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Abstract

Goals play a key factor in the agent’s decision-making, and goals can be regarded
as a good representation of an agent’s behavior over a period of time. This essay
introduces an approach to incorporate goals into the framework of Markov games.
Additionally, it provides a methodology for executing goal inference within and
across episodes within this representational context.

1 Introduction

Goals play a pivotal role in steering behavior. It is a concept ingrained in individuals from infancy [6].
The majority of human actions can be explained as goal-directed [3], necessitating their incorporation
when modeling the behavioral decision-making of an agent.

In the realm of computational models, the choice of goal level yields distinct effects. Broadly
speaking, a goal with great abstraction capabilities encapsulates an agent’s behavioral patterns. At this
juncture, the goal serves as a classifier, distinguishing, for instance, whether the agent is cooperative
or competitive [9, 14]. A more specific goal, like navigating to a specific location, functions akin to
a "macro-action." Here, the goal guides decision-making over a defined period, enabling planning
within the goal space. To facilitate extensive sequence planning, goals act as a high-level layer in
hierarchical planning [13]. No matter which level of goal is adopted, the overarching aim is to
abstractly capture agent behavior over time. In this sense, learning goal seems to be learning a good
representation of behavior.

Beyond using goals to help ourselves make decisions and plans, we can also infer other people’s
goals. This ability assists in establishing accurate and appropriate relationships with peers, informing
action choices accordingly. This dynamic naturally gives rise to a multi-agent problem, broadening
the scope of goal representation and inference in the context of Markov games.

2 Markov games with goals

In the exploration of agent decision-making, a widely employed modeling framework is the Markov
Decision Process (MDP) [8]. As we transition to scenarios involving multiple agents, this framework
seamlessly evolves into the realm of Markov Games [10]. Introducing the element of goals further
extends this framework, giving rise to the concept of Markov Game with goals. This specialized
extension is distinctly represented by the tuple < N,S,A, T,R, γ,G >, where

• Agent i ∈ N = {1, 2, · · · , n}.
• State space of agent i: Si = {si}. S = S1 × S2 × · · · × Sn.
• Action space of agent i: Ai = {ai}. A = A1 ×A2 × · · · ×An.
• Transition function T : S ×A× S → [0, 1]. After agents take the joint action a1:n the state

of the environment will transit from s to s′ with probability T (s′|s,a1:n).
• Reward function Ri : S ×A → R, which denotes the immediate reward received by agent i

after joint action a1:n is taken on state s ∈ S.
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• Discount factor for future rewards: γ.
• Goal space of agent i: Gi = {gi}. G = G1 ×G2 × · · · ×Gn.

πi : S × Ai → [0, 1] denotes agent i’s policy, specifying the probability πi(ai|s) that agent i
chooses action ai at state s. For any two agents i and j, j’s true goal is inaccessible to i. However,
i can infer j’s goal based on its action sequence. Specifically, i maintains a belief over j’s goals,
bij : Gj → [0, 1], which is a probability distribution over Gj .

In the proposed representation, the goal appears as an autonomous entity, distinct from the original
Markov Game. A critical exploration involves examining the potential connections between goals,
states, and actions. One intriguing approach is to conceptualize the goal as a composite of trajectories,
denoted as g = {τ}, where τ =< s0, a0, s1, a1, · · · , sterminal > - with the superscript indicating
the current timestep. For instance, reaching a specific state s, a common goal, can be expressed as
{τ |τ.sterminal = s}.

While the current representation provides a comprehensive framework, a notable challenge arises
when the trajectories corresponding to the same goal may have many constraints, potentially leading
to dimension curse. Nevertheless, given that goals inherently offer a powerful abstraction of agent
behavior, their constraints typically remain manageable, easing the computational burden. This
indicates that the detailed trajectory representation of goals may, in this context, introduce some
redundancy.

3 Infer other’s goals in Markov games

In the setting of multi-agent reinforcement learning (MARL), we will go through multiple episodes,
each resembling a Markov game. The task of inferring goals introduces two distinct types of inference:
goal inference within the episode and goal inference between episodes.

The process of goal inference within an episode can be calculated via Bayesian updates [2, 1], aligning
seamlessly with the principles of teleological reasoning [4]. Specifically, in episode K, agent i’s
belief about agent j’s goals at time t, bK,t

ij (gj), is updated according to:

bK,t+1
ij (gj) = Pr(gj |sK,0:t+1, aK,0:t

j )

=
Pr(gj |sK,0:t, aK,0:t−1
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j )

=
bK,t
ij (gj)Pri(a

K,t
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ij (g)Pri(a
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j |sK,0:t, g)

,

(1)

As we discuss in Sec. 2, goals typically exhibit simplicity and possess high abstraction capabili-
ties. Consequently, they often manifest as discrete entities with a limited and manageable number,
rendering Eq. (1) tractable.

Another issue is the goal inference between episodes. The agent may choose different goals due to
different initial states. We hope to give a more accurate prior bK,0

ij (gj) based on the experience of
past episodes. One of the simplest methods is Monte Carlo estimation:

bK,0
ij (gj) = (1− 1

K
)bK−1,0

ij (gj) +
1

K
1(gK−1

j = gj) (2)

Given the dynamic nature of an opponent’s goal preferences, employing updates with fixed weights
emerges as a potentially advantageous strategy. This approach facilitates a more effective tracking
of the opponent’s evolving goal preferences, providing stability and consistency in our efforts to
understand and respond to their latest objectives:

bK,0
ij (gj) = (1− α)bK−1,0

ij (gj) + α1(gK−1
j = gj) (3)

A drawback of Equation 3 lies in the necessity of knowing the goal accomplished by agent j in the
preceding episode during the updating process. This requirement mandates that our model possesses
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the capability to parse the opponent’s trajectory towards the goal, which is an assumption with
potential challenges. However, if we have confidence in the accuracy of our goal inference for agent
j in the previous episode, we can substitute bK−1,Tmax

ij (gj) for 1(gK−1
j = gj):

bK,0
ij (gj) = (1− α)bK−1,0

ij (gj) + αbK−1,Tmax

ij (gj) (4)

However, none of the above methods directly take into account the initial state of the new episode.
In fact, when we model agent j accurately, we may opt to directly ascertain its goal for the current
episode based on the initial state Pr(gj |sK,0)—a process that can be facilitated through supervised
learning. Simultaneously, the likelihood term in Eq. (1) can also be refined through supervised
learning, contingent on the availability of ground-truth goal labels during training. The challenge of
discovering goals without the aid of ground-truth labels remains a noteworthy issue that often garners
significant attention in research [12, 5, 15].

4 Discussion

The focus here delves into a singular computational approach aimed at modeling the objectives
within the landscape of a Markov game. There’s a growing emphasis among decision intelligence
scholars on integrating goals into computations. Research is actively exploring goal-conditioned
policy modeling [11], offering substantial utility in both decision-making and opponent modeling.

In various scenarios, the completion of a task inherently implies the existence of a goal, whether
explicitly considered in decision-making or not. This signifies that irrespective of whether an agent’s
decision-making module encompasses explicit goals or more broadly, a mental state, one can con-
ceptualize the agent as possessing a mental state and consequently draw inferences. But what do
you infer when inferring agents that have no mental state? It may be a reasonable representation and
abstraction of the opponent’s behavior, just like humans interpret intentions from the movements of
inanimate geometric figures [7].
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