Under review as a conference paper at ICLR 2026

DIMPO: DIMENSIONALITY REDUCTION FOR
ATTENTION USING PREFERENCE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) require substantial memory and computation
time, particularly for long-context tasks. To handle long sequences, LLMs use
KV caches, whose memory size grows linearly with the number of tokens. In
this work, we focus on reducing KV cache memory by projecting key and query
vectors into learned lower-dimensional spaces. We pose the problem - previously
solved with triplet loss for Locality Sensitive Hashing (LSH) - as a preference
optimization problem. We show that the preference optimization approach per-
forms better mostly on higher dimensions indicating its potential for training at-
tention in reduced dimensions. To address this, we introduce DimPO, a novel
reference-model-free, listwise preference optimization loss. We demonstrate that
DimPO more accurately preserves attention distributions in reduced dimensions
compared to both existing preference optimization losses and triplet loss. Building
on this, we apply DimPO-based dimensionality reduction to the attention layers
of LLaMA3-[1B, 3B, 8B], Qwen2.5-7B and Qwen3-4B instruct models. On gen-
eral benchmark tasks, DimPO Attentions reduces KV cache memory by 10-15%
while maintaining 95% of performance. Larger models using DimPO Attentions
on long-context tasks also exhibit only a marginal performance drop.

1 INTRODUCTION

LLMs have demonstrated state-of-the-art performance across a wide range of tasks but require mas-
sive computational resources and incur substantial costs not only for training but also for inference
(Pope et al., 2023} |Zhang et al,2023)). Recently, generative models supporting very long input con-
texts - up to 128k tokens - have been released (OpenAl et al., 2024} (Grattafiori et al., [2024; |Yang
et al., 2025). However, this introduces additional computational and memory challenges, as every
input token must be considered when computing attention for each newly generated query token.

To avoid recomputing the key and value vectors of previously processed tokens, LLMs store them in
a KV cache (Pope et al.| 2023)). However, with each additional input token, the attention computation
must consider one more token than before, causing both the computational cost and the memory
footprint of the KV cache to grow linearly with the total number of input and generated tokens (L1
et al., 2025)).

A variety of works have addressed the problem of optimizing the KV cache, focusing mostly on
encoding or compressing the set of key and value vectors to reduce the number of stored vectors
(Zhang et al.| 2023} [Tang et al., 2024 Liu et al., [2024; [Singhania et alJ [2024). In contrast, in this
work we compress along a different axis: rather than reducing the number of stored vectors, we
reduce the dimensionality of each individual key and query vector. This could have two benefits: (i)
key vectors occupy less memory in the KV cache, and (ii) attention weight computation becomes
faster because dot products involve shorter vectors. The value vectors remain unmodified, preserving
the semantic information they carry as long as the attention weight distribution remains sufficiently
close to the original.

Our objective is therefore to train a projection that maps query and key vectors into a low-
dimensional space such that the resulting attention weight distribution remains close to that of the
original, full-dimensional attention, while introducing minimal computational overhead during the
projection itself.

Under review as a conference paper at ICLR 2026

Prior works have also projected keys and queries into lower-dimensional spaces, typically for the
purpose of grouping them into buckets to enable sparse or blockwise attention (Wang et al., [2020;
Chen et al., 2025; [Zeng et al., [2025)). LSH-based methods, for instance, use multiple random pro-
jections (Kitaev et al., |2020), followed by learnable projections optimized with a triplet loss (Chen
et al.,|2021b). These approaches generally require multiple hash functions-i.e., multiple projections-
because any single projection alone does not preserve enough information about the attention distri-
bution (Kitaev et al., 2020} |Chen et al., 2021b; [2025)).

Inspired by recent advances in preference optimization for post-training alignment of LLMs
(Rafailov et al.l 2023} Meng et al.| [2024), we frame the problem of dimensionality reduction for
attention as a preference optimization problem. Our goal is to learn a linear layer that projects
queries to relate more strongly to relevant projected keys and less to irrelevant ones, so that the re-
sulting attention weight distribution matches the behavior of the full-dimensional model as closely
as possible.

Preference optimization for post-training align-

ment of LLMs initially relied on reference models _ e
to compute losses (Rafailov et al.l 2023} [Etha- Transformer Block with DimPO KV Cache
yarajh et al., 2024; [Liu et al.| [2025). Over time, Attention Layer S
methods have been developed that do not require softmax(—)

a reference model (Hong et al., [2024; Meng et al.,

2024). This is particularly relevant for our setting:

in the case of attention dimensionality reduction, X /

it is unclear what a reference model would even ! i i

be: l.:urthermore,. typical preference loss§s are TransformerBloIkwith — - |
pairwise, comparing a chosen and a rejected []‘_'
response, which simplifies data collection. Our 1 —
scenario is different: for each query, we need to [Trfmsformer BRI HIDIED]q_;
capture the full preference ordering across a list = T ~

of keys. Constructing all pairwise comparisons

is theoretically possible but computationally _ 1 T
prohibitive and practically infeasible. ~ While [Transformer Block]‘_’
listwise preference losses exist (Liu et al., [2025)), f

they typically assume a reference model, Which S —— —]

we do not have. These challenges motivate X []‘_'
the need for a custom, reference-free loss func- \I> _ f T
tion tailored to attention dimensionality reduction. > T‘a“Sf":‘t‘::;f}:zfy“ |

To address this, we introduce DimPO, a novel list- softmax(™)

wise, reference-free preference optimization loss

specifically designed for dimensionality reduction L . L)

of query and key vectors. DimPO captures the é<_i\‘l,osiﬁonal erili
full preference ordering without relying on a ref- povme—

erence model and, as we show, significantly out-

performs existing approaches, including pairwise

preference optimization losses, triplet loss, and
random projection baselines, indicating its poten-
tial for use in real-world model deployments and
practical tasks.

Figure 1: Decoder model architecture with
integrated DimPO-based attention projection
applied to last ¢ attention layers.

To validate the effectiveness of our KV cache reduction approach, we conduct experiments
on several instruction-tuned models, including LLama3.2-[1B,3B]-Instruct, Llama3.1-8B-Instruct
(Grattafiori et al.| [2024)), Qwen3-4B-Instruct (Yang et al., [2025), and Qwen-2.5-7B-Instruct (Yang
et al., 2024). We apply our DimPO-trained projections progressively from the top attention layers
downward, as illustrated in Figure [I] This top-down approach ensures that errors from modified
layers have a limited impact on subsequent attention layers.

We measure how many attention layers can be modified using DimPO-based projections and what
proportion of KV cache memory can be saved without causing a significant drop in model perfor-
mance. Evaluations are performed on both general benchmarks and long-context tasks. Our results
indicate that even a 10% reduction in KV cache memory leads to only a marginal performance drop

Under review as a conference paper at ICLR 2026

on general tasks. For long-context tasks, larger models maintain performance similar to general
tasks at around 10% memory savings, while smaller models experience a more noticeable decline.

In Sections [3.1] we formalize the attention dimensionality reduction problem and in Section [3.2] we
introduce the DimPO loss function. In Section [3.4] we compare our method with other preference
optimization techniques and baseline approaches in dimensionality reduction of attention. Section 4]
presents experiments evaluating DimPO-based projections on real tasks. We investigate how many
attention layers can be modified and quantify the corresponding KV cache memory savings, while
ensuring that model performance remains largely unchanged.

2 RELATED WORKS

KV Cache Optimization The KV cache memory bottleneck in long-context LLMs constrains
batch size and maximum prompt length, motivating strategies to reduce key and value vectors while
maintaining accuracy. H20 (Zhang et al., |2023)), SnapKV (Li et al., 2024)), and Keyformer (Adnan
et al.| 2024) use heuristics during prefilling to select tokens for decoding. Quest (Tang et al., [2024)
and Loki (Singhania et al.l [2024) apply dynamic sparsity during inference to reduce KV cache
loading without eviction. KIVI (Liu et al.,[2024) and QServe (Lin et al.}[2025) reduce KV cache via
quantization.

Attention Approximation via Projections Transformer variants leverage projections to approxi-
mate or accelerate attention. Sparse attention methods (BigBird (Zaheer et al., 2020), Longformer
(Beltagy et al., [2020), SparseAxial (Ho et al., |2020)) compute selected blocks or local windows.
LSH-based approaches (Reformer (Kitaev et al., [2020), KDEformer (Zandieh et al.| [2023), Scat-
terBrain (Chen et al.l 2021a), MagicPIG (Chen et al.| [2025)) approximate attention via locality-
sensitive hashing. Mongoose (Chen et al.,[2021b) builds on LSH with learnable projections trained
via triplet loss to group semantically similar keys and queries. Low-rank and linear attention meth-
ods (Linformer (Wang et al.| [2020), Performer (Choromanski et al.| 2021), Nystrémformer (Xiong
et al [2021)) project the attention matrix to lower-dimensional spaces. Top-k mechanisms (Un-
limiformer (Bertsch et al.l [2023), IceFormer (Mao et al., 2024), ZETA (Zeng et al., 2025)) use
projections and dimension reduction for efficient token selection.

Preference Optimization Preference optimization aligns models with desired outputs using
ranked feedback, often via chosen/rejected pairs. DPO (Rafailov et al., |2023) simplifies RLHF
(Christiano et al. 2017) by removing the reward model and framing alignment as a single-stage
classification, still using a reference model to prevent distributional drift. Variants include ORPO
(Hong et al.| 2024) (odds-ratio), SimPO (Meng et al., [2024) (average log-probability as implicit re-
ward), CPO (Xu et al.,[2024) (contrastive learning for machine translation), KTO (Ethayarajh et al.,
2024) (prospect-theory utility for binary labels, still needing a reference), and listwise objectives like
LiPO (Liu et al.,|2025)), considering multiple ranked responses while relying on a reference model.

3 LEARNING LOW-DIMENSIONAL ATTENTION PROJECTION

In this section, we formalize the problem of dimensionality reduction for key and query vectors,
aiming to minimize the KL divergence between the original attention weight distribution and the
distribution computed from the reduced projected vectors. Although more complex non-linear pro-
jection approaches could be considered, we require minimal runtime overhead during inference in
generative language models. For this reason, we focus on learnable linear layer projections and
evaluate several loss functions for training such a projection layer within a Siamese framework (Pai
et al., 2019). To this end, we introduce our novel loss function, DimPO, and compare it with other
preference optimization losses as well as baseline projection approaches.

3.1 PROBLEM FORMULATION

Let [denote a transformer attention layer with query vectors Q; € RV *¢ and key vectors K l,qg €
R™*4 for a given q € (Q; where N is the total number of queries, m is the number of keys per each
query and d is the original embedding dimension. Our goal is to learn a shared linear projection

Under review as a conference paper at ICLR 2026

g€ Rd K= {khk% -~~7km}7 ki € Rd

Shared Shared Shared
Linear Weights Linear weightsf Linear Weights 6 Linear
Layer Layer Layer Layer

—t — —— —t

Folg)=q €RY Fy(ky) = k) e RY Fg(m =Ky eRY Fy(km) = K}, € RT

‘
\ = (K K,k
/

‘Cost: Lro(q, K,q,K';0) ‘

Figure 2: Siamese network architecture for query ¢ and its associated list of keys K using preference
optimization loss.

function)

F:RY > R,
with d’ < d, that maps both queries and keys into a lower-dimensional space such that the resulting
attention weight distribution is as close as possible to the original one. Formally, we solve

F* = argmln— Z KL(Softmax(qf;g) Softm (F(Q)}:/%’(IW)T) >,

original attention projected attention

where KL (-, -) denotes the Kullback-Leibler divergence between the original and projected attention
distributions.

To minimize this divergence in a computationally efficient way, we restrict F' to a single linear pro-
jection layer, F'(z) = Wz with W € R *d, ensuring negligible inference overhead in generative
models. We then train TV using a Siamese framework, as illustrated in Figure 2] where each query is
paired with its ranked keys (in the case of pairwise losses, only two ranked keys are used) according
to their importance for the given query, derived from the original attention weight distribution. This
setup is formulated as a preference optimization problem: the projection F'is optimized such that
keys with higher original attention weights have higher similarity to the query representation (in
terms of dot product), while less relevant keys have lower similarity.

The probability assigned by the linear layer parameters 6 to a given key & (either from a key pair
or the full list K , associated with the current training instance) after projection F'(k) = £’ and the
corresponding query F'(¢) = ¢ is computed as

JK],"
mo(k' | ¢) = Softmax| —=%— |,
9(‘ q) (\/?

where K] , = F(Kj,,) denotes the set of projected keys and k' € K .k € Kj,. For pairwise
losses, thlS probability computation is limited to the two selected keys in K 1,¢» Whereas for listwise
loss functions, all keys associated with the given query are used.

We evaluate the quality of the learned projection F' using two complementary metrics, averaged over
all N evaluation instances (g, K; 4) for all ¢ € @, where V; , € RN >4 denotes the value vectors
for layer [associated with query q.

1. Attention weights KL Divergence: the average Kullback—Leibler divergence between the orig-
inal attention distribution and the projected one for each query-key set:

K T
KL =N Z KL(SoftmaX(q\/%’q) , Softmax(ﬁw\/(di/(l”))> 7

qEQ)

2. Attention output MSE: the average mean squared error between the original attention output
and the output after projection for each query-key set:

F‘(q)P"([(l,q)—r 2

V')Vl’q 2

MSE = 1 Z HSoftmaX(quTq)Vl - Softmax(
N q€Q \/g !

Under review as a conference paper at ICLR 2026

3.2 DIMPO: DIMENSIONALITY-REDUCED PREFERENCE OPTIMIZATION

Preference optimization research has predominantly focused on pairwise comparisons (Rafailov
et al.} 2023} Hong et al.| 2024} | Xu et al., [2024; Meng et al. |2024). While effective for many tasks,
this is not practical for dimensionality reduction of query-key interactions, where each query is com-
pared against many keys. Using a pairwise loss, one can either select a single positive-negative key
pair for each query, losing information about relationships with other keys, or consider all possi-
ble key pairs, creating m(m — 1)/2 training instances for each query for m context tokens, which
dramatically increases computational and memory costs making the training infeasible to complete.
For this reason, it is more practical in this setting to adopt listwise preference optimization losses.
One of the most popular pairwise preference optimization methods is DPO (Rafailov et al., 2023)):

ToWuw [2) _ 510, ToW 7).
Wref(yw | Z‘) Bl & Wref(yl ‘ l‘))}7

which fits naturally into the Bradley-Terry (BT) (Bradley & Terry, |1952) ranking model:

,CDpo(T('g; 7Tref) = 7E(x,yw,yz)~D |:10g O’(ﬁ log

p(yw =Y ‘ l‘) = O'(T’(;E,yw) - T(I7yl))v

where y,, denotes the preferred response, y; the non-preferred response, and r(x,y) is the reward
function. LiPO (Liu et al.;2025)) generalizes this BT model to a list of responses y = (y1, ..., YKk):

)

exp(s;
p(y1>-y2>"~>-yK|1?)=HK7(1)
i=1 Zj:i exp(s;)

where s; = r(z,y;) denotes the score of response y;. This reduces exactly to the pairwise BT
model when K = 2. In the formulation of listwise loss LiPO, the training dataset consists of lists
of responses with corresponding real-valued labels ¢ = (i1, ..., %), and a ranking loss is applied
over all pairs within the list:

ﬁA—loss(WQ) = _E(m,y,w%@[Z Ai,j log(l + e_(S'i—Sj)) ’
>

where
o 1 B 1
" D(r(i) D(r(j))

Here, 7(s;) denotes the rank position of y; in the permutation induced by the scores s, and the scores
are defined as

A

\ L Gi=2 1, D(r(s)) = log(1 + 7(s).

mo(yi | x)
Teer (i |)’
with 3 > 0 controlling the sharpness of the preference optimization.

s; = Blog

In our setting, the reference model 7. is not available. Furthermore, SimPO argues that using a
reference model during training is inconsistent with inference, in which no reference is present,
which can generate inaccurate responses (Meng et al.|, [2024). However, in our setting, we treat Tyes
as a uniform distribution and approximate it with a constant 1/¢, which cancels in the log-ratio in
the e~ (*:=%3) term of the sum in the LiPO loss equation

5 — 5, = Blog mo(yi |) Bl mo(y; |)
7Tref(yi | .’E) Wref(yj | {E)
= 5(10g779(y¢ | #) —log met(yi | #) —logmo(y; | =) + log Teer(y; | 1’)>
= ﬁ(logﬂe(yi | x) —log ma(y; | a:)),

yielding
s; = Blogmy(yi | x).

Finally, following SimPO’s BT adaptation, which introduces a target reward margin v > 0 to ensure
that the score difference between better and worse responses is at least y (a margin known to improve

Under review as a conference paper at ICLR 2026

generalization capabilities of classifiers (Boser et al., 1992} |Cortes & Vapnik, |1995; |Agresti, 2002}
Turner & Firth} 2012)) the pairwise margin-adjusted BT model is defined as

P =y | 2) = o(r(@,yw) — r(z,51) — 7).

Building on this, we now introduce our preference optimization loss, DimPO:

Lpimpo(me) = —E gy ¢)~p Z A jlog(1+ e imsi=m) || (1)

Pi>P;
with A; ;,G;, D(7(s;)), 7(s;) and scores s; = [log my(y;|x) as defined above. This formulation
provides a reference-model-free, listwise, margin-aware preference optimization objective, captur-

ing all key-query interactions efficiently while maintaining theoretical consistency with DPO when
K =2

3.3 TRAINING SETUP

Having defined the objective, we now describe the practical training procedure used to obtain the
projection F'. The projection is trained independently for each transformer layer /, but a single W is
shared across all attention heads within that layer to reduce parameter count and training complexity.

For training, we take the first 4096 tokens from 10 chapters of the training split of the BOOKSUM
dataset (Kryscinski et al., [2022), ensuring that each chapter contains at least 4096 tokens. Each
chapter thus provides a set of queries paired with lists of 4096 keys. To balance coverage and
computational efficiency, we subsample every H, ,-th query from each attention head, where H, , is
the number of query heads in layer [, resulting in a total of 40,960 training instances per layer. The
parameters of the projection function F' are then optimized using the Adam optimizer.

For validation, we select 10 chapters from the BOOKSUM validation split, each containing at least
4096 tokens, and use the first 4096 tokens from each chapter. For evaluation, we select 10 chapters
from the BOOKSUM test split in the same manner, using the first 4096 tokens of each chapter. Unlike
training and validation, during evaluation we include all queries from all attention heads to obtain a
complete measure of attention distribution preservation.

Before training, we first derive preference rankings from the key and query vectors. For DimPO,
we additionally assign a score to each key by computing the original attention weights s; =

Softmax (q%") . Sorting the keys in descending order by s; yields a preference ranking.

2

For DimPO training, we use all keys of each training instance with their exact scores as attention
weights s; and the derived preference ranking. For other methods that use pairwise losses, we select
a single key pair per training instance, choosing the highest-ranked key as chosen and the lowest-
ranked key as rejected, following the setup used by Mongoose for triplet-loss training (Chen et al.,
2021b). This ensures that all methods (ours as well as other preference optimization losses) are
trained on an equal number of training instances (see Appendix [C] for evidence that, even if more
complex training with multiple pairs were used, pairwise methods often stagnate or degrade rather
than improve). Detailed hyperparameters used for training each method are provided in Appendix[A]

3.4 BASELINE COMPARISON

In this section, we compare DimPO against several pairwise, reference-model-free preference op-
timization methods, namely CPO, ORPO, and SimPO, on the task of attention dimensionality re-
duction. We also include random projection and triplet loss as baselines, and add PCA projection
as a reference. While PCA is neither designed for online training nor aimed at preserving attention-
relevant dimensions, it provides a useful comparison, even though it discards variance from low-
variance dimensions that may still be crucial for attention.

For evaluation, we train a separate linear projection layer for each attention layer of Llama3.1-8B-
Instruct. Results for Qwen and other Llama models are provided in Appendix [B} Each projection
maps from the original head dimension d = 128 to a target dimension d’ < 128 (note that Llama3.2-
1B uses d = 64, while all other reported models have d = 128). Table [I| summarizes the results,
averaged across all layers, for d’ € {64, 32,16,8,4,2,1}.

Under review as a conference paper at ICLR 2026

64 32 16 8 4 2 1

KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE
Rand 12.56 0.084|14.50 0.104|15.78 0.119(16.52 0.129{16.60 0.128]16.82 0.132{16.70 0.126
PCA 2.65 0.011|5.71 0.013| 7.28 0.013] 7.57 0.013] 6.66 0.016| 6.44 0.019| 6.49 0.021
Triplet 3.19 0.014| 3.61 0.014| 3.97 0.015| 4.14 0.015| 4.16 0.015| 4.18 0.015| 4.33 0.015
CPO 2.22 0.010| 1.80 0.008|2.32 0.012] 3.27 0.014| 3.81 0.015| 4.13 0.015| 4.44 0.015
SimPO 290 0.010| 2.11 0.009| 1.94 0.009| 2.17 0.009| 2.58 0.012] 3.05 0.016| 3.86 0.028
ORPO 2.72 0.010| 1.93 0.008| 1.75 0.008| 1.96 0.009| 2.31 0.011] 2.68 0.015| 3.26 0.022
DimPO 0.67 0.005| 0.97 0.006| 1.29 0.007| 1.57 0.008| 1.83 0.009| 2.10 0.011| 2.62 0.014

Table 1: Comparison of different projection approaches for Llama3.1-8B-Instruct. Reported values
are attention weights KL divergence and attention output MSE (lower is better), averaged across all
attention layers, for different target dimensions d’ € {64, 32, 16,8,4,2,1}.

d /e \ 0 2 4 8 12 16 20 24 28 30 32

64 66/0% 66/2% 66/3% 66/6% 65/9% 64/13% 61/16% 57/19% 52/2% 48/23% 43/25%
16 66/0% 65/3% 65/5% 64/11% 62/16% 52/20% 42/21% 37/33% 35/38% 35/41% 35/ 44%
4 66/0% 65/3% 64/6% 62/12% 54/18% 42/24% 36/30% 35/36% 34/42% 35/45% 35/ 48%
1 66/0% 65/3% 64/6% 59/129% 52/19% 39/25% 35/319% 35/31% 35/43% 35/41% 36/ 50%

Table 2: Average performance across Arc-Challenge, HellaSwag, TruthfulQA-mc2, MMLU and
WinoGrande tasks for Llama3.1-8B-Instruct. Each cell reports the average score and the percentage
of KV cache memory saved for the number of projected attention layers £ and target dimension d’.

Table [I] shows that learned linear projections outperform random projections, commonly used in
LSH-based approaches. Preference optimization losses consistently exceed the Mongoose triplet-
loss approach, especially at higher dimensions. Among these, DimPO achieves roughly three times
lower error than triplet loss in high-dimensional settings and surpasses other preference optimization
losses across all tested d’. Overall, DimPO consistently ranks best across all target dimensions,
highlighting its potential for training attention in reduced dimensions beyond LSH use cases.

If the learned projection accurately estimates the attention weight distribution in a low-dimensional
key-query space, it can enable smaller KV caches and faster inference without sacrificing perfor-
mance. However, for practical deployment, an open question remains: how far can we safely reduce
dimensionality, and in how many layers, before accumulated deviation from the original attention
distribution begins to degrade model performance? Even a small perturbation in the first layer could
propagate and amplify through the network, whereas a similar perturbation in the final layer may
have minimal downstream effect.

4 EXPERIMENTS

From the previous section, we know that DimPO outperforms all other methods in estimating atten-
tion weight distributions. Therefore, under the same training settings, we train a linear layer with the
DimPO loss for each attention layer of the generative model independently. It remains unclear how
many attention layers can be safely integrated with this projection without causing a noticeable drop
in performance. Since errors in the ¢-th attention layer affect all subsequent layers, while preceding
layers remain unaffected, it is sensible to integrate projections starting from the last layer. Noise in
the last attention layer does not propagate further, whereas noise in the first layer impacts all follow-
ing layers. Accordingly, in the experiments that follow, we apply DimPO-based projections starting
from the back and progressively extend them toward the beginning, studying the trade-off between
performance drop and KV cache memory reduction, as illustrated in Figure[I]

Storing keys and values in the KV cache at their original sizes and head dimensions across all layers
is considered 0% KV cache reduction. Conversely, if key vectors were not stored at all, the remaining
value vectors (unchanged by our method) would account for 50% of the total KV cache, representing
a practical upper bound on achievable reduction. Projecting key vectors to fewer dimensions across
more layers reduces the KV cache memory footprint, the primary objective of our method.

Under review as a conference paper at ICLR 2026

d e \ 0 2 4 6 9 12 15 21 27 32 36

64 66/0% 66/1% 66/3% 66/4% 65/6% 65/8% 63/10% 61/15% 56/19% 54/2% 52/25%
16 66/0% 65/29% 64/5% 63/7% 62/ 1% 57/15% 49/18% 42/20% 39/33% 36/39% 34/ 44%
4 66/0% 64/3% 63/5% 62/8% 60/1200 49/16% 43 /2% 38/28% 36/36% 35/43% 35/ 8%
1 66/0% 64/3% 63/6% 61/8% 59/129 47/17% 42/21% 38/29% 35/37% 35/44% 35/ 50%

Table 3: Average performance across Arc-Challenge,

HellaSwag, TruthfulQA-mc2, MMLU and

WinoGrande tasks for Qwen3-4B-Instruct. Each cell reports the average score and the percentage
of KV cache memory saved for the number of projected attention layers £ and target dimension d’.

To evaluate model performance for varying num-

bers ¢ of DimPO-based projected attention lay- ;: — Uama3.2-1B-Instruct
ers and projected dimensions d’ € {64,16,4,1} T | omaszes e
from the original 128, we measure five & —— Qwen3-4B-Instruct
generic benchmark tasks: Arc-Challenge 27 Quen2.5-78-Instruct
(accnorm) (Clark et al] 2018), HellaSwag §~

(acc_norm) (Zellers et all 2019), MMLU (acc) £%

(Hendrycks et al., [2021), TruthfulQA-mc2 o

(acc) (Lin et al.,[2022), and WinoGrande (acc) »

(Sakaguchi et al., 2021) using harness 0.4.9.1 ° » KVCach:Memory Redzced) ®©
(Sutawika et al.} 2025)) in zero-shot settings. The

average scores along with the corresponding KV pjoure 3: Average performance across Arc-
cache memory reduction percentages for differ- Challenge, ~ HellaSwag, TruthfulQA-mc2,

ent d’ and / settings are reported in Table [2| for
Llama3.1-8B-Instruct and Table [3| for Qwen3-

MMLU, and WinoGrande tasks, shown as a
function of KV cache reduction.

4B-Instruct.

The tables show the average harness score and the percentage of KV cache memory reduced (see
Appendix @]for detailed results on all tasks and models, including Llama3.2-1B-, 3B-, 8B-Instruct,
Qwen3-4B-, and Qwen2.5-7B-Instruct). Projecting only the last few layers minimally affects perfor-
mance, even at dimensions as low as 4 or 1, while projecting layers further from the output gradually
reduces it. Figure [3|illustrates this trend across all five models, showing that a 10-15% KV cache
reduction preserves roughly 95% of the original performance.

The challenges of computational time and large KV cache memory primarily arise in long-context
tasks. Based on Figure 3] we selected settings for evaluating the efficiency of DimPO-based projec-
tion method on long-context tasks, reducing the KV cache by approximately 6%, 10%, and 12%.
We compare these settings across all models (excluding Qwen2.5, whose pretraining did not ex-
tensively target long-context tasks) against their base models on all RULER subtasks (Hsieh et al.
2024) available in harness 0.4.9.1 for 4k and 8k context lengths. Table @ reports averages across all
subtasks for the specified context lengths, including throughput in tokens/sﬁ]

Unlike generic tasks, smaller models are more sensitive to DimPO-based projections on long-
context tasks, particularly Llama 1B, which quickly experienced substantial performance degra-
dation. Larger models, such as Llama3.2-8B-Instruct and Qwen3-4B-Instruct, are more robust and
exhibit trends in preserving performance under KV cache reductions similar to those observed in
generic tasks, suggesting that the performance impact could be even smaller for larger and more
resilient models. In addition to reducing KV cache memory usage, integrating DimPO-based pro-
jections into the attention layers also tends to increase token throughput.

Building on these observations, we explore the interaction between DimPO-based projections and
the MagicPIG framework, which efficiently optimizes KV cache and attention computation for
long-context tasks using LSH-based random projections and CPU-GPU co-design. We investigate
whether DimPO can complement MagicPIG by further reducing KV cache usage while maintaining
performance. Since MagicPIG currently supports only LLaMA3.1-8B-Instruct among our models,
Table [5]compares the base model, its MagicPIG variant, and the MagicPIG variant with DimPO ap-
plied to the last 12 layers, corresponding to a 10% reduction of the original MagicPIG KV cache.

"Throughput was measured using the eager attention implementation for a fair comparison, since other
optimized attention implementations either do not support varying key, value, and query dimensions or are not
optimized for such cases, which is why we restrict our evaluation to 4k and 8k context lengths.

Under review as a conference paper at ICLR 2026

Average Tokens/s
4K 8K 4K 8K
Llama3.2-1B-Instruct (full) 79.35 72.94 | 29.09 10.58
625% d =32,0=4 5482 3523|3459 17.08
938% d =32,/=6 1772 895 | 3298 15.63
12.50% d' =32,{=38 353 1.87 | 3477 16.54
Llama3.2-3B-Instruct (full) 92.56 87.31 | 1894 7.16
625% d =64,=7 86.04 7568 | 19.36 791
10.71% d' =64,¢4=12 81.83 71.14 | 19.32 8.39
12.50% d =64,4=14 7261 61.84 | 17.65 7.81
Llama3.1-8B-Instruct (full) 95.05 93.94 | 13.35 4.57
625% d =64,=8 9422 91.06 | 13.27 4.65
9.38% d =64,(=12 9359 89.15| 1339 4.79
12.50% d' =64,{=16 9046 85.09 | 20.17 10.88
Qwen3-4B-Instruct (full) 93.86 93.08 | 13.37 498
625% d' =64,=9 9328 90.19 | 1094 5.99
1042% d' =64,£=15 92.01 8392 | 18.10 9.53
12.50% d' =64,/=18 84.84 7027 | 17.92 7.07

Table 4: Average accuracy and token throughput on RULER long-context tasks for different models
in different DimPO projection settings.

RULER
LongBench | 4K 8K 16K 32K 65K
Llama3.1-8B-Instruct 37.83 95.05 9394 9339 87.76 84.75
MagicPIG 35.84 92.63 9235 91.64 86.71 83.67
MagicPIG 9.38% (d’ = 64,¢ = 12) 32.58 87.59 83.41 79.56 7529 63.66

Table 5: Comparison of Llama3.1-8B-Instruct, MagicPIG (K = 8, L = 75) built on Llama3.1-
8B-Instruct, and MagicPIG extended with DimPO-based projections on d’ = 64, ¢ = 12 attention
layers, which reduce KV cache memory by 9.38%.

Performance is evaluated on LongBench (Bai et al., |2024)) and RULER (Hsieh et al.| [2024) tasks
across different context lengths, averaging scores over all available subtasks with harness 0.4.9.1
(Sutawika et al [2025). Despite the additional error introduced by projecting multiple layers, per-
formance decreases gradually and remains reasonably high, highlighting the potential of combining
these two approaches to optimize inference for long-context generative tasks.

5 CONCLUSION

In this work, we approached attention dimensionality reduction as a preference optimization prob-
lem with the goal of reducing KV cache memory. We introduced DimPO, a listwise preference-
optimization loss, which consistently outperforms not only existing approaches for projecting key
and query vectors but also other reference-model-free preference optimization losses. These pro-
jections enable more efficient inference, achieving a 10-15% reduction in KV cache memory with
only about a 5% performance drop on generic tasks. While long-context tasks present a greater
challenge (particularly for smaller models), larger models maintain performance close to their base-
lines even when reducing KV cache memory by 10%, indicating that the approach scales well to
larger architectures. Beyond introducing a novel preference-optimization loss function and refram-
ing dimensionality reduction as a preference-optimization problem, our work proposes a promising
direction for future research by using dimensionality reduction of key and query vectors to optimize
KV cache memory usage and attention computation efficiency, addressing two open and critical
challenges for scaling large language models.

’DimPO code is available at: anonymized

Under review as a conference paper at ICLR 2026

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J. Nair, Ilya Soloveychik,
and Purushotham Kamath. Keyformer: Kv cache reduction through key tokens se-
lection for efficient generative inference. In P. Gibbons, G. Pekhimenko, and C. De
Sa (eds.), Proceedings of Machine Learning and Systems, volume 6, pp. 114-127,
2024. URL https://proceedings.mlsys.org/paper_files/paper/2024/
file/48fecefd7b19fe501d27d338b6d52582-Paper—Conference.pdf.

Alan Agresti. Categorical data analysis. Hoboken. NJ: wiley, 2002.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119-3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-1long.172/.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew Gormley. Unlimiformer:
Long-range transformers with unlimited length input. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 35522-35543. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6f9806ab5adc72b5b834b27e4c7c0df9b—-Paper—-Conference.pdfl

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, COLT 92, pp. 144-152, New York, NY, USA, 1992. Association for Computing Ma-
chinery. ISBN 089791497X. doi: 10.1145/130385.130401. URL https://doi.org/10.
1145/130385.130401.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952. ISSN 00063444, 14643510. URL
http://www. jstor.org/stable/2334029.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scat-
terbrain: Unifying sparse and low-rank attention. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, PS. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 17413-17426. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/
f1le/9185f3ecb501c674c7c788464a36e7fb3-Paper.pdfl

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. {MONGOOSE}: A learnable {Ish} framework
for efficient neural network training. In International Conference on Learning Representations,
2021b. URL |https://openreview.net/forum?id=wWK7yXkULyh.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, and Beidi Chen. MagicPIG: LSH sampling for
efficient LLM generation. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=ALzTQUgW8a.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
formers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Ua6zuk OWRH.

10

https://proceedings.mlsys.org/paper_files/paper/2024/file/48fecef47b19fe501d27d338b6d52582-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/48fecef47b19fe501d27d338b6d52582-Paper-Conference.pdf
https://aclanthology.org/2024.acl-long.172/
https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6f9806a5adc72b5b834b27e4c7c0df9b-Paper-Conference.pdf
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
http://www.jstor.org/stable/2334029
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9185f3ec501c674c7c788464a36e7fb3-Paper.pdf
https://openreview.net/forum?id=wWK7yXkULyh
https://openreview.net/forum?id=ALzTQUgW8a
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH

Under review as a conference paper at ICLR 2026

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/d5e2c0adad503¢c91£91df240d0cd4ed49-Paper.pdf.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273-297,
1995.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization, 2024. URL https://arxiv.org/abs/
2402.01306.

Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783l

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in
multidimensional transformers, 2020. URL https://openreview.net/forum?id=
Hle5GJBtDr.

Jiwoo Hong, Noah Lee, and James Thorne. ORPO: Monolithic preference optimization with-
out reference model. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
11170-11189, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.626. URL https://aclanthology.org/2024.
emnlp-main.626/.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models? In
First Conference on Language Modeling, 2024. URL https://openreview.net/forum?
id=kIoBbc76Syl

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=rkgNKkKkHtVB.

Wojciech Kryscinski, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
BOOKSUM: A collection of datasets for long-form narrative summarization. In Yoav Gold-
berg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 6536-6558, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.488. URL
https://aclanthology.org/2022.findings—emnlp.488/.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management, 2025. URL https://arxiv.org/abs/2412.19442,

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen
Ye, Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what
you are looking for before generation. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 22947-22970. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/28ab418242603e0£7323e54185d19bde-Paper—-Conference.pdf.

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=H1e5GJBtDr
https://openreview.net/forum?id=H1e5GJBtDr
https://aclanthology.org/2024.emnlp-main.626/
https://aclanthology.org/2024.emnlp-main.626/
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://aclanthology.org/2022.findings-emnlp.488/
https://arxiv.org/abs/2412.19442
https://proceedings.neurips.cc/paper_files/paper/2024/file/28ab418242603e0f7323e54185d19bde-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/28ab418242603e0f7323e54185d19bde-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3214-3252, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.
acl-long.229/l

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. QServe:w4a8KV4 quantization and system co-design for efficient LLM serving. In Eighth
Conference on Machine Learning and Systems, 2025. URL https://openreview.net/
forum?id=1FfmStySS1.

Tianqi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi, Yao Zhao, Mo-
hammad Saleh, Simon Baumgartner, Jialu Liu, Peter J Liu, and Xuanhui Wang. LiPO: List-
wise preference optimization through learning-to-rank. In Luis Chiruzzo, Alan Ritter, and
Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 2404-2420, Albuquerque, New Mexico, April 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.121. URL
https://aclanthology.org/2025.naacl-1long.121/.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen (Henry) Zhong, Zhaozhuo Xu, Vladimir Braverman,
Beidi Chen, and Xia Hu. Kivi: a tuning-free asymmetric 2bit quantization for kv cache. In
Proceedings of the 41st International Conference on Machine Learning, ICML 24. JMLR.org,
2024.

Yuzhen Mao, Martin Ester, and Ke Li. Iceformer: Accelerated inference with long-sequence trans-
formers on CPUs. In The Tivelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=6RR3wU4mSZ.

Yu Meng, Mengzhou Xia, and Dangi Chen. Simpo: Simple preference optimiza-
tion with a reference-free reward. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Infor-
mation Processing Systems, volume 37, pp. 124198-124235. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/e099¢c1c9699814af0beB873al175361713-Paper—-Conference.pdf.

OpenAl et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Gautam Pai, Ronen Talmon, Alex Bronstein, and Ron Kimmel. Dimal: Deep isometric manifold
learning using sparse geodesic sampling. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 819-828, 2019. doi: 10.1109/WACV.2019.00092.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scal-
ing transformer inference. In D. Song, M. Carbin, and T. Chen (eds.), Proceed-
ings of Machine Learning and Systems, volume 5, pp. 606-624. Curan, 2023. URL
https://proceedings.mlsys.orqg/paper_files/paper/2023/file/
cd4be7lab8d24cdfb45e3d06dbfcaz2780-Paper-mlsys2023.pdf.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 53728-53741. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a85b405ed65c6477a4fe8302b5e06ce7-Paper—-Conference.pdf.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an adver-

sarial winograd schema challenge at scale. Commun. ACM, 64(9):99-106, August 2021. ISSN
0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381\

12

https://aclanthology.org/2022.acl-long.229/
https://aclanthology.org/2022.acl-long.229/
https://openreview.net/forum?id=1FfmStySS1
https://openreview.net/forum?id=1FfmStySS1
https://aclanthology.org/2025.naacl-long.121/
https://openreview.net/forum?id=6RR3wU4mSZ
https://proceedings.neurips.cc/paper_files/paper/2024/file/e099c1c9699814af0be873a175361713-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e099c1c9699814af0be873a175361713-Paper-Conference.pdf
https://arxiv.org/abs/2303.08774
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a85b405ed65c6477a4fe8302b5e06ce7-Paper-Conference.pdf
https://doi.org/10.1145/3474381

Under review as a conference paper at ICLR 2026

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki:
Low-rank keys for efficient sparse attention. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 16692-16723. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/le027dabbec9ceb2ec37951ceeccae93-Paper—-Conference.pdfl

Lintang Sutawika, Hailey Schoelkopf, Leo Gao, Baber Abbasi, Stella Biderman, Jonathan Tow, ben
fattori, Charles Lovering, farzanehnakhaee70, Jason Phang, Anish Thite, Fazz, Aflah, Niklas,
Thomas Wang, sdtblck, nopperl, gakada, tttyuntian, researcher2, Julen Etxaniz, Chris, Han-
wool Albert Lee, Leonid Sinev, Zdenék Kasner, Kiersten Stokes, Khalid, KonradSzafer, Jef-
frey Hsu, and Anjor Kanekar. Eleutherai/Im-evaluation-harness: v0.4.9.1, August 2025. URL
https://doi.org/10.5281/zenodo.16737642.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: query-
aware sparsity for efficient long-context llm inference. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. IMLR.org, 2024.

Heather Turner and David Firth. Bradley-terry models in r: The bradleyterry2 package. Journal
of Statistical Software, 48(9):1-21, 2012. doi: 10.18637/ss.v048.i09. URL https://www.
jstatsoft.org/index.php/jss/article/view/v048100.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity, 2020. URL https://arxiv.org/abs/2006.04768.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nystromformer: A nystrom-based algorithm for approximating self-attention. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(16):14138-14148, May 2021.
doi: 10.1609/aaai.v35i16.17664. URL https://ojs.aaai.org/index.php/AAAT/
article/view/17664.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: pushing the boundaries of
Ilm performance in machine translation. In Proceedings of the 41st International Conference on
Machine Learning, ICML 24. JMLR.org, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yugiong
Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115,
2024. URL https://doi.org/10.48550/arXiv.2412.15115.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17283-17297. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/c8512d142a2d849725f31a%9a7a36lab9-Paper.pdf.

13

https://proceedings.neurips.cc/paper_files/paper/2024/file/1e027da6bec9ceb2ec37951ceeccae93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1e027da6bec9ceb2ec37951ceeccae93-Paper-Conference.pdf
https://doi.org/10.5281/zenodo.16737642
https://www.jstatsoft.org/index.php/jss/article/view/v048i09
https://www.jstatsoft.org/index.php/jss/article/view/v048i09
https://arxiv.org/abs/2006.04768
https://ojs.aaai.org/index.php/AAAI/article/view/17664
https://ojs.aaai.org/index.php/AAAI/article/view/17664
https://doi.org/10.48550/arXiv.2412.15115
https://arxiv.org/abs/2505.09388
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

Under review as a conference paper at ICLR 2026

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. KDEformer: Accelerating transformers
via kernel density estimation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 40605—40623. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/
v202/zandieh23a.html.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791-4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

QIUHAO Zeng, Jerry Huang, Peng Lu, Gezheng Xu, Boxing Chen, Charles Ling, and Boyu Wang.
ZETA: Leveraging z-order curves for efficient top-k attention. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=j9VVzueEbG.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang ”Atlas” Wang, and Beidi Chen. H2o:
Heavy-hitter oracle for efficient generative inference of large language models. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 34661-34710. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6bceefa7bl5572587b78ecfcebb2827f8-Paper—-Conference.pdf.

14

https://proceedings.mlr.press/v202/zandieh23a.html
https://proceedings.mlr.press/v202/zandieh23a.html
https://aclanthology.org/P19-1472/
https://openreview.net/forum?id=j9VVzueEbG
https://openreview.net/forum?id=j9VVzueEbG
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

A HYPERPARAMETERS OF DIMENSIONALITY REDUCTION APPROACHES

Hyperparameters. We report here the hyperparameters used for preference optimization based di-
mensionality reduction. All methods were trained using the Adam optimizer, with the learning rate
specified in the tables. Hyperparameters were tuned on a validation set extracted from BOOKSUM to
select the final configuration. To provide a sense of computational cost, we also report the approx-
imate training time per attention layer: DimPO is slower (5 min/layer) due to additional attention
computations for computing model likelihoods, whereas SimPO, Triplet, ORPO, and CPO are sub-
stantially faster (10 s/layer). Table [6]lists the final selected settings. Table [7] enumerates all tested
values for each hyperparameter across methods, wherever applicable.

Method 3 % Learning rate Batch size Time/layer
DimPO 1.0 0.0001 0.0001 1 ~5 min
SimPO 1.0 1.0 0.001 32 ~10s
Triplet - - 0.0001 32 ~10s
ORPO 0.1 - 0.001 32 ~10s
CPO 1.0 0.1 0.0001 32 ~10s

Table 6: Final hyperparameter settings for all preference optimization methods.

Hyperparameter Tested values

0.0001, 0.001, 0.01, 0.1, 1.0, 2, 2.5, 5.0
¥ 0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0
Learning rate le-5, le-4, 1e-3, 1e-2, 0.1
Batch size 1,2,4,8, 16, 32, 64

Table 7: Hyperparameter values explored during tuning for all methods, where applicable.

15

Under review as a conference paper at ICLR 2026

B PERFORMANCE EVALUATION OF PROJECTION APPROACHES

32 16 8 4 2 1

KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE
Rand 15.02 0.087]15.92 0.092]16.37 0.095|16.49 0.103|16.62 0.099|16.42 0.102
PCA 3.83 0.014]7.09 0.016| 8.04 0.017| 8.06 0.020| 8.46 0.026| 8.13 0.026
Triplet 3.15 0.010] 3.59 0.010] 3.92 0.011] 4.07 0.011| 4.14 0.011| 4.21 0.011
CPO 1.92 0.008|2.69 0.010|3.39 0.011] 3.89 0.011| 4.20 0.011| 4.40 0.011
SimPO 1.67 0.008| 1.93 0.008| 2.52 0.010| 3.08 0.012| 3.61 0.016| 4.35 0.020
ORPO 1.62 0.008| 1.86 0.008|2.38 0.009(2.78 0.011|3.02 0.012| 3.69 0.016
DimPO 0.94 0.007| 1.45 0.008| 1.95 0.009| 2.38 0.009| 2.64 0.010| 3.19 0.014

Table 8: Comparison of different projection approaches for Llama3.2-1B-Instruct. We report the
KL Divergence of attention weights and the MSE of attention outputs, averaged over all attention
layers, for different target dimensions d’ € {32, 16,8, 4,2, 1}.

64 32 16 8 4 2 1

KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE
Rand 12.56 0.084|14.50 0.104|15.78 0.119]16.52 0.129|16.60 0.128|16.82 0.132]16.70 0.126
PCA 2.65 0.011]5.71 0.013] 7.28 0.013| 7.57 0.013]| 6.66 0.016| 6.44 0.019| 6.49 0.021
Triplet 3.19 0.014] 3.61 0.014] 3.97 0.015| 4.14 0.015| 4.16 0.015| 4.18 0.015] 4.33 0.015
CPO 222 0.010| 1.80 0.008|2.32 0.012] 3.27 0.014| 3.81 0.015| 4.13 0.015| 4.44 0.015
SimPO 2.90 0.010| 2.11 0.009| 1.94 0.009| 2.17 0.009| 2.58 0.012| 3.05 0.016| 3.86 0.028
ORPO 2.72 0.010| 1.93 0.008| 1.75 0.008| 1.96 0.009| 2.31 0.011| 2.68 0.015| 3.26 0.022
DimPO 0.67 0.005| 0.97 0.006| 1.29 0.007| 1.57 0.008| 1.83 0.009| 2.10 0.011| 2.62 0.014

Table 9: Comparison of different projection approaches for Llama-3B-Instruct. We report the KL
Divergence of attention weights and the MSE of attention outputs, averaged over all attention layers,
for different target dimensions d' € {64, 32,16,8,4,2,1}.

64 32 16 8 4 2 1

KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE
Rand 14.07 1.269|14.85 1.577|15.49 1.837|15.75 2.045|15.89 2.131|16.01 2.173|15.88 1.929
PCA 442 0.217] 6.51 0.267| 8.01 0.360| 9.16 0.503|10.02 0.554|10.34 0.533]10.36 0.534
Triplet 2.50 0.149]2.90 0.155] 3.14 0.159| 3.39 0.165| 3.54 0.166| 3.64 0.167| 3.75 0.169
CPO 2.52 0.216|2.06 0.170| 2.54 0.148] 3.12 0.156| 3.44 0.165| 3.55 0.169| 3.79 0.168
SimPO 1.44 0.115| 1.72 0.120| 2.20 0.132] 2.86 0.145| 3.58 0.186| 4.03 0.248| 4.42 0.270
ORPO 1.39 0.116| 1.66 0.107| 2.06 0.131|2.51 0.146|2.96 0.171| 3.29 0.196| 3.51 0.263
DimPO 0.73 0.052| 1.15 0.076| 1.57 0.089| 1.89 0.107| 2.07 0.117| 2.27 0.132| 2.74 0.223

Table 10: Comparison of different projection approaches for Qwen3-4B-Instruct. We report the KL
Divergence of attention weights and the MSE of attention outputs, averaged over all attention layers,
for different target dimensions d' € {64, 32, 16,8,4,2,1}.

16

Under review as a conference paper at ICLR 2026

64 32 16 8 4 2 1

KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE| KL MSE
Rand 14.65 1.181|15.58 1.459|15.82 1.594|16.02 1.789|16.08 1.911{16.09 1.739|15.96 1.705
PCA 3.65 0.826] 7.49 0.891[10.39 0.936|11.32 0.939|11.40 0.985|11.43 1.138|11.41 1.205
Triplet 2.51 0.104]2.92 0.108] 3.23 0.115| 3.44 0.114| 3.52 0.114| 3.64 0.116] 3.69 0.119
CPO 253 0.120| 2.34 0.109| 2.61 0.110]3.19 0.117| 3.51 0.119| 3.70 0.179| 3.85 0.118
SimPO 1.58 0.094| 1.83 0.101| 2.43 0.120| 3.18 0.144| 3.96 0.174| 4.44 0.193| 4.63 0.254
ORPO 1.61 0.096| 1.85 0.104| 2.30 0.114|2.87 0.134| 3.39 0.148| 3.69 0.156| 3.75 0.169
DimPO 0.78 0.057| 1.15 0.078| 1.62 0.102| 2.07 0.111| 2.43 0.111| 2.75 0.126| 3.10 0.736

Table 11: Comparison of different projection approaches for Qwen2.5-7B-Instruct. We report the
KL Divergence of attention weights and the MSE of attention outputs, averaged over all attention
layers, for different target dimensions d’ € {64,32,16,8,4,2,1}.

C EFFECT OF KEY-PAIR SELECTION ON PAIRWISE LOSSES

387 Projection Methods |y, 38/ =—— Projection Methods | °°*
o — Trlplet % 3 —— Triplet 0048]
c 37 SimPO 0.048 — c SimPO v
() ORPO [T m 0.046
D6 | Woow 55 —— ORPO e
g — CPO o —— cPO) 0.045
Zss —— DimPO 0046 g 004
i 34 0.045 o z ; 0043
¥ 0.042
31
b i 0.044 0.041
AR A I 2 LA I a4 o N & D ® &
Number of Sampled Keys Number of Sampled Keys Number of Pairs per Query (k) Number of Pairs per Query (k)
(a) All key pairs (b) Multiple distinct pairs
38— Projection Methods 0.0485
X —— Triplet
3 ple K
5 56 SimPO 0.0480
o —— ORPO w
35
o 0 |
g, CPO s 0.0475
— 33 0.0470
X 3.2
0.0465
k58
- By o S P o < > S

> x
Key Distance (k) Key Distance (k)

(c) Level of key diversity

Figure 4: Effect of key-pair selection on pairwise losses. (a) Using all possible key pairs from a sam-
pled subset shows that DimPO keeps improving as more keys are included, whereas pairwise meth-
ods either plateau or degrade beyond a certain point. (b) Training with multiple non-overlapping
pairs per query does not yield improvements, suggesting that additional pairs introduce noise rather
than meaningful signal. (c) Increasing the diversity between chosen and rejected keys consistently
improves performance, indicating that pairwise losses benefit most from highly diverse key pairs.

The observation that DimPO outperforms the other loss functions raises the question of whether
this advantage comes from a better inductive bias or simply from receiving more training signal.
Although all methods use the same number of training instances, DimPO uses all keys associated
with a given query, whereas pairwise losses rely on only two keys (chosen and rejected). Provid-
ing every possible key pair to pairwise methods would be computationally prohibitive due to the
combinatorial growth in training examples, but it is still informative to study whether their weaker
performance is caused by this information bottleneck. To this end, we perform three controlled
experiments on the attention layers of Llama3.2-1B-Instruct, Llama3.2-3B-Instruct, Llama3.1-8B-
Instruct, and Qwen3-4B-Instruct, reporting averages across all models. For efficiency, training is
performed on 128-token subsequences sampled from 10 chapters, and evaluation uses a validation
set of 10 full-length chapters (4096 tokens each) from BOOKSUM.

All Key Pairs. We first investigate pairwise methods and DimPO by sampling k& € {2,4,8,16}
keys from the 128 available keys per sequence and using all possible key pairs within this subset for

17

Under review as a conference paper at ICLR 2026

training. Figure {a] reports two metrics, averaged across all attention layers and target dimensions
d € {1,2,4,8,16,32,64} (the same as in the other experiments): KL divergence between the
original and projected attention weights, and MSE between the original and projected attention
outputs (after applying value vectors). The results indicate that DimPO benefits consistently from
having access to more keys, while Triplet and CPO remain largely unaffected. ORPO and SimPO
initially seem to gain from additional keys, but their performance quickly plateaus or even degrades,
suggesting that the increased combinatorial complexity hinders training rather than helping. This
emphasizes that even if pairwise methods were trained on all possible key pairs, they would likely
still fall short of DimPQO’s performance, highlighting the advantage of its listwise formulation.

Multiple Distinct Pairs. Given that overlapping keys appear to be a limiting factor, we next in-
vestigate training with multiple distinct pairs per query, ensuring that no key is used more than once.
For each query, we generate k € {1,2,4, 8,16, 32,64} training pairs, where each chosen key comes
from the top half of the attention-weight ranking and each rejected key from the bottom half. Fig-
ure |4b| shows that even this distinct-pair setting does not improve performance: pairwise methods
consistently perform best when using only a single pair per query, confirming that adding more pairs
introduces noise rather than additional useful signal.

Level of Key Diversity. Table [I| reports pairwise methods trained by maximizing the diversity
between chosen and rejected keys. One might wonder whether using more similar key pairs could
be beneficial. In Figure we show results for k& € {1,8,16,32,64,127}, where k indicates the
distance in the attention-weight ranking between chosen and rejected keys (i.e., K = 1 corresponds
to directly neighboring keys). The results show that while CPO and Triplet losses remain largely
unaffected by diversity, SimPO and ORPO exhibit substantial differences across both metrics, high-
lighting that these methods require highly diverse key pairs to achieve optimal performance.

18

Under review as a conference paper at ICLR 2026

D GENERAL TASK RESULTS

d /E[0 2 4 6 8 10 12 14 16
ARC-Challenge
32 137.97 37.37 36.60 36.01 30.63 29.10 27.22 23.29 23.46
16 |37.97 37.80 35.49 33.28 28.33 26.02 25.09 23.72 22.87
4 37.97 37.29 32.76 29.61 25.68 23.55 23.12 25.00 25.94
1 37.97 36.69 33.02 27.39 23.72 24.06 23.81 23.89 26.02
HellaSwag
32 160.71 60.21 59.33 57.94 52.61 48.49 4293 33.61 28.87
16 |60.71 59.96 57.60 52.77 43.38 36.42 30.30 27.60 26.74
4 60.71 58.69 52.13 41.05 31.86 29.40 27.43 27.11 26.29
1 60.71 58.39 50.83 39.00 30.17 28.24 27.61 26.68 26.71
MMLU
32 |45.93 46.00 43.85 34.92 29.72 27.55 26.70 24.46 22.96
16 4593 46.17 39.70 25.70 24.35 23.74 22.77 22.75 22.93
4 45.93 45.59 36.30 22.93 22.96 22.96 23.00 22.90 24.13
1 45.93 4548 32.65 22.94 22.95 2295 23.02 22.92 23.05
TruthfulQA-mc2
32 |43.89 44.26 44.67 43.58 43.93 45.87 46.24 47.99 50.98
16 |43.89 43.79 43.86 45.90 47.29 49.16 50.77 50.20 48.81
4 43.89 44.44 46.64 50.87 50.95 50.84 50.55 49.62 48.02
1 43.89 44.64 47.11 50.69 50.45 50.13 50.14 49.04 48.44
WinoGrande
32 |59.83 59.59 58.64 58.33 56.43 53.43 50.12 51.62 51.70
16 |59.83 59.27 58.48 58.17 54.14 50.67 51.93 50.36 52.41
4 59.83 59.04 58.17 56.04 52.01 49.88 49.88 49.64 51.54
1 59.83 59.75 57.54 55.33 52.80 50.36 49.88 50.51 47.91
Saved Cache Memory (%)
32 0.00 3.12 6.25 9.38 12.50 15.62 18.75 21.88 25.00
16 0.00 4.69 9.38 14.06 18.75 23.44 28.12 32.81 37.50
4 0.00 5.86 11.72 17.58 23.44 29.30 35.16 41.02 46.88
1 0.00 6.15 12.30 18.46 24.61 30.76 36.91 43.07 49.22

Table 12: Performance and KV cache memory reduction (%) for Llama3.2-1B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.

19

Under review as a conference paper at ICLR 2026

d/t] 0 2 4 7 10 12 14 16 18 21 24 26 28
ARC-Challenge
64 4590 46.08 45.82 45.56 43.94 43.17 41.72 40.96 38.91 37.54 34.39 31.83 25.34
16 4590 43.77 44.03 42.92 35.75 31.83 28.92 27.22 26.02 25.26 23.21 23.55 26.45
4 45.82 43.26 40.53 35.84 29.78 25.85 25.00 22.87 23.29 24.06 24.49 25.26 27.39
1 45.82 43.43 38.82 36.18 27.73 25.34 2491 24.83 24.49 24.49 24.40 24.49 27.65
HellaSwag
64 |70.53 70.73 70.65 70.29 69.45 69.13 67.74 65.85 64.16 61.12 57.53 53.87 48.14
16 |70.53 70.05 67.66 65.49 57.43 54.41 47.19 41.93 37.04 32.30 28.24 27.30 26.06
4 70.47 69.05 63.30 53.21 41.02 34.60 30.51 29.64 28.82 27.61 26.94 26.44 26.65
1 70.47 68.88 61.34 50.83 37.75 31.56 28.38 27.64 27.60 26.89 26.63 26.46 26.54
MMLU
64 |60.38 60.02 59.98 59.14 58.67 58.62 53.38 51.00 48.50 40.86 36.54 33.06 30.34
16 [60.38 59.76 58.29 58.46 57.15 57.30 30.47 25.94 24.69 23.56 23.27 23.56 24.28
4 60.50 59.89 56.72 51.69 30.81 25.25 22.92 2292 22.92 2292 22.96 22.96 24.87
1 60.50 59.71 55.10 48.95 27.97 23.47 22.95 22.94 22.94 2294 22.94 2294 23.48
TruthfulQA-mc2
64 [49.75 50.42 50.46 49.73 49.75 49.99 49.62 48.78 48.95 48.55 46.99 47.53 48.47
16 |49.75 50.24 51.34 50.77 49.35 48.89 51.06 50.15 49.54 49.38 49.68 50.19 48.80
4 49.77 50.00 51.47 52.40 49.90 47.93 47.96 48.17 48.07 48.40 48.58 48.87 48.78
1 49.77 50.06 51.44 52.52 49.83 48.54 4795 47.72 47.58 4794 48.13 48.71 49.07
WinoGrande
64 6740 68.19 67.09 67.01 67.72 68.03 66.93 65.11 62.35 58.80 55.17 55.09 52.72
16 |67.40 67.56 65.75 65.90 64.17 63.38 61.96 57.54 52.96 51.38 48.54 49.72 51.38
4 67.80 67.48 65.51 63.61 61.88 59.19 57.30 53.28 50.28 50.59 48.93 49.57 49.72
1 67.80 66.77 65.59 62.67 60.77 56.27 55.01 51.22 50.43 50.43 47.43 47.43 48.70
Saved Cache Memory (%)
64 0.00 1.79 357 6.25 893 10.71 1250 14.29 16.07 18.75 21.43 23.21 25.00
16 0.00 3.12 6.25 1094 15.62 18.75 21.88 25.00 28.12 32.81 37.50 40.62 43.75
4 0.00 346 6.92 12.11 17.30 20.76 24.22 27.68 31.14 36.33 41.52 4498 48.44
1 0.00 3.54 7.09 1240 17.72 21.26 24.80 28.35 31.89 37.21 42.52 46.07 49.61

Table 13: Performance and KV cache memory reduction (%) for Llama3.2-3B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.

E USE OF LARGE LANGUAGE MODELS

For this work, we used GPT-5-mini to help with language polishing, phrasing, and grammar. All
scientific content, experimental design, data analysis, and conclusions were developed solely by the
authors. We take full responsibility for the final content of this paper, including any text generated
with LLM assistance.

20

Under review as a conference paper at ICLR 2026

d/t] 0 2 4 8 12 16 20 24 28 30 32
ARC-Challenge
64 |54.95 5529 54.78 55.38 53.16 52.05 48.81 46.50 42.49 40.87 28.84
16 |54.95 53.67 53.16 52.39 48.12 39.76 29.95 25.85 22.53 23.38 26.02
4 54.95 52.30 50.60 48.12 34.56 26.37 22.53 22.35 22.44 2295 26.19
1 54.95 52.13 50.51 43.52 31.31 25.17 22.78 21.59 22.95 23.81 25.60
HellaSwag
64 79.22 78.63 78.51 77.87 77.18 76.49 73.77 71.09 64.67 59.21 53.84
16 |79.15 77.43 76.79 74.81 70.65 61.97 47.42 35.77 29.13 27.83 26.62
4 79.15 76.86 74.80 69.38 53.03 37.61 30.60 29.14 27.19 27.67 26.51
1 79.15 76.67 74.16 63.29 44.86 32.29 28.10 28.06 26.70 27.02 26.30
MMLU
64 [68.12 67.75 68.08 67.69 67.62 65.84 60.23 51.62 43.93 36.85 36.38
16 |68.02 68.03 67.75 67.74 67.63 35.71 23.08 22.97 22.97 2291 22.94
4 68.02 67.59 68.02 67.23 60.90 24.59 22.96 22.89 22.95 23.10 26.27
1 68.02 67.75 68.09 66.16 62.24 24.26 22.95 23.03 22.95 23.24 26.26
Truthful QA-mc2
64 [54.00 53.93 53.90 53.86 53.90 53.91 51.09 51.37 47.24 44.28 43.49
16 |54.07 53.80 53.87 53.61 52.36 51.65 49.43 49.87 50.28 50.27 49.02
4 54.07 53.63 53.77 53.68 53.13 53.08 49.93 50.31 49.71 50.61 48.85
1 54.07 53.56 53.76 53.16 53.08 52.91 50.22 50.36 49.47 51.22 48.98
WinoGrande
64 |74.19 73.80 74.11 73.09 73.48 72.93 70.64 65.43 60.14 57.70 52.57
16 |74.27 73.48 73.56 72.53 72.69 71.59 61.40 51.93 52.49 50.12 47.91
4 74.27 73.64 73.72 72.06 70.09 67.88 55.96 50.20 50.12 49.49 48.62
1 74.27 73.48 74.03 71.27 67.17 62.19 52.33 49.49 51.22 49.96 50.67
Saved Cache Memory (%)
64 0.00 1.56 3.12 6.25 938 12.50 15.62 18.75 21.88 23.44 25.00
16 0.00 2.73 5.47 1094 16.41 21.88 27.34 32.81 38.28 41.02 43.75
4 0.00 3.03 6.05 12.11 18.16 24.22 30.27 36.33 42.38 45.41 48.44
1 0.00 3.10 6.20 1240 18.60 24.80 31.01 37.21 43.41 46.51 49.61

Table 14: Performance and KV cache memory reduction (%) for Llama3.1-8B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.

21

Under review as a conference paper at ICLR 2026

d/ K[0 2 4 6 9 12 15 18 21 24 27 30 32 34 36
ARC-Challenge
64 [58.19 58.19 58.70 58.62 57.25 57.51 56.14 54.78 53.92 53.16 50.43 48.46 48.38 48.89 49.15
16 [58.19 57.08 55.97 55.12 53.41 49.32 43.26 37.12 33.79 31.23 30.55 27.39 26.45 25.34 22.61
4 58.19 55.72 54.61 51.11 49.06 43.00 35.41 29.78 27.39 27.30 24.57 24.57 23.55 22.53 25.43
1 58.45 56.23 54.35 50.51 47.27 39.68 33.87 28.92 28.16 26.79 23.98 23.81 23.63 24.49 25.00
HellaSwag
64 [69.13 69.12 68.90 68.53 68.37 68.07 67.43 66.44 65.43 63.42 60.71 59.69 58.92 58.37 57.83
16 [69.13 66.85 65.26 63.42 61.31 58.25 53.27 48.67 44.55 41.81 37.11 32.93 32.06 31.17 27.06
4 69.13 66.15 64.09 60.88 57.24 50.45 42.54 38.46 35.57 33.73 30.85 29.01 28.30 27.92 25.86
1 69.04 66.26 63.65 60.31 56.12 48.11 40.08 36.32 33.93 32.04 29.54 28.45 27.90 27.14 26.48
MMLU
64 [70.60 70.58 70.59 70.52 70.49 69.71 66.19 63.00 59.72 55.23 48.65 49.31 48.69 48.43 48.26
16 |70.60 70.55 70.62 70.03 70.09 51.26 32.50 26.32 24.93 24.33 23.02 23.10 23.02 23.02 22.96
4 70.60 70.62 70.45 69.85 68.98 31.53 24.37 23.34 23.71 23.14 23.11 23.58 23.24 23.00 23.02
1 70.53 70.64 70.42 69.68 68.62 28.16 24.12 23.24 23.55 23.28 23.15 24.18 23.67 23.01 23.40
TruthfulQA-mc2
64 [62.63 62.65 62.78 62.86 62.64 62.26 60.70 59.50 59.49 58.57 57.02 54.62 53.47 50.98 47.78
16 |62.63 62.31 61.72 62.41 59.88 59.81 56.64 53.52 51.43 52.12 50.58 50.59 49.95 49.70 50.10
4 62.63 62.16 61.41 61.40 59.33 58.50 55.07 52.98 52.63 52.30 51.25 50.76 50.68 50.48 49.63
1 62.64 62.14 61.44 61.40 58.87 58.02 54.51 52.53 51.94 51.87 51.74 50.80 51.30 50.86 48.05
WinoGrande
64 [67.96 68.03 67.80 68.11 67.88 67.64 66.38 65.82 64.48 62.67 62.35 60.62 61.64 60.62 58.64
16 |67.96 66.14 65.59 66.30 65.04 64.17 61.40 57.70 55.96 53.83 53.04 52.88 49.96 51.07 46.65
4 67.96 66.30 65.35 65.27 64.48 61.96 57.77 52.96 52.09 50.99 49.33 49.80 47.75 47.75 50.59
1 68.03 65.90 65.75 64.96 63.69 61.01 56.75 51.38 51.30 49.88 49.01 50.20 49.49 48.38 51.30
Saved Cache Memory (%)
64 0.00 1.39 2.78 4.17 6.25 833 10.42 12.50 14.58 16.67 18.75 20.83 22.22 23.61 25.00
16 0.00 243 486 7.29 1094 14.58 18.23 21.88 25.52 29.17 32.81 36.46 38.89 41.32 43.75
4 0.00 2.69 5.38 8.07 12.11 16.15 20.18 24.22 28.26 32.29 36.33 40.36 43.06 45.75 48.44
1 0.00 2.76 5.51 8.27 12.40 16.54 20.67 24.80 28.94 33.07 37.21 41.34 44.10 46.85 49.61

Table 15: Performance and KV cache memory reduction (%) for Qwen3-4B-Instruct across multiple
benchmarks and varying projection dimensions/layers.

22

Under review as a conference paper at ICLR 2026

d/t] 0 2 4 7 10 12 14 16 18 21 24 26 28
ARC-Challenge
64 |55.03 54.18 54.95 54.01 51.02 49.66 48.55 49.23 48.21 48.29 47.87 46.42 46.16
16 |55.03 50.68 50.85 47.27 41.47 39.59 38.74 34.73 34.22 31.74 30.55 27.13 24.74
4 55.03 54.69 53.07 47.53 40.02 37.37 36.77 33.28 30.55 25.68 25.43 23.63 25.77
1 55.03 55.97 53.33 47.01 39.76 37.20 35.58 31.83 31.06 25.85 26.71 23.04 25.26
HellaSwag
64 |80.57 80.04 79.83 79.33 77.51 76.90 76.21 75.73 75.27 74.05 73.06 72.41 71.17
16 |80.57 79.57 78.66 75.12 69.32 65.90 59.75 54.37 51.74 44.20 41.57 34.59 26.76
4 80.57 79.86 78.64 73.64 65.68 61.00 54.72 49.27 46.32 36.50 33.19 29.45 26.83
1 80.57 79.21 77.95 72.22 63.84 58.85 52.00 47.13 44.49 33.79 31.38 28.34 26.03
MMLU
64 |71.76 71.81 71.49 71.44 67.33 65.52 62.55 59.48 58.03 56.12 53.63 52.86 50.55
16 |71.76 71.69 71.47 71.15 31.69 29.33 27.28 27.05 26.70 26.44 26.33 22.75 22.96
4 71.76 71.71 71.34 70.92 28.04 25.70 24.41 24.40 24.37 24.18 23.21 22.94 23.27
1 71.76 71.77 71.27 71.02 27.47 2521 24.29 23.94 24.15 23.49 23.13 22.92 23.17
Truthful QA-mc2
64 |64.68 64.80 64.12 64.51 58.88 58.92 58.81 59.69 59.48 56.93 56.91 56.42 54.20
16 |64.68 64.00 62.30 63.11 57.78 55.65 51.58 51.13 51.00 50.40 52.82 52.63 48.77
4 64.68 64.12 61.64 62.36 57.15 53.84 48.75 48.81 46.59 48.79 52.65 50.23 48.14
1 64.68 64.00 61.68 62.24 56.62 53.17 48.21 48.89 47.34 47.44 52.33 50.55 47.49
WinoGrande
64 |71.51 69.22 70.09 70.48 65.19 64.09 64.33 60.38 58.88 60.06 59.75 56.04 57.93
16 |71.51 67.72 67.25 66.69 61.01 56.27 56.04 53.51 52.41 49.57 51.54 48.62 48.78
4 71.51 68.43 67.96 67.25 59.27 56.67 52.88 52.09 52.25 50.28 51.07 49.88 51.14
1 71.51 68.11 67.17 66.85 59.75 57.46 53.28 51.78 52.64 49.57 50.04 49.80 49.49
Saved Cache Memory (%)
64 0.00 1.79 3.57 6.25 893 10.71 12.50 14.29 16.07 18.75 21.43 23.21 25.00
16 0.00 3.12 6.25 1094 15.62 18.75 21.88 25.00 28.12 32.81 37.50 40.62 43.75
4 0.00 346 6.92 12.11 17.30 20.76 24.22 27.68 31.14 36.33 41.52 4498 48.44
1 0.00 3.54 7.09 1240 17.72 21.26 24.80 28.35 31.89 37.21 42.52 46.07 49.61

Table 16: Performance and KV cache memory reduction (%) for Qwen2-7B-Instruct across multiple
benchmarks and varying projection dimensions/layers.

23

	Introduction
	Related Works
	Learning Low-Dimensional Attention Projection
	Problem Formulation
	DimPO: Dimensionality-Reduced Preference Optimization
	Training Setup
	Baseline Comparison

	Experiments
	Conclusion
	Hyperparameters of Dimensionality Reduction Approaches
	Performance Evaluation of Projection Approaches
	Effect of Key-Pair Selection on Pairwise Losses
	General Task Results
	Use of Large Language Models

