feature dimension: ||X;||2 =
% Zfil x?j, 7 = 1,...,d. This preserves per-feature energy, reflecting the relative contribution
of each input dimension. Then we apply exponential moving average(EMA) to this. For A € R%*7,
the importance of each element is expressed as .S;; = |W;;| - || X ||2. The importance score for each
triplet is defined as

dy
Sglp: |6L|ZS/€Z ||BLH27 1= 1,...,7‘, (6)
k=1

As shown in Algorithm|I]in Appendix [[.3] the procedure of computing the overall importance score
is illustrated.

Layer-level Importance. For a LoRA layer with r ranks, corresponding to triples {G1, Go, . . .,
G}, the layer-level importance score is defined as

1 T
Slayer = ; Z; S(Gz)7 (7
where S(G;) denotes the importance score of the i-th triple at the rank-level.

3.3 BIDIRECTIONAL RANK ADJUSTMENT STRATEGY

Pruning Phase. During the pruning phase, we first compute the importance score for each rank-
level triple G = (A, E, B). All triples are sorted according to their importance scores, and the k
triples with the lowest aggregated scores are selected for removal: P = argming |s/—p, Y ces S(G)
, where P denotes the set of pruned ranks.

Expansion Phase. In the expansion phase, we perform layer-level importance evaluation by
aggregating rank-level scores. Based on these layer-level scores, we execute a global ranking
across all layers and adopt a strict rank-conservation strategy: the k rank resources removed

in the pruning phase are reassigned to the top-%k layers with the highest S (&)

Jayer values: & =

argmaxs |s|=k X _rcs Sg;,)er, where £ denotes the set of expanded layers.

Under the constraint of a fixed total rank budget, the bidirectional adjustment strategy removes
less important redundant parameters and reallocates them to more critical LoRA layers, thereby
improving parameter efficiency and enhancing model performance.

For detailed bidirectional rank adjustment strategy, please refer to Algorithm [2)in the appendix [[.3]

3.4 PARAMETRIC EFFICIENCY ANALYSIS

Theorem 3.1 (Pareto-Optimal Parameter Efficiency under Rank Allocation Constraints). Consider
L LoRA layers, each assigned a rank r;, under a fixed total rank budget Ryota1- ZzL:1 r; = Riotal-
Let G denote the importance score of layer . The necessary condition for Pareto-optimal parameter
efficiency is:

r oGP (8)

That is, layers with higher importance scores should be assigned more ranks.

Inference: Dynamic vs. Static Strategy A dynamic rank adjustment strategy that updates r;
in response to changes in G during training can iteratively approach the Pareto-optimal condition
equation (8] Static strategies, which fix {r;} at initialization, cannot adapt to evolving layer impor-
tance, and thus are generally less efficient in parameter utilization and model performance. See
Appendix [B for the complete derivation.

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of different PEFT methods on GLUE benchmark (rank » = 8).

Method SST-2 MNLI CoLA QNLI MRPC QQP RTE STS-B All
Acc. Acc. Mcec. Acc. Acc. Acc. Acc. Corr. Avg.
LoRA 95.18 89.74 69.33 9390 89.70 91.99 86.28 91.66 88.473
PiSSA 95.53 90.30 71.41 94.07 90.20 91.92 88.09 91.54 89.133
LoRA+ 953 90.28 70.25 94.01 9093 92.09 86.28 91.54 88.835
AdalLoRA 95.53 90.50 69.02 9442 9093 92.03 87.00 91.77 889
DyLoRA 95.18 89.51 69.82 9429 89.95 91.97 85.92 91.74 88.547

IncreLoRA 9572 90.62 7020 9436 90.11 9191 86.88 91.38 88.898
RandLoRA 95.98 89.96 6822 9374 90.69 92.06 86.28 91.34 88.534
TriAdaptLoRA 95.68 90.64 71.6 9437 90.77 92.09 87.84 91.79 89.348
PE-DyRA 95.98 90.38 7143 9453 91.18 92.14 88.09 91.98 89.464

4 EXPERIMENTS

4.1 MODELS AND DATASETS

Natural Language Understanding (NLU). We adopt DeBERTa-v3-base (He et all 2021)) and
fine-tune it on the GLUE benchmark (Wang et al.,[2019), using eight tasks from the benchmark.

Mathematical Reasoning and Code Generation. We employ LLaMA-2-7B (Touvron et al.,[2023)
and LLaMA-3-8B (Dubey et al.,|2024) for evaluation on mathematical reasoning, where the mod-
els are fine-tuned on MetaMathQA (Yu et al., 2024) and assessed on GSM8K (Cobbe et al., 2021])
and MATH (Hendrycks et al.L[2021). For code generation, the models are fine-tuned on CodeFeed-
back (Zheng et al.,2024)) and evaluated on HumanEval (Chen et al.| 2021) and MBPP (Austin et al.,
2021)).

Summarization. We use BART-large (Lewis et al., 2019) for summarization on XSum (Narayan
et al.| 2018)), which evaluate the ability to generate concise and faithful summaries.

4.2 BASELINES

We compare our method against a broad range of parameter-efficient fine-tuning (PEFT) approaches,
including LoRA and its variants, as well as dynamic rank adaptation methods:

* LoRA-based methods: LoRA (Hu et al,[2022), LoRA+ (Hayou et al., [2024)
, PISSA (Meng et al) 2024), DoRA (Liu et al., [2024), RandLoRA (Albert et al., |2025)),
QLoRA (Dettmers et al., [2023), RaSA (He et al.,[2025).

* Dynamic rank methods: AdalLoRA (Zhang et al., 2023b), IncreLoRA (Zhang et al.,
2023a), DyLoRA (Valipour et al.,2023), TriAdaptLoRA (Liang et al., [2025).

4.3 RESULTS

Natural Language Understanding. Table [2| reports the performance of different PEFT methods
on eight tasks from the GLUE benchmark with rank of » = 8. Overall, our method consistently out-
performs existing baselines, achieving the highest average score (89.464%), demonstrating superior
generalization across both sentence-level and sentence-pair classification tasks. For example, on the
MRPC task, our method achieves 91.18% accuracy, which is 0.25% higher than the best-performing
baseline (AdaLoRA, 90.93%).

Mathematical Reasoning and Code Generation. As shown in Table [3} our method (PE-DyRA)
achieves the best performance on both LLaMA2-7B and LLaMA3-8B. On LLaMA2-7B, the overall
average score of 34.69% surpasses the strongest baseline DoRA (33.99%) by nearly +0.7 points. On
LLaMA3-8B, PE-DyRA also delivers the best average score (65.09%), demonstrating consistent
advantages in both mathematical reasoning and code generation.

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of different PEFT methods on LLaMA2-7B and LLaMA3-8B.

Model Method #Params(%) GSM8K MATH HumanEval MBPP Avg
LoRA 0.15 52.90 7.60 26.0 347 303

DoRA 0.17 56.09 9.76 31.7 384 3399

LLaMA2-7B QLoRA 0.28 50.32 6.12 24.8 32.8 28.51
RaSA 0.15 56.41 9.72 28.0 36.2 32.58

AdaLoRA 0.22 52.01 8.26 26.2 352 30.42

PE-DyRA 0.15 56.25 10.12 33.5 38.9 34.69

LoRA 0.13 81.27 39.04 64.0 69.0 63.33

DoRA 0.15 81.42 37.22 65.2 72.0 63.96

LLaMA3-8B QLoRA 0.23 81.12 39.58 67.1 70.6 64.6
RaSA 0.13 80.97 36.18 67.1 69.6 63.46

AdalLoRA 0.20 81.04 39.62 65.9 72.0 64.64

PE-DyRA 0.13 80.82 40.24 67.1 72.2 65.09

Summarization. Table 4] shows the results on summarization task. Compared with LoRA and
AdalLLoRA, our method (PE-DyRA) achieves the best performance across all Rouge metrics while
using the same parameter budget as LoRA (2.06M).

Table 4: Performance comparison of different PEFT methods on XSum.

Method #Params Rouge-1 Rouge-2 Rouge-. Rouge-Lsum

LoRA 2.06M 43.6283 20.4566 35.6239 35.6194
AdaLoRA 3.09M 43.9557 20.5627 35.6264 35.6129
PE-DyRA 2.06M 44.0444 20.8523 35.9616 35.9602

4.4 PE-DYRA AS A GENERAL PARADIGM

To further validate the generality of our proposed method, we integrate PE-DyRA into several rep-
resentative PEFT approaches, including PiSSA, DoRA, and QLoRA, across both natural language
understanding (NLU) and code generation tasks. The results are reported in Table |l 1|and Table

in Appendix

On the DeBERTa-v3-base NLU benchmark, PE-DyRA consistently improves PiSSA, achieving an
average accuracy of 89.29%. For LLaMA models on code generation, PE-DyRA also provides
significant gains. On LLaMA2-7B, PE-DyRA+DoRA improves MBPP by 1.3% over DoRA. On
LLaMA3-8B, PE-DyRA+QLoRA achieves 74.3% on MBPP, outperforming QLoRA by 3.7%.

These results suggest that PE-DyRA can be applied as a paradigm to existing PEFT methods, im-
proving their performance across different models and tasks. This highlights its wide applicability
and generalization ability.

4.5 ANALYSIS

4.5.1 ABLATION STUDY ON BIDIRECTIONAL STRATEGIES

We propose a bidirectional rank adjustment strategy and validate it via an ablation study. From
Table[5] compared with Prune-only or Expand-only variants, our method (PE-DyRA) balances pa-
rameter allocation and model capacity, achieving superior performance without increasing the total
number of training parameters.

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison with different strategies.

Method MRPC STS-B RTE CoLA SST-2 QNLI QQP MNLI Avg

LoRA 89.70 91.66 86.28 69.33 95.18 9390 9199 89.74 88.473
+Prune 90.20 91.80 8736 70.19 9553 9434 92.13 90.37 88.99
+Expand 90.69 91.72 88.09 70.21 9530 9451 9246 9030 89.16
PE-DyRA 91.18 9198 88.09 7143 9598 9453 92.14 90.38 89.464

4.5.2 ABLATION OF INPUT-BASED IMPORTANCE

To investigate the effect of input-based importance calculation in PE-DyRA, we conduct an ablation
study on LLaMA2-7B across code generation benchmarks. We conducted experiments on two ways,
without input-based importance and with input-based importance, and analyzed the results.

Table 6: Ablation study on input-based importance calculation in PE-DyRA.

Model Variant Humaneval Humaneval+ MBPP MBPP+
LLaMA2-7B w/o input-based 32.3 29.3 384 29.9
with input-based 335 30.5 38.9 325

As shown in Table [6] incorporating input-based importance calculation improves performance on
benchmarks, highlighting its effectiveness in PE-DyRA.

4.5.3 LAYER-WISE RANK DYNAMICS

To analyze the dynamic rank adjustment mechanism, we track the evolution of allocated ranks and
corresponding importance rankings for representative layers during training (Figure [3] (a) rank dy-
namics; (b) importance ranking, where smaller values denote higher importance).

Rank Change Over Steps Importance Ranking Over Steps

70 4

60 4

50 4

more important)

40 1

301

Importance Rank (lower

0+ T T T T T T T T T T T T T T T
2500 5000 7500 10000 12500 15000 17500 20000 2500 5000 7500 10000 12500 15000 17500 20000
Step Step

(a) Rank dynamics (b) Importance ranking

Figure 3: Evolution of dynamic rank allocation and layer importance during training.

We observe clear differences across layers. layerl0.intermediate consistently maintains
high importance throughout training, leading to an increase in its allocated rank. In contrast,
layerll.output exhibits low importance and rapidly reduces its rank at the beginning of train-
ing. Other layers show fluctuating importance rankings, resulting in relatively stable rank changes.
Notably, layer8.intermediate remains among the top in importance ranking, causing its rank
to increase at each update; however, the number of its ranks fluctuates up and down over time. This
suggests that certain triples at the rank level have low importance and are thus pruned.

Under review as a conference paper at ICLR 2026

4.5.4 PERFORMANCE UNDER DIFFERENT RANK BUDGETS

As shown in Table [[3]in Appendix [[2] we also test the fine-tuning performance of the proposed
method on some datasets with different rank budgets. It can be observed that the proposed method
achieves performance improvement under different budgets.

4.5.5 ABLATION STUDY ON RANK ADJUSTMENT SIZE

Our method performs rank updates every 1" steps, where the adjustment size (number of ranks
pruned/expanded) critically affects performance. We evaluate adjustment sizes {4,8,12,24} on
DeBERTaV3-base with initial rank » = 8 to analyze this effect.

As shown in Table [T4] in Appendix [[.2} when the dynamic rank adjustment is small, the model’s
ability to improve is limited; when it is large, pruning trained ranks and introducing new ones can
destabilize training. The optimal adjustment value depends on both the model architecture and the
initial rank size.

4.5.6 IMPORTANCE-DRIVEN CAUSAL TESTING AND SPEARMAN CORRELATION

o Effect of Importance-based Rank Allocation vs. Shuffle 70 Spearman Correlation Between Rank and \mportance
= importance-based (o]
o118 w1 == shuffle
90 55.00 60 °
c
85 2 50 6]
S]
S
8 10 |
% 80 ?‘E 10}
S g %]
2 g
= 2 20
70
10 4
65
o
01 T T T T T T T O\
60 2 4 6 8 10 12 14 16
CoLA (Mcc) MRPC (Acc) RTE (Acc) Average Current Rank
(a) Importance-driven causal testing (b) Spearman correlation

Figure 4: Effectiveness of importance-guided dynamic rank allocation. (a) Causal test comparing
importance-based allocation with random shuffle. (b) Spearman correlation between mean allocated
rank and mean importance ranking.

In Figure[a] we test causality by randomizing the importance order during training, making rank ad-
justment random. The resulting performance drop across datasets confirms that importance-to-rank
assignment is indeed effective. In Figure we analyze the correlation between layer importance
and assigned rank. The strong Spearman correlation confirms that dynamic rank assignment aligns
well with learned importance.

5 CONCLUSION AND FUTURE WORK

This study proposes PE-DyRA, an efficient dynamic rank adjustment method that improves parame-
ter utilization. Experiments demonstrate that PE-DyRA outperforms existing fine-tuning approaches
across diverse tasks, validating its effectiveness for large-scale models under limited resources.

However, there is still much future work to be done in this research. The size of the adjusted rank
in the update is currently fixed as a parameter, and it can be extended to an adaptive method to
determine the size of the adjusted rank in the update independently. In the future, we will explore
more appropriate measures of importance, apply our method to larger models, and extend it to
various tasks such as federation, multi-task, and domain adaptation. These promising challenges
remain to be explored in future research efforts.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Paul Albert, Frederic Z. Zhang, Hemanth Saratchandran, Cristian Rodriguez-Opazo, Anton van den
Hengel, and Ehsan Abbasnejad. RandloRA: Full rank parameter-efficient fine-tuning of large
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=Hn5eoTunHN.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088-10115, 2023.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 4133—4145. Associa-
tion for Computational Linguistics, 2023. doi: 10.18653/V1/2023. EMNLP-MAIN.252. URL
https://doi.org/10.18653/v1/2023.emnlp-main.252.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv-2407, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large mod-
els. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
NEvS8YgGBROO!

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021.

Zhiwei He, Zhaopeng Tu, Xing Wang, Xingyu Chen, Zhijie Wang, Jiahao Xu, Tian Liang, Wenx-
iang Jiao, Zhuosheng Zhang, and Rui Wang. RaSA: Rank-sharing low-rank adaptation. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=GdXI5zCoAt.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

10

https://openreview.net/forum?id=Hn5eoTunHN
https://doi.org/10.18653/v1/2023.emnlp-main.252
https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=NEv8YqBROO
https://openreview.net/forum?id=GdXI5zCoAt
https://openreview.net/forum?id=GdXI5zCoAt

Under review as a conference paper at ICLR 2026

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.),
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 3045—
3059. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021. EMNLP-MAIN.
243, URL https://doi.org/10.18653/v1/2021.emnlp-main.243.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Yao Liang, Yuwei Wang, and Yi Zeng. Triadaptlora: Brain-inspired triangular adaptive low-rank
adaptation for parameter-efficient fine-tuning. arXiv preprint arXiv:2501.08008, 2025.

Haokun Liu, Derek Tam, Mohammed Mugqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950-1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038-121072, 2024.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822, 2018.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning ap-
proach for large language models. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=PxoFut 3dwWwW.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Andreas
Vlachos and Isabelle Augenstein (eds.), Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Linguistics, EACL 2023, Dubrovnik, Croatia, May
2-6, 2023, pp. 3266-3279. Association for Computational Linguistics, 2023. doi: 10.18653/V1/
2023. EACL-MAIN.239. URL https://doi.org/10.18653/v1/2023.eacl-main.
239.

11

https://doi.org/10.18653/v1/2021.emnlp-main.243
https://openreview.net/forum?id=PxoFut3dWW
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
rJ4km2R5t 7.

Menglin Yang, Jialin Chen, Yifei Zhang, Jiahong Liu, Jiasheng Zhang, Qiyao Ma, Harshit Verma,
Qianru Zhang, Min Zhou, Irwin King, et al. Low-rank adaptation for foundation models: A
comprehensive review. arXiv preprint arXiv:2501.00365, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=N8NOhgNDRt.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang Jiang, Bowen Wang, and Yiming Qian. In-
crelora: Incremental parameter allocation method for parameter-efficient fine-tuning. arXiv
preprint arXiv:2308.12043, 2023a.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance. In International conference on machine learning, pp. 26809-26823. PMLR, 2022.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations, 2023b. URL https://openreview.
net/forum?id=1g62uWRJjiY.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automatically tun-
ing matrix ranks in low-rank adaptation based on meta learning. In Kevin Duh, Helena Gémez-
Adorno, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 5048-5060.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.282.
URL https://doi.org/10.18653/v1/2024.naacl-1long.282.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen,
and Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refine-
ment. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Associ-
ation for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, Au-
gust 11-16, 2024, pp. 12834-12859. Association for Computational Linguistics, 2024. doi: 10.
18653/V1/2024 FINDINGS-ACL.762. URL https://doi.org/10.18653/v1/2024.
findings—acl.762.

Noah Ziems, Wenhao Yu, Zhihan Zhang, and Meng Jiang. Large language models are built-in
autoregressive search engines. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki
(eds.), Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pp. 2666-2678. Association for Computational Linguistics, 2023. doi: 10.
18653/V1/2023.FINDINGS-ACL.167. URL https://doi.org/10.18653/v1/2023.
findings—acl.167.

12

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://doi.org/10.18653/v1/2024.naacl-long.282
https://doi.org/10.18653/v1/2024.findings-acl.762
https://doi.org/10.18653/v1/2024.findings-acl.762
https://doi.org/10.18653/v1/2023.findings-acl.167
https://doi.org/10.18653/v1/2023.findings-acl.167

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

A large language model (LLM) was used to assist in refining the writing style and polishing the
language of this paper. We gratefully acknowledge its contribution in improving the readability and
clarity of the manuscript. All LLM-generated content was reviewed and corrected by the authors to
maintain accuracy and preserve the original meaning.

B PROOF OF PARETO-OPTIMAL PARAMETER EFFICIENCY

We formalize the rank allocation problem under a fixed total rank budget R, using a Lagrangian
framework. Consider L LoRA layers, each assigned a rank r; > 0, with layer importance scores
G > 0. We assume that the layer-wise contribution to the overall loss can be approximated as

L =3 L ©
=V

subject to the total rank budget constraint
L
Y11= R (10)
1=1

Our goal is to minimize equation[9subject to equation[I0] yielding the most parameter-efficient rank
allocation.

Lagrangian formulation. We construct the Lagrangian

L L
T\ =" G2+ a (Zm —Rmm), (1)
=1

=1
where) is the Lagrange multiplier for the total rank constraint.

Optimality condition. Taking the derivative of equation (1 1| with respect to r; and setting it to zero
for optimality, we obtain

oJ 1., 30
= =__G A=0. 12
o,) iy + (12)
Equation equation[I2]implies that
Gir ¥ =2x, VL (13)
Since the right-hand side is independent of [, we have
r?/2o<Gl = 7 ocGlQ/S. (14)

Global optimality. Each term Glrl_l/ %is strictly convex in r; > 0, so the total objective equation@
is strictly convex, and the constraint equation [I0]is linear. Therefore, any stationary point satisfying
equation|[I3]is the unique global minimizer. Thus, this is the globally Pareto-optimal rank allocation.

Implications. Compared to any static allocation (uniform r; = Ryy/L), the dynamic allocation
achieves a strictly lower loss in equation[9]whenever the importance scores G; are not all equal. This

formally establishes that allocating ranks proportionally to GIQ/ % s Pareto-optimal under the given
model.

For the SST-2 dataset, both LoRA(using SVD triples) and PE-DyRA methods are used to verify
the above results, and the following graphs are plotted: The horizontal axis is the step during the
training process; The vertical axis is the log variance of Glz/ 3 /7 across layers (which indicates how
much the value deviates from the constant across layers).

As shown in Figure [5| under the dynamic strategy, the cross-layer variance of Gz2/ 3 /ri gradually
decreases during training, indicating that the model progressively approaches the Pareto optimal
condition. Moreover, the variance under the dynamic strategy is consistently lower than that of the
static LoRA strategy, suggesting that the dynamic rank adjustment achieves a more Pareto-efficient
parameter allocation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
41
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Comparison of Two Methods (Smoothed)

4x10712

3x 10712

G
W

log Cross-layer Variance of -

2x10712

10-12 4 B Bt we

oo o o N

SObO 10600 15600 20600 25(‘)00
. . . 2/3 . .
Figure 5: Comparison of Cross-layer variance of G, / /7y during SST-2 training.

C ADDITIONAL EXPERIMENTS ON SQUAD v2.0

To further illustrate the performance difference between LoRA and PE-DyRA, we provide a bar
chart comparison of representative evaluation metrics, including HasAns F1, NoAns F1, Exact
Match, and Overall F1 on SQuAD v2.0.

As shown in Figure [0 PE-DyRA matches LoRA on HasAns F1 while substantially improving
NoAns F1, leading to higher Exact Match and Overall F1. This demonstrates that PE-DyRA main-
tains strong performance on answerable questions and enhances robustness on unanswerable ones.

00+ Performance Comparison on SQUAD v2.0

B | oRA
W PE-DyRA
88
86
[
o
]
0
84|
82t
80

HasAns_f1 NoAns_fl Exact F1

Figure 6: Comparison of evaluation metrics between LoRA and PE-DyRA on SQuAD v2.0.

D THE RESULTING RANK DISTRIBUTION

Methods were applied to SST-2 using the DeBERTaV3-base model and the respective final rank
distributions were saved.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The final rank

25

20
¥

15 E
=
[=
[=
v

10F

5

0

Layer
(a) The resulting rank of AdaLoRA
The final rank
25
W, 5 4 5 3 2 2 3 1 3 3 1

20
o

15 §
T
=
=
w

10F

Layer

(b) The resulting rank of PE-DyRA

Figure 7: Comparative rank allocation patterns across model layers.

As shown in Figure[7] in the case of limited resources, the proposed method tends to produce rel-
atively concentrated rank distributions. This may be one of the reasons why it is more effective in
low-resource settings: by prioritizing assigning higher ranks to critical modules, methods are able to
maintain adequate representation of important modules even with a limited parameter budget, thus
achieving superior overall performance.

E EXPERIMENTAL SETTINGS

E.1 TRAINING DETAILS ON GLUE BENCHMARK

In the GLUE Benchmark, the model we used was DebertaV3-Base, with a rank size of 8. The
specific details of the experimental hyperparameters are shown in the table[7]

15

Under review as a conference paper at ICLR 2026

Table 7: Hyper-parameter setup of PE-DyRA for GLUE benchmark.

Dataset | learning rate batch size #epochs 7 t; Arp Ly k
MNLI 5x 1071 32 7 0.1 3000 1000 65000 12
RTE 1.2x 1073 32 50 0.3 300 100 2600 12
QNLI 9x 1074 32 5 0.1 1000 500 10000 12
MRPC 1x1073 32 30 0.1 600 150 1100 12
QQP 6 x 1074 32 9 0.1 5000 1000 80000 12
SST-2 8 x 1074 32 24 0.1 1000 1000 25000 12
CoLA 1x1073 32 35 0.1 700 100 7000 12
STS-B | 2.2x 1073 32 25 03 800 200 1500 12

Table 8: Hyper-parameter setup of PE-DyRA for mathematical reasoning and code generation.

Model Dataset learning rate batchsize # epochs ¢; Ar ty k
MetaMath 2 x 10~4 16 5 2000 1000 11250 12
LLaMA2-7B python 2 x 1074 16 5 2000 1000 12765 12
MetaMath 5 x 10~° 16 5 2000 1000 11250 12
LLaMA3-8B python 1 x 104 16 5 2000 1000 12765 12

E.2 TRAINING DETAILS ON MATHEMATICAL REASONING AND CODE GENERATION

In the Mathematical Reasoning and Code Generation task, the LLaMA2-7B and LLaMA3-8b mod-
els were used, with an initial rank size of 4. The specific details of the experimental hyperparameters
are shown in the table[8]

E.3 TRAINING DETAILS ON SUMMARIZATION AND QA

Table 9: Hyper-parameter setup of PE-DyRA for summarization and QA.

Dataset learning rate batch size #epochs v t; Ar iy k
XSum 2x 1077 24 25 0.1 6000 1500 180000 12
SQuUAD v2.0 | 1.2x 1073 16 25 0.1 5000 1000 190000 12

For the summary and question-answering tasks, the XSum dataset uses the BART-large model, while
the SQuAD v2.0 (Rajpurkar et al.| [2018)) uses the DebertaV3-Base model. The initial rank size used
is 4. The specific details of the experimental hyperparameters are shown in the table 9]

F EMPIRICAL VALIDATION OF GRADIENT-AWARE WEIGHTING

To validate the proposed gradient-aware weighting scheme for triple importance scores, we track
rank evolution during training using a temporary zero-masking strategy with initialized. As shown in
Figure[8] with a simple linear combination of importance scores(Figure[8p), pruned ranks often reac-
tivate, indicating unstable importance evaluation. In contrast, the gradient-aware scheme(Figure 8p)
keeps pruned ranks consistently suppressed, better reflecting optimization dynamics and this is con-
sistent with the effect we want.

As shown in Figure [0 we monitor the change in loss for both cases with and without using the
gradient-aware weighting scheme. Through the loss change during training, it can be seen that using
gradient information weighting can accelerate the optimization and make the optimization process
more stable.

16

Under review as a conference paper at ICLR 2026

Eanknum/debena,encodenIayer.2.output‘dense.lora, Ranknum/deberta.encoder.layer.2.output.dense.lora_
tag: Ranknum/deberta.encoder.layer.2.output.dense.lora_E tEag: Ranknum/deberta.encader layer.2. output.dense lora_E
10
6 8
4 6
~ 4
2
9
0 0
10k 15k 20k 25k 30k 35k 40k 45k S0k 10k 15k 20k 25k 30k 35k 40k 45k 50k
(a) Linear Combination (b) Gradient-Aware Weighting

Figure 8: Comparison of rank evolution under two importance aggregation schemes: (a) linear
combination leads to unstable pruning with ranks repeatedly reappearing, while (b) gradient-aware
weighting yields stable pruning dynamics.

CoLA
0.5 A
without_grad (Smoothed)
with_grad (Smoothed)
0.4
0.3 4
)
g
0.2
0.1+
T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epoch

Figure 9: Training loss comparison with/without gradient weighting

G TIME-MEMORY-ACCURACY COMPARISON

Table 10: Comparison of training time, memory usage, and accuracy among different methods.

Dataset Method #Params Runtime/epoch(s) Peak Memory A Acc (%)

LoRA 1.33M 220.64 4306MB 95.18

SST-2 AdaLoRA 1.99M 403.09 4321MB 95.53
PE-DyRA 1.33M 341.22 4315MB 95.98

LoRA 1.33M 31.40 11439MB 89.70

MRPC AdalLoRA 1.99M 38.99 11461MB 90.93
PE-DyRA 1.33M 37.23 11446MB 91.18

LoRA 1.33M 21.65 11439MB 86.28

RTE AdalLoRA 1.99M 26.65 11461MB 87.00
PE-DyRA 1.33M 26.79 11446MB 88.09

As shown in Table[T0} our proposed PE-DyRA achieves consistently higher accuracy than LoRA and
AdalLoRA while maintaining comparable parameter scale and memory usage. Notably, PE-DyRA

17

Under review as a conference paper at ICLR 2026

substantially reduces runtime (e.g., 220.64s vs. 341.22s on SST-2), demonstrating the effectiveness
of dynamic rank adjustment.

H ORTHOGONALITY REGULARIZATION LOSS

In the main text, we introduced the orthogonality regularization term, as defined in equation [2}
which encourages the low-rank factors A and B to remain close to an orthogonal basis, thereby
stabilizing training. The overall training objective can then be written as: L1 = Lirain + A Rorths
where L., denotes the standard training loss, and A is the regularization coefficient.

Orth_regu_loss/deberta.encoder.layer.0.intermediate.
dense.lora_A

tag:
Orth_regu_loss/deberta.encoder.layer.0.intermediate.dense.lo train/orth_regu_loss
ra_A tag: train/orth_regu_loss
02
0.36
0.16
0.32
0.12
0.08 028
0.04 024
0 0.2
0 2k 4k 6k 8k 10k 12k 14k 16k 0 2k 4k 6k 8k 10k 12k 14k 16k
(a) Rorn of LORA-A in a specific layer (b) Overall training orthogonal loss

Figure 10: Dynamics of orthogonal regularization during training.

Figure |10] shows that the orthogonal loss decreases rapidly within each layer early in training and
then stabilizes, indicating effective local enforcement of orthogonality. Globally, despite layer-wise
fluctuations, the model consistently maintains orthogonality throughout training, demonstrating that
the regularization stabilizes both local representations and overall low-rank adaptation.

I ADDITIONAL FIGURES ALGORITHMS AND TABLES

1.1 FIGURES

Figure[IT]is mentioned in Section[3.2.1]

1.2 TABLES
Table 11: DeBERTa-v3-base NLU benchmark results.
Method QNLI MRPC QQP STS-B MNLI SST-2 CoLA RTE Avg
PiSSA 94.07 90.20 91.92 91.54 90.30 9553 7141 88.09 89.13

PE-DyRA+PiSSA 9436 9044 9225 91.81 90.22 9598 72.28 87.00 89.29

Table[T1]and Table[T2]reports the detailed results corresponding to Section

18

Under review as a conference paper at ICLR 2026

0.005 —— Core Matrix (E)
0.004 -

0.003
0.002 4
0.001

0.000

0 5000 10000 15000 20000 25000 30000

—— Factor A

ok N w & w

[} 5000 10000 15000 20000 25000 30000

—— Factor B

o kN w &

30000

Figure 11: The gradient changes of the core matrix and factor matrix during the training process.

Table 12: LLaMA models code generation results.

Model Method Performance
MBPP MBPP+
DoRA 38.4 283
LLaMA2-TB pp b RA+DORA 397 31.2
QLORA 32.8 27.0
PE-DyRA+QLoRA 34.7 27.0
DoRA 72.0 61.4
LLaMA3-8B pp b RA+DORA 730 63.0
QLOoRA 70.6 60.6

PE-DyRA+QLoRA 74.3 63.8

Table 13: Performance under different rank budgets.

Dataset Method rank=4 rank=8 rank=16 rank=32

CoLA LoRA 68.57 69.33 71.03 69.92
PE-DyRA 71.43 71.43 71.80 70.85
STS-B LoRA 91.5 91.66 91.62 91.52
PE-DyRA 91.83 91.98 91.81 91.98
MRPC LoRA 90.44 89.70 89.22 90.2
PE-DyRA 91.18 91.18 90.2 90.44

Table T3] reports the detailed results corresponding to Section4.5.4]
Table [T4]reports the detailed results corresponding to Section[4.5.3]

1.3 THE ALGORITHM FOR COMPUTING IMPORTANCE SCORE AND BIDIRECTIONAL RANK
ADJUSTMENT STRATEGY

19

Under review as a conference paper at ICLR 2026

Table 14: Performance comparison with different rank adjustment sizes.

Dataset k=4 k=8 k=12 k=24

SST-2 (Acc.) 95.18 9552 9598 95.18
RTE (Acc.) 8592 8736 88.09 87.84
STS-B (Corr.) 91.39 9150 91.98 91.22

Algorithm 1 Computation of Overall Triple Importance Score

Require: Parameters © = {A, E, B}, input activations X, loss L
Ensure: Overall importance score S

1:

11:

AN AN S

Step 1: Gradient-based triple importance
Compute component-level scores S5, 5% 5% ysing VI,
forall K € {A,E, B} do
Compute sensitivity score: Sf?d forad(K, VL)

end for
Fuse scores with gradient-aware weights:

Sg?d — wASirjd + wESgErfd + wBS%rjd, where wx =
Step 2: Input-based triple importance
Compute input-based scores S™P from X

Se? = leg] - S0y Sk - |Bill2, i=1,...,m,
Step 3: Final aggregation
Compute overall score: A

Sa, = a- 8§+ (1 —) - S&°, where a is appropriately chosen within [0.0, 1.0].
return S

Vi L]
> ne{appy IVall

Algorithm 2 Bidirectional Rank Adjustment Strategy

A A S e

Sy VG U
WX RDLRRRT Q0

[\SJ\S]
N =

e}
T2

Input: LoRA layers with rank-level triples {G; = (A;, E;, B;)}, total rank 7, pruning size k
Output: Updated low-rank matrix AWgijusted

Step 1: Compute importance scores
Compute rank-level importance scores S(G;) for all triples G;
(computation procedure detailed in Algorithm|T).

Step 2: Pruning Phase
Select the £ triples with the lowest importance scores:
P = argming |sj=k X_ges S(G)
Retain the remaining triples:

A‘/Vpruned = Ziel(f ri, K= {Z ‘ i % P}

. Step 3: Expansion Phase

For each layer ¢, compute layer-level importance score:
l T
Sl(ay)er = 715 Zzizl S(Gl)
Select top-k layers for expansion:
‘
E= argmaxg |s|— Y oies Sl(ay)er
Expand ranks on selected layers:

AI/Vadjuslecl = AI/Vpruned + Z = T?ew

. return AW gjusied

20

	Introduction
	Related work
	Method
	SVD-Form Adaptation
	Parameter Importance Evaluation
	Gradient-Based Parameter Importance Estimation
	Input-Based Parameter Importance Estimation

	Bidirectional Rank Adjustment Strategy
	Parametric Efficiency Analysis

	Experiments
	Models and Datasets
	Baselines
	Results
	PE-DyRA as a General Paradigm
	Analysis
	Ablation Study on Bidirectional Strategies
	Ablation of Input-Based Importance
	Layer-wise Rank Dynamics
	Performance under Different Rank Budgets
	Ablation Study on Rank Adjustment Size
	Importance-driven Causal Testing and Spearman Correlation

	Conclusion And Future Work
	The Use of Large Language Models
	Proof of Pareto-Optimal Parameter Efficiency
	Additional Experiments on SQuAD v2.0
	The Resulting Rank Distribution
	Experimental Settings
	Training Details on GLUE Benchmark
	Training Details on Mathematical Reasoning and Code Generation
	Training Details on Summarization and QA

	Empirical Validation of Gradient-Aware Weighting
	Time–Memory–Accuracy Comparison
	Orthogonality Regularization Loss
	Additional Figures Algorithms and Tables
	Figures
	Tables
	The Algorithm for Computing Importance Score and Bidirectional Rank Adjustment Strategy

