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ABSTRACT

Large Language Models (LLMs) require substantial memory and computation
time, particularly for long-context tasks. To handle long sequences, LLMs use
KV caches, whose memory size grows linearly with the number of tokens. In
this work, we focus on reducing KV cache memory by projecting key and query
vectors into learned lower-dimensional spaces. We pose the problem - previously
solved with triplet loss for Locality Sensitive Hashing (LSH) - as a preference
optimization problem. We show that the preference optimization approach per-
forms better mostly on higher dimensions indicating its potential for training at-
tention in reduced dimensions. To address this, we introduce DimPO, a novel
reference-model-free, listwise preference optimization loss. We demonstrate that
DimPO more accurately preserves attention distributions in reduced dimensions
compared to both existing preference optimization losses and triplet loss. Building
on this, we apply DimPO-based dimensionality reduction to the attention layers
of LLaMA3-[1B, 3B, 8B], Qwen2.5-7B and Qwen3-4B instruct models. On gen-
eral benchmark tasks, DimPO Attentions reduces KV cache memory by 10-15%
while maintaining 95% of performance. Larger models using DimPO Attentions
on long-context tasks also exhibit only a marginal performance drop.

1 INTRODUCTION

LLMs have demonstrated state-of-the-art performance across a wide range of tasks but require mas-
sive computational resources and incur substantial costs not only for training but also for inference
(Pope et al., 2023; Zhang et al., 2023). Recently, generative models supporting very long input con-
texts - up to 128k tokens - have been released (OpenAI et al., 2024; Grattafiori et al., 2024; Yang
et al., 2025). However, this introduces additional computational and memory challenges, as every
input token must be considered when computing attention for each newly generated query token.

To avoid recomputing the key and value vectors of previously processed tokens, LLMs store them in
a KV cache (Pope et al., 2023). However, with each additional input token, the attention computation
must consider one more token than before, causing both the computational cost and the memory
footprint of the KV cache to grow linearly with the total number of input and generated tokens (Li
et al., 2025).

A variety of works have addressed the problem of optimizing the KV cache, focusing mostly on
encoding or compressing the set of key and value vectors to reduce the number of stored vectors
(Zhang et al., 2023; Tang et al., 2024; Liu et al., 2024; Singhania et al., 2024). In contrast, in this
work we compress along a different axis: rather than reducing the number of stored vectors, we
reduce the dimensionality of each individual key and query vector. This could have two benefits: (i)
key vectors occupy less memory in the KV cache, and (ii) attention weight computation becomes
faster because dot products involve shorter vectors. The value vectors remain unmodified, preserving
the semantic information they carry as long as the attention weight distribution remains sufficiently
close to the original.

Our objective is therefore to train a projection that maps query and key vectors into a low-
dimensional space such that the resulting attention weight distribution remains close to that of the
original, full-dimensional attention, while introducing minimal computational overhead during the
projection itself.
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Prior works have also projected keys and queries into lower-dimensional spaces, typically for the
purpose of grouping them into buckets to enable sparse or blockwise attention (Wang et al., 2020;
Chen et al., 2025; Zeng et al., 2025). LSH-based methods, for instance, use multiple random pro-
jections (Kitaev et al., 2020), followed by learnable projections optimized with a triplet loss (Chen
et al., 2021b). These approaches generally require multiple hash functions-i.e., multiple projections-
because any single projection alone does not preserve enough information about the attention distri-
bution (Kitaev et al., 2020; Chen et al., 2021b; 2025).

Inspired by recent advances in preference optimization for post-training alignment of LLMs
(Rafailov et al., 2023; Meng et al., 2024), we frame the problem of dimensionality reduction for
attention as a preference optimization problem. Our goal is to learn a linear layer that projects
queries to relate more strongly to relevant projected keys and less to irrelevant ones, so that the re-
sulting attention weight distribution matches the behavior of the full-dimensional model as closely
as possible.

Preference optimization for post-training align-
ment of LLMs initially relied on reference models
to compute losses (Rafailov et al., 2023; Etha-
yarajh et al., 2024; Liu et al., 2025). Over time,
methods have been developed that do not require
a reference model (Hong et al., 2024; Meng et al.,
2024). This is particularly relevant for our setting:
in the case of attention dimensionality reduction,
it is unclear what a reference model would even
be. Furthermore, typical preference losses are
pairwise, comparing a chosen and a rejected
response, which simplifies data collection. Our
scenario is different: for each query, we need to
capture the full preference ordering across a list
of keys. Constructing all pairwise comparisons
is theoretically possible but computationally
prohibitive and practically infeasible. While
listwise preference losses exist (Liu et al., 2025),
they typically assume a reference model, which
we do not have. These challenges motivate
the need for a custom, reference-free loss func-
tion tailored to attention dimensionality reduction.

To address this, we introduce DimPO, a novel list-
wise, reference-free preference optimization loss
specifically designed for dimensionality reduction
of query and key vectors. DimPO captures the
full preference ordering without relying on a ref-
erence model and, as we show, significantly out-
performs existing approaches, including pairwise
preference optimization losses, triplet loss, and
random projection baselines, indicating its poten-
tial for use in real-world model deployments and
practical tasks.

Figure 1: Decoder model architecture with
integrated DimPO-based attention projection
applied to last ℓ attention layers.

To validate the effectiveness of our KV cache reduction approach, we conduct experiments
on several instruction-tuned models, including LLama3.2-[1B,3B]-Instruct, Llama3.1-8B-Instruct
(Grattafiori et al., 2024), Qwen3-4B-Instruct (Yang et al., 2025), and Qwen-2.5-7B-Instruct (Yang
et al., 2024). We apply our DimPO-trained projections progressively from the top attention layers
downward, as illustrated in Figure 1. This top-down approach ensures that errors from modified
layers have a limited impact on subsequent attention layers.

We measure how many attention layers can be modified using DimPO-based projections and what
proportion of KV cache memory can be saved without causing a significant drop in model perfor-
mance. Evaluations are performed on both general benchmarks and long-context tasks. Our results
indicate that even a 10% reduction in KV cache memory leads to only a marginal performance drop
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on general tasks. For long-context tasks, larger models maintain performance similar to general
tasks at around 10% memory savings, while smaller models experience a more noticeable decline.

In Sections 3.1 we formalize the attention dimensionality reduction problem and in Section 3.2 we
introduce the DimPO loss function. In Section 3.4, we compare our method with other preference
optimization techniques and baseline approaches in dimensionality reduction of attention. Section 4
presents experiments evaluating DimPO-based projections on real tasks. We investigate how many
attention layers can be modified and quantify the corresponding KV cache memory savings, while
ensuring that model performance remains largely unchanged.

2 RELATED WORKS

KV Cache Optimization The KV cache memory bottleneck in long-context LLMs constrains
batch size and maximum prompt length, motivating strategies to reduce key and value vectors while
maintaining accuracy. H2O (Zhang et al., 2023), SnapKV (Li et al., 2024), and Keyformer (Adnan
et al., 2024) use heuristics during prefilling to select tokens for decoding. Quest (Tang et al., 2024)
and Loki (Singhania et al., 2024) apply dynamic sparsity during inference to reduce KV cache
loading without eviction. KIVI (Liu et al., 2024) and QServe (Lin et al., 2025) reduce KV cache via
quantization.

Attention Approximation via Projections Transformer variants leverage projections to approxi-
mate or accelerate attention. Sparse attention methods (BigBird (Zaheer et al., 2020), Longformer
(Beltagy et al., 2020), SparseAxial (Ho et al., 2020)) compute selected blocks or local windows.
LSH-based approaches (Reformer (Kitaev et al., 2020), KDEformer (Zandieh et al., 2023), Scat-
terBrain (Chen et al., 2021a), MagicPIG (Chen et al., 2025)) approximate attention via locality-
sensitive hashing. Mongoose (Chen et al., 2021b) builds on LSH with learnable projections trained
via triplet loss to group semantically similar keys and queries. Low-rank and linear attention meth-
ods (Linformer (Wang et al., 2020), Performer (Choromanski et al., 2021), Nyströmformer (Xiong
et al., 2021)) project the attention matrix to lower-dimensional spaces. Top-k mechanisms (Un-
limiformer (Bertsch et al., 2023), IceFormer (Mao et al., 2024), ZETA (Zeng et al., 2025)) use
projections and dimension reduction for efficient token selection.

Preference Optimization Preference optimization aligns models with desired outputs using
ranked feedback, often via chosen/rejected pairs. DPO (Rafailov et al., 2023) simplifies RLHF
(Christiano et al., 2017) by removing the reward model and framing alignment as a single-stage
classification, still using a reference model to prevent distributional drift. Variants include ORPO
(Hong et al., 2024) (odds-ratio), SimPO (Meng et al., 2024) (average log-probability as implicit re-
ward), CPO (Xu et al., 2024) (contrastive learning for machine translation), KTO (Ethayarajh et al.,
2024) (prospect-theory utility for binary labels, still needing a reference), and listwise objectives like
LiPO (Liu et al., 2025), considering multiple ranked responses while relying on a reference model.

3 LEARNING LOW-DIMENSIONAL ATTENTION PROJECTION

In this section, we formalize the problem of dimensionality reduction for key and query vectors,
aiming to minimize the KL divergence between the original attention weight distribution and the
distribution computed from the reduced projected vectors. Although more complex non-linear pro-
jection approaches could be considered, we require minimal runtime overhead during inference in
generative language models. For this reason, we focus on learnable linear layer projections and
evaluate several loss functions for training such a projection layer within a Siamese framework (Pai
et al., 2019). To this end, we introduce our novel loss function, DimPO, and compare it with other
preference optimization losses as well as baseline projection approaches.

3.1 PROBLEM FORMULATION

Let l denote a transformer attention layer with query vectors Ql ∈ RN×d and key vectors Kl,q ∈
Rm×d for a given q ∈ Ql where N is the total number of queries, m is the number of keys per each
query and d is the original embedding dimension. Our goal is to learn a shared linear projection
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Figure 2: Siamese network architecture for query q and its associated list of keysK using preference
optimization loss.

function
F : Rd → Rd

′
,

with d′ ≪ d, that maps both queries and keys into a lower-dimensional space such that the resulting
attention weight distribution is as close as possible to the original one. Formally, we solve

F ∗ = argmin
F

1

N

∑
q∈Ql

KL

(
Softmax

(qK⊤
l,q√
d

)
︸ ︷︷ ︸

original attention

, Softmax
(F (q)F (Kk,q)

⊤
√
d′

)
︸ ︷︷ ︸

projected attention

)
,

where KL(·, ·) denotes the Kullback–Leibler divergence between the original and projected attention
distributions.

To minimize this divergence in a computationally efficient way, we restrict F to a single linear pro-
jection layer, F (x) = Wx with W ∈ Rd′×d, ensuring negligible inference overhead in generative
models. We then train W using a Siamese framework, as illustrated in Figure 2, where each query is
paired with its ranked keys (in the case of pairwise losses, only two ranked keys are used) according
to their importance for the given query, derived from the original attention weight distribution. This
setup is formulated as a preference optimization problem: the projection F is optimized such that
keys with higher original attention weights have higher similarity to the query representation (in
terms of dot product), while less relevant keys have lower similarity.

The probability assigned by the linear layer parameters θ to a given key k (either from a key pair
or the full list Kl,q associated with the current training instance) after projection F (k) = k′ and the
corresponding query F (q) = q′ is computed as

πθ(k
′ | q′) = Softmax

(
q′K ′

l,q
⊤

√
d′

)
,

where K ′
l,q = F (Kl,q) denotes the set of projected keys and k′ ∈ K ′

l,q, k ∈ Kl,q. For pairwise
losses, this probability computation is limited to the two selected keys in Kl,q, whereas for listwise
loss functions, all keys associated with the given query are used.

We evaluate the quality of the learned projection F using two complementary metrics, averaged over
all N evaluation instances (q,Kl,q) for all q ∈ Ql, where Vl,q ∈ RN×d denotes the value vectors
for layer l associated with query q.

1. Attention weights KL Divergence: the average Kullback–Leibler divergence between the orig-
inal attention distribution and the projected one for each query-key set:

KL =
1

N

∑
q∈Ql

KL

(
Softmax

(qK⊤
l,q√
d

)
, Softmax

(F (q)F (Kl,q)
⊤

√
d′

))
,

2. Attention output MSE: the average mean squared error between the original attention output
and the output after projection for each query-key set:

MSE =
1

N

∑
q∈Ql

∥∥∥Softmax
(qK⊤

l,q√
d

)
Vl,q − Softmax

(F (q)F (Kl,q)
⊤

√
d′

)
Vl,q

∥∥∥2
2
.
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3.2 DIMPO: DIMENSIONALITY-REDUCED PREFERENCE OPTIMIZATION

Preference optimization research has predominantly focused on pairwise comparisons (Rafailov
et al., 2023; Hong et al., 2024; Xu et al., 2024; Meng et al., 2024). While effective for many tasks,
this is not practical for dimensionality reduction of query-key interactions, where each query is com-
pared against many keys. Using a pairwise loss, one can either select a single positive-negative key
pair for each query, losing information about relationships with other keys, or consider all possi-
ble key pairs, creating m(m − 1)/2 training instances for each query for m context tokens, which
dramatically increases computational and memory costs making the training infeasible to complete.
For this reason, it is more practical in this setting to adopt listwise preference optimization losses.
One of the most popular pairwise preference optimization methods is DPO (Rafailov et al., 2023):

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
,

which fits naturally into the Bradley-Terry (BT) (Bradley & Terry, 1952) ranking model:

p(yw ≻ yl | x) = σ
(
r(x, yw)− r(x, yl)

)
,

where yw denotes the preferred response, yl the non-preferred response, and r(x, y) is the reward
function. LiPO (Liu et al., 2025) generalizes this BT model to a list of responses y = (y1, . . . , yK):

p(y1 ≻ y2 ≻ · · · ≻ yK | x) =
K∏
i=1

exp(si)∑K
j=i exp(sj)

,

where si = r(x, yi) denotes the score of response yi. This reduces exactly to the pairwise BT
model when K = 2. In the formulation of listwise loss LiPO, the training dataset consists of lists
of responses with corresponding real-valued labels ψ = (ψ1, . . . , ψK), and a ranking loss is applied
over all pairs within the list:

Lλ-loss(πθ) = −E(x,y,ψ)∼D

[ ∑
ψi>ψj

∆i,j log
(
1 + e−(si−sj)

)]
,

where

∆i,j =

∣∣∣∣ 1

D(τ(i))
− 1

D(τ(j))

∣∣∣∣ , Gi = 2ψi − 1, D(τ(si)) = log(1 + τ(si)).

Here, τ(si) denotes the rank position of yi in the permutation induced by the scores s, and the scores
are defined as

si = β log
πθ(yi | x)
πref(yi | x)

,

with β > 0 controlling the sharpness of the preference optimization.

In our setting, the reference model πref is not available. Furthermore, SimPO argues that using a
reference model during training is inconsistent with inference, in which no reference is present,
which can generate inaccurate responses (Meng et al., 2024). However, in our setting, we treat πref
as a uniform distribution and approximate it with a constant 1/c, which cancels in the log-ratio in
the e−(si−sj) term of the sum in the LiPO loss equation

si − sj = β log
πθ(yi | x)
πref(yi | x)

− β log
πθ(yj | x)
πref(yj | x)

= β
(
log πθ(yi | x)− log πref(yi | x)− log πθ(yj | x) + log πref(yj | x)

)
= β

(
log πθ(yi | x)− log πθ(yj | x)

)
,

yielding
si = β log πθ(yi | x).

Finally, following SimPO’s BT adaptation, which introduces a target reward margin γ > 0 to ensure
that the score difference between better and worse responses is at least γ (a margin known to improve
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generalization capabilities of classifiers (Boser et al., 1992; Cortes & Vapnik, 1995; Agresti, 2002;
Turner & Firth, 2012) ) the pairwise margin-adjusted BT model is defined as

p(yw ≻ yl | x) = σ
(
r(x, yw)− r(x, yl)− γ

)
.

Building on this, we now introduce our preference optimization loss, DimPO:

LDimPO(πθ) = −E(x,y,ψ)∼D

[ ∑
ψi>ψj

∆i,j log
(
1 + e−(si−sj−γ)

)]
, (1)

with ∆i,j , Gi, D(τ(si)), τ(si) and scores si = β log πθ(yi|x) as defined above. This formulation
provides a reference-model-free, listwise, margin-aware preference optimization objective, captur-
ing all key-query interactions efficiently while maintaining theoretical consistency with DPO when
K = 2.

3.3 TRAINING SETUP

Having defined the objective, we now describe the practical training procedure used to obtain the
projection F . The projection is trained independently for each transformer layer l, but a single W is
shared across all attention heads within that layer to reduce parameter count and training complexity.

For training, we take the first 4096 tokens from 10 chapters of the training split of the BOOKSUM
dataset (Kryscinski et al., 2022), ensuring that each chapter contains at least 4096 tokens. Each
chapter thus provides a set of queries paired with lists of 4096 keys. To balance coverage and
computational efficiency, we subsample everyHl,q-th query from each attention head, whereHl,q is
the number of query heads in layer l, resulting in a total of 40,960 training instances per layer. The
parameters of the projection function F are then optimized using the Adam optimizer.

For validation, we select 10 chapters from the BOOKSUM validation split, each containing at least
4096 tokens, and use the first 4096 tokens from each chapter. For evaluation, we select 10 chapters
from the BOOKSUM test split in the same manner, using the first 4096 tokens of each chapter. Unlike
training and validation, during evaluation we include all queries from all attention heads to obtain a
complete measure of attention distribution preservation.

Before training, we first derive preference rankings from the key and query vectors. For DimPO,
we additionally assign a score to each key by computing the original attention weights si =

Softmax
(
qKl,q√

d

)
i
. Sorting the keys in descending order by si yields a preference ranking.

For DimPO training, we use all keys of each training instance with their exact scores as attention
weights si and the derived preference ranking. For other methods that use pairwise losses, we select
a single key pair per training instance, choosing the highest-ranked key as chosen and the lowest-
ranked key as rejected, following the setup used by Mongoose for triplet-loss training (Chen et al.,
2021b). This ensures that all methods (ours as well as other preference optimization losses) are
trained on an equal number of training instances (see Appendix C for evidence that, even if more
complex training with multiple pairs were used, pairwise methods often stagnate or degrade rather
than improve). Detailed hyperparameters used for training each method are provided in Appendix A.

3.4 BASELINE COMPARISON

In this section, we compare DimPO against several pairwise, reference-model-free preference op-
timization methods, namely CPO, ORPO, and SimPO, on the task of attention dimensionality re-
duction. We also include random projection and triplet loss as baselines, and add PCA projection
as a reference. While PCA is neither designed for online training nor aimed at preserving attention-
relevant dimensions, it provides a useful comparison, even though it discards variance from low-
variance dimensions that may still be crucial for attention.

For evaluation, we train a separate linear projection layer for each attention layer of Llama3.1-8B-
Instruct. Results for Qwen and other Llama models are provided in Appendix B. Each projection
maps from the original head dimension d = 128 to a target dimension d′ ≪ 128 (note that Llama3.2-
1B uses d = 64, while all other reported models have d = 128). Table 1 summarizes the results,
averaged across all layers, for d′ ∈ {64, 32, 16, 8, 4, 2, 1}.
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64 32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 12.56 0.084 14.50 0.104 15.78 0.119 16.52 0.129 16.60 0.128 16.82 0.132 16.70 0.126
PCA 2.65 0.011 5.71 0.013 7.28 0.013 7.57 0.013 6.66 0.016 6.44 0.019 6.49 0.021
Triplet 3.19 0.014 3.61 0.014 3.97 0.015 4.14 0.015 4.16 0.015 4.18 0.015 4.33 0.015
CPO 2.22 0.010 1.80 0.008 2.32 0.012 3.27 0.014 3.81 0.015 4.13 0.015 4.44 0.015
SimPO 2.90 0.010 2.11 0.009 1.94 0.009 2.17 0.009 2.58 0.012 3.05 0.016 3.86 0.028
ORPO 2.72 0.010 1.93 0.008 1.75 0.008 1.96 0.009 2.31 0.011 2.68 0.015 3.26 0.022
DimPO 0.67 0.005 0.97 0.006 1.29 0.007 1.57 0.008 1.83 0.009 2.10 0.011 2.62 0.014

Table 1: Comparison of different projection approaches for Llama3.1-8B-Instruct. Reported values
are attention weights KL divergence and attention output MSE (lower is better), averaged across all
attention layers, for different target dimensions d′ ∈ {64, 32, 16, 8, 4, 2, 1}.

d′ / ℓ 0 2 4 8 12 16 20 24 28 30 32
64 66 / 0% 66 / 2% 66 / 3% 66 / 6% 65 / 9% 64 / 13% 61 / 16% 57 / 19% 52 / 22% 48 / 23% 43 / 25%

16 66 / 0% 65 / 3% 65 / 5% 64 / 11% 62 / 16% 52 / 22% 42 / 27% 37 / 33% 35 / 38% 35 / 41% 35 / 44%

4 66 / 0% 65 / 3% 64 / 6% 62 / 12% 54 / 18% 42 / 24% 36 / 30% 35 / 36% 34 / 42% 35 / 45% 35 / 48%

1 66 / 0% 65 / 3% 64 / 6% 59 / 12% 52 / 19% 39 / 25% 35 / 31% 35 / 37% 35 / 43% 35 / 47% 36 / 50%

Table 2: Average performance across Arc-Challenge, HellaSwag, TruthfulQA-mc2, MMLU and
WinoGrande tasks for Llama3.1-8B-Instruct. Each cell reports the average score and the percentage
of KV cache memory saved for the number of projected attention layers ℓ and target dimension d′.

Table 1 shows that learned linear projections outperform random projections, commonly used in
LSH-based approaches. Preference optimization losses consistently exceed the Mongoose triplet-
loss approach, especially at higher dimensions. Among these, DimPO achieves roughly three times
lower error than triplet loss in high-dimensional settings and surpasses other preference optimization
losses across all tested d′. Overall, DimPO consistently ranks best across all target dimensions,
highlighting its potential for training attention in reduced dimensions beyond LSH use cases.

If the learned projection accurately estimates the attention weight distribution in a low-dimensional
key-query space, it can enable smaller KV caches and faster inference without sacrificing perfor-
mance. However, for practical deployment, an open question remains: how far can we safely reduce
dimensionality, and in how many layers, before accumulated deviation from the original attention
distribution begins to degrade model performance? Even a small perturbation in the first layer could
propagate and amplify through the network, whereas a similar perturbation in the final layer may
have minimal downstream effect.

4 EXPERIMENTS

From the previous section, we know that DimPO outperforms all other methods in estimating atten-
tion weight distributions. Therefore, under the same training settings, we train a linear layer with the
DimPO loss for each attention layer of the generative model independently. It remains unclear how
many attention layers can be safely integrated with this projection without causing a noticeable drop
in performance. Since errors in the i-th attention layer affect all subsequent layers, while preceding
layers remain unaffected, it is sensible to integrate projections starting from the last layer. Noise in
the last attention layer does not propagate further, whereas noise in the first layer impacts all follow-
ing layers. Accordingly, in the experiments that follow, we apply DimPO-based projections starting
from the back and progressively extend them toward the beginning, studying the trade-off between
performance drop and KV cache memory reduction, as illustrated in Figure 1.

Storing keys and values in the KV cache at their original sizes and head dimensions across all layers
is considered 0% KV cache reduction. Conversely, if key vectors were not stored at all, the remaining
value vectors (unchanged by our method) would account for 50% of the total KV cache, representing
a practical upper bound on achievable reduction. Projecting key vectors to fewer dimensions across
more layers reduces the KV cache memory footprint, the primary objective of our method.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

d′ / ℓ 0 2 4 6 9 12 15 21 27 32 36
64 66 / 0% 66 / 1% 66 / 3% 66 / 4% 65 / 6% 65 / 8% 63 / 10% 61 / 15% 56 / 19% 54 / 22% 52 / 25%

16 66 / 0% 65 / 2% 64 / 5% 63 / 7% 62 / 11% 57 / 15% 49 / 18% 42 / 26% 39 / 33% 36 / 39% 34 / 44%

4 66 / 0% 64 / 3% 63 / 5% 62 / 8% 60 / 12% 49 / 16% 43 / 20% 38 / 28% 36 / 36% 35 / 43% 35 / 48%

1 66 / 0% 64 / 3% 63 / 6% 61 / 8% 59 / 12% 47 / 17% 42 / 21% 38 / 29% 35 / 37% 35 / 44% 35 / 50%

Table 3: Average performance across Arc-Challenge, HellaSwag, TruthfulQA-mc2, MMLU and
WinoGrande tasks for Qwen3-4B-Instruct. Each cell reports the average score and the percentage
of KV cache memory saved for the number of projected attention layers ℓ and target dimension d′.

To evaluate model performance for varying num-
bers ℓ of DimPO-based projected attention lay-
ers and projected dimensions d′ ∈ {64, 16, 4, 1}
from the original 128, we measure five
generic benchmark tasks: Arc-Challenge
(acc norm) (Clark et al., 2018), HellaSwag
(acc norm) (Zellers et al., 2019), MMLU (acc)
(Hendrycks et al., 2021), TruthfulQA-mc2
(acc) (Lin et al., 2022), and WinoGrande (acc)
(Sakaguchi et al., 2021) using harness 0.4.9.1
(Sutawika et al., 2025) in zero-shot settings. The
average scores along with the corresponding KV
cache memory reduction percentages for differ-
ent d′ and ℓ settings are reported in Table 2 for
Llama3.1-8B-Instruct and Table 3 for Qwen3-
4B-Instruct.

Figure 3: Average performance across Arc-
Challenge, HellaSwag, TruthfulQA-mc2,
MMLU, and WinoGrande tasks, shown as a
function of KV cache reduction.

The tables show the average harness score and the percentage of KV cache memory reduced (see
Appendix D for detailed results on all tasks and models, including Llama3.2-1B-, 3B-, 8B-Instruct,
Qwen3-4B-, and Qwen2.5-7B-Instruct). Projecting only the last few layers minimally affects perfor-
mance, even at dimensions as low as 4 or 1, while projecting layers further from the output gradually
reduces it. Figure 3 illustrates this trend across all five models, showing that a 10–15% KV cache
reduction preserves roughly 95% of the original performance.

The challenges of computational time and large KV cache memory primarily arise in long-context
tasks. Based on Figure 3, we selected settings for evaluating the efficiency of DimPO-based projec-
tion method on long-context tasks, reducing the KV cache by approximately 6%, 10%, and 12%.
We compare these settings across all models (excluding Qwen2.5, whose pretraining did not ex-
tensively target long-context tasks) against their base models on all RULER subtasks (Hsieh et al.,
2024) available in harness 0.4.9.1 for 4k and 8k context lengths. Table 4 reports averages across all
subtasks for the specified context lengths, including throughput in tokens/s.1

Unlike generic tasks, smaller models are more sensitive to DimPO-based projections on long-
context tasks, particularly Llama 1B, which quickly experienced substantial performance degra-
dation. Larger models, such as Llama3.2-8B-Instruct and Qwen3-4B-Instruct, are more robust and
exhibit trends in preserving performance under KV cache reductions similar to those observed in
generic tasks, suggesting that the performance impact could be even smaller for larger and more
resilient models. In addition to reducing KV cache memory usage, integrating DimPO-based pro-
jections into the attention layers also tends to increase token throughput.

Building on these observations, we explore the interaction between DimPO-based projections and
the MagicPIG framework, which efficiently optimizes KV cache and attention computation for
long-context tasks using LSH-based random projections and CPU-GPU co-design. We investigate
whether DimPO can complement MagicPIG by further reducing KV cache usage while maintaining
performance. Since MagicPIG currently supports only LLaMA3.1-8B-Instruct among our models,
Table 5 compares the base model, its MagicPIG variant, and the MagicPIG variant with DimPO ap-
plied to the last 12 layers, corresponding to a 10% reduction of the original MagicPIG KV cache.

1Throughput was measured using the eager attention implementation for a fair comparison, since other
optimized attention implementations either do not support varying key, value, and query dimensions or are not
optimized for such cases, which is why we restrict our evaluation to 4k and 8k context lengths.
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Average Tokens/s
4K 8K 4K 8K

Llama3.2-1B-Instruct (full) 79.35 72.94 29.09 10.58
6.25% d′ = 32, ℓ = 4 54.82 35.23 34.59 17.08
9.38% d′ = 32, ℓ = 6 17.72 8.95 32.98 15.63

12.50% d′ = 32, ℓ = 8 3.53 1.87 34.77 16.54
Llama3.2-3B-Instruct (full) 92.56 87.31 18.94 7.16

6.25% d′ = 64, ℓ = 7 86.04 75.68 19.36 7.91
10.71% d′ = 64, ℓ = 12 81.83 71.14 19.32 8.39
12.50% d′ = 64, ℓ = 14 72.61 61.84 17.65 7.81

Llama3.1-8B-Instruct (full) 95.05 93.94 13.35 4.57
6.25% d′ = 64, ℓ = 8 94.22 91.06 13.27 4.65
9.38% d′ = 64, ℓ = 12 93.59 89.15 13.39 4.79

12.50% d′ = 64, ℓ = 16 90.46 85.09 20.17 10.88
Qwen3-4B-Instruct (full) 93.86 93.08 13.37 4.98

6.25% d′ = 64, ℓ = 9 93.28 90.19 10.94 5.99
10.42% d′ = 64, ℓ = 15 92.01 83.92 18.10 9.53
12.50% d′ = 64, ℓ = 18 84.84 70.27 17.92 7.07

Table 4: Average accuracy and token throughput on RULER long-context tasks for different models
in different DimPO projection settings.

RULER
LongBench 4K 8K 16K 32K 65K

Llama3.1-8B-Instruct 37.83 95.05 93.94 93.39 87.76 84.75
MagicPIG 35.84 92.63 92.35 91.64 86.71 83.67
MagicPIG 9.38% (d′ = 64, ℓ = 12) 32.58 87.59 83.41 79.56 75.29 63.66

Table 5: Comparison of Llama3.1-8B-Instruct, MagicPIG (K = 8, L = 75) built on Llama3.1-
8B-Instruct, and MagicPIG extended with DimPO-based projections on d′ = 64, ℓ = 12 attention
layers, which reduce KV cache memory by 9.38%.

Performance is evaluated on LongBench (Bai et al., 2024) and RULER (Hsieh et al., 2024) tasks
across different context lengths, averaging scores over all available subtasks with harness 0.4.9.1
(Sutawika et al., 2025). Despite the additional error introduced by projecting multiple layers, per-
formance decreases gradually and remains reasonably high, highlighting the potential of combining
these two approaches to optimize inference for long-context generative tasks.

5 CONCLUSION

In this work, we approached attention dimensionality reduction as a preference optimization prob-
lem with the goal of reducing KV cache memory. We introduced DimPO, a listwise preference-
optimization loss, which consistently outperforms not only existing approaches for projecting key
and query vectors but also other reference-model-free preference optimization losses. These pro-
jections enable more efficient inference, achieving a 10-15% reduction in KV cache memory with
only about a 5% performance drop on generic tasks. While long-context tasks present a greater
challenge (particularly for smaller models), larger models maintain performance close to their base-
lines even when reducing KV cache memory by 10%, indicating that the approach scales well to
larger architectures. Beyond introducing a novel preference-optimization loss function and refram-
ing dimensionality reduction as a preference-optimization problem, our work proposes a promising
direction for future research by using dimensionality reduction of key and query vectors to optimize
KV cache memory usage and attention computation efficiency, addressing two open and critical
challenges for scaling large language models. 2

2DimPO code is available at: anonymized
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A HYPERPARAMETERS OF DIMENSIONALITY REDUCTION APPROACHES

Hyperparameters. We report here the hyperparameters used for preference optimization based di-
mensionality reduction. All methods were trained using the Adam optimizer, with the learning rate
specified in the tables. Hyperparameters were tuned on a validation set extracted from BOOKSUM to
select the final configuration. To provide a sense of computational cost, we also report the approx-
imate training time per attention layer: DimPO is slower ( 5 min/layer) due to additional attention
computations for computing model likelihoods, whereas SimPO, Triplet, ORPO, and CPO are sub-
stantially faster ( 10 s/layer). Table 6 lists the final selected settings. Table 7 enumerates all tested
values for each hyperparameter across methods, wherever applicable.

Method β γ Learning rate Batch size Time/layer
DimPO 1.0 0.0001 0.0001 1 ∼5 min
SimPO 1.0 1.0 0.001 32 ∼10 s
Triplet – – 0.0001 32 ∼10 s
ORPO 0.1 – 0.001 32 ∼10 s
CPO 1.0 0.1 0.0001 32 ∼10 s

Table 6: Final hyperparameter settings for all preference optimization methods.

Hyperparameter Tested values
β 0.0001, 0.001, 0.01, 0.1, 1.0, 2, 2.5, 5.0
γ 0, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0
Learning rate 1e-5, 1e-4, 1e-3, 1e-2, 0.1
Batch size 1, 2, 4, 8, 16, 32, 64

Table 7: Hyperparameter values explored during tuning for all methods, where applicable.
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B PERFORMANCE EVALUATION OF PROJECTION APPROACHES

32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 15.02 0.087 15.92 0.092 16.37 0.095 16.49 0.103 16.62 0.099 16.42 0.102
PCA 3.83 0.014 7.09 0.016 8.04 0.017 8.06 0.020 8.46 0.026 8.13 0.026
Triplet 3.15 0.010 3.59 0.010 3.92 0.011 4.07 0.011 4.14 0.011 4.21 0.011
CPO 1.92 0.008 2.69 0.010 3.39 0.011 3.89 0.011 4.20 0.011 4.40 0.011
SimPO 1.67 0.008 1.93 0.008 2.52 0.010 3.08 0.012 3.61 0.016 4.35 0.020
ORPO 1.62 0.008 1.86 0.008 2.38 0.009 2.78 0.011 3.02 0.012 3.69 0.016
DimPO 0.94 0.007 1.45 0.008 1.95 0.009 2.38 0.009 2.64 0.010 3.19 0.014

Table 8: Comparison of different projection approaches for Llama3.2-1B-Instruct. We report the
KL Divergence of attention weights and the MSE of attention outputs, averaged over all attention
layers, for different target dimensions d′ ∈ {32, 16, 8, 4, 2, 1}.

64 32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 12.56 0.084 14.50 0.104 15.78 0.119 16.52 0.129 16.60 0.128 16.82 0.132 16.70 0.126
PCA 2.65 0.011 5.71 0.013 7.28 0.013 7.57 0.013 6.66 0.016 6.44 0.019 6.49 0.021
Triplet 3.19 0.014 3.61 0.014 3.97 0.015 4.14 0.015 4.16 0.015 4.18 0.015 4.33 0.015
CPO 2.22 0.010 1.80 0.008 2.32 0.012 3.27 0.014 3.81 0.015 4.13 0.015 4.44 0.015
SimPO 2.90 0.010 2.11 0.009 1.94 0.009 2.17 0.009 2.58 0.012 3.05 0.016 3.86 0.028
ORPO 2.72 0.010 1.93 0.008 1.75 0.008 1.96 0.009 2.31 0.011 2.68 0.015 3.26 0.022
DimPO 0.67 0.005 0.97 0.006 1.29 0.007 1.57 0.008 1.83 0.009 2.10 0.011 2.62 0.014

Table 9: Comparison of different projection approaches for Llama-3B-Instruct. We report the KL
Divergence of attention weights and the MSE of attention outputs, averaged over all attention layers,
for different target dimensions d′ ∈ {64, 32, 16, 8, 4, 2, 1}.

64 32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 14.07 1.269 14.85 1.577 15.49 1.837 15.75 2.045 15.89 2.131 16.01 2.173 15.88 1.929
PCA 4.42 0.217 6.51 0.267 8.01 0.360 9.16 0.503 10.02 0.554 10.34 0.533 10.36 0.534
Triplet 2.50 0.149 2.90 0.155 3.14 0.159 3.39 0.165 3.54 0.166 3.64 0.167 3.75 0.169
CPO 2.52 0.216 2.06 0.170 2.54 0.148 3.12 0.156 3.44 0.165 3.55 0.169 3.79 0.168
SimPO 1.44 0.115 1.72 0.120 2.20 0.132 2.86 0.145 3.58 0.186 4.03 0.248 4.42 0.270
ORPO 1.39 0.116 1.66 0.107 2.06 0.131 2.51 0.146 2.96 0.171 3.29 0.196 3.51 0.263
DimPO 0.73 0.052 1.15 0.076 1.57 0.089 1.89 0.107 2.07 0.117 2.27 0.132 2.74 0.223

Table 10: Comparison of different projection approaches for Qwen3-4B-Instruct. We report the KL
Divergence of attention weights and the MSE of attention outputs, averaged over all attention layers,
for different target dimensions d′ ∈ {64, 32, 16, 8, 4, 2, 1}.
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64 32 16 8 4 2 1
KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE KL MSE

Rand 14.65 1.181 15.58 1.459 15.82 1.594 16.02 1.789 16.08 1.911 16.09 1.739 15.96 1.705
PCA 3.65 0.826 7.49 0.891 10.39 0.936 11.32 0.939 11.40 0.985 11.43 1.138 11.41 1.205
Triplet 2.51 0.104 2.92 0.108 3.23 0.115 3.44 0.114 3.52 0.114 3.64 0.116 3.69 0.119
CPO 2.53 0.120 2.34 0.109 2.61 0.110 3.19 0.117 3.51 0.119 3.70 0.179 3.85 0.118
SimPO 1.58 0.094 1.83 0.101 2.43 0.120 3.18 0.144 3.96 0.174 4.44 0.193 4.63 0.254
ORPO 1.61 0.096 1.85 0.104 2.30 0.114 2.87 0.134 3.39 0.148 3.69 0.156 3.75 0.169
DimPO 0.78 0.057 1.15 0.078 1.62 0.102 2.07 0.111 2.43 0.111 2.75 0.126 3.10 0.736

Table 11: Comparison of different projection approaches for Qwen2.5-7B-Instruct. We report the
KL Divergence of attention weights and the MSE of attention outputs, averaged over all attention
layers, for different target dimensions d′ ∈ {64, 32, 16, 8, 4, 2, 1}.

C EFFECT OF KEY-PAIR SELECTION ON PAIRWISE LOSSES

(a) All key pairs (b) Multiple distinct pairs

(c) Level of key diversity

Figure 4: Effect of key-pair selection on pairwise losses. (a) Using all possible key pairs from a sam-
pled subset shows that DimPO keeps improving as more keys are included, whereas pairwise meth-
ods either plateau or degrade beyond a certain point. (b) Training with multiple non-overlapping
pairs per query does not yield improvements, suggesting that additional pairs introduce noise rather
than meaningful signal. (c) Increasing the diversity between chosen and rejected keys consistently
improves performance, indicating that pairwise losses benefit most from highly diverse key pairs.

The observation that DimPO outperforms the other loss functions raises the question of whether
this advantage comes from a better inductive bias or simply from receiving more training signal.
Although all methods use the same number of training instances, DimPO uses all keys associated
with a given query, whereas pairwise losses rely on only two keys (chosen and rejected). Provid-
ing every possible key pair to pairwise methods would be computationally prohibitive due to the
combinatorial growth in training examples, but it is still informative to study whether their weaker
performance is caused by this information bottleneck. To this end, we perform three controlled
experiments on the attention layers of Llama3.2-1B-Instruct, Llama3.2-3B-Instruct, Llama3.1-8B-
Instruct, and Qwen3-4B-Instruct, reporting averages across all models. For efficiency, training is
performed on 128-token subsequences sampled from 10 chapters, and evaluation uses a validation
set of 10 full-length chapters (4096 tokens each) from BOOKSUM.

All Key Pairs. We first investigate pairwise methods and DimPO by sampling k ∈ {2, 4, 8, 16}
keys from the 128 available keys per sequence and using all possible key pairs within this subset for
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training. Figure 4a reports two metrics, averaged across all attention layers and target dimensions
d′ ∈ {1, 2, 4, 8, 16, 32, 64} (the same as in the other experiments): KL divergence between the
original and projected attention weights, and MSE between the original and projected attention
outputs (after applying value vectors). The results indicate that DimPO benefits consistently from
having access to more keys, while Triplet and CPO remain largely unaffected. ORPO and SimPO
initially seem to gain from additional keys, but their performance quickly plateaus or even degrades,
suggesting that the increased combinatorial complexity hinders training rather than helping. This
emphasizes that even if pairwise methods were trained on all possible key pairs, they would likely
still fall short of DimPO’s performance, highlighting the advantage of its listwise formulation.

Multiple Distinct Pairs. Given that overlapping keys appear to be a limiting factor, we next in-
vestigate training with multiple distinct pairs per query, ensuring that no key is used more than once.
For each query, we generate k ∈ {1, 2, 4, 8, 16, 32, 64} training pairs, where each chosen key comes
from the top half of the attention-weight ranking and each rejected key from the bottom half. Fig-
ure 4b shows that even this distinct-pair setting does not improve performance: pairwise methods
consistently perform best when using only a single pair per query, confirming that adding more pairs
introduces noise rather than additional useful signal.

Level of Key Diversity. Table 1 reports pairwise methods trained by maximizing the diversity
between chosen and rejected keys. One might wonder whether using more similar key pairs could
be beneficial. In Figure 4c, we show results for k ∈ {1, 8, 16, 32, 64, 127}, where k indicates the
distance in the attention-weight ranking between chosen and rejected keys (i.e., k = 1 corresponds
to directly neighboring keys). The results show that while CPO and Triplet losses remain largely
unaffected by diversity, SimPO and ORPO exhibit substantial differences across both metrics, high-
lighting that these methods require highly diverse key pairs to achieve optimal performance.
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D GENERAL TASK RESULTS

d′ / ℓ 0 2 4 6 8 10 12 14 16
ARC-Challenge

32 37.97 37.37 36.60 36.01 30.63 29.10 27.22 23.29 23.46
16 37.97 37.80 35.49 33.28 28.33 26.02 25.09 23.72 22.87
4 37.97 37.29 32.76 29.61 25.68 23.55 23.12 25.00 25.94
1 37.97 36.69 33.02 27.39 23.72 24.06 23.81 23.89 26.02

HellaSwag
32 60.71 60.21 59.33 57.94 52.61 48.49 42.93 33.61 28.87
16 60.71 59.96 57.60 52.77 43.38 36.42 30.30 27.60 26.74
4 60.71 58.69 52.13 41.05 31.86 29.40 27.43 27.11 26.29
1 60.71 58.39 50.83 39.00 30.17 28.24 27.61 26.68 26.71

MMLU
32 45.93 46.00 43.85 34.92 29.72 27.55 26.70 24.46 22.96
16 45.93 46.17 39.70 25.70 24.35 23.74 22.77 22.75 22.93
4 45.93 45.59 36.30 22.93 22.96 22.96 23.00 22.90 24.13
1 45.93 45.48 32.65 22.94 22.95 22.95 23.02 22.92 23.05

TruthfulQA-mc2
32 43.89 44.26 44.67 43.58 43.93 45.87 46.24 47.99 50.98
16 43.89 43.79 43.86 45.90 47.29 49.16 50.77 50.20 48.81
4 43.89 44.44 46.64 50.87 50.95 50.84 50.55 49.62 48.02
1 43.89 44.64 47.11 50.69 50.45 50.13 50.14 49.04 48.44

WinoGrande
32 59.83 59.59 58.64 58.33 56.43 53.43 50.12 51.62 51.70
16 59.83 59.27 58.48 58.17 54.14 50.67 51.93 50.36 52.41
4 59.83 59.04 58.17 56.04 52.01 49.88 49.88 49.64 51.54
1 59.83 59.75 57.54 55.33 52.80 50.36 49.88 50.51 47.91

Saved Cache Memory (%)
32 0.00 3.12 6.25 9.38 12.50 15.62 18.75 21.88 25.00
16 0.00 4.69 9.38 14.06 18.75 23.44 28.12 32.81 37.50
4 0.00 5.86 11.72 17.58 23.44 29.30 35.16 41.02 46.88
1 0.00 6.15 12.30 18.46 24.61 30.76 36.91 43.07 49.22

Table 12: Performance and KV cache memory reduction (%) for Llama3.2-1B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.
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d′ / ℓ 0 2 4 7 10 12 14 16 18 21 24 26 28
ARC-Challenge

64 45.90 46.08 45.82 45.56 43.94 43.17 41.72 40.96 38.91 37.54 34.39 31.83 25.34
16 45.90 43.77 44.03 42.92 35.75 31.83 28.92 27.22 26.02 25.26 23.21 23.55 26.45
4 45.82 43.26 40.53 35.84 29.78 25.85 25.00 22.87 23.29 24.06 24.49 25.26 27.39
1 45.82 43.43 38.82 36.18 27.73 25.34 24.91 24.83 24.49 24.49 24.40 24.49 27.65

HellaSwag
64 70.53 70.73 70.65 70.29 69.45 69.13 67.74 65.85 64.16 61.12 57.53 53.87 48.14
16 70.53 70.05 67.66 65.49 57.43 54.41 47.19 41.93 37.04 32.30 28.24 27.30 26.06
4 70.47 69.05 63.30 53.21 41.02 34.60 30.51 29.64 28.82 27.61 26.94 26.44 26.65
1 70.47 68.88 61.34 50.83 37.75 31.56 28.38 27.64 27.60 26.89 26.63 26.46 26.54

MMLU
64 60.38 60.02 59.98 59.14 58.67 58.62 53.38 51.00 48.50 40.86 36.54 33.06 30.34
16 60.38 59.76 58.29 58.46 57.15 57.30 30.47 25.94 24.69 23.56 23.27 23.56 24.28
4 60.50 59.89 56.72 51.69 30.81 25.25 22.92 22.92 22.92 22.92 22.96 22.96 24.87
1 60.50 59.71 55.10 48.95 27.97 23.47 22.95 22.94 22.94 22.94 22.94 22.94 23.48

TruthfulQA-mc2
64 49.75 50.42 50.46 49.73 49.75 49.99 49.62 48.78 48.95 48.55 46.99 47.53 48.47
16 49.75 50.24 51.34 50.77 49.35 48.89 51.06 50.15 49.54 49.38 49.68 50.19 48.80
4 49.77 50.00 51.47 52.40 49.90 47.93 47.96 48.17 48.07 48.40 48.58 48.87 48.78
1 49.77 50.06 51.44 52.52 49.83 48.54 47.95 47.72 47.58 47.94 48.13 48.71 49.07

WinoGrande
64 67.40 68.19 67.09 67.01 67.72 68.03 66.93 65.11 62.35 58.80 55.17 55.09 52.72
16 67.40 67.56 65.75 65.90 64.17 63.38 61.96 57.54 52.96 51.38 48.54 49.72 51.38
4 67.80 67.48 65.51 63.61 61.88 59.19 57.30 53.28 50.28 50.59 48.93 49.57 49.72
1 67.80 66.77 65.59 62.67 60.77 56.27 55.01 51.22 50.43 50.43 47.43 47.43 48.70

Saved Cache Memory (%)
64 0.00 1.79 3.57 6.25 8.93 10.71 12.50 14.29 16.07 18.75 21.43 23.21 25.00
16 0.00 3.12 6.25 10.94 15.62 18.75 21.88 25.00 28.12 32.81 37.50 40.62 43.75
4 0.00 3.46 6.92 12.11 17.30 20.76 24.22 27.68 31.14 36.33 41.52 44.98 48.44
1 0.00 3.54 7.09 12.40 17.72 21.26 24.80 28.35 31.89 37.21 42.52 46.07 49.61

Table 13: Performance and KV cache memory reduction (%) for Llama3.2-3B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.

E USE OF LARGE LANGUAGE MODELS

For this work, we used GPT-5-mini to help with language polishing, phrasing, and grammar. All
scientific content, experimental design, data analysis, and conclusions were developed solely by the
authors. We take full responsibility for the final content of this paper, including any text generated
with LLM assistance.
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d′ / ℓ 0 2 4 8 12 16 20 24 28 30 32
ARC-Challenge

64 54.95 55.29 54.78 55.38 53.16 52.05 48.81 46.50 42.49 40.87 28.84
16 54.95 53.67 53.16 52.39 48.12 39.76 29.95 25.85 22.53 23.38 26.02
4 54.95 52.30 50.60 48.12 34.56 26.37 22.53 22.35 22.44 22.95 26.19
1 54.95 52.13 50.51 43.52 31.31 25.17 22.78 21.59 22.95 23.81 25.60

HellaSwag
64 79.22 78.63 78.51 77.87 77.18 76.49 73.77 71.09 64.67 59.21 53.84
16 79.15 77.43 76.79 74.81 70.65 61.97 47.42 35.77 29.13 27.83 26.62
4 79.15 76.86 74.80 69.38 53.03 37.61 30.60 29.14 27.19 27.67 26.51
1 79.15 76.67 74.16 63.29 44.86 32.29 28.10 28.06 26.70 27.02 26.30

MMLU
64 68.12 67.75 68.08 67.69 67.62 65.84 60.23 51.62 43.93 36.85 36.38
16 68.02 68.03 67.75 67.74 67.63 35.71 23.08 22.97 22.97 22.91 22.94
4 68.02 67.59 68.02 67.23 60.90 24.59 22.96 22.89 22.95 23.10 26.27
1 68.02 67.75 68.09 66.16 62.24 24.26 22.95 23.03 22.95 23.24 26.26

TruthfulQA-mc2
64 54.00 53.93 53.90 53.86 53.90 53.91 51.09 51.37 47.24 44.28 43.49
16 54.07 53.80 53.87 53.61 52.36 51.65 49.43 49.87 50.28 50.27 49.02
4 54.07 53.63 53.77 53.68 53.13 53.08 49.93 50.31 49.71 50.61 48.85
1 54.07 53.56 53.76 53.16 53.08 52.91 50.22 50.36 49.47 51.22 48.98

WinoGrande
64 74.19 73.80 74.11 73.09 73.48 72.93 70.64 65.43 60.14 57.70 52.57
16 74.27 73.48 73.56 72.53 72.69 71.59 61.40 51.93 52.49 50.12 47.91
4 74.27 73.64 73.72 72.06 70.09 67.88 55.96 50.20 50.12 49.49 48.62
1 74.27 73.48 74.03 71.27 67.17 62.19 52.33 49.49 51.22 49.96 50.67

Saved Cache Memory (%)
64 0.00 1.56 3.12 6.25 9.38 12.50 15.62 18.75 21.88 23.44 25.00
16 0.00 2.73 5.47 10.94 16.41 21.88 27.34 32.81 38.28 41.02 43.75
4 0.00 3.03 6.05 12.11 18.16 24.22 30.27 36.33 42.38 45.41 48.44
1 0.00 3.10 6.20 12.40 18.60 24.80 31.01 37.21 43.41 46.51 49.61

Table 14: Performance and KV cache memory reduction (%) for Llama3.1-8B-Instruct across mul-
tiple benchmarks and varying projection dimensions/layers.
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d′ / ℓ 0 2 4 6 9 12 15 18 21 24 27 30 32 34 36
ARC-Challenge

64 58.19 58.19 58.70 58.62 57.25 57.51 56.14 54.78 53.92 53.16 50.43 48.46 48.38 48.89 49.15
16 58.19 57.08 55.97 55.12 53.41 49.32 43.26 37.12 33.79 31.23 30.55 27.39 26.45 25.34 22.61
4 58.19 55.72 54.61 51.11 49.06 43.00 35.41 29.78 27.39 27.30 24.57 24.57 23.55 22.53 25.43
1 58.45 56.23 54.35 50.51 47.27 39.68 33.87 28.92 28.16 26.79 23.98 23.81 23.63 24.49 25.00

HellaSwag
64 69.13 69.12 68.90 68.53 68.37 68.07 67.43 66.44 65.43 63.42 60.71 59.69 58.92 58.37 57.83
16 69.13 66.85 65.26 63.42 61.31 58.25 53.27 48.67 44.55 41.81 37.11 32.93 32.06 31.17 27.06
4 69.13 66.15 64.09 60.88 57.24 50.45 42.54 38.46 35.57 33.73 30.85 29.01 28.30 27.92 25.86
1 69.04 66.26 63.65 60.31 56.12 48.11 40.08 36.32 33.93 32.04 29.54 28.45 27.90 27.14 26.48

MMLU
64 70.60 70.58 70.59 70.52 70.49 69.71 66.19 63.00 59.72 55.23 48.65 49.31 48.69 48.43 48.26
16 70.60 70.55 70.62 70.03 70.09 51.26 32.50 26.32 24.93 24.33 23.02 23.10 23.02 23.02 22.96
4 70.60 70.62 70.45 69.85 68.98 31.53 24.37 23.34 23.71 23.14 23.11 23.58 23.24 23.00 23.02
1 70.53 70.64 70.42 69.68 68.62 28.16 24.12 23.24 23.55 23.28 23.15 24.18 23.67 23.01 23.40

TruthfulQA-mc2
64 62.63 62.65 62.78 62.86 62.64 62.26 60.70 59.50 59.49 58.57 57.02 54.62 53.47 50.98 47.78
16 62.63 62.31 61.72 62.41 59.88 59.81 56.64 53.52 51.43 52.12 50.58 50.59 49.95 49.70 50.10
4 62.63 62.16 61.41 61.40 59.33 58.50 55.07 52.98 52.63 52.30 51.25 50.76 50.68 50.48 49.63
1 62.64 62.14 61.44 61.40 58.87 58.02 54.51 52.53 51.94 51.87 51.74 50.80 51.30 50.86 48.05

WinoGrande
64 67.96 68.03 67.80 68.11 67.88 67.64 66.38 65.82 64.48 62.67 62.35 60.62 61.64 60.62 58.64
16 67.96 66.14 65.59 66.30 65.04 64.17 61.40 57.70 55.96 53.83 53.04 52.88 49.96 51.07 46.65
4 67.96 66.30 65.35 65.27 64.48 61.96 57.77 52.96 52.09 50.99 49.33 49.80 47.75 47.75 50.59
1 68.03 65.90 65.75 64.96 63.69 61.01 56.75 51.38 51.30 49.88 49.01 50.20 49.49 48.38 51.30

Saved Cache Memory (%)
64 0.00 1.39 2.78 4.17 6.25 8.33 10.42 12.50 14.58 16.67 18.75 20.83 22.22 23.61 25.00
16 0.00 2.43 4.86 7.29 10.94 14.58 18.23 21.88 25.52 29.17 32.81 36.46 38.89 41.32 43.75
4 0.00 2.69 5.38 8.07 12.11 16.15 20.18 24.22 28.26 32.29 36.33 40.36 43.06 45.75 48.44
1 0.00 2.76 5.51 8.27 12.40 16.54 20.67 24.80 28.94 33.07 37.21 41.34 44.10 46.85 49.61

Table 15: Performance and KV cache memory reduction (%) for Qwen3-4B-Instruct across multiple
benchmarks and varying projection dimensions/layers.
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d′ / ℓ 0 2 4 7 10 12 14 16 18 21 24 26 28
ARC-Challenge

64 55.03 54.18 54.95 54.01 51.02 49.66 48.55 49.23 48.21 48.29 47.87 46.42 46.16
16 55.03 50.68 50.85 47.27 41.47 39.59 38.74 34.73 34.22 31.74 30.55 27.13 24.74
4 55.03 54.69 53.07 47.53 40.02 37.37 36.77 33.28 30.55 25.68 25.43 23.63 25.77
1 55.03 55.97 53.33 47.01 39.76 37.20 35.58 31.83 31.06 25.85 26.71 23.04 25.26

HellaSwag
64 80.57 80.04 79.83 79.33 77.51 76.90 76.21 75.73 75.27 74.05 73.06 72.41 71.17
16 80.57 79.57 78.66 75.12 69.32 65.90 59.75 54.37 51.74 44.20 41.57 34.59 26.76
4 80.57 79.86 78.64 73.64 65.68 61.00 54.72 49.27 46.32 36.50 33.19 29.45 26.83
1 80.57 79.21 77.95 72.22 63.84 58.85 52.00 47.13 44.49 33.79 31.38 28.34 26.03

MMLU
64 71.76 71.81 71.49 71.44 67.33 65.52 62.55 59.48 58.03 56.12 53.63 52.86 50.55
16 71.76 71.69 71.47 71.15 31.69 29.33 27.28 27.05 26.70 26.44 26.33 22.75 22.96
4 71.76 71.71 71.34 70.92 28.04 25.70 24.41 24.40 24.37 24.18 23.21 22.94 23.27
1 71.76 71.77 71.27 71.02 27.47 25.21 24.29 23.94 24.15 23.49 23.13 22.92 23.17

TruthfulQA-mc2
64 64.68 64.86 64.12 64.51 58.88 58.92 58.81 59.69 59.48 56.93 56.91 56.42 54.20
16 64.68 64.00 62.30 63.11 57.78 55.65 51.58 51.13 51.00 50.40 52.82 52.63 48.77
4 64.68 64.12 61.64 62.36 57.15 53.84 48.75 48.81 46.59 48.79 52.65 50.23 48.14
1 64.68 64.00 61.68 62.24 56.62 53.17 48.21 48.89 47.34 47.44 52.33 50.55 47.49

WinoGrande
64 71.51 69.22 70.09 70.48 65.19 64.09 64.33 60.38 58.88 60.06 59.75 56.04 57.93
16 71.51 67.72 67.25 66.69 61.01 56.27 56.04 53.51 52.41 49.57 51.54 48.62 48.78
4 71.51 68.43 67.96 67.25 59.27 56.67 52.88 52.09 52.25 50.28 51.07 49.88 51.14
1 71.51 68.11 67.17 66.85 59.75 57.46 53.28 51.78 52.64 49.57 50.04 49.80 49.49

Saved Cache Memory (%)
64 0.00 1.79 3.57 6.25 8.93 10.71 12.50 14.29 16.07 18.75 21.43 23.21 25.00
16 0.00 3.12 6.25 10.94 15.62 18.75 21.88 25.00 28.12 32.81 37.50 40.62 43.75
4 0.00 3.46 6.92 12.11 17.30 20.76 24.22 27.68 31.14 36.33 41.52 44.98 48.44
1 0.00 3.54 7.09 12.40 17.72 21.26 24.80 28.35 31.89 37.21 42.52 46.07 49.61

Table 16: Performance and KV cache memory reduction (%) for Qwen2-7B-Instruct across multiple
benchmarks and varying projection dimensions/layers.
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