
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIMPO: DIMENSIONALITY REDUCTION FOR
ATTENTION USING PREFERENCE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) require substantial memory and computation
time, particularly for long-context tasks. To handle long sequences, LLMs use
KV caches, whose memory size grows linearly with the number of tokens. In
this work, we focus on reducing KV cache memory by projecting key and query
vectors into learned lower-dimensional spaces. We pose the problem - previously
solved with triplet loss for Locality Sensitive Hashing (LSH) - as a preference
optimization problem. We show that the preference optimization approach per-
forms better mostly on higher dimensions indicating its potential for training at-
tention in reduced dimensions. To address this, we introduce DimPO, a novel
reference-model-free, listwise preference optimization loss. We demonstrate that
DimPO more accurately preserves attention distributions in reduced dimensions
compared to both existing preference optimization losses and triplet loss. Building
on this, we apply DimPO-based dimensionality reduction to the attention layers
of LLaMA3-[1B, 3B, 8B], Qwen2.5-7B and Qwen3-4B instruct models. On gen-
eral benchmark tasks, DimPO Attentions reduces KV cache memory by 10-15%
while maintaining 95% of performance. Larger models using DimPO Attentions
on long-context tasks also exhibit only a marginal performance drop.

1 INTRODUCTION

LLMs have demonstrated state-of-the-art performance across a wide range of tasks but require mas-
sive computational resources and incur substantial costs not only for training but also for inference
(Pope et al., 2023; Zhang et al., 2023). Recently, generative models supporting very long input con-
texts - up to 128k tokens - have been released (OpenAI et al., 2024; Grattafiori et al., 2024; Yang
et al., 2025). However, this introduces additional computational and memory challenges, as every
input token must be considered when computing attention for each newly generated query token.

To avoid recomputing the key and value vectors of previously processed tokens, LLMs store them in
a KV cache (Pope et al., 2023). However, with each additional input token, the attention computation
must consider one more token than before, causing both the computational cost and the memory
footprint of the KV cache to grow linearly with the total number of input and generated tokens (Li
et al., 2025).

A variety of works have addressed the problem of optimizing the KV cache, focusing mostly on
encoding or compressing the set of key and value vectors to reduce the number of stored vectors
(Zhang et al., 2023; Tang et al., 2024; Liu et al., 2024; Singhania et al., 2024). In contrast, in this
work we compress along a different axis: rather than reducing the number of stored vectors, we
reduce the dimensionality of each individual key and query vector. This could have two benefits: (i)
key vectors occupy less memory in the KV cache, and (ii) attention weight computation becomes
faster because dot products involve shorter vectors. The value vectors remain unmodified, preserving
the semantic information they carry as long as the attention weight distribution remains sufficiently
close to the original.

Our objective is therefore to train a projection that maps query and key vectors into a low-
dimensional space such that the resulting attention weight distribution remains close to that of the
original, full-dimensional attention, while introducing minimal computational overhead during the
projection itself.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Prior works have also projected keys and queries into lower-dimensional spaces, typically for the
purpose of grouping them into buckets to enable sparse or blockwise attention (Wang et al., 2020;
Chen et al., 2025; Zeng et al., 2025). LSH-based methods, for instance, use multiple random pro-
jections (Kitaev et al., 2020), followed by learnable projections optimized with a triplet loss (Chen
et al., 2021b). These approaches generally require multiple hash functions-i.e., multiple projections-
because any single projection alone does not preserve enough information about the attention distri-
bution (Kitaev et al., 2020; Chen et al., 2021b; 2025).

Inspired by recent advances in preference optimization for post-training alignment of LLMs
(Rafailov et al., 2023; Meng et al., 2024), we frame the problem of dimensionality reduction for
attention as a preference optimization problem. Our goal is to learn a linear layer that projects
queries to relate more strongly to relevant projected keys and less to irrelevant ones, so that the re-
sulting attention weight distribution matches the behavior of the full-dimensional model as closely
as possible.

Preference optimization for post-training align-
ment of LLMs initially relied on reference models
to compute losses (Rafailov et al., 2023; Etha-
yarajh et al., 2024; Liu et al., 2025). Over time,
methods have been developed that do not require
a reference model (Hong et al., 2024; Meng et al.,
2024). This is particularly relevant for our setting:
in the case of attention dimensionality reduction,
it is unclear what a reference model would even
be. Furthermore, typical preference losses are
pairwise, comparing a chosen and a rejected
response, which simplifies data collection. Our
scenario is different: for each query, we need to
capture the full preference ordering across a list
of keys. Constructing all pairwise comparisons
is theoretically possible but computationally
prohibitive and practically infeasible. While
listwise preference losses exist (Liu et al., 2025),
they typically assume a reference model, which
we do not have. These challenges motivate
the need for a custom, reference-free loss func-
tion tailored to attention dimensionality reduction.

To address this, we introduce DimPO, a novel list-
wise, reference-free preference optimization loss
specifically designed for dimensionality reduction
of query and key vectors. DimPO captures the
full preference ordering without relying on a ref-
erence model and, as we show, significantly out-
performs existing approaches, including pairwise
preference optimization losses, triplet loss, and
random projection baselines, indicating its poten-
tial for use in real-world model deployments and
practical tasks.

Figure 1: Decoder model architecture with
integrated DimPO-based attention projection
applied to last ℓ attention layers.

To validate the effectiveness of our KV cache reduction approach, we conduct experiments
on several instruction-tuned models, including LLama3.2-[1B,3B]-Instruct, Llama3.1-8B-Instruct
(Grattafiori et al., 2024), Qwen3-4B-Instruct (Yang et al., 2025), and Qwen-2.5-7B-Instruct (Yang
et al., 2024). We apply our DimPO-trained projections progressively from the top attention layers
downward, as illustrated in Figure 1. This top-down approach ensures that errors from modified
layers have a limited impact on subsequent attention layers.

We measure how many attention layers can be modified using DimPO-based projections and what
proportion of KV cache memory can be saved without causing a significant drop in model perfor-
mance. Evaluations are performed on both general benchmarks and long-context tasks. Our results
indicate that even a 10% reduction in KV cache memory leads to only a marginal performance drop

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

on general tasks. For long-context tasks, larger models maintain performance similar to general
tasks at around 10% memory savings, while smaller models experience a more noticeable decline.

In Sections 3.1 we formalize the attention dimensionality reduction problem and in Section 3.2 we
introduce the DimPO loss function. In Section 3.4, we compare our method with other preference
optimization techniques and baseline approaches in dimensionality reduction of attention. Section 4
presents experiments evaluating DimPO-based projections on real tasks. We investigate how many
attention layers can be modified and quantify the corresponding KV cache memory savings, while
ensuring that model performance remains largely unchanged.

2 RELATED WORKS

KV Cache Optimization The KV cache memory bottleneck in long-context LLMs constrains
batch size and maximum prompt length, motivating strategies to reduce key and value vectors while
maintaining accuracy. H2O (Zhang et al., 2023), SnapKV (Li et al., 2024), and Keyformer (Adnan
et al., 2024) use heuristics during prefilling to select tokens for decoding. Quest (Tang et al., 2024)
and Loki (Singhania et al., 2024) apply dynamic sparsity during inference to reduce KV cache
loading without eviction. KIVI (Liu et al., 2024) and QServe (Lin et al., 2025) reduce KV cache via
quantization.

Attention Approximation via Projections Transformer variants leverage projections to approxi-
mate or accelerate attention. Sparse attention methods (BigBird (Zaheer et al., 2020), Longformer
(Beltagy et al., 2020), SparseAxial (Ho et al., 2020)) compute selected blocks or local windows.
LSH-based approaches (Reformer (Kitaev et al., 2020), KDEformer (Zandieh et al., 2023), Scat-
terBrain (Chen et al., 2021a), MagicPIG (Chen et al., 2025)) approximate attention via locality-
sensitive hashing. Mongoose (Chen et al., 2021b) builds on LSH with learnable projections trained
via triplet loss to group semantically similar keys and queries. Low-rank and linear attention meth-
ods (Linformer (Wang et al., 2020), Performer (Choromanski et al., 2021), Nyströmformer (Xiong
et al., 2021)) project the attention matrix to lower-dimensional spaces. Top-k mechanisms (Un-
limiformer (Bertsch et al., 2023), IceFormer (Mao et al., 2024), ZETA (Zeng et al., 2025)) use
projections and dimension reduction for efficient token selection.

Preference Optimization Preference optimization aligns models with desired outputs using
ranked feedback, often via chosen/rejected pairs. DPO (Rafailov et al., 2023) simplifies RLHF
(Christiano et al., 2017) by removing the reward model and framing alignment as a single-stage
classification, still using a reference model to prevent distributional drift. Variants include ORPO
(Hong et al., 2024) (odds-ratio), SimPO (Meng et al., 2024) (average log-probability as implicit re-
ward), CPO (Xu et al., 2024) (contrastive learning for machine translation), KTO (Ethayarajh et al.,
2024) (prospect-theory utility for binary labels, still needing a reference), and listwise objectives like
LiPO (Liu et al., 2025), considering multiple ranked responses while relying on a reference model.

3 LEARNING LOW-DIMENSIONAL ATTENTION PROJECTION

In this section, we formalize the problem of dimensionality reduction for key and query vectors,
aiming to minimize the KL divergence between the original attention weight distribution and the
distribution computed from the reduced projected vectors. Although more complex non-linear pro-
jection approaches could be considered, we require minimal runtime overhead during inference in
generative language models. For this reason, we focus on learnable linear layer projections and
evaluate several loss functions for training such a projection layer within a Siamese framework (Pai
et al., 2019). To this end, we introduce our novel loss function, DimPO, and compare it with other
preference optimization losses as well as baseline projection approaches.

3.1 PROBLEM FORMULATION

Let l denote a transformer attention layer with query vectors Ql ∈ RN×d and key vectors Kl,q ∈
Rm×d for a given q ∈ Ql where N is the total number of queries, m is the number of keys per each
query and d is the original embedding dimension. Our goal is to learn a shared linear projection

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Siamese network architecture for query q and its associated list of keysK using preference
optimization loss.

function
F : Rd → Rd

′
,

with d′ ≪ d, that maps both queries and keys into a lower-dimensional space such that the resulting
attention weight distribution is as close as possible to the original one. Formally, we solve

F ∗ = argmin
F

1

N

∑
q∈Ql

KL

(
Softmax

(qK⊤
l,q√
d

)
︸ ︷︷ ︸

original attention

, Softmax
(F (q)F (Kk,q)

⊤
√
d′

)
︸ ︷︷ ︸

projected attention

)
,

where KL(·, ·) denotes the Kullback–Leibler divergence between the original and projected attention
distributions.

To minimize this divergence in a computationally efficient way, we restrict F to a single linear pro-
jection layer, F (x) = Wx with W ∈ Rd′×d, ensuring negligible inference overhead in generative
models. We then train W using a Siamese framework, as illustrated in Figure 2, where each query is
paired with its ranked keys (in the case of pairwise losses, only two ranked keys are used) according
to their importance for the given query, derived from the original attention weight distribution. This
setup is formulated as a preference optimization problem: the projection F is optimized such that
keys with higher original attention weights have higher similarity to the query representation (in
terms of dot product), while less relevant keys have lower similarity.

The probability assigned by the linear layer parameters θ to a given key k (either from a key pair
or the full list Kl,q associated with the current training instance) after projection F (k) = k′ and the
corresponding query F (q) = q′ is computed as

πθ(k
′ | q′) = Softmax

(
q′K ′

l,q
⊤

√
d′

)
,

where K ′
l,q = F (Kl,q) denotes the set of projected keys and k′ ∈ K ′

l,q, k ∈ Kl,q. For pairwise
losses, this probability computation is limited to the two selected keys in Kl,q, whereas for listwise
loss functions, all keys associated with the given query are used.

We evaluate the quality of the learned projection F using two complementary metrics, averaged over
all N evaluation instances (q,Kl,q) for all q ∈ Ql, where Vl,q ∈ RN×d denotes the value vectors
for layer l associated with query q.

1. Attention weights KL Divergence: the average Kullback–Leibler divergence between the orig-
inal attention distribution and the projected one for each query-key set:

KL =
1

N

∑
q∈Ql

KL

(
Softmax

(qK⊤
l,q√
d

)
, Softmax

(F (q)F (Kl,q)
⊤

√
d′

))
,

2. Attention output MSE: the average mean squared error between the original attention output
and the output after projection for each query-key set:

MSE =
1

N

∑
q∈Ql

∥∥∥Softmax
(qK⊤

l,q√
d

)
Vl,q − Softmax

(F (q)F (Kl,q)
⊤

√
d′

)
Vl,q

∥∥∥2
2
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 DIMPO: DIMENSIONALITY-REDUCED PREFERENCE OPTIMIZATION

Preference optimization research has predominantly focused on pairwise comparisons (Rafailov
et al., 2023; Hong et al., 2024; Xu et al., 2024; Meng et al., 2024). While effective for many tasks,
this is not practical for dimensionality reduction of query-key interactions, where each query is com-
pared against many keys. Using a pairwise loss, one can either select a single positive-negative key
pair for each query, losing information about relationships with other keys, or consider all possi-
ble key pairs, creating m(m − 1)/2 training instances for each query for m context tokens, which
dramatically increases computational and memory costs making the training infeasible to complete.
For this reason, it is more practical in this setting to adopt listwise preference optimization losses.
One of the most popular pairwise preference optimization methods is DPO (Rafailov et al., 2023):

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
,

which fits naturally into the Bradley-Terry (BT) (Bradley & Terry, 1952) ranking model:

p(yw ≻ yl | x) = σ
(
r(x, yw)− r(x, yl)

)
,

where yw denotes the preferred response, yl the non-preferred response, and r(x, y) is the reward
function. LiPO (Liu et al., 2025) generalizes this BT model to a list of responses y = (y1, . . . , yK):

p(y1 ≻ y2 ≻ · · · ≻ yK | x) =
K∏
i=1

exp(si)∑K
j=i exp(sj)

,

where si = r(x, yi) denotes the score of response yi. This reduces exactly to the pairwise BT
model when K = 2. In the formulation of listwise loss LiPO, the training dataset consists of lists
of responses with corresponding real-valued labels ψ = (ψ1, . . . , ψK), and a ranking loss is applied
over all pairs within the list:

Lλ-loss(πθ) = −E(x,y,ψ)∼D

[∑
ψi>ψj

∆i,j log
(
1 + e−(si−sj)

)]
,

where

∆i,j =

∣∣∣∣ 1

D(τ(i))
− 1

D(τ(j))

∣∣∣∣ , Gi = 2ψi − 1, D(τ(si)) = log(1 + τ(si)).

Here, τ(si) denotes the rank position of yi in the permutation induced by the scores s, and the scores
are defined as

si = β log
πθ(yi | x)
πref(yi | x)

,

with β > 0 controlling the sharpness of the preference optimization.

In our setting, the reference model πref is not available. Furthermore, SimPO argues that using a
reference model during training is inconsistent with inference, in which no reference is present,
which can generate inaccurate responses (Meng et al., 2024). However, in our setting, we treat πref
as a uniform distribution and approximate it with a constant 1/c, which cancels in the log-ratio in
the e−(si−sj) term of the sum in the LiPO loss equation

si − sj = β log
πθ(yi | x)
πref(yi | x)

− β log
πθ(yj | x)
πref(yj | x)

= β
(
log πθ(yi | x)− log πref(yi | x)− log πθ(yj | x) + log πref(yj | x)

)
= β

(
log πθ(yi | x)− log πθ(yj | x)

)
,

yielding
si = β log πθ(yi | x).

Finally, following SimPO’s BT adaptation, which introduces a target reward margin γ > 0 to ensure
that the score difference between better and worse responses is at least γ (a margin known to improve

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

generalization capabilities of classifiers (Boser et al., 1992; Cortes & Vapnik, 1995; Agresti, 2002;
Turner & Firth, 2012)) the pairwise margin-adjusted BT model is defined as

p(yw ≻ yl | x) = σ
(
r(x, yw)− r(x, yl)− γ

)
.

Building on this, we now introduce our preference optimization loss, DimPO:

LDimPO(πθ) = −E(x,y,ψ)∼D

[∑
ψi>ψj

∆i,j log
(
1 + e−(si−sj−γ)

)]
, (1)

with ∆i,j , Gi, D(τ(si)), τ(si) and scores si = β log πθ(yi|x) as defined above. This formulation
provides a reference-model-free, listwise, margin-aware preference optimization objective, captur-
ing all key-query interactions efficiently while maintaining theoretical consistency with DPO when
K = 2.

3.3 TRAINING SETUP

Having defined the objective, we now describe the practical training procedure used to obtain the
projection F . The projection is trained independently for each transformer layer l, but a single W is
shared across all attention heads within that layer to reduce parameter count and training complexity.

For training, we take the first 4096 tokens from 10 chapters of the training split of the BOOKSUM
dataset (Kryscinski et al., 2022), ensuring that each chapter contains at least 4096 tokens. Each
chapter thus provides a set of queries paired with lists of 4096 keys. To balance coverage and
computational efficiency, we subsample everyHl,q-th query from each attention head, whereHl,q is
the number of query heads in layer l, resulting in a total of 40,960 training instances per layer. The
parameters of the projection function F are then optimized using the Adam optimizer.

For validation, we select 10 chapters from the BOOKSUM validation split, each containing at least
4096 tokens, and use the first 4096 tokens from each chapter. For evaluation, we select 10 chapters
from the BOOKSUM test split in the same manner, using the first 4096 tokens of each chapter. Unlike
training and validation, during evaluation we include all queries from all attention heads to obtain a
complete measure of attention distribution preservation.

Before training, we first derive preference rankings from the key and query vectors. For DimPO,
we additionally assign a score to each key by computing the original attention weights si =

Softmax
(
qKl,q√

d

)
i
. Sorting the keys in descending order by si yields a preference ranking.

For DimPO training, we use all keys of each training instance with their exact scores as attention
weights si and the derived preference ranking. For other methods that use pairwise losses, we select
a single key pair per training instance, choosing the highest-ranked key as chosen and the lowest-
ranked key as rejected, following the setup used by Mongoose for triplet-loss training (Chen et al.,
2021b). This ensures that all methods (ours as well as other preference optimization losses) are
trained on an equal number of training instances (see Appendix C for evidence that, even if more
complex training with multiple pairs were used, pairwise methods often stagnate or degrade rather
than improve). Detailed hyperparameters used for training each method are provided in Appendix A.

3.4 BASELINE COMPARISON

In this section, we compare DimPO against several pairwise, reference-model-free preference op-
timization methods, namely CPO, ORPO, and SimPO, on the task of attention dimensionality re-
duction. We also include random projection and triplet loss as baselines, and add PCA projection
as a reference. While PCA is neither designed for online training nor aimed at preserving attention-
relevant dimensions, it provides a useful comparison, even though it discards variance from low-
variance dimensions that may still be crucial for attention.

For evaluation, we train a separate linear projection layer for each attention layer of Llama3.1-8B-
Instruct. Results for Qwen and other Llama models are provided in Appendix B. Each projection
maps from the original head dimension d = 128 to a target dimension d′ ≪ 128 (note that Llama3.2-
1B uses d = 64, while all other reported models have d = 128). Table 1 summarizes the results,
averaged across all layers, for d′ ∈ {64, 32, 16, 8, 4, 2, 1}.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

64 32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 12.56 0.084 14.50 0.104 15.78 0.119 16.52 0.129 16.60 0.128 16.82 0.132 16.70 0.126
PCA 2.65 0.011 5.71 0.013 7.28 0.013 7.57 0.013 6.66 0.016 6.44 0.019 6.49 0.021
Triplet 3.19 0.014 3.61 0.014 3.97 0.015 4.14 0.015 4.16 0.015 4.18 0.015 4.33 0.015
CPO 2.22 0.010 1.80 0.008 2.32 0.012 3.27 0.014 3.81 0.015 4.13 0.015 4.44 0.015
SimPO 2.90 0.010 2.11 0.009 1.94 0.009 2.17 0.009 2.58 0.012 3.05 0.016 3.86 0.028
ORPO 2.72 0.010 1.93 0.008 1.75 0.008 1.96 0.009 2.31 0.011 2.68 0.015 3.26 0.022
DimPO 0.67 0.005 0.97 0.006 1.29 0.007 1.57 0.008 1.83 0.009 2.10 0.011 2.62 0.014

Table 1: Comparison of different projection approaches for Llama3.1-8B-Instruct. Reported values
are attention weights KL divergence and attention output MSE (lower is better), averaged across all
attention layers, for different target dimensions d′ ∈ {64, 32, 16, 8, 4, 2, 1}.

d′ / ℓ 0 2 4 8 12 16 20 24 28 30 32
64 66 / 0% 66 / 2% 66 / 3% 66 / 6% 65 / 9% 64 / 13% 61 / 16% 57 / 19% 52 / 22% 48 / 23% 43 / 25%

16 66 / 0% 65 / 3% 65 / 5% 64 / 11% 62 / 16% 52 / 22% 42 / 27% 37 / 33% 35 / 38% 35 / 41% 35 / 44%

4 66 / 0% 65 / 3% 64 / 6% 62 / 12% 54 / 18% 42 / 24% 36 / 30% 35 / 36% 34 / 42% 35 / 45% 35 / 48%

1 66 / 0% 65 / 3% 64 / 6% 59 / 12% 52 / 19% 39 / 25% 35 / 31% 35 / 37% 35 / 43% 35 / 47% 36 / 50%

Table 2: Average performance across Arc-Challenge, HellaSwag, TruthfulQA-mc2, MMLU and
WinoGrande tasks for Llama3.1-8B-Instruct. Each cell reports the average score and the percentage
of KV cache memory saved for the number of projected attention layers ℓ and target dimension d′.

Table 1 shows that learned linear projections outperform random projections, commonly used in
LSH-based approaches. Preference optimization losses consistently exceed the Mongoose triplet-
loss approach, especially at higher dimensions. Among these, DimPO achieves roughly three times
lower error than triplet loss in high-dimensional settings and surpasses other preference optimization
losses across all tested d′. Overall, DimPO consistently ranks best across all target dimensions,
highlighting its potential for training attention in reduced dimensions beyond LSH use cases.

If the learned projection accurately estimates the attention weight distribution in a low-dimensional
key-query space, it can enable smaller KV caches and faster inference without sacrificing perfor-
mance. However, for practical deployment, an open question remains: how far can we safely reduce
dimensionality, and in how many layers, before accumulated deviation from the original attention
distribution begins to degrade model performance? Even a small perturbation in the first layer could
propagate and amplify through the network, whereas a similar perturbation in the final layer may
have minimal downstream effect.

4 EXPERIMENTS

From the previous section, we know that DimPO outperforms all other methods in estimating atten-
tion weight distributions. Therefore, under the same training settings, we train a linear layer with the
DimPO loss for each attention layer of the generative model independently. It remains unclear how
many attention layers can be safely integrated with this projection without causing a noticeable drop
in performance. Since errors in the i-th attention layer affect all subsequent layers, while preceding
layers remain unaffected, it is sensible to integrate projections starting from the last layer. Noise in
the last attention layer does not propagate further, whereas noise in the first layer impacts all follow-
ing layers. Accordingly, in the experiments that follow, we apply DimPO-based projections starting
from the back and progressively extend them toward the beginning, studying the trade-off between
performance drop and KV cache memory reduction, as illustrated in Figure 1.

Storing keys and values in the KV cache at their original sizes and head dimensions across all layers
is considered 0% KV cache reduction. Conversely, if key vectors were not stored at all, the remaining
value vectors (unchanged by our method) would account for 50% of the total KV cache, representing
a practical upper bound on achievable reduction. Projecting key vectors to fewer dimensions across
more layers reduces the KV cache memory footprint, the primary objective of our method.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

d′ / ℓ 0 2 4 6 9 12 15 21 27 32 36
64 66 / 0% 66 / 1% 66 / 3% 66 / 4% 65 / 6% 65 / 8% 63 / 10% 61 / 15% 56 / 19% 54 / 22% 52 / 25%

16 66 / 0% 65 / 2% 64 / 5% 63 / 7% 62 / 11% 57 / 15% 49 / 18% 42 / 26% 39 / 33% 36 / 39% 34 / 44%

4 66 / 0% 64 / 3% 63 / 5% 62 / 8% 60 / 12% 49 / 16% 43 / 20% 38 / 28% 36 / 36% 35 / 43% 35 / 48%

1 66 / 0% 64 / 3% 63 / 6% 61 / 8% 59 / 12% 47 / 17% 42 / 21% 38 / 29% 35 / 37% 35 / 44% 35 / 50%

Table 3: Average performance across Arc-Challenge, HellaSwag, TruthfulQA-mc2, MMLU and
WinoGrande tasks for Qwen3-4B-Instruct. Each cell reports the average score and the percentage
of KV cache memory saved for the number of projected attention layers ℓ and target dimension d′.

To evaluate model performance for varying num-
bers ℓ of DimPO-based projected attention lay-
ers and projected dimensions d′ ∈ {64, 16, 4, 1}
from the original 128, we measure five
generic benchmark tasks: Arc-Challenge
(acc norm) (Clark et al., 2018), HellaSwag
(acc norm) (Zellers et al., 2019), MMLU (acc)
(Hendrycks et al., 2021), TruthfulQA-mc2
(acc) (Lin et al., 2022), and WinoGrande (acc)
(Sakaguchi et al., 2021) using harness 0.4.9.1
(Sutawika et al., 2025) in zero-shot settings. The
average scores along with the corresponding KV
cache memory reduction percentages for differ-
ent d′ and ℓ settings are reported in Table 2 for
Llama3.1-8B-Instruct and Table 3 for Qwen3-
4B-Instruct.

Figure 3: Average performance across Arc-
Challenge, HellaSwag, TruthfulQA-mc2,
MMLU, and WinoGrande tasks, shown as a
function of KV cache reduction.

The tables show the average harness score and the percentage of KV cache memory reduced (see
Appendix D for detailed results on all tasks and models, including Llama3.2-1B-, 3B-, 8B-Instruct,
Qwen3-4B-, and Qwen2.5-7B-Instruct). Projecting only the last few layers minimally affects perfor-
mance, even at dimensions as low as 4 or 1, while projecting layers further from the output gradually
reduces it. Figure 3 illustrates this trend across all five models, showing that a 10–15% KV cache
reduction preserves roughly 95% of the original performance.

The challenges of computational time and large KV cache memory primarily arise in long-context
tasks. Based on Figure 3, we selected settings for evaluating the efficiency of DimPO-based projec-
tion method on long-context tasks, reducing the KV cache by approximately 6%, 10%, and 12%.
We compare these settings across all models (excluding Qwen2.5, whose pretraining did not ex-
tensively target long-context tasks) against their base models on all RULER subtasks (Hsieh et al.,
2024) available in harness 0.4.9.1 for 4k and 8k context lengths. Table 4 reports averages across all
subtasks for the specified context lengths, including throughput in tokens/s.1

Unlike generic tasks, smaller models are more sensitive to DimPO-based projections on long-
context tasks, particularly Llama 1B, which quickly experienced substantial performance degra-
dation. Larger models, such as Llama3.2-8B-Instruct and Qwen3-4B-Instruct, are more robust and
exhibit trends in preserving performance under KV cache reductions similar to those observed in
generic tasks, suggesting that the performance impact could be even smaller for larger and more
resilient models. In addition to reducing KV cache memory usage, integrating DimPO-based pro-
jections into the attention layers also tends to increase token throughput.

Building on these observations, we explore the interaction between DimPO-based projections and
the MagicPIG framework, which efficiently optimizes KV cache and attention computation for
long-context tasks using LSH-based random projections and CPU-GPU co-design. We investigate
whether DimPO can complement MagicPIG by further reducing KV cache usage while maintaining
performance. Since MagicPIG currently supports only LLaMA3.1-8B-Instruct among our models,
Table 5 compares the base model, its MagicPIG variant, and the MagicPIG variant with DimPO ap-
plied to the last 12 layers, corresponding to a 10% reduction of the original MagicPIG KV cache.

1Throughput was measured using the eager attention implementation for a fair comparison, since other
optimized attention implementations either do not support varying key, value, and query dimensions or are not
optimized for such cases, which is why we restrict our evaluation to 4k and 8k context lengths.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Average Tokens/s
4K 8K 4K 8K

Llama3.2-1B-Instruct (full) 79.35 72.94 29.09 10.58
6.25% d′ = 32, ℓ = 4 54.82 35.23 34.59 17.08
9.38% d′ = 32, ℓ = 6 17.72 8.95 32.98 15.63

12.50% d′ = 32, ℓ = 8 3.53 1.87 34.77 16.54
Llama3.2-3B-Instruct (full) 92.56 87.31 18.94 7.16

6.25% d′ = 64, ℓ = 7 86.04 75.68 19.36 7.91
10.71% d′ = 64, ℓ = 12 81.83 71.14 19.32 8.39
12.50% d′ = 64, ℓ = 14 72.61 61.84 17.65 7.81

Llama3.1-8B-Instruct (full) 95.05 93.94 13.35 4.57
6.25% d′ = 64, ℓ = 8 94.22 91.06 13.27 4.65
9.38% d′ = 64, ℓ = 12 93.59 89.15 13.39 4.79

12.50% d′ = 64, ℓ = 16 90.46 85.09 20.17 10.88
Qwen3-4B-Instruct (full) 93.86 93.08 13.37 4.98

6.25% d′ = 64, ℓ = 9 93.28 90.19 10.94 5.99
10.42% d′ = 64, ℓ = 15 92.01 83.92 18.10 9.53
12.50% d′ = 64, ℓ = 18 84.84 70.27 17.92 7.07

Table 4: Average accuracy and token throughput on RULER long-context tasks for different models
in different DimPO projection settings.

RULER
LongBench 4K 8K 16K 32K 65K

Llama3.1-8B-Instruct 37.83 95.05 93.94 93.39 87.76 84.75
MagicPIG 35.84 92.63 92.35 91.64 86.71 83.67
MagicPIG 9.38% (d′ = 64, ℓ = 12) 32.58 87.59 83.41 79.56 75.29 63.66

Table 5: Comparison of Llama3.1-8B-Instruct, MagicPIG (K = 8, L = 75) built on Llama3.1-
8B-Instruct, and MagicPIG extended with DimPO-based projections on d′ = 64, ℓ = 12 attention
layers, which reduce KV cache memory by 9.38%.

Performance is evaluated on LongBench (Bai et al., 2024) and RULER (Hsieh et al., 2024) tasks
across different context lengths, averaging scores over all available subtasks with harness 0.4.9.1
(Sutawika et al., 2025). Despite the additional error introduced by projecting multiple layers, per-
formance decreases gradually and remains reasonably high, highlighting the potential of combining
these two approaches to optimize inference for long-context generative tasks.

5 CONCLUSION

In this work, we approached attention dimensionality reduction as a preference optimization prob-
lem with the goal of reducing KV cache memory. We introduced DimPO, a listwise preference-
optimization loss, which consistently outperforms not only existing approaches for projecting key
and query vectors but also other reference-model-free preference optimization losses. These pro-
jections enable more efficient inference, achieving a 10-15% reduction in KV cache memory with
only about a 5% performance drop on generic tasks. While long-context tasks present a greater
challenge (particularly for smaller models), larger models maintain performance close to their base-
lines even when reducing KV cache memory by 10%, indicating that the approach scales well to
larger architectures. Beyond introducing a novel preference-optimization loss function and refram-
ing dimensionality reduction as a preference-optimization problem, our work proposes a promising
direction for future research by using dimensionality reduction of key and query vectors to optimize
KV cache memory usage and attention computation efficiency, addressing two open and critical
challenges for scaling large language models. 2

2DimPO code is available at: anonymized

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J. Nair, Ilya Soloveychik,
and Purushotham Kamath. Keyformer: Kv cache reduction through key tokens se-
lection for efficient generative inference. In P. Gibbons, G. Pekhimenko, and C. De
Sa (eds.), Proceedings of Machine Learning and Systems, volume 6, pp. 114–127,
2024. URL https://proceedings.mlsys.org/paper_files/paper/2024/
file/48fecef47b19fe501d27d338b6d52582-Paper-Conference.pdf.

Alan Agresti. Categorical data analysis. Hoboken. NJ: wiley, 2002.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172/.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew Gormley. Unlimiformer:
Long-range transformers with unlimited length input. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 35522–35543. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, pp. 144–152, New York, NY, USA, 1992. Association for Computing Ma-
chinery. ISBN 089791497X. doi: 10.1145/130385.130401. URL https://doi.org/10.
1145/130385.130401.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952. ISSN 00063444, 14643510. URL
http://www.jstor.org/stable/2334029.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scat-
terbrain: Unifying sparse and low-rank attention. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 17413–17426. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. {MONGOOSE}: A learnable {lsh} framework
for efficient neural network training. In International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?id=wWK7yXkULyh.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, and Beidi Chen. MagicPIG: LSH sampling for
efficient LLM generation. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=ALzTQUgW8a.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
formers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Ua6zuk0WRH.

10

https://proceedings.mlsys.org/paper_files/paper/2024/file/48fecef47b19fe501d27d338b6d52582-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/48fecef47b19fe501d27d338b6d52582-Paper-Conference.pdf
https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
http://www.jstor.org/stable/2334029
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://openreview.net/forum?id=wWK7yXkULyh
https://openreview.net/forum?id=ALzTQUgW8a
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273–297,
1995.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization, 2024. URL https://arxiv.org/abs/
2402.01306.

Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in
multidimensional transformers, 2020. URL https://openreview.net/forum?id=
H1e5GJBtDr.

Jiwoo Hong, Noah Lee, and James Thorne. ORPO: Monolithic preference optimization with-
out reference model. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
11170–11189, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.626. URL https://aclanthology.org/2024.
emnlp-main.626/.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Sy.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkHtvB.

Wojciech Kryscinski, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
BOOKSUM: A collection of datasets for long-form narrative summarization. In Yoav Gold-
berg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 6536–6558, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.488. URL
https://aclanthology.org/2022.findings-emnlp.488/.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management, 2025. URL https://arxiv.org/abs/2412.19442.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen
Ye, Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what
you are looking for before generation. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 22947–22970. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/28ab418242603e0f7323e54185d19bde-Paper-Conference.pdf.

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=H1e5GJBtDr
https://openreview.net/forum?id=H1e5GJBtDr
https://aclanthology.org/2024.emnlp-main.626/
https://aclanthology.org/2024.emnlp-main.626/
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://aclanthology.org/2022.findings-emnlp.488/
https://arxiv.org/abs/2412.19442
https://proceedings.neurips.cc/paper_files/paper/2024/file/28ab418242603e0f7323e54185d19bde-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/28ab418242603e0f7323e54185d19bde-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.
acl-long.229/.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. QServe:w4a8KV4 quantization and system co-design for efficient LLM serving. In Eighth
Conference on Machine Learning and Systems, 2025. URL https://openreview.net/
forum?id=1FfmStySS1.

Tianqi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi, Yao Zhao, Mo-
hammad Saleh, Simon Baumgartner, Jialu Liu, Peter J Liu, and Xuanhui Wang. LiPO: List-
wise preference optimization through learning-to-rank. In Luis Chiruzzo, Alan Ritter, and
Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 2404–2420, Albuquerque, New Mexico, April 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.121. URL
https://aclanthology.org/2025.naacl-long.121/.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen (Henry) Zhong, Zhaozhuo Xu, Vladimir Braverman,
Beidi Chen, and Xia Hu. Kivi: a tuning-free asymmetric 2bit quantization for kv cache. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

Yuzhen Mao, Martin Ester, and Ke Li. Iceformer: Accelerated inference with long-sequence trans-
formers on CPUs. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=6RR3wU4mSZ.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimiza-
tion with a reference-free reward. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Infor-
mation Processing Systems, volume 37, pp. 124198–124235. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/e099c1c9699814af0be873a175361713-Paper-Conference.pdf.

OpenAI et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Gautam Pai, Ronen Talmon, Alex Bronstein, and Ron Kimmel. Dimal: Deep isometric manifold
learning using sparse geodesic sampling. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 819–828, 2019. doi: 10.1109/WACV.2019.00092.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scal-
ing transformer inference. In D. Song, M. Carbin, and T. Chen (eds.), Proceed-
ings of Machine Learning and Systems, volume 5, pp. 606–624. Curan, 2023. URL
https://proceedings.mlsys.org/paper_files/paper/2023/file/
c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 53728–53741. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, August 2021. ISSN
0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381.

12

https://aclanthology.org/2022.acl-long.229/
https://aclanthology.org/2022.acl-long.229/
https://openreview.net/forum?id=1FfmStySS1
https://openreview.net/forum?id=1FfmStySS1
https://aclanthology.org/2025.naacl-long.121/
https://openreview.net/forum?id=6RR3wU4mSZ
https://proceedings.neurips.cc/paper_files/paper/2024/file/e099c1c9699814af0be873a175361713-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e099c1c9699814af0be873a175361713-Paper-Conference.pdf
https://arxiv.org/abs/2303.08774
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://doi.org/10.1145/3474381

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki:
Low-rank keys for efficient sparse attention. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 16692–16723. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/1e027da6bec9ceb2ec37951ceeccae93-Paper-Conference.pdf.

Lintang Sutawika, Hailey Schoelkopf, Leo Gao, Baber Abbasi, Stella Biderman, Jonathan Tow, ben
fattori, Charles Lovering, farzanehnakhaee70, Jason Phang, Anish Thite, Fazz, Aflah, Niklas,
Thomas Wang, sdtblck, nopperl, gakada, tttyuntian, researcher2, Julen Etxaniz, Chris, Han-
wool Albert Lee, Leonid Sinev, Zdeněk Kasner, Kiersten Stokes, Khalid, KonradSzafer, Jef-
frey Hsu, and Anjor Kanekar. Eleutherai/lm-evaluation-harness: v0.4.9.1, August 2025. URL
https://doi.org/10.5281/zenodo.16737642.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: query-
aware sparsity for efficient long-context llm inference. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Heather Turner and David Firth. Bradley-terry models in r: The bradleyterry2 package. Journal
of Statistical Software, 48(9):1–21, 2012. doi: 10.18637/jss.v048.i09. URL https://www.
jstatsoft.org/index.php/jss/article/view/v048i09.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020. URL https://arxiv.org/abs/2006.04768.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(16):14138–14148, May 2021.
doi: 10.1609/aaai.v35i16.17664. URL https://ojs.aaai.org/index.php/AAAI/
article/view/17664.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: pushing the boundaries of
llm performance in machine translation. In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115,
2024. URL https://doi.org/10.48550/arXiv.2412.15115.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17283–17297. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf.

13

https://proceedings.neurips.cc/paper_files/paper/2024/file/1e027da6bec9ceb2ec37951ceeccae93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1e027da6bec9ceb2ec37951ceeccae93-Paper-Conference.pdf
https://doi.org/10.5281/zenodo.16737642
https://www.jstatsoft.org/index.php/jss/article/view/v048i09
https://www.jstatsoft.org/index.php/jss/article/view/v048i09
https://arxiv.org/abs/2006.04768
https://ojs.aaai.org/index.php/AAAI/article/view/17664
https://ojs.aaai.org/index.php/AAAI/article/view/17664
https://doi.org/10.48550/arXiv.2412.15115
https://arxiv.org/abs/2505.09388
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. KDEformer: Accelerating transformers
via kernel density estimation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 40605–40623. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/zandieh23a.html.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

QIUHAO Zeng, Jerry Huang, Peng Lu, Gezheng Xu, Boxing Chen, Charles Ling, and Boyu Wang.
ZETA: Leveraging z-order curves for efficient top-k attention. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=j9VVzueEbG.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang ”Atlas” Wang, and Beidi Chen. H2o:
Heavy-hitter oracle for efficient generative inference of large language models. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 34661–34710. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf.

14

https://proceedings.mlr.press/v202/zandieh23a.html
https://proceedings.mlr.press/v202/zandieh23a.html
https://aclanthology.org/P19-1472/
https://openreview.net/forum?id=j9VVzueEbG
https://openreview.net/forum?id=j9VVzueEbG
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A HYPERPARAMETERS OF DIMENSIONALITY REDUCTION APPROACHES

Hyperparameters. We report here the hyperparameters used for preference optimization based di-
mensionality reduction. All methods were trained using the Adam optimizer, with the learning rate
specified in the tables. Hyperparameters were tuned on a validation set extracted from BOOKSUM to
select the final configuration. To provide a sense of computational cost, we also report the approx-
imate training time per attention layer: DimPO is slower (5 min/layer) due to additional attention
computations for computing model likelihoods, whereas SimPO, Triplet, ORPO, and CPO are sub-
stantially faster (10 s/layer). Table 6 lists the final selected settings. Table 7 enumerates all tested
values for each hyperparameter across methods, wherever applicable.

Method β γ Learning rate Batch size Time/layer
DimPO 1.0 0.0001 0.0001 1 ∼5 min
SimPO 1.0 1.0 0.001 32 ∼10 s
Triplet – – 0.0001 32 ∼10 s
ORPO 0.1 – 0.001 32 ∼10 s
CPO 1.0 0.1 0.0001 32 ∼10 s

Table 6: Final hyperparameter settings for all preference optimization methods.

Hyperparameter Tested values
β 0.0001, 0.001, 0.01, 0.1, 1.0, 2, 2.5, 5.0
γ 0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0
Learning rate 1e-5, 1e-4, 1e-3, 1e-2, 0.1
Batch size 1, 2, 4, 8, 16, 32, 64

Table 7: Hyperparameter values explored during tuning for all methods, where applicable.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PERFORMANCE EVALUATION OF PROJECTION APPROACHES

32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 15.02 0.087 15.92 0.092 16.37 0.095 16.49 0.103 16.62 0.099 16.42 0.102
PCA 3.83 0.014 7.09 0.016 8.04 0.017 8.06 0.020 8.46 0.026 8.13 0.026
Triplet 3.15 0.010 3.59 0.010 3.92 0.011 4.07 0.011 4.14 0.011 4.21 0.011
CPO 1.92 0.008 2.69 0.010 3.39 0.011 3.89 0.011 4.20 0.011 4.40 0.011
SimPO 1.67 0.008 1.93 0.008 2.52 0.010 3.08 0.012 3.61 0.016 4.35 0.020
ORPO 1.62 0.008 1.86 0.008 2.38 0.009 2.78 0.011 3.02 0.012 3.69 0.016
DimPO 0.94 0.007 1.45 0.008 1.95 0.009 2.38 0.009 2.64 0.010 3.19 0.014

Table 8: Comparison of different projection approaches for Llama3.2-1B-Instruct. We report the
KL Divergence of attention weights and the MSE of attention outputs, averaged over all attention
layers, for different target dimensions d′ ∈ {32, 16, 8, 4, 2, 1}.

64 32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 12.56 0.084 14.50 0.104 15.78 0.119 16.52 0.129 16.60 0.128 16.82 0.132 16.70 0.126
PCA 2.65 0.011 5.71 0.013 7.28 0.013 7.57 0.013 6.66 0.016 6.44 0.019 6.49 0.021
Triplet 3.19 0.014 3.61 0.014 3.97 0.015 4.14 0.015 4.16 0.015 4.18 0.015 4.33 0.015
CPO 2.22 0.010 1.80 0.008 2.32 0.012 3.27 0.014 3.81 0.015 4.13 0.015 4.44 0.015
SimPO 2.90 0.010 2.11 0.009 1.94 0.009 2.17 0.009 2.58 0.012 3.05 0.016 3.86 0.028
ORPO 2.72 0.010 1.93 0.008 1.75 0.008 1.96 0.009 2.31 0.011 2.68 0.015 3.26 0.022
DimPO 0.67 0.005 0.97 0.006 1.29 0.007 1.57 0.008 1.83 0.009 2.10 0.011 2.62 0.014

Table 9: Comparison of different projection approaches for Llama-3B-Instruct. We report the KL
Divergence of attention weights and the MSE of attention outputs, averaged over all attention layers,
for different target dimensions d′ ∈ {64, 32, 16, 8, 4, 2, 1}.

64 32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 14.07 1.269 14.85 1.577 15.49 1.837 15.75 2.045 15.89 2.131 16.01 2.173 15.88 1.929
PCA 4.42 0.217 6.51 0.267 8.01 0.360 9.16 0.503 10.02 0.554 10.34 0.533 10.36 0.534
Triplet 2.50 0.149 2.90 0.155 3.14 0.159 3.39 0.165 3.54 0.166 3.64 0.167 3.75 0.169
CPO 2.52 0.216 2.06 0.170 2.54 0.148 3.12 0.156 3.44 0.165 3.55 0.169 3.79 0.168
SimPO 1.44 0.115 1.72 0.120 2.20 0.132 2.86 0.145 3.58 0.186 4.03 0.248 4.42 0.270
ORPO 1.39 0.116 1.66 0.107 2.06 0.131 2.51 0.146 2.96 0.171 3.29 0.196 3.51 0.263
DimPO 0.73 0.052 1.15 0.076 1.57 0.089 1.89 0.107 2.07 0.117 2.27 0.132 2.74 0.223

Table 10: Comparison of different projection approaches for Qwen3-4B-Instruct. We report the KL
Divergence of attention weights and the MSE of attention outputs, averaged over all attention layers,
for different target dimensions d′ ∈ {64, 32, 16, 8, 4, 2, 1}.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

64 32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 14.65 1.181 15.58 1.459 15.82 1.594 16.02 1.789 16.08 1.911 16.09 1.739 15.96 1.705
PCA 3.65 0.826 7.49 0.891 10.39 0.936 11.32 0.939 11.40 0.985 11.43 1.138 11.41 1.205
Triplet 2.51 0.104 2.92 0.108 3.23 0.115 3.44 0.114 3.52 0.114 3.64 0.116 3.69 0.119
CPO 2.53 0.120 2.34 0.109 2.61 0.110 3.19 0.117 3.51 0.119 3.70 0.179 3.85 0.118
SimPO 1.58 0.094 1.83 0.101 2.43 0.120 3.18 0.144 3.96 0.174 4.44 0.193 4.63 0.254
ORPO 1.61 0.096 1.85 0.104 2.30 0.114 2.87 0.134 3.39 0.148 3.69 0.156 3.75 0.169
DimPO 0.78 0.057 1.15 0.078 1.62 0.102 2.07 0.111 2.43 0.111 2.75 0.126 3.10 0.736

Table 11: Comparison of different projection approaches for Qwen2.5-7B-Instruct. We report the
KL Divergence of attention weights and the MSE of attention outputs, averaged over all attention
layers, for different target dimensions d′ ∈ {64, 32, 16, 8, 4, 2, 1}.

C EFFECT OF KEY-PAIR SELECTION ON PAIRWISE LOSSES

(a) All key pairs (b) Multiple distinct pairs

(c) Level of key diversity

Figure 4: Effect of key-pair selection on pairwise losses. (a) Using all possible key pairs from a sam-
pled subset shows that DimPO keeps improving as more keys are included, whereas pairwise meth-
ods either plateau or degrade beyond a certain point. (b) Training with multiple non-overlapping
pairs per query does not yield improvements, suggesting that additional pairs introduce noise rather
than meaningful signal. (c) Increasing the diversity between chosen and rejected keys consistently
improves performance, indicating that pairwise losses benefit most from highly diverse key pairs.

The observation that DimPO outperforms the other loss functions raises the question of whether
this advantage comes from a better inductive bias or simply from receiving more training signal.
Although all methods use the same number of training instances, DimPO uses all keys associated
with a given query, whereas pairwise losses rely on only two keys (chosen and rejected). Provid-
ing every possible key pair to pairwise methods would be computationally prohibitive due to the
combinatorial growth in training examples, but it is still informative to study whether their weaker
performance is caused by this information bottleneck. To this end, we perform three controlled
experiments on the attention layers of Llama3.2-1B-Instruct, Llama3.2-3B-Instruct, Llama3.1-8B-
Instruct, and Qwen3-4B-Instruct, reporting averages across all models. For efficiency, training is
performed on 128-token subsequences sampled from 10 chapters, and evaluation uses a validation
set of 10 full-length chapters (4096 tokens each) from BOOKSUM.

All Key Pairs. We first investigate pairwise methods and DimPO by sampling k ∈ {2, 4, 8, 16}
keys from the 128 available keys per sequence and using all possible key pairs within this subset for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

training. Figure 4a reports two metrics, averaged across all attention layers and target dimensions
d′ ∈ {1, 2, 4, 8, 16, 32, 64} (the same as in the other experiments): KL divergence between the
original and projected attention weights, and MSE between the original and projected attention
outputs (after applying value vectors). The results indicate that DimPO benefits consistently from
having access to more keys, while Triplet and CPO remain largely unaffected. ORPO and SimPO
initially seem to gain from additional keys, but their performance quickly plateaus or even degrades,
suggesting that the increased combinatorial complexity hinders training rather than helping. This
emphasizes that even if pairwise methods were trained on all possible key pairs, they would likely
still fall short of DimPO’s performance, highlighting the advantage of its listwise formulation.

Multiple Distinct Pairs. Given that overlapping keys appear to be a limiting factor, we next in-
vestigate training with multiple distinct pairs per query, ensuring that no key is used more than once.
For each query, we generate k ∈ {1, 2, 4, 8, 16, 32, 64} training pairs, where each chosen key comes
from the top half of the attention-weight ranking and each rejected key from the bottom half. Fig-
ure 4b shows that even this distinct-pair setting does not improve performance: pairwise methods
consistently perform best when using only a single pair per query, confirming that adding more pairs
introduces noise rather than additional useful signal.

Level of Key Diversity. Table 1 reports pairwise methods trained by maximizing the diversity
between chosen and rejected keys. One might wonder whether using more similar key pairs could
be beneficial. In Figure 4c, we show results for k ∈ {1, 8, 16, 32, 64, 127}, where k indicates the
distance in the attention-weight ranking between chosen and rejected keys (i.e., k = 1 corresponds
to directly neighboring keys). The results show that while CPO and Triplet losses remain largely
unaffected by diversity, SimPO and ORPO exhibit substantial differences across both metrics, high-
lighting that these methods require highly diverse key pairs to achieve optimal performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D GENERAL TASK RESULTS

d′ / ℓ 0 2 4 6 8 10 12 14 16
ARC-Challenge

32 37.97 37.37 36.60 36.01 30.63 29.10 27.22 23.29 23.46
16 37.97 37.80 35.49 33.28 28.33 26.02 25.09 23.72 22.87
4 37.97 37.29 32.76 29.61 25.68 23.55 23.12 25.00 25.94
1 37.97 36.69 33.02 27.39 23.72 24.06 23.81 23.89 26.02

HellaSwag
32 60.71 60.21 59.33 57.94 52.61 48.49 42.93 33.61 28.87
16 60.71 59.96 57.60 52.77 43.38 36.42 30.30 27.60 26.74
4 60.71 58.69 52.13 41.05 31.86 29.40 27.43 27.11 26.29
1 60.71 58.39 50.83 39.00 30.17 28.24 27.61 26.68 26.71

MMLU
32 45.93 46.00 43.85 34.92 29.72 27.55 26.70 24.46 22.96
16 45.93 46.17 39.70 25.70 24.35 23.74 22.77 22.75 22.93
4 45.93 45.59 36.30 22.93 22.96 22.96 23.00 22.90 24.13
1 45.93 45.48 32.65 22.94 22.95 22.95 23.02 22.92 23.05

TruthfulQA-mc2
32 43.89 44.26 44.67 43.58 43.93 45.87 46.24 47.99 50.98
16 43.89 43.79 43.86 45.90 47.29 49.16 50.77 50.20 48.81
4 43.89 44.44 46.64 50.87 50.95 50.84 50.55 49.62 48.02
1 43.89 44.64 47.11 50.69 50.45 50.13 50.14 49.04 48.44

WinoGrande
32 59.83 59.59 58.64 58.33 56.43 53.43 50.12 51.62 51.70
16 59.83 59.27 58.48 58.17 54.14 50.67 51.93 50.36 52.41
4 59.83 59.04 58.17 56.04 52.01 49.88 49.88 49.64 51.54
1 59.83 59.75 57.54 55.33 52.80 50.36 49.88 50.51 47.91

Saved Cache Memory (%)
32 0.00 3.12 6.25 9.38 12.50 15.62 18.75 21.88 25.00
16 0.00 4.69 9.38 14.06 18.75 23.44 28.12 32.81 37.50
4 0.00 5.86 11.72 17.58 23.44 29.30 35.16 41.02 46.88
1 0.00 6.15 12.30 18.46 24.61 30.76 36.91 43.07 49.22

Table 12: Performance and KV cache memory reduction (%) for Llama3.2-1B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

d′ / ℓ 0 2 4 7 10 12 14 16 18 21 24 26 28
ARC-Challenge

64 45.90 46.08 45.82 45.56 43.94 43.17 41.72 40.96 38.91 37.54 34.39 31.83 25.34
16 45.90 43.77 44.03 42.92 35.75 31.83 28.92 27.22 26.02 25.26 23.21 23.55 26.45
4 45.82 43.26 40.53 35.84 29.78 25.85 25.00 22.87 23.29 24.06 24.49 25.26 27.39
1 45.82 43.43 38.82 36.18 27.73 25.34 24.91 24.83 24.49 24.49 24.40 24.49 27.65

HellaSwag
64 70.53 70.73 70.65 70.29 69.45 69.13 67.74 65.85 64.16 61.12 57.53 53.87 48.14
16 70.53 70.05 67.66 65.49 57.43 54.41 47.19 41.93 37.04 32.30 28.24 27.30 26.06
4 70.47 69.05 63.30 53.21 41.02 34.60 30.51 29.64 28.82 27.61 26.94 26.44 26.65
1 70.47 68.88 61.34 50.83 37.75 31.56 28.38 27.64 27.60 26.89 26.63 26.46 26.54

MMLU
64 60.38 60.02 59.98 59.14 58.67 58.62 53.38 51.00 48.50 40.86 36.54 33.06 30.34
16 60.38 59.76 58.29 58.46 57.15 57.30 30.47 25.94 24.69 23.56 23.27 23.56 24.28
4 60.50 59.89 56.72 51.69 30.81 25.25 22.92 22.92 22.92 22.92 22.96 22.96 24.87
1 60.50 59.71 55.10 48.95 27.97 23.47 22.95 22.94 22.94 22.94 22.94 22.94 23.48

TruthfulQA-mc2
64 49.75 50.42 50.46 49.73 49.75 49.99 49.62 48.78 48.95 48.55 46.99 47.53 48.47
16 49.75 50.24 51.34 50.77 49.35 48.89 51.06 50.15 49.54 49.38 49.68 50.19 48.80
4 49.77 50.00 51.47 52.40 49.90 47.93 47.96 48.17 48.07 48.40 48.58 48.87 48.78
1 49.77 50.06 51.44 52.52 49.83 48.54 47.95 47.72 47.58 47.94 48.13 48.71 49.07

WinoGrande
64 67.40 68.19 67.09 67.01 67.72 68.03 66.93 65.11 62.35 58.80 55.17 55.09 52.72
16 67.40 67.56 65.75 65.90 64.17 63.38 61.96 57.54 52.96 51.38 48.54 49.72 51.38
4 67.80 67.48 65.51 63.61 61.88 59.19 57.30 53.28 50.28 50.59 48.93 49.57 49.72
1 67.80 66.77 65.59 62.67 60.77 56.27 55.01 51.22 50.43 50.43 47.43 47.43 48.70

Saved Cache Memory (%)
64 0.00 1.79 3.57 6.25 8.93 10.71 12.50 14.29 16.07 18.75 21.43 23.21 25.00
16 0.00 3.12 6.25 10.94 15.62 18.75 21.88 25.00 28.12 32.81 37.50 40.62 43.75
4 0.00 3.46 6.92 12.11 17.30 20.76 24.22 27.68 31.14 36.33 41.52 44.98 48.44
1 0.00 3.54 7.09 12.40 17.72 21.26 24.80 28.35 31.89 37.21 42.52 46.07 49.61

Table 13: Performance and KV cache memory reduction (%) for Llama3.2-3B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.

E USE OF LARGE LANGUAGE MODELS

For this work, we used GPT-5-mini to help with language polishing, phrasing, and grammar. All
scientific content, experimental design, data analysis, and conclusions were developed solely by the
authors. We take full responsibility for the final content of this paper, including any text generated
with LLM assistance.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

d′ / ℓ 0 2 4 8 12 16 20 24 28 30 32
ARC-Challenge

64 54.95 55.29 54.78 55.38 53.16 52.05 48.81 46.50 42.49 40.87 28.84
16 54.95 53.67 53.16 52.39 48.12 39.76 29.95 25.85 22.53 23.38 26.02
4 54.95 52.30 50.60 48.12 34.56 26.37 22.53 22.35 22.44 22.95 26.19
1 54.95 52.13 50.51 43.52 31.31 25.17 22.78 21.59 22.95 23.81 25.60

HellaSwag
64 79.22 78.63 78.51 77.87 77.18 76.49 73.77 71.09 64.67 59.21 53.84
16 79.15 77.43 76.79 74.81 70.65 61.97 47.42 35.77 29.13 27.83 26.62
4 79.15 76.86 74.80 69.38 53.03 37.61 30.60 29.14 27.19 27.67 26.51
1 79.15 76.67 74.16 63.29 44.86 32.29 28.10 28.06 26.70 27.02 26.30

MMLU
64 68.12 67.75 68.08 67.69 67.62 65.84 60.23 51.62 43.93 36.85 36.38
16 68.02 68.03 67.75 67.74 67.63 35.71 23.08 22.97 22.97 22.91 22.94
4 68.02 67.59 68.02 67.23 60.90 24.59 22.96 22.89 22.95 23.10 26.27
1 68.02 67.75 68.09 66.16 62.24 24.26 22.95 23.03 22.95 23.24 26.26

TruthfulQA-mc2
64 54.00 53.93 53.90 53.86 53.90 53.91 51.09 51.37 47.24 44.28 43.49
16 54.07 53.80 53.87 53.61 52.36 51.65 49.43 49.87 50.28 50.27 49.02
4 54.07 53.63 53.77 53.68 53.13 53.08 49.93 50.31 49.71 50.61 48.85
1 54.07 53.56 53.76 53.16 53.08 52.91 50.22 50.36 49.47 51.22 48.98

WinoGrande
64 74.19 73.80 74.11 73.09 73.48 72.93 70.64 65.43 60.14 57.70 52.57
16 74.27 73.48 73.56 72.53 72.69 71.59 61.40 51.93 52.49 50.12 47.91
4 74.27 73.64 73.72 72.06 70.09 67.88 55.96 50.20 50.12 49.49 48.62
1 74.27 73.48 74.03 71.27 67.17 62.19 52.33 49.49 51.22 49.96 50.67

Saved Cache Memory (%)
64 0.00 1.56 3.12 6.25 9.38 12.50 15.62 18.75 21.88 23.44 25.00
16 0.00 2.73 5.47 10.94 16.41 21.88 27.34 32.81 38.28 41.02 43.75
4 0.00 3.03 6.05 12.11 18.16 24.22 30.27 36.33 42.38 45.41 48.44
1 0.00 3.10 6.20 12.40 18.60 24.80 31.01 37.21 43.41 46.51 49.61

Table 14: Performance and KV cache memory reduction (%) for Llama3.1-8B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

d′ / ℓ 0 2 4 6 9 12 15 18 21 24 27 30 32 34 36
ARC-Challenge

64 58.19 58.19 58.70 58.62 57.25 57.51 56.14 54.78 53.92 53.16 50.43 48.46 48.38 48.89 49.15
16 58.19 57.08 55.97 55.12 53.41 49.32 43.26 37.12 33.79 31.23 30.55 27.39 26.45 25.34 22.61
4 58.19 55.72 54.61 51.11 49.06 43.00 35.41 29.78 27.39 27.30 24.57 24.57 23.55 22.53 25.43
1 58.45 56.23 54.35 50.51 47.27 39.68 33.87 28.92 28.16 26.79 23.98 23.81 23.63 24.49 25.00

HellaSwag
64 69.13 69.12 68.90 68.53 68.37 68.07 67.43 66.44 65.43 63.42 60.71 59.69 58.92 58.37 57.83
16 69.13 66.85 65.26 63.42 61.31 58.25 53.27 48.67 44.55 41.81 37.11 32.93 32.06 31.17 27.06
4 69.13 66.15 64.09 60.88 57.24 50.45 42.54 38.46 35.57 33.73 30.85 29.01 28.30 27.92 25.86
1 69.04 66.26 63.65 60.31 56.12 48.11 40.08 36.32 33.93 32.04 29.54 28.45 27.90 27.14 26.48

MMLU
64 70.60 70.58 70.59 70.52 70.49 69.71 66.19 63.00 59.72 55.23 48.65 49.31 48.69 48.43 48.26
16 70.60 70.55 70.62 70.03 70.09 51.26 32.50 26.32 24.93 24.33 23.02 23.10 23.02 23.02 22.96
4 70.60 70.62 70.45 69.85 68.98 31.53 24.37 23.34 23.71 23.14 23.11 23.58 23.24 23.00 23.02
1 70.53 70.64 70.42 69.68 68.62 28.16 24.12 23.24 23.55 23.28 23.15 24.18 23.67 23.01 23.40

TruthfulQA-mc2
64 62.63 62.65 62.78 62.86 62.64 62.26 60.70 59.50 59.49 58.57 57.02 54.62 53.47 50.98 47.78
16 62.63 62.31 61.72 62.41 59.88 59.81 56.64 53.52 51.43 52.12 50.58 50.59 49.95 49.70 50.10
4 62.63 62.16 61.41 61.40 59.33 58.50 55.07 52.98 52.63 52.30 51.25 50.76 50.68 50.48 49.63
1 62.64 62.14 61.44 61.40 58.87 58.02 54.51 52.53 51.94 51.87 51.74 50.80 51.30 50.86 48.05

WinoGrande
64 67.96 68.03 67.80 68.11 67.88 67.64 66.38 65.82 64.48 62.67 62.35 60.62 61.64 60.62 58.64
16 67.96 66.14 65.59 66.30 65.04 64.17 61.40 57.70 55.96 53.83 53.04 52.88 49.96 51.07 46.65
4 67.96 66.30 65.35 65.27 64.48 61.96 57.77 52.96 52.09 50.99 49.33 49.80 47.75 47.75 50.59
1 68.03 65.90 65.75 64.96 63.69 61.01 56.75 51.38 51.30 49.88 49.01 50.20 49.49 48.38 51.30

Saved Cache Memory (%)
64 0.00 1.39 2.78 4.17 6.25 8.33 10.42 12.50 14.58 16.67 18.75 20.83 22.22 23.61 25.00
16 0.00 2.43 4.86 7.29 10.94 14.58 18.23 21.88 25.52 29.17 32.81 36.46 38.89 41.32 43.75
4 0.00 2.69 5.38 8.07 12.11 16.15 20.18 24.22 28.26 32.29 36.33 40.36 43.06 45.75 48.44
1 0.00 2.76 5.51 8.27 12.40 16.54 20.67 24.80 28.94 33.07 37.21 41.34 44.10 46.85 49.61

Table 15: Performance and KV cache memory reduction (%) for Qwen3-4B-Instruct across multiple
benchmarks and varying projection dimensions/layers.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

d′ / ℓ 0 2 4 7 10 12 14 16 18 21 24 26 28
ARC-Challenge

64 55.03 54.18 54.95 54.01 51.02 49.66 48.55 49.23 48.21 48.29 47.87 46.42 46.16
16 55.03 50.68 50.85 47.27 41.47 39.59 38.74 34.73 34.22 31.74 30.55 27.13 24.74
4 55.03 54.69 53.07 47.53 40.02 37.37 36.77 33.28 30.55 25.68 25.43 23.63 25.77
1 55.03 55.97 53.33 47.01 39.76 37.20 35.58 31.83 31.06 25.85 26.71 23.04 25.26

HellaSwag
64 80.57 80.04 79.83 79.33 77.51 76.90 76.21 75.73 75.27 74.05 73.06 72.41 71.17
16 80.57 79.57 78.66 75.12 69.32 65.90 59.75 54.37 51.74 44.20 41.57 34.59 26.76
4 80.57 79.86 78.64 73.64 65.68 61.00 54.72 49.27 46.32 36.50 33.19 29.45 26.83
1 80.57 79.21 77.95 72.22 63.84 58.85 52.00 47.13 44.49 33.79 31.38 28.34 26.03

MMLU
64 71.76 71.81 71.49 71.44 67.33 65.52 62.55 59.48 58.03 56.12 53.63 52.86 50.55
16 71.76 71.69 71.47 71.15 31.69 29.33 27.28 27.05 26.70 26.44 26.33 22.75 22.96
4 71.76 71.71 71.34 70.92 28.04 25.70 24.41 24.40 24.37 24.18 23.21 22.94 23.27
1 71.76 71.77 71.27 71.02 27.47 25.21 24.29 23.94 24.15 23.49 23.13 22.92 23.17

TruthfulQA-mc2
64 64.68 64.86 64.12 64.51 58.88 58.92 58.81 59.69 59.48 56.93 56.91 56.42 54.20
16 64.68 64.00 62.30 63.11 57.78 55.65 51.58 51.13 51.00 50.40 52.82 52.63 48.77
4 64.68 64.12 61.64 62.36 57.15 53.84 48.75 48.81 46.59 48.79 52.65 50.23 48.14
1 64.68 64.00 61.68 62.24 56.62 53.17 48.21 48.89 47.34 47.44 52.33 50.55 47.49

WinoGrande
64 71.51 69.22 70.09 70.48 65.19 64.09 64.33 60.38 58.88 60.06 59.75 56.04 57.93
16 71.51 67.72 67.25 66.69 61.01 56.27 56.04 53.51 52.41 49.57 51.54 48.62 48.78
4 71.51 68.43 67.96 67.25 59.27 56.67 52.88 52.09 52.25 50.28 51.07 49.88 51.14
1 71.51 68.11 67.17 66.85 59.75 57.46 53.28 51.78 52.64 49.57 50.04 49.80 49.49

Saved Cache Memory (%)
64 0.00 1.79 3.57 6.25 8.93 10.71 12.50 14.29 16.07 18.75 21.43 23.21 25.00
16 0.00 3.12 6.25 10.94 15.62 18.75 21.88 25.00 28.12 32.81 37.50 40.62 43.75
4 0.00 3.46 6.92 12.11 17.30 20.76 24.22 27.68 31.14 36.33 41.52 44.98 48.44
1 0.00 3.54 7.09 12.40 17.72 21.26 24.80 28.35 31.89 37.21 42.52 46.07 49.61

Table 16: Performance and KV cache memory reduction (%) for Qwen2-7B-Instruct across multiple
benchmarks and varying projection dimensions/layers.

23

	Introduction
	Related Works
	Learning Low-Dimensional Attention Projection
	Problem Formulation
	DimPO: Dimensionality-Reduced Preference Optimization
	Training Setup
	Baseline Comparison

	Experiments
	Conclusion
	Hyperparameters of Dimensionality Reduction Approaches
	Performance Evaluation of Projection Approaches
	Effect of Key-Pair Selection on Pairwise Losses
	General Task Results
	Use of Large Language Models

