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Abstract

Convolutional Neural Networks (CNNs) have seen significant performance im-1

provements in recent years. However, due to their size and complexity, their2

decision-making process remains a black-box, leading to opacity and trust issues.3

State-of-the-art saliency methods can generate local explanations that highlight the4

area in the input image where a class is identified but do not explain how different5

features contribute to the prediction. On the other hand, concept-based methods,6

such as TCAV (Testing with Concept Activation Vectors), provide global explain-7

ability, but cannot compute the attribution of a concept in a specific prediction nor8

show the locations where the network detects these concepts. This paper introduces9

a novel explainability framework, Visual-TCAV, which aims to bridge the gap10

between these methods. Visual-TCAV uses Concept Activation Vectors (CAVs) to11

generate saliency maps that show where concepts are recognized by the network.12

Moreover, it can estimate the attribution of these concepts to the output of any13

class using a generalization of Integrated Gradients. Visual-TCAV can provide14

both local and global explanations for any CNN-based image classification model15

without requiring any modifications. This framework is evaluated on widely used16

CNNs and its validity is further confirmed through experiments where a ground17

truth for explanations is known.18

1 Introduction19

Recent advancements in Deep Neural Networks (DNNs) have revolutionized the field of Artificial20

Intelligence, and Convolutional Neural Networks (CNNs) have emerged as the state-of-the-art for21

image classification due to their ability to learn complex patterns and features within images. However,22

as the performance of these models has grown significantly over recent years, their complexity has23

also increased. Consequently, it became a challenge to understand how these models produce their24

classifications. This led to the widespread use of the term black-box to describe these models, as only25

their inputs and outputs are known, while their internal mechanisms remain too complex for humans26

to comprehend. The black-box problem results in a lack of transparency [29], which can undermine27

trust in AI-based systems [12]. Indeed, blindly trusting AI poses serious ethical dilemmas, especially28

in critical fields such as healthcare or autonomous driving in which image classification systems are29

becoming increasingly employed [28, 3]. Additionally, debugging black-box models and identifying30

biases becomes difficult without comprehending the process they use to make predictions. To this31

end, the field of Explainable Artificial Intelligence (XAI) has made significant progress in developing32

techniques for producing explanations of AI decisions. However, comprehending the specific features33

or patterns that networks identify in an image and their precise impact on the prediction remains a34

challenge. State-of-the-art approaches for local explainability (i.e., for individual predictions) use35

saliency maps to locate where a class is identified in an input image, but they can’t explain which36

features led the model to its prediction. For instance, when analyzing an image of a golf ball, these37
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saliency methods cannot determine whether the golf ball was recognized by the spherical shape, the38

dimples, or some other feature. Striving to cover this need, Kim et al. [11] introduced TCAV (Testing39

with Concept Activation Vectors), a concept-based method that can discern whether a user-defined40

concept (e.g., dimples, spherical) correlates positively with the output of a selected class. However,41

TCAV is designed exclusively for global explainability (i.e., for explaining the general behavior of a42

model) and therefore cannot measure the influence of a concept in a specific prediction or show the43

locations within the input images where the networks recognize these concepts.44

In this article, we introduce a novel explainability framework, Visual-TCAV, which integrates the core45

principles of both saliency methods and concept-based approaches while aiming to overcome their46

respective limitations. Visual-TCAV can be applied to any layer of a CNN model whose output is a47

set of feature maps. Its main contributions are: (a) it provides visual explanations that show where48

the network identifies user-defined concepts; (b) it can estimate the importance of these concepts to49

the output of a selected class; (c) it can be used for both local and global explainability.50

2 Related Works51

In recent years, there has been a significant increase in the body of work exploring the explainability52

of black-box models. For CNN-based image classification, state-of-the-art methods primarily focus53

on providing explanations via saliency maps. These heatmaps highlight the most important regions54

of the input image and therefore can be used to gain insights into how a model makes its decisions.55

One approach for generating such visualizations involves studying the input-output relationship56

of the model by creating a set of perturbed versions of the input and analyzing how the output57

changes with each perturbation. Notable contributions to this approach include Local Interpretable58

Model-Agnostic Explanations (LIME) [17], which uses random perturbations, and SHapley Additive59

exPlanations (SHAP) [14], which estimates the importance of each pixel using Shapley values. A60

different approach that instead tries to access the internal workings of the model was originally61

proposed by Simonyan et al. [22] and consists of generating saliency maps based on the gradients62

of the model output w.r.t. the input images. This idea led many researchers [24, 23] to investigate63

how to exploit gradients to produce more accurate saliency maps. Selvaraju et al. [20] proposed a64

method named Gradient-weighted Class Activation Mapping (Grad-CAM) that extracts the gradients65

of the logits (i.e., raw pre-softmax predictions) w.r.t. the feature maps. It then uses a Global Average66

Pooling (GAP) operation to transform these gradients into class-specific weights for each feature67

map and performs a weighted sum of these feature maps to produce a class localization map, a68

saliency map that highlights where a class is identified. Grad-CAM has gained considerable attention69

and is extensively used for explaining convolutional networks. However, Sundararajan et al. [25]70

demonstrated that gradients can saturate, leading to an inaccurate assessment of feature importance.71

To address this issue, they introduced Integrated Gradients (IG), a method that calculates feature72

attribution by integrating the gradients along a path from a baseline (e.g., a black image) to the73

actual input image. Notable contributions of IG and its variants [10, 16, 30] include the ability to74

provide fine-grained saliency maps (i.e., each pixel has its attribution) and adherence to the axiom of75

completeness (i.e., the sum of the attributions of all pixels equals the logit value).76

While saliency methods are effective and intuitive, they might not always provide a complete picture77

of why a model made a certain decision. This is because these methods perform class localization,78

but cannot explain which features led the model to recognize the highlighted class. Furthermore,79

these techniques rely on per-pixel importance which can’t be generalized across multiple instances, as80

the position of these pixels is only meaningful for a specific input image. Consequently, they can only81

explain one image at a time, preventing them from providing global explanations. To overcome these82

limitations, Kim et al. [11] proposed Testing with Concept Activation Vectors (TCAV), a method that83

investigates the correlations between user-defined concepts and the network’s predictions using a set84

of example images representing a concept. For instance, images of stripes can be used to determine85

whether the network is sensitive to the “striped” concept for predicting the “zebra” class. This is86

accomplished by calculating a Concept Activation Vector (CAV), which is a vector orthogonal to87

the decision boundary of a linear classifier, typically Support Vector Machines (SVMs), trained to88

differentiate between the feature maps of concept examples and random images. From this, a TCAV89

score for any concept and model’s layer can be computed using the signs of the dot products between90

the CAV and the gradients of the loss w.r.t. the feature maps produced by images of a selected class.91

TCAV is effective in detecting specific biases in neural networks (e.g., ethnicity-related) and can be92
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Figure 1: The Visual-TCAV process for generating local explanations. A Pooled-CAV is computed
using the feature maps of user-defined concept examples and random images. A concept map is
then produced through a weighted sum of the Pooled-CAV and the image’s feature maps. Finally,
a concept attribution is obtained by extracting the IG attributions of the neurons that the concept
activates using the Pooled-CAV and the concept map, which is used as a spatial mask.

considered complementary to saliency methods. Indeed, while saliency methods apply exclusively93

to individual predictions, TCAV can only provide global explanations. However, TCAV does not94

provide any information about the locations where concepts are identified within the input images.95

This makes it challenging to assess whether a high score can truly be attributed to the intended96

concept and not to a related one. Moreover, TCAV computes the network’s sensitivity to a concept,97

but not the magnitude of its importance in the prediction as the score only depends on the signs of the98

directional derivatives. For instance, “white” and “dimples” concepts might have identical TCAV99

scores for the “golf ball” class, even if one contributes substantially more to the prediction.100

TCAV has received attention within the XAI community, leading to various extensions [5, 8] and101

applications [13, 2]. While our study focuses on user-defined concepts, unsupervised approaches102

have also been proposed. Ghorbani et al. [7] introduced Automatic Concept Extraction (ACE), a103

method that automatically extracts concepts from images for applying TCAV. This is accomplished104

by segmenting input images and subsequently clustering their activations. Building upon ACE, Zhang105

et al. [31] proposed Invertible Concept-based Explanations (ICE). This extension uses non-negative106

CAVs derived from non-negative matrix factorization and can also be used to explain locally by107

associating extracted concepts with a relevant area in the input image. Later, Bianchi et al. [1]108

proposed an unsupervised method for visualizing the entire feature extraction process of CNNs. They109

perform layer-wise clustering of similar feature maps to extract a set of concepts for each layer to110

which they assign a descriptive label through crowdsourcing. This approach provides local and global111

explanations, but the reliance on crowdsourcing can pose a practical challenge. Furthermore, these112

unsupervised approaches may provide opaque explanations. This is because, when the extracted113

image regions contain overlapping concepts (e.g., dimples, spherical, and white in a golf ball), it114

remains unclear which concepts the network has learned to recognize or considers more important.115

3 Visual-TCAV116

This section presents the methodology of our framework, Visual-TCAV, which is designed to explain117

the outputs of image classification CNNs using user-defined concepts. Local explanations can be118

generated considering any layer and consist of two key components. The first is the Concept Map, a119

saliency map that serves as a visual representation of the areas where the network has recognized120

the selected concept in the input image. The second is the Concept Attribution, a numerical value121

that estimates the importance of the concept for the output of a selected class. Figure 1 illustrates the122

pipeline for generating a local explanation. For global explanations, the process is replicated across123

multiple input images. The concept attributions for each image are then averaged to quantify how the124

concept influences the network’s decisions across a wide range of inputs.125
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(a) Hands (b) Dimples (c) Arches (d) Sky (e) Car (f) Chequered

Figure 2: Examples of class-independent concept maps for various input images and concepts.

3.1 CAV Generation and Spatial Pooling126

Similarly to the TCAV framework, the initial step of our method consists of computing a Concept127

Activation Vector (CAV) from a set of example images representing a user-defined concept, and a set128

of negative examples (e.g., random images). Specifically, we use the Difference of Means method,129

proposed by Martin and Weller [15], to compute the CAV. They demonstrated that this approach130

produces CAVs that are more resilient to perturbation and consistent than logistic classifiers or SVMs.131

As the name suggests, this method uses the arithmetic mean to determine the centroids of both the132

concept’s activations and the activations of random images. Subsequently, it directly computes the133

CAV as the difference between these centroids.134

Since we are interested in identifying which feature maps are activated by the concept, irrespective of135

its location within the example images, we apply a Global Average Pooling (GAP) operation on the136

obtained CAV. The result is a vector of scalar values whose length is equal to the number of feature137

maps of the layer under consideration. Each vector element is associated with a feature map, and its138

raw value approximates the degree of correlation between that feature map and the concept. Moving139

forward, we will refer to this vector as the Pooled-CAV.140

3.2 Concept Map141

From the Pooled-CAV, we can construct a concept map that locates a concept (c) within any input142

image to be explained. This is achieved by performing a weighted sum of the feature maps (fmapsk)143

of the input image, with the weights being the Pooled-CAV values (pck). Equation (1) shows how144

to compute a raw concept map (M c
raw). We also apply a ReLU function after the weighted sum145

because we are only interested in the image regions that positively correlate with the concept. The146

computation is similar to Grad-CAM’s equation, with the difference that we use the elements of the147

Pooled-CAV as weights instead of the global-average-pooled gradients.148

M c,raw = ReLU
(∑

k

pck · fmapsk

)
(1)

We refer to this concept map as raw due to the absence of a scale factor (i.e., a maximum value) that149

would allow us to compare the degree of activation of the concept map across different concepts,150

input images, and model layers. To this end, we derive a concept map’s scale factor from the151

example images the user provided, which represent an ideal concept. Formally, we use Equation (2)152

to calculate the scale factor (sc) as the maximum value of a hypothetical concept map, computed153

using the centroid (Cc), derived from the mean of the feature maps of the example images for a154

concept (c). Subsequently, we normalize the raw concept map by dividing it by the scale factor (sc)155

and limiting the values to a unitary maximum, as shown in Equation (3). An epsilon (ε) is added to156

the denominator to prevent division by zero.157

sc = max

(
ReLU

(∑
k

pck · Cc
k

))
(2) M c

ij = min
(
1,

M c,raw
ij

sc + ε

)
∀i, j (3)158

By overlaying the normalized concept map (M c) on the input image, we can generate a class-159

independent visualization (examples are shown in Figure 2) that highlights the region of the image160

where the network recognized the concept. This allows us to know, for any input image, the161

concept’s location and its degree of activation w.r.t an ideal concept defined by the user. Additionally,162

4



the concept map can provide a direct validation for the learned CAV, without requiring activation163

maximization techniques or sorting images based on their similarity to the CAV.164

3.3 Concept Attribution165

Once we acquire a set of concepts, we can gain insights into the network’s decision-making process166

by measuring the attribution of these user-defined concepts towards the raw predictions, also known167

as the logits. For instance, if the “church” class is predicted with a certain logit, we aim to quantify168

how much of this value is attributable to the “pews” concept, the “fresco” concept, and so on. More169

specifically, given an input image and a layer, we compute the attributions of the activations (i.e.,170

the values of the feature maps) to the logit of a specific target class. Subsequently, we utilize the171

Pooled-CAV to approximate which activations are attributable to a certain concept, and then we172

extract and sum these attributions. The attributions of a layer’s activations can be computed through a173

generalized variant of the IG approach which computes the integrated gradients of a target class’s174

logit w.r.t. the feature maps, instead of the input image. Specifically, we calculate the gradients along175

a straight-line path from zero-filled matrices to the actual feature maps and then approximate the176

integral using the Riemann trapezoidal rule. In our experiments, we consistently used 300 steps,177

which are sufficient to approximate the integral within a 5% error margin, as shown by Sundararajan178

et al. [25]. We then calculate the raw attributions by multiplying the integrated gradients with the179

feature maps, as shown in Figure 1. Since IG respects the completeness axiom regardless of which180

layer is considered as input, the attributions add up to the logit value of the target class, within the181

approximation error. A ReLU is then applied to extract positive attributions. These attributions182

are on the same scale as the raw logits, which can make their interpretation difficult. To obtain a183

comprehensible unitary scale, we normalize the attributions so that their sum equals a normalized184

logit, not the raw one. These normalized logits are obtained by applying a ReLU, followed by185

[0,1] rescaling to retain their relative ratios.186

To estimate the attribution of a concept (c), we can utilize the Pooled-CAV to perform a weighted sum187

of the normalized attributions (At,norm). Before this summation, we apply a ReLU and [0,1] rescaling188

to the Pooled-CAV (pc) so that we extract gradually less attribution for feature maps that are less189

correlated with the concept. The rationale behind using the ReLU is to discard the attribution of190

feature maps that show a negative correlation with the concept. In other words, if a certain feature191

map is activated by other non-correlated features, we discard its attribution. Finally, as shown in192

Equation (4), we obtain the ConceptAttribution for a concept (c) and a target class (t) by summing193

all values of an element-wise multiplication of the weighted attributions and the concept map (M c),194

which is used as a spatial mask. This enables us to discard the attributions of activations related to the195

regions within the input image where the concept is not present or was not recognized.196

ConceptAttributionc,t =
∑
i,j

M c
ij ·

(∑
k

ReLU(pc,normk ) ·At,norm
k

)
ij

(4)

The concept attribution is a per-concept metric of importance, meaning that two concepts can have197

significantly different attributions even if they are recognized in the same location of the input198

image, resulting in similar concept maps. For instance, considering the “zebra” class, the attribution199

of the “striped” concept could be significantly different from the attribution of the “fur” concept.200

This distinction is achieved by focusing not on per-pixel attributions but on the attributions of the201

activations produced by the neurons responsible for recognizing these two concepts. Moreover, since202

the attribution of a concept is independent of its location, we can average it across multiple input203

images to provide a quantitative measure of the overall importance of that concept for that particular204

class, thus providing a global explanation. For instance, we can calculate a global attribution of the205

“striped” concept for the “zebra” target class by averaging the attribution of “striped” across a large206

number (e.g., 200) of images containing zebras.207

4 Experiments and Results208

In this section, we present the results of applying Visual-TCAV to the following convolutional209

networks pre-trained on the ImageNet [6] dataset: GoogLeNet [26], InceptionV3 [27], VGG16 [21],210

and ResNet50V2 [9]. Examples of “striped”, “zigzagged”, “waffled”, and “chequered” concepts are211
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Figure 3: Examples of layer-wise local explanations for various concepts and networks. We compute
the attribution of each concept for the top three predicted classes and the last seven layers.

sourced from the Describable Textures Dataset (DTD) [4], while “pews” and “fresco” are generated212

through Stable Diffusion v1.5 [18] (more on this in Appendix E). Other concepts are obtained from213

popular image search engines. Similarly to TCAV, we use a minimum of 30 example images per214

concept and 500 random images as negative examples, as suggested by Martin and Weller [15].215

Our experiments are conducted on an Intel i7 13700k with an Nvidia RTX 4060Ti 16GB, and 32 GB216

of DDR5 RAM. The software runs on TensorFlow 2.15.1, CUDA 12.2, and Python 3.11.5. Local217

explanations, with 300 steps and seven layers, take less than a minute, while global explanations with218

200 class images, 300 steps, and seven layers, can take anywhere from 5 to 20 minutes, depending on219

the model. For global explanations, the computation time remains nearly constant regardless of the220

number of concepts processed simultaneously. The official implementation is available in our GitHub221

repository: removed for anonymity, see supplemental material .zip file.222

4.1 Local Explanations223

In Figure 3, we provide local explanations for various concepts. While concept maps are class-224

independent, the attribution of each concept depends on the class considered. We examine the top225

three predicted classes in our examples and apply Visual-TCAV to a subset of the CNNs’ layers. On226

one hand, we can observe a substantial increase in attributions in deeper layers, reaching a peak in227

the final layer, which holds the most information about the importance of each concept for a specific228

class, given its proximity to the output. On the other hand, the most accurate concept maps are229

typically found in slightly earlier layers due to their neurons having smaller receptive fields.230
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Figure 4: Results of global explanations for a variety of concepts, classes, and networks. Each bar
chart reports the attributions of three concepts for a given class, throughout the last seven layers of
each network. The attributions of each concept are computed across 200 images of the selected class.
Although the theoretical limit of concept attributions is 1.0, the scale in our charts only extends to 0.6.
This is based on our empirical observations, which rarely identified concepts with a global attribution
exceeding this value.

Furthermore, these layer-wise explanations enable us to identify when specific concepts are recognized231

within the network. For instance, the “waffled” concept does not significantly activate the initial232

layers of InceptionV3, but it is recognized by deeper layers with a considerable attribution in the final233

one. We also observe that the “hands” concept is detected mainly by earlier layers and contributes234

only marginally to the score of the top classes for the analyzed image. This observation aligns235

with the common intuition that “hands” are not class-discriminative in this particular case for the236

classes “beer glass”, “cocktail shaker”, and “espresso”. In contrast, the “striped” and “pews” concepts237

significantly activate the final layer and substantially contribute to the predictions, although with238

different magnitudes of importance. In the case of the “zebra” image, for instance, the network’s239

decision is largely influenced by the “striped” concept, which accounts for more than half the logit240

value of the “zebra” class. This concept also has a notable impact on the “prairie chicken” class and a241

marginal one on the “gondola” class, probably since gondoliers usually wear striped t-shirts. More242

examples of local explanations can be found in Appendix C.243

4.2 Global Explanations244

The concept attribution is a per-concept metric of importance, hence we can derive global explanations245

by aggregating this attribution across a wide range of input images of a selected class. In our246

experiments, we utilize 200 images per class for each global explanation. For concepts that are247

inherently part of the class (e.g., “striped” for “zebra” or “dimples” for “golf ball”), we can directly248

use any image representing that class. On the other hand, for concepts that appear sporadically, we249

only use images where the concept is present. For instance, we only use images of church interiors250

for “pews” and “fresco” concepts, and images of church exteriors for the “steeple” concept. This251

ensures that the explanations are independent of the frequency of the concept’s appearance in the252

class images.253

The results are shown in Figure 4. The attributions match our intuitive expectations, considering, for254

instance, the importance of the “striped” concept for “zebra” or “spotted” for “dalmatian”. Moreover,255

the final layer typically provides the highest attribution, which is expected for class discriminative256

concepts. However, there are instances, such as “chequered” and “newspaper” for “crossword puzzle”,257

where concepts recognized in the earlier layers have a greater impact on the network’s prediction. We258

observe a more gradual increase in attribution in VGG16 and GoogleNet, compared to InceptionV3259

and ResNet50V2. This could be attributed to the depth of the latter networks, which means they260

perform more convolution operations that could potentially lead to a more complex feature extraction261

between the analyzed layers. More examples of global explanations are provided in Appendix D.262

7



Tr
ai

n
Se

t
Te

st
Se

t

(a) Models results
N

o
Ta

gs
10

0%
Ta

gs
(b) Visual-TCAV for entities

N
o

Ta
gs

10
0%

Ta
gs

(c) Visual-TCAV for tags

Figure 5: The results of the validation experiment. The upper section of the figure shows the test
results and the concept attributions for both entities and tags across all models. The lower section
provides examples of tagged images and concept maps for the no tags model and 100% tags model.

4.3 Validation Experiment with Ground Truth263

We conduct a validation experiment to evaluate the effectiveness of Visual-TCAV. In this experiment,264

we train convolutional networks in a controlled setting, where ground truth is known, and assess265

whether the Visual-TCAV attributions match this ground truth. For this purpose, we create a dataset266

of three classes – cucumber, taxi, and zebra – which are the same classes used in the TCAV paper.267

We then create multiple versions of this dataset by altering a percentage of the images with a tag,268

represented by a letter enclosed in a randomly sized square and added in a random location of the269

image (examples are shown in Figure 5a). Specifically, zebra images are tagged with a “Z” in a270

purple square, taxi images with a “T” in a magenta square, and cucumber images with a “C” in a271

cyan square. From these tagged images, we create five datasets: one of images without tags, and four272

others with 25%, 50%, 75%, and 100% of tagged images, respectively. Each dataset is then used273

to train a different model, each including six convolutional layers and a GAP layer. Depending on274

the dataset used for training, each model may learn to recognize either the entities (i.e., cucumbers,275

taxis, and zebras), the tags, or both and will decide which ones to give more importance. To obtain276

an approximated ground truth assessing which concept – entity or tag – is more important, we ask277

the models to classify a set of 200 incorrectly tagged test images per class. In this test set, taxis are278

tagged with the “Z”, cucumbers are tagged with the “T” and zebras are tagged with the “C”. If the279

network correctly classifies most of the images, it indicates that the entity is more important than the280

tag, and thus, its attribution should be higher. On the other hand, if the performance deteriorates on281

these wrongly tagged images, it indicates that the tag is more important than the entity, and thus its282

attribution should be higher. We obtain the CAVs for entities using images of each class as concept283

examples and random images as negative examples. For tags, we use random images containing that284

tag as concept examples and images of cucumbers, taxis, and zebras containing the other two tags as285

negative examples. We use the same incorrectly tagged test set to compute the concept attributions286

for both entities and tags across the last convolutional layer of all models.287

The results are shown in Figure 5. As expected, an increase in the percentage of tagged images288

correlates with a decrease in accuracy. In particular, for the “cucumber” class the accuracy declines289

much faster compared to other classes, with the majority of the images being incorrectly classified290

as taxis. This suggests that even the models trained on a small fraction of tagged images tend to291

overfit on the “T” tag. The concept attributions for both the “cucumber” entity and the “T” tag292

closely mirror this ground truth. The “zebra” entity and the “C” tag are also consistent with the293

ground truth: the attributions for “zebra” show a positive correlation with accuracy, whereas the294

attributions for the “C” tag demonstrate a clear inverse correlation. Notably, the networks did not295

pay much attention to the “Z” tag, focusing instead on the absence of the other two tags to classify296

zebras. Indeed, the model trained with 100% of images tagged classifies any image without a “C”297

or a “T” tag as “zebra”, regardless of whether the “Z” tag is present or not. This is confirmed by298

8



Figure 6: TCAV scores for tags and entities across each validation model. Results marked with an
asterisk (“*”) have been excluded due to statistical insignificance (p-value > 0.05).

our method, which assigns an attribution of nearly zero to both the “Z” tag and the “taxi” entity for299

the aforementioned model. We tested other saliency methods, such as Grad-CAM and IG, to further300

validate these findings. These methods do not highlight the “Z” tag either, but rather the entire image,301

in search of the “zebra” class (see Appendix B). For models trained with less than 100% of tags, the302

accuracy for “taxi” remains high, implying that these models are indeed capable of recognizing the303

“taxi” entity. The concept attribution for the “taxi” entity aligns with this observation. In Figures304

5b and 5c, we provide examples of concept maps for the model trained without tags and the model305

trained with 100% of tagged images. The former recognizes the entities but not the tags, while the306

latter struggles to recognize the entities but effectively identifies the “T” and “C” tags.307

Comparison with the TCAV Score. The primary difference between our concept attribution and the308

TCAV score is that the former considers not only the direction of gradients but also their magnitude.309

This allows us to measure the concept’s impact on the predictions, beyond just the network’s sensitivity310

to it. To demonstrate this, we compute the TCAV scores for tags and entities across each validation311

model (see Figure 6). On one hand, TCAV scores match the ground truth in showing that the network312

trained without tags exhibits high sensitivity to the entities and no sensitivity to the tags. Furthermore,313

TCAV aligns with the concept attribution in showing that the 100% tags model is sensitive to the314

“T” and “C” tags but not to the “Z”. On the other hand, TCAV struggles to capture the variations315

in the concept’s importance defined by ground truth. In fact, all models except the 100% tags show316

very similar TCAV scores for the entity concepts, even though their importance varies significantly317

across these models. This is attributable to most of the networks being sensitive to the entities.318

Indeed, on images without tags, the models’ accuracies are 96.5%, 96.2%, 96.2%, 95.2%, and 36.2%319

respectively. Similarly, the “C” tag has almost the same TCAV score for the models trained with 25%,320

75%, and 100% tags, which is inconsistent with the decline in accuracy for the “C” tagged zebras.321

5 Conclusion322

In this article, we introduced a novel method, Visual-TCAV, to explain the outputs of image classi-323

fication models. This framework is capable of providing both local and global explanations based324

on high-level concepts, by estimating their attribution to the network’s predictions. Additionally,325

Visual-TCAV generates saliency maps to show where concepts are identified by the network, thereby326

assuring the user that the attributions correspond to the intended concepts. The effectiveness of this327

method was demonstrated across a range of widely used CNNs and through a validation experiment,328

where Visual-TCAV successfully identified the most important concept in each examined model.329

Limitations and Future Work. Visual-TCAV provides a novel approach for concept-based explain-330

ability, but it has some limitations. Our current implementation only considers positive attributions331

for classes with positive logit values. However, since a concept may negatively impact the output,332

in future implementations we aim to include negative values, which would improve explanations333

and also extend the applicability of Visual-TCAV beyond classification tasks. Another limitation334

arises from the accumulation of noise along the IG linear path, which may sometimes result in335

slightly underestimated attributions. Future studies could investigate how to mitigate this using336

alternative IG variants to compute the attributions of feature maps. Additionally, future research337

could explore generative approaches such as DreamBooth [19] to generate a large number of concept338

images starting from a small set of examples, leading to more robust CAVs and reducing workload for339

analysts. Finally, future works could study interconnections between concepts to determine how the340

activation of a concept might influence not only the output but also the activation of other concepts.341
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A Appendix Overview462

In the appendix, we provide:463

B. Saliency methods for 100% tags model464

C. Additional results of Local Explanations465

D. Additional results of Global Explanations466

E. Example images for generated concepts467

B Saliency methods for 100% tags model468

We provide the results obtained by applying IG and Grad-CAM to the 100% tags model (see Figure 7).469

These methods align with Visual-TCAV in showing that this model does not pay attention to the “Z”,470

but rather to the absence of the “T” and the “C” for predicting the “zebra” class.471

(a) Integrated Gradients (b) Grad-CAM

Figure 7: Integrated Gradients and Grad-CAM for the model with 100% tags, searching respectively
for the classes “zebra”, “taxi”, and “cucumber”. Both methods highlight the “T” for class “taxi” and
the “C” for class “cucumber”, but fail to recognize the “Z” for class “zebra”.

C Additional results of Local Explanations472

Continuing from the results presented in Section 4.1, we further provide additional local explanations473

for more input images and concepts in Figure 8.474
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Figure 8: More examples of layer-wise local explanations for various concepts and networks.
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D Additional results of Global Explanations475

Building upon the results outlined in Section 4.2, we provide additional global explanations for476

various classes and concepts in Figure 9.477

Figure 9: More examples of global explanations for various classes, concepts, and networks.
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E Example images for generated concepts478

Some of the concepts used in the paper were automatically generated using Stable Diffusion v1.5 [18]479

with default parameters. In particular, we generated the following concepts: “pews”, “fresco”,480

“arches”, “sky”, “pipes”, and “brass”. We used just the concept name as a prompt and generated 200481

images per concept. A subsequent manual revision was still necessary to eliminate errors and strange482

artifacts. In Figure 10, we provide three example images for each generated concept.483

(a) Fresco (b) Arches

(c) Pews (d) Sky

(e) Brass (f) Pipes

Figure 10: We provide three example images for each concept generated with Stable Diffusion v1.5.
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NeurIPS Paper Checklist484

1. Claims485

Question: Do the main claims made in the abstract and introduction accurately reflect the486

paper’s contributions and scope?487

Answer: [Yes]488

Justification: We claim that our method can provide visual explanations through saliency489

maps based on user-defined concepts, estimate the attributions of these concepts for a490

selected class, and provide both local and global explanations. These claims are all validated491

through the experimental results performed in the paper.492

2. Limitations493

Question: Does the paper discuss the limitations of the work performed by the authors?494

Answer: [Yes]495

Justification: Our work has some limitations, we discuss them in Section 5.1.496

3. Theory Assumptions and Proofs497

Question: For each theoretical result, does the paper provide the full set of assumptions and498

a complete (and correct) proof?499

Answer: [NA]500

Justification: The paper does not include any new proof or theorem.501

4. Experimental Result Reproducibility502

Question: Does the paper fully disclose all the information needed to reproduce the main ex-503

perimental results of the paper to the extent that it affects the main claims and/or conclusions504

of the paper (regardless of whether the code and data are provided or not)?505

Answer: [Yes]506

Justification: Every experimental result presented in the paper is fully reproducible using507

the provided code and data.508

5. Open access to data and code509

Question: Does the paper provide open access to the data and code, with sufficient instruc-510

tions to faithfully reproduce the main experimental results, as described in supplemental511

material?512

Answer: [Yes]513

Justification: We provide the code, data, and instructions needed to reproduce every ex-514

periment both to reviewers and to the public through a GitHub repository (in case of515

publication).516

6. Experimental Setting/Details517

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-518

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the519

results?520

Answer: [Yes]521

Justification: The paper describes in detail all the necessary steps to reproduce and un-522

derstand the experiments. Furthermore, the code used is also available as supplementary523

material.524

7. Experiment Statistical Significance525

Question: Does the paper report error bars suitably and correctly defined or other appropriate526

information about the statistical significance of the experiments?527

Answer: [Yes]528

Justification: In our bar plots we always report 2-sigma error bars.529

8. Experiments Compute Resources530
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Question: For each experiment, does the paper provide sufficient information on the com-531

puter resources (type of compute workers, memory, time of execution) needed to reproduce532

the experiments?533

Answer: [Yes]534

Justification: We describe in detail the characteristics of the machine used to run all the535

experiments and the execution time.536

9. Code Of Ethics537

Question: Does the research conducted in the paper conform, in every respect, with the538

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?539

Answer: [Yes]540

Justification: We have reviewed the NeurIPS Code of Ethics and our research conforms with541

it.542

10. Broader Impacts543

Question: Does the paper discuss both potential positive societal impacts and negative544

societal impacts of the work performed?545

Answer: [Yes]546

Justification: In the introduction, we briefly discuss the problem of transparency in AI547

systems, particularly as Convolutional Neural Networks are being widely utilized in critical548

sectors such as healthcare and autonomous driving. Our work can have a positive societal549

impact by facilitating a trustworthy adoption of these systems. We are not aware of any550

negative impact our work could have.551

11. Safeguards552

Question: Does the paper describe safeguards that have been put in place for responsible553

release of data or models that have a high risk for misuse (e.g., pretrained language models,554

image generators, or scraped datasets)?555

Answer: [NA]556

Justification: This paper does not release any data or models that pose such risks.557

12. Licenses for existing assets558

Question: Are the creators or original owners of assets (e.g., code, data, models), used in559

the paper, properly credited and are the license and terms of use explicitly mentioned and560

properly respected?561

Answer: [Yes]562

Justification: All models and datasets used for the experiments are properly cited in the563

paper.564

13. New Assets565

Question: Are new assets introduced in the paper well documented and is the documentation566

provided alongside the assets?567

Answer: [NA]568

Justification: The paper does not introduce new assets.569

14. Crowdsourcing and Research with Human Subjects570

Question: For crowdsourcing experiments and research with human subjects, does the paper571

include the full text of instructions given to participants and screenshots, if applicable, as572

well as details about compensation (if any)?573

Answer: [NA]574

Justification: The paper does not involve crowdsourcing nor research with human subjects.575

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human576

Subjects577
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Question: Does the paper describe potential risks incurred by study participants, whether578

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)579

approvals (or an equivalent approval/review based on the requirements of your country or580

institution) were obtained?581

Answer: [NA]582

Justification: The paper does not involve crowdsourcing nor research with human subjects.583
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