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Abstract

Large language model editing methods fre-001
quently encounter overfitting, wherein fac-002
tual updates disproportionately influence the003
model’s broader behavior, causing it to adhere004
rigidly to the edited target regardless of the005
query context. To address this challenge, we006
introduce REACT (Representation Extraction007
And Controllable Tuning), a dual-phase frame-008
work designed for precise and scalable knowl-009
edge editing. In the initial phase, we utilize tai-010
lored stimuli with Principal Component Anal-011
ysis to extract latent factual representations012
and derive a directional “belief shift” vector.013
In the subsequent phase, a pre-trained classi-014
fier guides the selective perturbation of hidden015
states via a learned scalar, ensuring that modifi-016
cations remain confined to relevant regions of017
the latent space. This strategy is further refined018
through a composite loss function that balances019
editing and localization objectives, ultimately020
integrating new information effectively while021
preserving unrelated knowledge. Empirical022
evaluations on COUNTERFACT, MQuAKE,023
and EVOKE benchmarks demonstrate that RE-024
ACT significantly mitigates overfitting and en-025
hances reliability, portability, and generality026
across diverse editing scenarios.027

1 Introduction028

Large language models (LLMs) have become indis-029

pensable in modern applications, powering a wide030

array of systems from chatbots to content genera-031

tors(Zhao et al., 2023; Xu et al., 2024). Despite032

their widespread utility, ensuring that these models033

maintain up-to-date and accurate factual informa-034

tion remains a critical challenge, particularly when035

extensive retraining is impractical(Zhang et al.,036

2024b). This necessity has spurred interest in the037

field of knowledge editing, where targeted updates038

to a model’s internal knowledge base are pursued039

without compromising overall performance(Wang040

et al., 2023; Yao et al., 2023; Cheng et al., 2023).041

Recent advances in knowledge editing have 042

sought to address these issues by incrementally 043

incorporating new facts into LLMs(De Cao et al., 044

2021a). However, many existing approaches en- 045

counter significant challenges, like overfitting dur- 046

ing editing process(Zhang et al., 2024a). Con- 047

cretely, this occurs when a model, after being up- 048

dated with new knowledge, becomes excessively 049

specialized to the edited samples. For example, 050

consider an update where the statement “Luka Don- 051

cic plays in the NBA team of Mavericks” is cor- 052

rected to “Luka Doncic plays in the NBA team of 053

Lakers.” In an overfit scenario, when queried with 054

“Who does Luka Doncic play with?”, the model 055

may still disproportionately favor the edit target 056

but not the correct answer—assigning a high prob- 057

ability to “Mavericks”—while the probabilities for 058

more contextually appropriate responses, such as 059

teammates like Austin Reaves or LeBron James, 060

remain undesirably low. These limitations not only 061

compromise the reliability of the updates but also 062

hinder the practical deployment of such techniques 063

in real-world systems, highlighting a crucial gap in 064

current methodologies. 065

In response to these challenges, we propose a 066

novel framework that leverages a dual-phase repre- 067

sentation pipeline to perform targeted knowledge 068

edits via representation engineering(Andy Zou, 069

2023). In the first phase—Extracting Latent Knowl- 070

edge Representations—we employ tailored input 071

stimuli, Principal Component Analysis (PCA), 072

and learnable linear transformations to distill the 073

model’s internal factual representations. For each 074

factual instance, we generate a stimulus pair and 075

compute a directional vector that encapsulates the 076

latent “belief” shift associated with the edit. In 077

the subsequent phase—Selective Perturbing Rep- 078

resentations Controllably—a pre-trained classifier 079

determines which hidden states require modifica- 080

tion, and a learned scalar governs the magnitude 081

of the update based on the alignment between the 082
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hidden state and the directional vector. This se-083

lective mechanism ensures that only the relevant084

knowledge of the latent space are perturbed while085

preserving unrelated knowledge.086

Our contributions can be summarized as follows:087

• Mitigating Overfitting in Knowledge088

Editing: We overcome a critical lim-089

itation of existing knowledge editing090

approaches—overfitting—by designing a091

method that prevents excessive specialization092

to edited facts while preserving broader093

model generalization.094

• A Controllable Hidden-State Editing095

Framework: We propose a novel dual-phase096

editing pipeline that operates directly on the097

model’s internal representations, enabling098

precise and scalable knowledge updates099

through selective perturbation of hidden100

states.101

• Empirical Validation Across Diverse Bench-102

marks: We extensively evaluate our ap-103

proach on multiple knowledge editing datasets104

(COUNTERFACT, MQuAKE, and EVOKE),105

demonstrating superior factual accuracy, re-106

duced overfitting, and improved robustness107

compared to state-of-the-art baselines.108

2 REACT: Representation Extraction109

And Controllable Tuning to overcome110

overfitting111

The persistent challenge of overfitting in existing112

LLM editing methods has motivated us to devise113

a strategy that directly addresses this limitation.114

In many state-of-the-art approaches, updates to115

LLMs tend to overift to the editing target, lead-116

ing to degraded performance in both factual accu-117

racy and complex reasoning. To overcome these118

shortcomings, we introduce REACT, a dual-phase119

framework designed to update factual information120

precisely while preserving the integrity of non-121

targeted representations. Our method achieves this122

by decoupling the editing process into two comple-123

mentary stages: (i) representation extraction from124

latent knowledge to isolate the essential factual125

components, and (ii) selective perturbation to re-126

fine internal representations in a controlled manner.127

This separation not only enables targeted updates128

but also significantly mitigates the risk of overfit-129

ting, thereby ensuring robust and reliable model130

performance.131

2.1 Phase I: Extracting Latent Knowledge 132

Representations 133

In this phase, the model’s internal representations 134

of factual knowledge are extracted using tailored in- 135

put prompts, or stimuli(Andy Zou, 2023). For each 136

factual instance, we generate a stimulus pair—a 137

positive instance and a negative instance which 138

only differs from each other by the subject—using 139

an identical template. Each stimulus is passed 140

through the model to obtain layer-wise hidden rep- 141

resentations, denoted as h(l) for a chosen layer l. 142

To capture a comprehensive picture, we collect 143

N = 512 stimulus pairs {(h(l)
+,i,h

(l)
−,i)}Ni=1. We 144

then apply Principal Component Analysis (PCA) 145

to these representations to extract the principal com- 146

ponent {(h(l)
+ ,h

(l)
− }, which summarizes the key di- 147

rectional change in the latent space. Instead of 148

directly subtracting the negative from the positive 149

representation, we process the difference through a 150

linear transformation: 151

v = W
[
h
(l)
+ ;h

(l)
−

]
+ b, (1) 152

where
[
h
(l)
+ ;h

(l)
−

]
denotes the concatenation of h(l)

+ 153

and h
(l)
− , W ∈ R2d×d is the learnable weight ma- 154

trix, and b ∈ Rd is the bias vector. The vector v 155

thus encapsulates the latent “belief” shift before 156

and after an edit. 157

2.2 Phase II: Selective Perturbing 158

Representations Controllably 159

Once the directional vector v is obtained, we pro- 160

ceed with a controllable editing phase. Here a pre- 161

trained classifier (denoted Φ) produces a probabil- 162

ity Φ(h) ∈ [0, 1] indicating whether a hidden state 163

h from the Transformer decoder block(Andy Zou, 164

2023) should be edited or not. A learned scalar α 165

then determines the magnitude of the update, and 166

the sign of the update is based on the dot-product. 167

Concretely, we apply: 168

h′ =

{
h+ α× sign(hT v)× v, if Φ(h) > 0.5,

h, otherwise.
(2) 169

Thus, only when Φ(h) > 0.5 do we add the 170

perturbation α × sign(hT v) × v to the original 171

hidden state h. Otherwise, h remains unchanged. 172

This selective mechanism confines edits to the rel- 173

evant region of the latent space while preventing 174

unnecessary alterations. 175
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Figure 1: An overview of our REACT pipeline for controllable knowledge editing. We First construct stimuli
prompts and feed them into a LLM to extract layer-wise representations, which are then processed via PCA and
an MLP to isolate the key “belief shift” vector. Therafter, we apply a selective perturbation (using learned scalar
factors) to the model’s hidden states. A pre-trained classifier manages where and how the edits occur.

Editing Loss We aim to ensure the edited process176

genuinely updates the new factual knowledge. Let177

D be the dataset we train on, where we want the178

model G∗ (with REACT applied) to output the179

updated fact o∗. Formally,180

Ledit = E j∼D

[
− logPG∗

(
o∗

∣∣ xj + p
)]
, (3)181

where p denotes any prompt or stimulus appended182

to xj to trigger the newly inserted knowledge.183

Localization Loss While the edit must be re-184

flected in the model’s outputs for relevant prompts,185

it should minimally affect unrelated inputs. Hence,186

we impose a KL-divergence penalty between the187

edited output distribution and the original output188

distribution:189

Lloc = DKL

(
PG∗

[
x

∣∣ p′
] ∥∥∥PG

[
x

∣∣ p′
])

, (4)190

where p′ indicates a prompt unrelated to the edited191

fact. By keeping the distance between these distri-192

butions low, we restrict the scope of the change to193

the intended knowledge only.194

To jointly optimize the linear transformation and195

the perturbation process, we define a composite196

loss function as the final optimzation objective:197

Ltotal = cedit × Ledit + cloc × Lloc, (5)198

where cedit and cloc are hyperparameters balancing 199

the two loss terms. 200

2.3 Details of Pre-trained classifier 201

Before the two phases, REACT employs a multi- 202

stage procedure to pre-train a classifier that eval- 203

uates whether (and how) a hidden-state transfor- 204

mation should be applied to preserve semantic in- 205

tegrity. Specifically, let hp and hu denote the final- 206

token embeddings of a prompted input (for a tar- 207

get fact) and an unprompted input (for a generic 208

context), respectively. For each training instance, 209

the language model produces these representations 210

from a designated layer: 211

hp = LM
(
prompted_input

)
, (6) 212

hu = LM
(
unprompted_input

)
. (7) 213

Our attention-based classifier Ψ(·) learns dis- 214

tinct transformations for these two representata- 215

tions. Specifically, we define learnable parameters 216

WQ and WK , which map each representation into 217

vq and vk respectively: 218

vq = WQ hp, (8) 219

vk = WK hu. (9) 220
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Figure 2: Illustration of the controllable editing mecha-
nism within each Transformer decoder layer. The com-
puted vector rl is integrated into the model by adding it
to the output of the lth Transformer decoder block, en-
abling precise modifications to the model’s knowledge
representation.

A dot product between vq and vk yields a scalar221

measure of similarity:222

score =
∑
d

(
v(d)
q v

(d)
k

)
. (10)223

To obtain a final similarity value γ ∈ [0, 1], we224

apply normalization:225

γ =
score

∥vq∥ ∥vk∥+ 10−8
226

where ∥ · ∥ denotes the ℓ2 norm. We then thresh-227

old γ at 0.5 to produce a binary decision:228

Ψ(vp,vt) =

{
1, if γ > 0.5,

0, otherwise.
229

In this way, the classifier determines whether the230

fact-specific embedding vp is sufficiently close to231

(or coherent with) the unprompted embedding vt,232

completing the ojective of applying REACT during233

the appropriate contents.234

To encourage correct classification of edited vs.235

unedited representations, we incorporate two main236

loss components: an editing loss Ledit,cls and a237

locality loss Lloc,cls. First, let ∆hi = hp
i − hu

i be 238

the difference in embeddings for the i-th instance. 239

We define: 240

Ledit,class =
1

N

N∑
i=1

∥∥ γi∆hi

∥∥2
2
, (11) 241

Lloc,class =
1

N

N∑
i=1

∥∥ (1− γi)∆hi

∥∥2
2
. (12) 242

Intuitively, Ledit,class encourages large ∆hi (i.e., 243

fact-specific shifts) when γi is high (the model “be- 244

lieves” an edit is relevant), whereas Lloc,class penal- 245

izes such shifts when γi is low (i.e., for unrelated 246

or unprompted contexts). 247

We then combine these losses: 248

Lclass = λedit Ledit,class + λloc Lloc,class, (13) 249

where λedit and λloc are hyperparameters. We back- 250

propagate Lclass using Adam optimizers (Kingma 251

and Ba, 2017), accompanied by learning rate 252

schedulers and gradient clipping to maintain stable 253

updates: 254

WΨ ←WΨ − η∇WΨ
Lclass, (14) 255

where η is the learning rate. Mini-batch processing 256

and gradient accumulation are applied iteratively 257

to refine Ψ over many epochs. This staged training 258

regime enables the classifier to differentiate subtle 259

semantic shifts while preserving contextual coher- 260

ence, ultimately guiding the fact-editing process to 261

stay localized and accurate. 262

3 Experimental Settings 263

3.1 Large Language Models 264

We evaluate our approach using two prominent lan- 265

guage models: Llama3.1-8B-instruct (Grattafiori 266

et al., 2024) and Qwen2.5-7B-instruct (Qwen 267

et al., 2025). These models were selected for 268

their robust ability to follow complex instruc- 269

tions and generate contextually coherent responses. 270

Their open-source nature—providing full access 271

to model weights—ensures transparency, repro- 272

ducibility, and the opportunity for further cus- 273

tomization. In addition, their strong performance 274

across both standard benchmarks and real-world 275

tasks makes them well-suited for rigorous experi- 276

mental evaluation. 277

3.2 Knowledge Editing Baselines 278

Our method is compared against several established 279

knowledge editing techniques: 280
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Fine-Tuning (FT) Adapts pretrained LLMs to281

specific tasks by training on task-specific datasets.282

Fine-tuning updates model parameters to better283

align predictions with target outcomes by optimiz-284

ing a loss function that minimizes the gap between285

predictions and ground truth.286

MEND (Model Editor Networks using Gradi-287

ent Decomposition) (Mitchell et al., 2022a) Em-288

ploys auxiliary networks to facilitate fast, local-289

ized changes without full retraining. By applying290

low-rank decomposition to the gradients obtained291

during fine-tuning, MEND efficiently adjusts pa-292

rameters.293

MEMIT (Mass-Editing Memory in a Trans-294

former) (Meng et al., 2023) Builds on the ROME295

framework to efficiently update LLMs with mul-296

tiple factual associations. MEMIT targets neuron297

activations in middle-layer feed-forward modules298

to adjust weights directly, thereby modifying fac-299

tual recall.300

MELO (Model Editing with Neuron-Indexed301

Dynamic LoRA) (Zhong et al., 2023) Utilizes302

dynamically activated LoRA blocks—indexed303

through an internal vector database—to provide304

targeted and efficient updates.305

3.3 Benchmarks306

3.3.1 COUNTERFACT307

COUNTERFACT(Meng et al., 2022a) comprises308

21,919 records that cover a diverse range of sub-309

jects, relations, and linguistic variations. This310

dataset evaluates the model’s ability to incorpo-311

rate counterfactual edits by assessing whether it312

can store and retrieve new facts, focusing on sub-313

stantive factual associations rather than superficial314

word changes.315

Reliability Assesses how accurately the model
performs on a given edit, focusing on its ability to
maintain basic factual correctness for each specific
modification:

Mreliability = E
(ie,xe,ye,y′e)∼Dedit

1 {f (ie, xe) = ye}

Generality Evaluates the model’s capacity to ap-
ply the edit correctly to in-scope data, ensuring that
the model maintains generalization capabilities:

Mgenerality = E
(ie,xe,ye,y′e)∼Dedit

xr∼N (xe)

1 {f (ie, xr) = ye}

where the N (xe) stands for the rephrased neigh- 316

borhood of input text. 317

Locality Examines whether data outside the
scope of the edit remains unaffected, preserving
the model’s performance on unrelated information.

Mlocality = E
(xl,yl)∼Dloc

1 {f∗ (xl) = f(x1)}

3.3.2 MQuAKE 318

MQuAKE(Zhong et al., 2023) is a multi-hop 319

benchmark designed to test knowledge editing in 320

language models. By requiring the model to adjust 321

related knowledge when updating individual facts, 322

MQuAKE provides a comprehensive measure of 323

the model’s reasoning and adaptability following 324

modifications. 325

Portability Evaluates the robustness of the gen-
eralization of the edit, evaluating whether the modi-
fied knowledge can be applied effectively to related
content.

Mport = E
(ie,xe,ye,y′e)∼Dedit

(xp,yp)∼P(ie,xe,ye,y′e)

1 {f (ie, xp) = yp}

where P (ie, xe, ye, y
′
e) denotes the Portability 326

scope given input ie, xe, ye and target output y′e. 327

3.3.3 EVOKE 328

To rigorously assess overfitting tendencies in 329

knowledge editing methods, we employ the 330

EVOKE (EValuation of Editing Overfit in Knowl- 331

edge Editing) benchmark(Zhang et al., 2024a). 332

EVOKE is designed to analyze both the efficacy 333

and generalization properties of edited models and 334

comprises four overfit tasks: 335

Multi-hop Reasoning Tests whether the model 336

correctly integrates the injected knowledge into 337

complex inferential chains. 338

Prefix Distraction Assesses whether the model 339

remains robust to misleading context, avoiding un- 340

due preference for the edited target. 341

Subject Specificity Evaluates whether the edit is 342

applied only to relevant instances without affecting 343

unrelated subjects. 344

Relation Specificity Measures whether the edit 345

remains confined to the intended relation without 346

causing unintended generalization. 347

We now define the key probability-based met- 348

rics to quantify the effectiveness of Overfit tasks 349

editing. 350
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Figure 3: Editing results comparison across different editing methods on COUNTERFACT and MQuAKE-CF-v2 in
a radar chart. The chart presents overall scores across four metrics: Reliability, Generality, Locality, and Portability,
for the Llama 3.1 and Qwen2.5 models, respectively. Detailed results may be found in Appendix B.3.
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to the Qwen 2.5 model. Detailed results can be found in Appendix B.3.

Correct Answer Probability (CAP) Measures
the probability that the model generates the correct
answer ans given a prompt. We define the CAP
metric as:

MCAP = E
(x,y)∼Deval

P(ans | prompt)

where Deval is the evaluation dataset.351

Original Answer Probability (OAP) Evaluates
the likelihood that the model continues to output
the pre-edit answer ori, indicating potential resis-
tance to modification. The metric is defined as:

MOAP = E
(x,y)∼Deval

P(ori | prompt)

Direct Probability (DP) Assesses the model’s
likelihood of producing the edited knowledge o∗

when prompted, capturing its direct recall capabil-
ity:

MDP = E
(x,y)∼Deval

P(o∗ | prompt)

Editing Overfit Score (EOS) Evaluates whether
the model overfits by favoring the edit target o∗

over the correct answer ans. Formally, we define:

MEOS = E
(x,y)∼Deval

1 {P(ans | p) > P(o∗ | p)}

Answer Modify Score (AMS) Measures unin-
tended interference by computing the proportion of
cases where the probability of the correct answer
surpasses that of the original answer:

MAMS = E
(x,y)∼Deval

1 {P(ans | p) > P(ori | p)}
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4 Experimental Results352

We pre-trained the classifier on the353

COUNTERFACT-train dataset, as COUNTER-354

FACT encompasses a wide range of knowledge355

triples (s, r, o) under various editing scenarios.356

This diversity ensures the classifier’s generalizabil-357

ity to other datasets, thereby eliminating the need358

for retraining. Then, we trained REACT using359

the classifier on COUNTERFACT-train for the360

same reason. The details of the training process,361

including hyperparameter selection, optimizer362

configuration, and other relevant settings, are363

provided in Appendix B.2. The resulting weights364

were then employed to evaluate performance on365

the COUNTERFACT-edit, MQuAKE-v2, and366

EVOKE datasets, with the corresponding results367

presented in Tables 1 and 2.368

4.1 COUNTERFACT and MQuAKE Results369

Finding 1: Balanced Performance in Reliability,370

Locality, and Generality. Our method consis-371

tently demonstrates a well-balanced performance372

across the dimensions of reliability, locality, and373

generality. As evidenced by the radar chart 3374

and high arithmetic average (Score) reported in375

Table 1, our approach effectively updates factual376

knowledge while maintaining uniform performance377

across these key metrics. This balance ensures that378

the model not only adapts to new information but379

also preserves the integrity of existing, unrelated380

knowledge.381

Finding 2: Superior Portability Reflecting Ro-382

bust Knowledge Editing. In addition to ex-383

celling in reliability, locality, and generality, our384

approach achieves notably high portability scores.385

Portability, which gauges the ability of the model386

to retain unaffected behavior following an edit, is387

a critical indicator of robust performance and re-388

silience against overfitting. Compared to baseline389

methods, our framework shows significantly better390

portability, underscoring its capacity to implement391

targeted edits without compromising overall model392

functionality.393

4.2 EVOKE Results394

Finding 1: Significant Reduction in Overfit-395

ting. Our experimental results reveal that our ap-396

proach yields markedly lower Direct Probability397

(DP) scores across all evaluation settings compared398

to baseline methods. In tasks such as Prefix Distrac-399

tion, Multi-hop Reasoning, Subject Specificity, and400

Relation Specificity, the consistently reduced DP 401

scores indicate that our method effectively avoids 402

overfitting—i.e., it minimizes the inadvertent prop- 403

agation of the edit target. Moreover, the corre- 404

sponding high End-of-Sentence (EOS) and Answer 405

Matching Scores (AMS) confirm that the overall 406

output quality is preserved, reinforcing that our 407

approach maintains a precise and targeted update 408

without compromising the model’s broader knowl- 409

edge base. 410

Finding 2: Balanced Calibration Evident in 411

CAP Scores. While our Correct Answer Prob- 412

ability (CAP) values are moderate relative to some 413

baselines, this is not a shortcoming but rather a 414

deliberate reflection of a cautious editing strategy. 415

The moderate CAP scores indicate that our method 416

deliberately refrains from overconfident updates, 417

ensuring that only edits with sufficient certainty are 418

applied. This balanced calibration is critical for 419

preventing overfitting and for maintaining the sta- 420

bility of non-targeted knowledge, ultimately con- 421

tributing to the robustness of our overall editing 422

performance. 423

Finding 3: Superior Generalization Across 424

Benchmarks. Despite being trained solely on 425

the COUNTERFACT dataset, our method demon- 426

strates exceptional generalization, consistently out- 427

performing alternative approaches across diverse 428

evaluation benchmarks. The robustness of our re- 429

sults—characterized by low DP scores paired with 430

strong EOS and AMS metrics in multi-hop rea- 431

soning, subject specificity, and relation specificity 432

tasks—provides compelling evidence that our ap- 433

proach generalizes effectively to various knowl- 434

edge editing scenarios. This superior generaliza- 435

tion underscores the potential of our method as a 436

scalable and reliable solution for knowledge editing 437

in large language models. 438

5 Related Work 439

LLM Knowledge Editing Knowledge editing 440

has gained attention as an effective method for up- 441

dating or correcting specific information within 442

LLMs without requiring extensive retraining. Ex- 443

isting approaches can be broadly classified into two 444

categories: parameter-preserving and parameter- 445

modifying techniques. Parameter-preserving meth- 446

ods, such as SERAC (Mitchell et al., 2022b), 447

maintain the model’s existing parameters and in- 448

stead leverage external memory or retrieval mech- 449
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anisms to refine responses dynamically. In con-450

trast, parameter-modifying methods directly ad-451

just the internal weights of the model to embed452

new or corrected information. This category in-453

cludes fine-tuning-based strategies like FT-L (Zhu454

et al., 2020), meta-learning approaches such as KE455

(De Cao et al., 2021b) and MEND (Mitchell et al.,456

2021), as well as structured intervention techniques457

that first localize and then edit knowledge repre-458

sentations, exemplified by MEMIT (Meng et al.,459

2022b). These methods provide varying levels460

of efficiency and precision, with locate-then-edit461

approaches offering more targeted modifications462

while preserving broader model behavior. The463

emergence of knowledge editing frameworks un-464

derscores the growing need for controllability and465

adaptability in modern LLMs, ensuring that their466

responses remain accurate and up-to-date without467

extensive retraining.468

Representation Engineering Representation En-469

gineering(Andy Zou, 2023) is derived as a novel470

approach that shifts the focus from neurons and471

circuits to high-level representations, enabling both472

monitoring and manipulation of cognitive functions473

in deep neural networks. Their work demonstrates474

that knowledge editing, along with other interven-475

tions such as truthfulness enforcement and memo-476

rization reduction, can be effectively implemented477

through representation control. Methods such as478

Linear Artificial Tomography (LAT) and Contrast479

Vectors allow for precise identification and modifi-480

cation of knowledge representations, aligning with481

prior efforts in mechanistic interpretability and con-482

cept erasure (Meng et al., 2023; Hernandez et al.,483

2023). This line of research complements existing484

strategies like causal tracing (Geva et al., 2022)485

and activation steering (Turner et al., 2023), which486

aim to localize and edit specific factual associations487

within neural networks. The emergence of RepE488

suggests that transparency-focused representation-489

based interventions can serve as an alternative to490

parameter-based fine-tuning, offering a more tar-491

geted and interpretable means of modifying LLM492

behavior.493

6 Discussion and Conclusions494

In this work, we present REACT, a dual-phase495

framework that overcomes overfitting in large lan-496

guage model editing by separating the process into497

(i) representation extraction and (ii) selective per-498

turbation. It achieves balanced improvements in499

reliability, locality, and generality while preserving 500

unrelated model behavior. By isolating a concise 501

“belief shift” vector and applying controlled pertur- 502

bations, REACT minimizes unintended side effects. 503

Although the method requires careful parameter 504

tuning and introduces extra computation, it offers 505

a precise and interpretable approach for updating 506

factual knowledge in LLMs while effectively over- 507

coming overfitting. 508

7 Limitations 509

Though experiments prove that textbfREACT has 510

great generalization ability from COUNTERFACT 511

to other datasets, but the best way is to train the 512

model on respective dataset to complete the task 513

8
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A Dataset Details 805

A.1 COUNTERFACT 806

The COUNTERFACT dataset is divided into three 807

distinct subsets: a training set, a validation set, 808

and an edit set (serving as an independent test set). 809

The training set, validation set, and edit set contain 810

10,000 samples, 1,919 samples, and 10,000 sam- 811

ples, respectively. Each sample includes an original 812

factual statement alongside its counterfactually re- 813

vised variant, enabling systematic evaluation of 814

models’ sensitivity to subtle factual perturbations. 815

A.2 MQuAKE 816

The MQuAKE dataset comprises 3,000 samples, 817

each encoded as a structured JSON object that en- 818

capsulates multiple layers of information pertinent 819

to fact checking and counterfactual reasoning. Ev- 820

ery sample contains detailed rewrite instructions, 821

diverse composite questions, original and counter- 822

factual answers (with aliases), concise single-hop 823

Q&A pairs, and structured knowledge triples that 824

document the factual revisions. 825

A.3 EVOKE 826

The EVOKE dataset is organized into two parts, 827

"main" and "subj-spec" - comprising 1,031 and 828

458 samples, respectively. Each sample is repre- 829

sented as a JSON object containing detailed rewrite 830

instructions with multiple prompt variations, porta- 831

bility information for alternative fact verifications, 832

and prefix distractions, all designed to support rig- 833

orous evaluation of fact-checking and counterfac- 834

tual reasoning tasks. 835

B Experiment Details 836

B.1 Version of edited LLMs 837

B.2 Experiment Resources and Parameters 838

In this study, we utilize an internal cluster equipped 839

with the following resources: AMD EPYC 7763 840

CPUs, NVIDIA A100 80GB GPUs, and 512GB 841

of RAM. The operating system is Ubuntu 20.04.6, 842

and we employ PyTorch in our experiments. 843

The training of classifier took 12 GPU hours for 844

each model on a single NVIDIA A100 80GB GPU, 845

with total parameter number of 7.6B for Qwen-2.5 846

and 8.03B for Llama3.1. 847

The training of REACT took 40 GPU hours for 848

each model on a single NVIDIA A100 80GB GPU, 849

with total parameter number of 719M for Qwen-2.5 850

and 1.04B for Llama3.1. 851
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B.2.1 REACT852

Models Iters Edit Layer Optimizer LR
Llama3.1 20000 all layer of Transformer Module Adam 1e− 5

Qwen2.5 20000 all layer of Transformer Module Adam 1e− 5

cedit = 1, cloc = 0.1 for all models.853

B.2.2 FT854

Models Steps Edit Layer Optimizer LR
Llama3.1 25 layer 29, 30, 31 of Transformer Module Adam 5e− 4

Qwen2.5 25 layer 27 of Transformer Module Adam 5e− 4

B.2.3 MEND855

Models MaxIter Edit Layer Optimizer LR
Llama3.1 100000 layer 29, 30, 31 of Transformer Module Adam 1e− 6

Qwen2.5 100000 layer 25, 26, 27 of Transformer Module Adam 1e− 6

B.2.4 MEMIT856

Models mom sample Edit Layer kl factor
Llama3.1 3000 layer 4, 5, 6, 7, 8 of Transformer Module 0.0625
Qwen2.5 3000 layer 4, 5, 6, 7, 8 of Transformer Module 0.0625

B.2.5 MELO857

Models Radius Edit Layer edit per block number of block
Llama3.1 75 layer 30, 31 of Transformer Module 4 1500
Qwen2.5 75 layer 26, 27 of Transformer Module 4 1500

B.3 Original experiment results858
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CounterFact-edit MQuake-CF-V2 single-edit
Model Method Reliability↑ Generality↑ Locality↑ Portability↑ Score

Llama3.1
8B

Ours 95.58 82.17 100.0 49.68 81.86
FT 100 99.8 0.49 38.38 59.67
MEND 97.6 59.5 98.2 45.36 75.17
MEMIT 99.8 52.3 94.7 27.63 68.61
MELO 82.3 35.0 41.1 21.49 44.97

Qwen2.5
7B

Ours 92.0 66.0 100 49.17
FT 100 98.5 1.1 46.26 61.47
MEND 93.7 15.8 85.3 48.38 60.80
MEMIT 99.8 38.0 95.1 21.4 63.58
MELO 69.0 8.2 87.3 17.45 45.49

Table 1: Editing results comparison across different knowledge-editing methods on Counterfact and MQuAKE-CF-
v2. The best result for each metric is in bold, and the second best is underlined. The final “Score” column is the
arithmetic mean of all metrics for that row.

Prefix Distraction Multi-hop Reasoning Subject Specificity Relation Specificity

Editor DP↓ EOS↑ CAP↑ DP↓ CAP↑ OAP↓ AMS↑ EOS↑ DP↓ CAP↑ EOS↑ DP↓ CAP↑ EOS↑

Llama3.1 5.44 74.32 24.32 0.96 30.87 5.06 77.78 92.28 0 30.02 98.15 0.22 17.42 92.16
FT 99.78 0 0 99.08 5.56 2.03 69.71 0.12 89.62 0.35 0 99.76 0 0
MEND 27.46 51.13 19.24 6.61 33.39 34.68 44.28 87.35 67.95 55.16 37.12 1.07 16.95 51.13
MEMIT 36.67 25.97 14.25 20.62 42.42 24.73 74.94 75.06 60.30 25.26 21.40 5.08 17.12 89.79
MELO 2.57 52.76 7.97 0.58 19.53 9.29 56.57 63.99 15.91 57.04 91.05 0.52 0.54 56.48
Qwen2.5 4.19 76.11 24.66 1.11 34.60 12.09 78.09 85.80 0 26.08 88.64 0.26 11.06 88.64
FT 99.73 0.15 0.33 96.28 25.94 24.69 58.39 2.92 88.94 20.26 1.31 99.25 3.05 1.22
MEND 21.64 50.49 18.87 5.17 36.53 70.03 9.00 85.16 62.62 38.78 22.49 6.47 9.42 71.03
MEMIT 12.57 57.93 24.16 9.29 44.02 58.33 29.56 83.21 42.65 23.33 30.13 1.81 10.14 83.70
MELO 5.02 70.18 21.12 1.35 36.29 71.13 7.79 89.90 14.17 37.06 77.95 0.69 9.30 84.65

Table 2: Editing results comparison across different knowledge-editing methods on EVOKE. The best result for
each metric is in bold, and the second best is underlined.
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