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Abstract

Parameter-efficient fine-tuning (PEFT) methods,
such as LoRA, are commonly used to adapt LLMs.
However, the effectiveness of standard PEFT
methods is limited in low-resource scenarios with
only a few hundred examples. Recent advances
in interpretability research have inspired the emer-
gence of activation editing (or steering) tech-
niques, which modify the activations of specific
model components. Due to their extremely small
parameter counts, these methods show promise
for small datasets. However, their performance is
highly dependent on identifying the correct mod-
ules to edit and often lacks stability across differ-
ent datasets. In this paper, we propose Joint Local-
ization and Activation Editing (JOLA), a method
that jointly learns (1) which heads in the Trans-
former to edit (2) whether the intervention should
be additive, multiplicative, or both and (3) the
intervention parameters themselves - the vectors
applied as additive offsets or multiplicative scal-
ings to the head output. Through evaluations on
three benchmarks spanning commonsense reason-
ing, natural language understanding, and natural
language generation, we demonstrate that JOLA
consistently outperforms existing methods.1

1. Introduction
Parameter-efficient fine-tuning (PEFT; Han et al., 2024)
methods are widely used to adapt large language models
(LLMs). However, popular PEFT approaches like LoRA
(Hu et al., 2021) often struggle in low-resource settings with

*Work done during Wen Lai’s visit to The University of Edin-
burgh. 1Technical University of Munich 2Munich Center for Ma-
chine Learning 3ILLC, University of Edinburgh 4ILLC, University
of Amsterdam. Correspondence to: Wen Lai <wen.lai@tum.de>,
Ivan Titov <ititov@inf.ed.ac.uk>, Alexander Fraser <alexan-
der.fraser@tum.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1The code for the method is released at https://github.
com/wenlai-lavine/jola.

only a few hundred examples. Inspired by advances in inter-
pretability research (Vig et al., 2020; Zhang & Nanda, 2023),
activation editing techniques (Wu et al., 2024a; Yin et al.,
2024) have emerged as an alternative. These methods mod-
ify model activations to adapt LLMs to new tasks, leveraging
the intuition that LLMs encode many semantically meaning-
ful properties in a coordinate-aligned (or even disentangled)
manner. The activations can then be adjusted with simple
operations such as pruning, rescaling or addition. Activation
editing method avoid more complex transformations, such
as the MLPs used in the original Adapters (Houlsby et al.,
2019). Editable components in activation editing include
bias terms (Ben Zaken et al., 2022), MLP layer outputs (Wu
et al., 2024a), hidden states within MLP layers (Wu et al.,
2024b), and attention head outputs (Yin et al., 2024).

Compared to standard PEFT methods like LoRA (Hu et al.,
2021), activation editing modifies significantly fewer param-
eters. For example, in our experiments, the optimal LoRA
configuration altered 0.826% of LLaMA-3-8B’s (Dubey
et al., 2024) parameters, whereas LoFIT (Yin et al., 2024)
updated only 0.002%.2 This drastic reduction makes acti-
vation editing particularly appealing for low-resource sce-
narios, where only a few hundred training examples are
available.

However, activation editing’s effectiveness is highly sensi-
tive to the choice of modules. This selection is typically
determined either by fixed hyperparameters – specifying
which layers and component types to modify (Ben Zaken
et al., 2022; Wu et al., 2024b) – or by additional methods
that estimate the importance of different model components
for a given task (Yin et al., 2024). Furthermore, existing ap-
proaches vary in their intervention strategies (e.g., additive
vs. multiplicative modifications), with no clear consensus
on which method is most effective across tasks and mod-
els. As a result, performance tends to be inconsistent across
different datasets and models (see Table 1 and Figure 4).

To address these limitations, we propose Joint Localiza-
tion and Activation Editing (JOLA), a method that, for a
given task, jointly learns (1) which components to edit, (2)
whether to apply additive, multiplicative, or combined inter-
ventions, and (3) the optimal intervention parameters – the
vectors applied as additive offsets or multiplicative scalings

2Detailed comparisons are provided in Appendix A.

1

https://github.com/wenlai-lavine/jola
https://github.com/wenlai-lavine/jola


Joint Localization and Activation Editing for Low-Resource Fine-Tuning

(a) Different Activation Editing Approaches  

W

Edit Vector

ReFT

R

RTRT

+ -

+

Edit to Subspace

BitFIT

Multi-Head Self Attention

Q K V

Layer Norm (LN)

Bias
+

WQWQ Bias
+

WKWK Bias
+

WVWV

Bias
+

W1W1

LoFIT

(b) JoLA

Layer Norm (LN)

Q K V

Multi-Head 
Self Attention

Layer Norm (LN)

MLP

Input

Output

+

+
Step 1:  Select Important

 Heads

+

RED

.
m(l,i)m(l,i)

z(l,i)z(l,i)

z(l,i)z(l,i)

a(l,i)a(l,i)

z(l,i)′ = m(l,i) . z(l,i) + a(l,i)z(l,i)′ = m(l,i) . z(l,i) + a(l,i)
z(l,i)′ z(l,i)′ 

z(l,i)z(l,i) z(l,i)z(l,i) z(l,i)z(l,i)

z(l,i)′ = z(l,i) + RT(W ⋅ z(l,i) + b − R ⋅ z(l,i))z(l,i)′ = z(l,i) + RT(W ⋅ z(l,i) + b − R ⋅ z(l,i))

bb

Gate
g(l,i)

mg(l,i)
m

×× m(l,i)m(l,i)

.
+

××

Joint Localization and Editing (JoLA)

Gate
g(l,i)

ag(l,i)
a

z(l,i)z(l,i)

a(l,i)a(l,i)

1 2 3 4 5 . . 28 29 30 31 32

32
31
30
29
28
.
.
5
4
3
2
1

Layer

H
ea

d

1+

Multiplicative

Additive

g(l,i)
m = 0 & g(l,i)

a = 0g(l,i)
m = 0 & g(l,i)

a = 0
g(l,i)

m = 0 & g(l,i)
a ≠ 0g(l,i)

m = 0 & g(l,i)
a ≠ 0

g(l,i)
m ≠ 0 & g(l,i)

a = 0g(l,i)
m ≠ 0 & g(l,i)

a = 0
g(l,i)

m ≠ 0 & g(l,i)
a ≠ 0g(l,i)

m ≠ 0 & g(l,i)
a ≠ 0

z(l,i)′ = z(l,i)z(l,i)′ = z(l,i)

z(l,i)′ = z(l,i) + g(l,i)
a ⋅ a(l,i)z(l,i)′ = z(l,i) + g(l,i)
a ⋅ a(l,i)

z(l,i)′ = (1 + g(l,i)
m ⋅ m(l,i)) ⊙ z(l,i) + g(l,i)

a ⋅ a(l,i)z(l,i)′ = (1 + g(l,i)
m ⋅ m(l,i)) ⊙ z(l,i) + g(l,i)

a ⋅ a(l,i)

ll

ii

z(l,i)′ = (1 + g(l,i)
m ⋅ m(l,i)) ⊙ z(l,i)z(l,i)′ = (1 + g(l,i)
m ⋅ m(l,i)) ⊙ z(l,i)

.
m(l,i)m(l,i)

z(l,i)z(l,i)

z (l,i)′ 
t = m(l,i) ⊙ z (l,i)

tz (l,i)′ 
t = m(l,i) ⊙ z (l,i)

t

Step 2:  Learning Offset 
Vectors from Selected 

Heads

.
z(l,i)z(l,i)

a(l,i)a(l,i) z (l,i)′ 
t = a(l,i) ⊙ z (l,i)

tz (l,i)′ 
t = a(l,i) ⊙ z (l,i)

t

Figure 1. Comparison of previous representative activation editing methods with proposed JOLA. (a) includes BitFIT (Ben Zaken et al.,
2022), which fine-tunes only the bias term; RED (Wu et al., 2024a) introduces scaling and bias vectors in the MLP layer; ReFT (Wu
et al., 2024b), which fine-tunes the hidden layer representations; and LoFIT (Yin et al., 2024) intervenes with attention heads in two
steps. (b) JOLA introduces a gating mechanism that dynamically selects and locates attention heads to modify the activation outputs.
We compare activation changes (z(l,i)

′
) across modules under two interventions (additive a(l,i) and multiplicative m(l,i)), relative to the

initial activation value (z(l,i)).

to modules’ outputs. Rather than relying on fixed heuristics
or manual selection, JOLA dynamically identifies the most
relevant components and applies targeted modifications to
their activations.

To achieve this, JOLA uses HardConcrete gates with
expected-L0 regularization, a technique previously em-
ployed for parameter (Louizos et al., 2018) and component
pruning (Voita et al., 2019). This method encourages spar-
sity, ensuring that only a small subset of components is
selected for editing, thereby reducing the number of inter-
ventions and, thus, the method’s effective parameter count.
We also observe that it appears sufficient to focus on heads’
outputs rather than other component types, further reducing
the parameter counts and enhancing the simplicity of the
method. By combining additive offsets and multiplicative
scalings, JOLA provides a flexible, data-efficient adaptation
strategy.

We evaluate JOLA across three benchmark categories: com-
monsense reasoning, natural language understanding, and
natural language generation. Experimental results on 26
tasks from the benchmarks (Hu et al., 2023; Wang et al.,
2024b; Gehrmann et al., 2022) demonstrate that JOLA con-
sistently outperforms existing methods in low-resource set-
tings (as shown in Figure 4), delivering robust performance
across various data scales and model sizes.

In summary, our contributions are as follows: (i) We intro-
duce JOLA, a novel activation editing approach that jointly
optimizes the selection of intervention components and the
intervention strategy, specifically tailored for low-resource
scenarios. (ii) We demonstrate that JOLA achieves stable
and consistent performance across diverse tasks, addressing
key limitations of existing methods. We further validate its
effectiveness across different data scales and model sizes.
(iii) We provide new insights into the role of attention heads
in activation editing, showing that they are the most impact-
ful components for fine-tuning.

2. Background
Activation editing in LLMs modifies intermediate activation
outputs to steer model behavior. We categorize existing
approaches into three types based on the transformation
function applied to activations. Given an activation out-
put z(l,i)t ∈ Rdl for i-th component at layer l, the general
transformation is:

z
(l,i)′

t = f(z
(l,i)
t ), (1)

where f(·) determines the intervention type:

• Additive methods apply a bias vector ail ∈ Rdl :
z
(l,i)′

t = z
(l,i)
t + a(l,i).
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• Multiplicative methods scale activations as z(l,i)
′

t =

m(l,i)⊙z(l,i)t , where m(l,i) ∈ Rdl and⊙ is an element-
wise product.

• Hybrid methods combine both transformations:
z
(l,i)′

t = m(l,i) ⊙ z
(l,i)
t + a(l,i).

Existing methods follow these paradigms but often rely on
fixed selections of components for modification, limiting
adaptability. For example, BitFit (Ben Zaken et al., 2022)
updates bias terms, while RED (Wu et al., 2024a) employs
per-dimension scaling vectors and bias vectors. ReFT (Wu
et al., 2024b) applies fine-tuned low-rank hidden states with
MLP layers, and LoFIT (Yin et al., 2024) intervenes in se-
lected attention heads with additive bias vectors but requires
manual selection. JOLA also modifies attention heads but
unifies the processes of localization and intervention within
a single framework, in contrast to LoFIT’s rigid two-stage
pipeline. A detailed comparative analysis between JOLA
and LoFIT is provided in Appendix B.

3. Method
In this section, we introduce JOLA, a novel approach for
fine-tuning LLMs in low-resource settings. We first identify
two key challenges in existing approaches and present an
analysis to better motivate our method (Section 3.1). We
then propose a gated dynamic attention head selection mech-
anism to address these limitations (Section 3.2). Figure 1
illustrates the comparison of previous activation editing ap-
proaches and JOLA.

3.1. Motivation

Activation editing methods have demonstrated success
in modifying Transformer components such as bias
terms (Ben Zaken et al., 2022), MLP layers (Wu et al.,
2024a), low-rank hidden state subspaces (Wu et al., 2024b),
and specific attention heads (Yin et al., 2024). However,
two critical questions remain underexplored: Q1: Which
Transformer components are most crucial for effective ac-
tivation editing? Q2: What combination of multiplicative
and additive operations yields the best performance for in-
tervention? Existing approaches predefine the components
to edit and rely on fixed intervention strategies, such as sim-
ple multiplicative scaling, which limits adaptability and can
lead to inconsistent performance across tasks, especially in
low-resource scenarios. To address these questions, we con-
duct controlled experiments to compare the effectiveness of
editing different Transformer components and analyze the
relative contributions of multiplicative and additive opera-
tions.3

3Details on experimental setup and datasets are provided in
Section 4.
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Figure 2. Performance comparison of activation editing across
different Transformer modules: bias terms, MLP layers, hidden
states, and attention heads.

Q1: Component Selection. We evaluate activation edit-
ing across four Transformer components: bias terms, MLP
layers, hidden states, and attention heads4. Figure 2 shows
that attention heads are the most impactful component to
target. Unlike other modules, which primarily refine in-
termediate representations, attention heads encode key se-
mantic relationships and are critical for reasoning and task
adaptation (Ren et al., 2024). Interestingly, combining in-
terventions across multiple components tends to degrade
performance, which we interpret as a form of overfitting.
These findings highlight the importance of carefully select-
ing where we intervene (i.e., the choice and location of
components) and having fewer interventions. Further dis-
cussion is provided in Appendix C.

Q2: Scaling vs. Offset Operations. Activation editing
typically involves two operations: scaling (multiplicative)
and offset (additive) adjustments. To evaluate their rela-
tive importance, we conduct ablation studies isolating each
operation. As shown in Figure 3, bias offsets consistently
contribute more to performance improvements than scal-
ing. We hypothesize that this behavior arises because the
bias directly adjusts the latent representations, facilitating
fine-grained task-specific adaptation while retaining the fea-
tures of the pre-trained model. In contrast, scaling modifies
the activations uniformly, which may introduce unintended
distortions. These findings motivate our approach: JOLA
incorporates both operations but prioritizes offset interven-

4Intervention on “hidden states” follows ReFT, which applies
learned modifications directly to the output of the MLP sub-
layer—i.e., after the nonlinearity—within the transformer block.
In contrast, intervention on “bias terms” follows BitFit, which
fine-tunes only the existing bias parameters in the model, such
as those in linear projections and layer normalization. Notably,
BitFit modifies only the biases in the linear layers surrounding
these mechanisms and does not introduce new parameters.

3
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Figure 3. Comparison of the performance impact of scaling factors
versus bias offsets in activation editing.

tions for more effective adaptation.

3.2. Joint Localization and Editing

Based on our insights from Section 3.1, JOLA focuses on
adaptive attention head interventions to maximize activation
editing effectiveness. Existing methods like LoFIT (Yin
et al., 2024) require manual hyperparameter tuning to select
the number of attention heads and cannot adjust the chosen
heads during training. Moreover, their head selection crite-
ria do not necessarily align with interventions. For instance,
LoFIT employs multiplicative variables to determine head
selection before restarting training with additive-only inter-
ventions. To address these limitations, we propose a method
that jointly learns which heads to modify while optimizing
intervention parameters (i.e., vectors m(l,i) and a(l,i)).

We extend the hybrid intervention method from Section 2 by
introducing two scalar gates, g(l,i)a and g

(l,i)
m , both in [0, 1].

This results in the transformation:

z
(l,i)′

t = (1+ g(l,i)m ·m(l,i))⊙ z
(l,i)
t + g(l,i)a · a(l,i), (2)

where 1 ∈ Rdl is a vector of ones. The transformation is de-
signed so that when both gates are closed (g(l,i)a = g

(l,i)
m =

0), it reduces to the identity map, effectively disabling the in-
tervention for that head. By using separate gates, the model
can learn to apply additive and multiplicative modifications
independently.

Since our goal is to apply activation editing to a small, adap-
tively chosen subset of heads, we encourage the gates to be
exactly zero where intervention is unnecessary. To achieve
this, we use expected-L0 regularization, a technique origi-
nally introduced by Louizos et al. (2018) for pruning neural
network weights. This approach has since been success-
fully applied to tasks such as head pruning (Voita et al.,

2019) and extracting reasoning paths in graph neural net-
works (Schlichtkrull et al., 2021).

During training, each gate is modeled as a scalar stochastic
variable drawn from a Hard-Concrete distribution (Louizos
et al., 2018),

g(l,i)a ∼ P (g(l,i)a | ϕ(l,i)
a ), g(l,i)m ∼ P (g(l,i)m | ϕ(l,i)

m ). (3)

To clarify, these gates do not take any input – each gate is
simply an instance of the Hard-Concrete distribution with a
single learnable parameter.

The Hard-Concrete distribution is a mixed discrete-
continuous distribution over [0, 1], with point masses at 0
and 1 and a continuous density over (0, 1). The closed-form
probability of a gate being non-zero (e.g., 1 − P (g

(l,i)
a =

0 | ϕ(l,i)
a )), is used to define a sparsity-inducing regularizer:

LC(ϕ) =
∑
l,i

(
1− P (g(l,i)a = 0 | ϕ(l,i)

a )

+ 1− P (g(l,i)m = 0 | ϕ(l,i)
m )

)
.

(4)

The overall training objective balances task-specific perfor-
mance with sparsity:

L(m,a, ϕ) = Lxent(m,a) + λLC(ϕ), (5)

where Lxent is the standard cross-entropy loss, and λ con-
trols the trade-off between performance and sparsity. Opti-
mization is performed over all intervention parameters: ϕ,
m and a.

As with parameter pruning (Louizos et al., 2018), the ex-
pected value of each gate can be computed. The interven-
tions with very low expected gate value (i.e., E[g(l,i)m ] < ϵ)
can be disregarded with no effect on JOLA performance.
For the remaining heads, the gate is set during inference
to its expected value, E[g(l,i)a ] and E[g(l,i)m ], removing any
randomness and ensuring stability in the inference stage.

By dynamically selecting and adapting attention head in-
terventions, JOLA achieves efficient and effective activa-
tion editing, overcoming the limitations of previous meth-
ods. Our approach ensures robust, data-efficient adaptation
across diverse tasks, making it well-suited for low-resource
settings.

4. Experiments
4.1. Datasets and Tasks

We evaluate JOLA on three diverse tasks: commonsense
reasoning, natural language understanding, and natural lan-
guage generation. Additional details regarding the datasets
can be found in Appendix D.
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Figure 4. Performance comparison of JOLA and baseline methods across commonsense reasoning, natural language understanding, and
natural language generation tasks for LLaMA-3 (Dubey et al., 2024) and Qwen-2.5 (Yang et al., 2024).

Commonsense Reasoning. For commonsense reasoning,
we utilize a widely adopted benchmark (Hu et al., 2023;
Wu et al., 2024b) containing 8 datasets: ARC-c and ARC-
e (Clark et al., 2018), BoolQ (Clark et al., 2019), Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), and Wino-
Grande (Sakaguchi et al., 2021). These datasets consist of
multiple-choice questions, where the model must directly
generate the correct option without providing explanations.

Natural Language Understanding. We evaluate on the
MMLU-Pro benchmark (Wang et al., 2024b), covering 14
domains: Biology, Business, Chemistry, Computer Science,
Economics, Engineering, Health, History, Law, Math, Phi-
losophy, Physics, Psychology, and Others. Each task re-
quires selecting the correct answer from ten options, testing
the model’s broad knowledge and reasoning capabilities.

Natural Language Generation. For generation tasks, we
select 4 datasets from GEM benchmark (Gehrmann et al.,
2022), including CommonGen (Lin et al., 2020) for concept-
to-sentence generation, E2E (Novikova et al., 2017) and
WebNLG (Gardent et al., 2017) for data-to-text generation,

and XSum (Narayan et al., 2018) for abstractive summariza-
tion of long documents. This selection ensures a diverse
evaluation of generation tasks, including coherence, infor-
mativeness, and abstraction.

4.2. Baselines

We compare JOLA against a range of state-of-the-art base-
lines: (1) Zero-Shot: Direct evaluation of pre-trained large
language models (LLMs) without fine-tuning, including
LLaMA-3 (Dubey et al., 2024) and Qwen-2.5 (Yang et al.,
2024). (2) Parameter-Efficient Fine-Tuning: LoRA (Hu
et al., 2021), a method for efficient fine-tuning by injecting
trainable low-rank updates into the model’s weights. (3)
Activation editing during training: BitFiT (Ben Zaken
et al., 2022), a method that fine-tunes only the bias terms of
the model; RED (Wu et al., 2024a), which adds scaling and
bias vectors to the outputs of MLP layer; ReFT (Wu et al.,
2024b), which directly intervenes on task-specific hidden
states with MLP Layers, and LoFIT (Yin et al., 2024), a
two-stage method that selects task-relevant attention heads
and applies bias tuning. (4) Activation editing during
inference: RePE (Zou et al., 2023), which modifies repre-

5
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Table 1. Main Results: Average performance comparison (Accuracy, BLEU, ROUGE-L, BERTScore) of different activation editing
methods across reasoning, understanding, and generation tasks for LLaMA-3.1 and Qwen-2.5 models. The best results in each category
are highlighted in bold.

Llama-3.1-8B-Instruct Qwen2.5-7B-Instruct

Reasoning Understanding Generation Reasoning Understanding Generation

ACC (↑) ACC (↑) BLEU (↑) ROUGE-L (↑) BERTScore (↑) ACC (↑) ACC (↑) BLEU (↑) ROUGE-L (↑) BERTScore (↑)
zero shot 53.70 40.00 12.56 36.70 77.23 78.65 37.21 14.03 34.29 78.52
LoRA 66.58 42.07 13.27 36.97 77.74 78.28 46.22 19.46 45.34 82.40

BitFit 63.05 35.02 9.25 28.81 74.83 69.25 28.72 13.47 33.10 77.89
RED 46.19 37.33 11.24 32.40 76.24 71.52 38.76 12.81 34.75 77.52
RePE 63.61 35.54 8.49 27.61 74.30 69.85 29.15 12.19 33.07 76.98
ReFT 65.95 40.89 12.60 36.89 77.21 72.69 47.74 16.02 37.40 79.74
LoFIT 56.19 27.76 11.88 32.09 76.71 69.93 43.13 12.31 34.68 77.16

JOLA 70.55 47.00 17.07 40.65 80.54 82.40 51.57 24.00 50.23 85.90

sentations derived from contrastive prompts.

4.3. Implementation

We conduct experiments using the Llama-3.1-8B-Instruct
(8B) and Qwen2.5-7B-Instruct (7B) models as the primary
base models. Both are publicly available via the Hugging-
face repository5. To study the impact of model size, we also
experiment with smaller (Llama-3.2-1B-Instruct, Llama-
3.2-3B-Instruct) and larger (Llama-3.1-70B-Instruct) model
variants. For all datasets, we sample 200 examples to sim-
ulate low-resource scenarios, with further analysis of data
size effects provided in Section 6. The prompt templates
used in our method are also included in the Appendix E.
The Hard-Concrete distribution has two associated scalar
parameters: a scale parameter and a temperature parameter.
Following prior work on sparsification (Voita et al., 2019;
Louizos et al., 2018), we train only the scale parameter and
fix the temperature to 0.33. In all baseline experiments,
we observe that the choice of hyperparameters significantly
affected performance across different tasks. To address
this, we conduct a hyperparameter search for each method,
selecting five hyperparameters and averaging the results.
The final outcomes are presented in Table 1 and Figure 4.
More details on the training setup, computational resources,
and hyperparameter selection process are provided in Ap-
pendix F.

4.4. Evaluation Metrics

We employ exact match accuracy as the evaluation metric
for commonsense reasoning and natural language under-
standing tasks. For natural language generation, we use
BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004) and
BERTScore (Zhang et al., 2019) scores as implemented in
the GEM benchmark (Gehrmann et al., 2022).

5https://huggingface.co

5. Results
This section evaluates the performance of our proposed
method, JOLA, in comparison with various baselines. Ta-
ble 1 presents the average performance for all methods
across the three tasks, while Figure 4 illustrates the results
for individual subtasks. More detailed numerical results can
be found in Appendix G.

Performance of Activation-Based Baselines. Activation
editing baselines exhibit varying levels of success across
tasks, but their sensitivity to hyperparameter selection and
layer intervention limits their consistency. For example,
BitFit (Ben Zaken et al., 2022) is quite sensitive to the place-
ment of bias terms within the model. Adjusting bias terms
in dropout layers or attention mechanisms results in per-
formance fluctuations, particularly in low-data scenarios.
Similarly, RED (Wu et al., 2024a) depends on the specific
positions where scaling and bias vectors are introduced,
leading to inconsistent results. RePE (Zou et al., 2023)
is highly sensitive to the quality of activation representa-
tions across tasks, making it challenging to generalize its
performance. ReFT (Wu et al., 2024b) achieves moderate
success by intervening on selected layers but faces chal-
lenges in determining the optimal number and choice of
layers. LoFIT (Yin et al., 2024), while effective in lever-
aging task-relevant attention heads, struggles to maintain
consistency across tasks.

Performance of LoRA. LoRA achieves noticeable improve-
ments over zero-shot baselines and, somewhat surprisingly,
outperforms previous activation editing methods across all
tasks when its rank hyperparameter is appropriately tuned.
In tasks such as natural language generation, LoRA achieves
higher BLEU and ROUGE-L scores, highlighting its ability
to generate coherent outputs.

Performance of JOLA. Our proposed method, JOLA, con-
sistently outperforms all baselines across the three tasks by
a significant margin. This can be attributed to JOLA’s dy-
namic gated selection mechanism. Unlike LoFIT (Yin et al.,

6
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2024), which requires manual selection of attention heads,
JOLA’s mechanism enables the modifications to less rele-
vant heads to gradually “die off” during training reducing
to the heads of the base model, improving robustness and
adaptability. In commonsense reasoning, JOLA achieves
an average improvement of 3.97% over the best-performing
baseline (LoRA) in LLaMA-3, as shown in Table 1. For
natural language understanding, JOLA demonstrates consis-
tent performance across diverse domains in the MMLU-Pro
benchmark (Wang et al., 2024b) across all 14 subtasks as
illustrated in Figure 4. In natural language generation tasks,
JOLA achieves higher BLEU, ROUGE-L and BERTScore
scores compared to activation-based baselines and LoRA.

6. Analysis
In this section, we present a detailed analysis of JOLA
through ablation studies (Section 6.1, Section 6.2, and Sec-
tion 6.3), an exploration of gate status during training (Sec-
tion 6.4), and evaluations across varying data and model
sizes (Section 6.5). Unless otherwise specified, the anal-
yses in this section are conducted on selected tasks, in-
cluding SIQA, WinoGrande, Law, Physics, E2E NLG, and
WEB NLG. In addition, we provide a case study to better
visualize the advantages of JOLA in Appendix H.

Reasoning Understanding Generation

SIQA WinoGrande Law Physics E2E NLG WEB NLG

MLP w/o gate 50.10 51.62 34.00 20.00 10.31 14.45
MLP with gate 52.46 52.43 36.00 23.00 11.23 16.25

Attention w/o gate 55.94 55.33 36.00 7.00 14.77 18.12
Attention with gate 66.22 58.33 40.00 46.00 15.54 24.39

Attention + MLP w/o gate 52.17 48.74 23.00 13.00 8.23 12.36
Attention + MLP with gate 53.28 52.07 27.00 16.00 10.42 14.83

Table 2. Ablation 1: Impact of MLP and Attention interventions
with/without gate mechnism on model performance across tasks.

6.1. Ablation 1: Gate Mechanism

Dynamic gating attention head selection is central to the
performance of JOLA, as detailed in Section 3.2. To eval-
uate its necessity, we compare models with and without
the gating mechanism. As illustrated in Table 2, the gating
mechanism substantially improves task performance, both
when intervening in attention heads and MLP layers. We
speculate that this improvement arises because certain atten-
tion heads can be modified more effectively to achieve the
desired behavior in a generalizable way, whereas modifying
others may disrupt the model. The gating mechanism can
selectively adjust the activation outputs of relevant attention
heads, avoiding excessive or unnecessary edits that could
harm performance. In contrast, models without this gating
mechanism fail to differentiate between “editable” and less
“editable” heads, resulting in performance instability.
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Figure 5. Ablation 2: Performance comparison of models with
separate gating units for scaling and offset vectors versus a shared
gating unit.

6.2. Ablation 2: Number of Gates

In Equation (2), we employ separate gating units for the
scaling vector and the bias vector. To investigate the impact
of this design, we compare configurations where each vec-
tor has its own gate with configurations where both vectors
share a single gate. In the latter case, the heads, if selected,
is always updated both in the additive and multiplicative
fashion. As illustrated in Figure 5, although the shared
gating configuration achieves a performance improvement
over the zero-shot baseline, it underperforms compared to
the configuration with separate gates. This suggests that
the choice of intervention should depend on what role the
head plays in a given task. Using independent gating units
enables fine-grained control over each vector’s contribu-
tion, facilitating more precise task-specific adjustments and
preventing over-modification of the activation outputs.
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Figure 6. Ablation 3: Comparison of different head selection
strategies: SMP, DSP, PASS, and JOLA.

6.3. Ablation 3: Different Head Selection Strategies

Head selection is a critical component of JOLA’s design.
To evaluate whether alternative selection strategies could
achieve similar outcomes, we compare JOLA with three
established methods: (1) SMP (Zhang et al., 2021), which
trains a separate pruner to rank and identify attention heads
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that are less important for the task; (2) DSP (Li et al., 2021),
which employs Gumbel-Softmax (Jang et al., 2017) to iter-
atively select the top-K heads; and (3) PASS (Ding et al.,
2024), which uses robust optimization to enforce determin-
istic sparsity.

As shown in Figure 6, JOLA outperforms these methods, es-
pecially in low-resource scenarios. SMP’s reliance on large
datasets for training the pruner makes it ill-suited for sparse
data. DSP’s iterative selection process is highly sensitive
to noisy gradients from small datasets, leading to unstable
or incorrect selection decisions. While PASS achieves de-
terministic sparsity, its regularization objective overfits to
limited data distributions, resulting in suboptimal gate de-
cisions. By contrast, JOLA’s stochastic gating mechanism
effectively balances exploration and exploitation, allowing
it to adaptively identify important heads even in low-data
settings.

6.4. Gate Status during Traning

To further investigate the behavior of the dynamic gating
mechanism, we analyzed the probability of the multiplica-
tive gate (gm) and additive gate (ga) being “closed” (i.e., set
to 0) during training on the OBQA dataset (Mihaylov et al.,
2018). As shown in Figure 7, both gates are initially “open”
at the beginning of training (batch 1), allowing all attention
heads to be editable. As training progresses, the probability
of gates being “closed” increases, in that way the approach
decides that these heads do not need to be modified. Inter-
estingly, the multiplicative gate is more frequently “turned
off” in the later stages of training. This observation supports
our conclusion in Section 3.1 (Q2) that the additive gate ga
has a greater impact on final model performance. To reiter-
ate, we do not deactivate any attention heads. Instead, we
selectively determine where to apply interventions. When
both ga and gm are set to 0, the computation for that head
remains identical to the original model, effectively bypass-
ing intervention. By the end of training on OBQA, 86% of
heads have ga = 0, and 94% have gm = 0, reflecting strong
sparsity in applied edits.

6.5. Further Analysis

Different Data Size To evaluate JOLA’s robustness
across different data scales, we conduct experiments us-
ing both small (100–1,000) and large (1,000–100,000)
training examples sampled from the SIQA (Sap et al.,
2019) and WinoGrande (Sakaguchi et al., 2021) datasets.
As shown in Figure 8, JOLA consistently outperforms
all baselines—even with as few as 100 training exam-
ples—demonstrating strong effectiveness in extreme low-
resource settings. Performance improves steadily as the
number of training examples increases from 100 to 10,000,
highlighting JOLA’s adaptability to varying data availabil-

ity. At intermediate scales (5,000–10,000 samples), JOLA
remains competitive with or slightly outperforms strong
parameter-efficient fine-tuning methods such as LoRA.
When scaling further to 20,000 and 100,000 examples,
JOLA shows a modest performance gap relative to LoRA,
which is expected given that JOLA updates significantly
fewer parameters. Nonetheless, it continues to be on par
with LoRA’s performance. These results demonstrate that
JOLA not only effective in low-resource scenarios but also
scales effectively to large datasets, making it a practical
solution for both data-scarce and data-rich real-world appli-
cations.

Different Model Size To evaluate the scalability of JOLA
with respect to model size, we test three variants: Llama-
3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-3.1-70B-
Instruct. As shown in Figure 9, JOLA consistently deliv-
ers significant performance improvements across all model
sizes. Notably, larger models benefit more substantially
from JOLA’s dynamic selection mechanism, as they inher-
ently possess greater redundancy in attention heads. This
finding highlights JOLA’s scalability and effectiveness in
optimizing large-scale models while maintaining robust per-
formance in low-data scenarios.

7. Related Work
Low-Resource Fine-tuning. Recent advancements in
LLMs have transformed a wide range of NLP tasks (Zhao
et al., 2023). However, efficiently adapting these models to
diverse applications remains challenging, especially in low-
resource settings. Parameter-efficient fine-tuning (PEFT)
methods (Hu et al., 2021; Dettmers et al., 2024), which
update a small subset of parameters or integrate new mod-
ules (Houlsby et al., 2019), achieve performance comparable
to full fine-tuning across various tasks (Wang et al., 2024a).
Yet, mitigating overfitting in low-resource scenarios remains
a key challenge. Activation editing techniques (Ben Zaken
et al., 2022; Wu et al., 2024a;b; Yin et al., 2024) offer a
lightweight approach to model adaptation, often argued to
be more data-efficient than standard PEFT methods.

Pruning. Neural network pruning (Cheng et al., 2024) aims
to reduce model complexity and computational demands by
removing less important or redundant components. Our ap-
proach builds on pruning techniques, specifically expected-
L0 regularization (Louizos et al., 2018). However, rather
than pruning heads, our goal is to modify a selected subset
of heads while keeping the rest intact. Subnetwork pruning
techniques (e.g., Frantar & Alistarh, 2023;Sun et al., 2023)
seek to identify an effective subnetwork, often tailored to a
specific task, domain, or language. However, their primary
objective is typically to match the performance of the full
model rather than to specialize it for a particular task.
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Figure 7. Gate pruning probabilities for the additive gate (ga) and multiplicative gate (gm) during training on the OBQA dataset. A
probability of 1 indicates a fully closed gate for the corresponding attention head.
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Figure 8. Performance of JOLA across different data sizes, evalu-
ated on the SIQA and WinoGrande datasets.

Sparse Fine-tuning. Sparse finetuning (Dao et al., 2022;
Thangarasa et al., 2023) is a technique for adapting LLMs
to specific tasks or datasets while only updating a small
subset of the model’s parameters. Our approach shares
similarities with sparse fine-tuning, a technique commonly
used in multilingual modeling (Nooralahzadeh & Sennrich,
2023; Choenni et al., 2024), where languages are typically
assumed to be encoded modularly. Sparse fine-tuning iden-
tifies specific components (e.g., heads), fine-tunes all their
parameters, and discards the others. In contrast, JOLA ad-
justs the activations of selected components while keeping
the rest intact. While the goal of sparse fine-tuning is often
to match the performance of the full model using a smaller
version, our aim is not only to reduce model size but to
enhance performance over the full model.
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Figure 9. Performance comparison of JOLA across different model
sizes: Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct, and Llama-
3.1-70B-Instruct.

8. Conclusions
In this paper, we introduce JOLA, a novel approach to
low-resource fine-tuning that jointly learns to dynamically
localize the attention heads for targeted intervention and
determine effective editing strategies using multiplicative
scaling and/or additive bias vectors. We observe that atten-
tion heads are more effective than other model components
in activation editing, offering a novel perspective for fu-
ture research. Extensive experiments and ablation studies
demonstrate the robustness of our method in low-data set-
tings and across model scales, highlighting the importance
of joint component selection and activation editing.
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A. Comparison with Full Parameter Fine-Tuning, PEFT and Traditional Activation Editing
To better demonstrate the advantages of our approach over full-parameter fine-tuning, LoRA (Hu et al., 2021), and existing
activation editing methods, we compare them across five key dimensions: the percentage of modified parameters (both
trainable and active), intervention modules, dynamic localization of interventions, data efficiency, and robustness across
diverse tasks. Using fine-tuning of LLaMA-3-8B (Dubey et al., 2024) as a representative case, we summarize the differences
in Table 3.

Number of Parameters. We distinguish between trainable parameters—those updated during training—and active
parameters—those used during inference. Full fine-tuning updates and utilizes all model parameters, resulting in 100%
trainable and active parameters. LoRA introduces low-rank adapters into each weight matrix. For LLaMA-3-8B with rank
r = 8, this corresponds to approximately 0.2605% of the parameters being both trainable and active (Hu et al., 2021).

For activation editing, we take LoFIT and JOLA as examples. In JOLA, trainable parameters include: (1) Multiplicative
scaling vectors m(l,i) and additive bias vectors a(l,i) for each attention head; (2) HardConcrete gate parameters ϕ(l,i)

m and
ϕ
(l,i)
a that determine head selection. All of these are optimized during training. However, due to L0 regularization, most

gates are pushed toward zero, effectively pruning the majority of heads. At inference, only the heads with non-zero expected
gate values remain active, and only their associated m(l,i) and a(l,i) are applied. In contrast, LoFIT pre-selects a fixed subset
of attention heads in a two-stage process: (1) Training all heads, then (2) Fine-tuning only a selected subset.

The number of trainable parameters can be approximated as:

Ptrainable =
Dattn × (Nmulti +Nadd +Ngate)

PLLMs
(6)

where Dattn is the dimension of each attention head, Nmulti, Nadd, and Ngate are the numbers of multiplicative, additive, and
gating parameters, respectively, and PLLMs is the total number of parameters in the base LLM.

JOLA and LoFIT exhibit similar numbers of active parameters at inference. Minor variations across tasks are expected:
JOLA selects heads dynamically based on the input, while LoFIT uses a fixed, manually defined subset.

Data Efficiency. Activation editing methods modify only a small fraction of the model’s representational capacity, enabling
strong performance in low-resource settings. LoRA performs competitively with as few as 1,000 training examples across
various NLP benchmarks (Hu et al., 2021). For a detailed comparison of data efficiency between LoRA and JOLA, see
Figure 8.

Robustness. Performance degradation due to sensitivity to hyperparameters or intervention configuration is a common
concern. LoRA is relatively robust, as its low-rank formulation transfers well across domains, though it still requires manual
tuning of the rank parameter. Traditional activation editing (e.g., LoFIT) depends on manual head selection and tuning, and
shows high variance—up to ±5% accuracy—across datasets. JOLA addresses this by eliminating manual gate thresholding.
Instead, it optimizes HardConcrete parameters end-to-end, allowing the model to dynamically select relevant heads per
input or task. This results in consistently stable performance across diverse benchmarks (Table 1). We report baseline
hyperparameter sensitivity results in Appendix F.3.

Intervention Granularity. The location and granularity of interventions affect both expressiveness and computational
cost. We empirically compare different intervention components in Section 3.1 (Q1) and observe that attention heads are
particularly crucial for task adaptation relative to other components. This insight directly motivates the architectural design
of JOLA.
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Table 3. Comparison of full parameter tuning, LoRA, and activation editing methods. We compare the intervention components, the
percentage of new parameters introduced, the data efficiency, and robustness across different tasks. We use LLaMA-3 (Dubey et al., 2024)
to compute the parameters. Note that full parameter tuning∗ does not introduce new parameters.

Trainable Params (%) Active Params (%) Intervention Dynamic Localization? Data Efficient? Robust?

Full Parameter Tuning∗ 100% 100% - - No No
LoRA (Hu et al., 2021) 0.2605% 0.2605% - - No No

BitFit (Ben Zaken et al., 2022) 0.0800% 0.0800% Bias Term No No No
RED (Wu et al., 2024a) 0.0040% 0.0040% MLP Layer No Yes No
ReFT (Wu et al., 2024b) 0.0300% 0.0300% Hidden Representation No Yes No
LoFIT (Yin et al., 2024) 0.0035% 0.0002% Attention No Yes No

JOLA 0.0065% 0.0002% Attention Yes Yes Yes

Table 4. Comprehensive comparison between LOFIT and JOLA.

Aspect LOFIT JOLA

Localization Two-stage process: (1) Select heads via learning
multiplicative interventions; (2) Discard scaling,
freeze heads, and train additive bias vectors.

Joint optimization: dynamically selects heads
while learning interventions.

Intervention Type Multiplicative and additive, but seperately. Hybrid: additive biases + multiplicative scaling
via adaptive gating.

Sparsity Control L1 regularization on scaling factors; top-K head
selection.

Hard Concrete gates with expected-L0 regulariza-
tion; differentiable pruning.

Flexibility Fixed intervention type (bias) post-localization. Learns task-specific intervention type per head.

B. Comparative Analysis between JOLA and LoFIT
To further contextualize the contributions of JOLA, we provide a detailed comparison with LoFIT (Yin et al., 2024), focusing
on three key dimensions: methodology, intervention formulation, and empirical performance.

Methodological Comparison. A central distinction between JOLA and LoFIT lies in their treatment of localization
and intervention optimization. While LoFIT employs a two-stage pipeline, JOLA integrates both processes into a unified
end-to-end framework. This design allows JOLA to dynamically adapt head selections and intervention types based on
downstream task requirements, thereby avoiding the suboptimal decoupling present in LoFIT. We present the difference
between these two methods in Table 4.

Formula-Level Comparison. At the operational level, JOLA generalizes LoFIT’s additive-only formulation by enabling
hybrid interventions per head. The following equations illustrate the key differences:

• LOFIT (Additive bias):
z
(l,i)
t ← z

(l,i)
t + v(l,i) (7)

– This static form is limited to linear shifts of activations and may not suffice for nuanced task demands requiring
amplification or suppression.

• JOLA (Hybrid intervention):

z
(l,i)
t ← (1 + g(l,i)m ·m(l,i))︸ ︷︷ ︸

Scaling

⊙z(l,i)t + g(l,i)a · a(l,i)︸ ︷︷ ︸
Bias

(8)

– This hybrid approach allows both multiplicative and additive adjustments to token-level activations, providing
more expressive control over model behavior. Task-specific gating (g(l,i)m , g(l,i)a ) enables adaptive modulation per
head.
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Figure 10. Performance comparison of interventions across different Transformer components and training sample sizes.

Empirical Observations. JOLA demonstrates robust performance across 26 NLP tasks, particularly under low-resource
settings. In addition to improved accuracy, JOLA is more parameter-efficient than LoFIT, due to shared head/intervention
parameters and a learned gating mechanism that selects to not edit the unnecessary heads.

C. Additional Analysis on Component Selection
To further investigate the impact of intervening on different Transformer components, we evaluate how performance scales
across various data sizes (in low-resource settings) and component combinations.

Degradation from Combining Interventions. As mentioned in Section 3.1 (Q1), combining interventions—particularly
between attention heads and MLPs—tends to degrade performance. This is not simply a consequence of limited data.
As shown in Figure 10, even with larger training sets (up to 500 examples), the combined Attention+MLP interventions
underperform compared to using attention alone with fewer examples (e.g., 200). This pattern suggests a form of overfitting
or representational interference when editing multiple components simultaneously. While MLP layers contribute to
intermediate representation refinement, their effects do not appear to be complementary when naively combined with
attention-level interventions.

Performance Scaling with Sample Size. We also examine how performance changes as the amount of training data
increases. While attention-only interventions benefit slightly from more data (as expected), the gap between attention and
MLP-only interventions remains consistently large across all sample sizes. More notably, increasing data for the combined
MLP+Attention configuration fails to close this gap, further emphasizing the importance of careful component selection
rather than relying on brute-force data scaling.

These findings reinforce our conclusion: while multiple Transformer components are modifiable, not all interventions
contribute equally. Moreover, indiscriminately editing more components can be detrimental. Attention heads remain the
most effective target for activation-based editing, and intervention strategies should prioritize precision over breadth.

D. Datasets
We conduct experiments across three tasks: commonsense reasoning (Hu et al., 2023), natural language understanding (Wang
et al., 2024b), and natural language generation (Gehrmann et al., 2022). Table 5 provides a brief overview of the sub-datasets
or sub-tasks within the three benchmarks evaluated. The commonsense reasoning task is framed as a multiple-choice
problem, where the correct answer is selected from 2 to 4 possible options. The natural language understanding task also
follows a multiple-choice format, but with ten options. The natural language generation task, on the other hand, is an
end-to-end text generation task, where unstructured data (such as commonsense concepts or data) is converted into coherent
text. In the training phase, we simulate a low-resource scenario by using 200 examples. Section 6.5 further explores
experiments with varying numbers of samples. To ensure consistency across experiments, we used the same random seed
(seed= 42) for data sampling, ensuring identical training samples in all runs.

E. Prompt Setting
Recent studies (He et al., 2024; Lai et al., 2024) have highlighted the substantial impact of prompt design on model
performance. In our experiments, we adopt the same prompt configurations as Hu et al. (2023) for the commonsense
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Table 5. Overview of the sub-datasets and sub-tasks evaluated across three main tasks: commonsense reasoning, natural language under-
standing, and natural language generation. Each task is designed to assess different aspects of language processing, with commonsense
reasoning and natural language understanding framed as multiple-choice problems, and natural language generation as an end-to-end text
generation task.

Task Dataset Description Label

Commonsense
Reasoning

(Hu et al., 2023)

ARC-c Designed to challenge co-occurrence methods, similar to ARC-e but more complex. answer1/answer2/answer3/answer4

ARC-e Authentic grade-school level multiple-choice science questions. answer1/answer2/answer3/answer4

BoolQ A dataset for answering naturally occurring yes or no questions. true/false

HellaSwag Select the most appropriate ending or sentence completion given a context. ending1/ending2/ending3/ending4

OBQA An open-book QA dataset requiring extensive knowledge. answer1/answer2/answer3/answer4

PIQA Focuses on physical commonsense reasoning. solution1/solution2

SIQA Involves reasoning about human actions and their social consequences. answer1/answer2/answer3

WinoGrande Fill-in-the-blank task with binary options within a sentence. option1/option2

MMLU-Pro
(Wang et al., 2024b)

Biology

A question-answering task spanning 14 domains, primarily from the MMLU
benchmark (Hendrycks et al., 2020), with additional examples from STEM resources6.

option1/option2/option3/option4/
option5/option6/option7/option8/
option9/option10

Business
Chemistry
Computer Science
Economics
Engineering
Health
History
Law
Math
Other
Philosophy
Physics
Psychology

GEM
(Gehrmann et al., 2022)

Common Gen Converts concepts into coherent sentences.
No label,

end-to-end text generation
E2E Nlg Transforms structured data into natural language text.

Web Nlg Generates text from structured data inputs.

Xsum Performs abstractive summarization of documents.

Table 6. Prompt settings are employed across various benchmarks, including Commonsense Reasoning, MMLU-Pro, and GEM.

Benchmark Task Prompt

Commonsense Reasoning
(Hu et al., 2023) all 8 tasks Please choose the correct answer to the question:{Question}. \n\n Option1:

{option1}...Option4:{option4}\n\n Answer format: Option1/...\Option4.

MMLU-Pro
(Wang et al., 2024b) all 14 domains The following are multiple choice questions (with answers) about {domain}. Please

return the answer in the format of [The answer is (X)] at the end. Question:
{Question} Options: A. {optionA}. B. {optionB}... J. {optionJ}.

GEM
(Gehrmann et al., 2022)

Common Gen Ignoring the order of the concepts: {concepts}; \nGenerate a sentence with all the
concepts.

E2E NLG Please generate a restaurant description from the information given be-
low:\n\nn{data}

WEB NLG Take the following triple set as part of a Data-to-Text task: {data}. Make a lexicaliza-
tion of the triple set into plain text.

Xsum First, please read the article below.\n\n{article}\n\nNow, can you write me an
extremely short abstract for it?
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Table 7. Hyperparameter configurations for the baseline methods evaluated in our experiments. These settings are used across multiple
tasks to assess model performance in low-resource settings, as discussed in Section 1 and Section 4.

Baseline Hyperparameter Values

BitFit (Ben Zaken et al., 2022) Bias Moudule bias of Q,K and V from attention/bias of LayerNorm from
attention outputs/bias of LayerNorm from hidden outputs

Learning Rate 1e-4/ 5e-4

RED (Wu et al., 2024a) Rank 8 / 16

Learning Rate 5e-5/ 2e-4 / 6e-2

REPE (Zou et al., 2023) method Representation Reading / Representation Control

ReFT (Wu et al., 2024b) Prefix + suffix posotion p7 + s7 / p11 + s11

Layers all / 4,6,10,12,14,18,20,22/3,9,18,24

LoFIT (Yin et al., 2024) number of attention heads 32/64/128

Learning Rate 5e-4 / 5e-3

reasoning benchmark, and used the prompts from the original paper for the MMLU-Pro benchmark (Wang et al., 2024b).
For the GEM benchmark (Gehrmann et al., 2022), where the original paper did not provide the prompt settings, we utilized
commonly used prompts curated from PromptSource7. To ensure reproducibility of our results, we present the prompts
employed in our experiments in Table 6.

Table 8. Performance comparison of different learning rate (LR) schedules across six tasks for both JOLA and LoFIT models.
JOLA LoFIT

SIQA WinoGrande Law Physics E2E NLG WEB NLG SIQA WinoGrande Law Physics E2E NLG WEB NLG

Linear 62.71 56.49 38.00 42.00 14.05 22.83 54.13 53.36 35.00 6.00 13.84 16.95
Cycle 64.25 57.26 39.00 43.00 14.37 23.44 54.32 54.25 34.00 6.00 14.37 17.83
Adaptive 65.47 58.60 39.00 44.00 15.02 23.86 55.18 55.57 36.00 7.00 15.24 17.64
Exponential 66.22 58.33 40.00 46.00 15.54 24.39 55.94 55.33 36.00 7.00 14.77 18.12

F. Experiment Configurations
F.1. Training Setup

We conduct all experiments using the HuggingFace Transformers8 library and fine-tuned the models with the TRL toolkit9.
The AdamW optimizer (Loshchilov, 2017) was used for fine-tuning, with ϵ = 1e− 6 and one epoch of warm-up. Given the
small dataset (e.g., 200 samples in our setting), overfitting was a concern. To mitigate overfitting’s impact on the baseline,
we introduced early stopping, which was not applied in the original implementation of the baseline systems. We also found
that learning rate adjustment significantly affected the results. To optimize the learning rate strategy, we evaluated four
strategies: (1) linear schedule (Mnih et al., 2015), (2) Cyclic Learning Rate Schedule (Smith, 2017), (3) Adaptive Heuristic
Schedule (Smith, 2018), and (4) Exponential Decay Schedule (Li & Arora, 2019). As shown in Table 8, the exponential
decay strategy proved to be the most stable, so we used it for both the baseline and our method. The exponentially decaying
learning rate schedule is defined by the following formula:

lr(t) = lr0 · λt · e−decay·t (9)

where lr0 is the initial learning rate lr0set to 5× 10−4 , λ is 0.1, and the decay rate is 0.01.

For the gating units, we used a temperature of 0.33 in the Gumbel Softmax (Jang et al., 2017). Fine-tuning was performed
in full precision for the 7B, 8B, 1B, and 3B models, while for the 70B model, we applied 4-bit quantization to enable

7https://github.com/bigscience-workshop/promptsource
8https://github.com/huggingface/transformers
9https://github.com/huggingface/trl
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(b) Different Prefix + Suffix Positions in ReFT
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(c) Different Attention Heads in LoFIT
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Figure 11. Performance comparison across six tasks under different experimental settings. The three subplots illustrate the sensitive of
various configurations on task performance: (a) Different learning rates in RED (5e-5, 2e-4, 6e-2), (b) Different prefix and suffix positions
in ReFT (P7 + S7, P11 + S11), and (c) Different numbers of attention heads in LoFIT (32, 64, 128).

single-precision fine-tuning.

F.2. Computational Resources

All experiments for the 1B, 3B, 8B, and 13B models were conducted on a single NVIDIA A100 80GB GPU server. The
70B model, described in Section 6.5, was evaluated on an NVIDIA H100 94GB GPU server. As an example, with the 8B
LLaMA-3 model, JOLA converged within 2 GPU hours on most tasks in the low-resource setting, using only 200 training
samples.

F.3. Hyperparameter Search for Baselines

As discussed in Section 1 and Section 4, the performance of baseline methods in low-resource settings is highly sensitive to
hyperparameters across different tasks. We present in Figure 11 the sensitivity of hyperparameters in baseline methods,
including the effects of varying learning rates in RED (Wu et al., 2024a), different prefix and suffix positions in ReFT (Wu
et al., 2024b), and the number of attention heads in LoFIT (Yin et al., 2024). However, it is impractical to conduct
hyperparameter searches for each task individually, given that we evaluate 26 tasks in total, and performing a separate search
for each would be time-consuming. To mitigate this, we perform hyperparameter selection using a grid search approach. For
each task, we run a grid search with five different hyperparameter configurations, which are chosen to explore a diverse range
of parameter settings that could provide the best model performance. We performed this search over key hyperparameters, as
presented in Table 7, using a validation set to select the configuration that resulted in the best performance. The final model
is evaluated with these hyperparameters, and we averaged the results across all tasks, as reported in Table 1 and Figure 4.

G. Full Results Across all Tasks
Due to page limitations, we present the average performance across the 26 tasks in Table 1 and Figure 4. In this section,
we provide detailed performance metrics for each individual task. Specifically, Table 9 reports the accuracy of LLaMA-3
on the commonsense reasoning task, while Table 10 presents the accuracy of Qwen-2.5 on the same task. Table 11 shows
the accuracy of LLaMA-3 on the natural language understanding task, and Table 12 shows the corresponding accuracy
for Qwen-2.5. Finally, Table 13 presents the BLEU, ROUGE-L, and BERTScore for LLaMA-3 on the natural language
generation task, with Table 14 displaying the corresponding metrics for Qwen-2.5.

H. Case Study
To provide an intuitive evaluation of the advantages of our method, we select one representative case from each of the tasks:
commonsense reasoning, natural language understanding, and natural language generation. The results generated by the
baseline and our approach are presented below.
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Table 9. The accuracy of LLaMA-3 across various commonsense reasoning tasks, comparing different baseline methods and our proposed
method (JOLA).

ARC-c ARC-e BoolQ HellaSwag OBQA PIQA SIQA WinoGrande # AVG

zero shot 59.56 65.40 41.99 45.19 54.80 76.01 42.78 43.88 53.70
LoRA (Hu et al., 2021) 70.13 77.85 56.37 66.18 73.38 71.36 63.42 53.97 66.58

BitFit (Ben Zaken et al., 2022) 64.17 72.35 49.69 63.48 74.07 71.24 58.14 51.28 63.05
RED (Wu et al., 2024a) 39.67 56.20 9.69 40.81 50.75 70.09 50.46 51.84 46.19
RePE (Zou et al., 2023) 61.34 74.07 53.41 60.32 76.06 73.18 60.53 49.95 63.61
ReFT (Wu et al., 2024b) 66.36 77.37 53.34 63.96 75.43 73.50 62.27 55.36 65.95
LoFIT (Yin et al., 2024) 57.10 78.59 43.69 42.01 61.73 53.96 56.37 56.10 56.19

JOLA 74.66 80.13 62.17 70.69 76.20 76.01 66.22 58.33 70.55

Table 10. The accuracy of Qwen-2.5 across various commonsense reasoning tasks, comparing different baseline methods and our
proposed method (JOLA).

ARC-c ARC-e BoolQ HellaSwag OBQA PIQA SIQA WinoGrande # AVG

zero shot 88.14 94.70 55.87 82.42 81.80 87.38 76.56 62.35 78.65
LoRA (Hu et al., 2021) 85.30 92.04 66.20 83.30 82.09 84.53 71.25 61.53 78.28

BitFit (Ben Zaken et al., 2022) 75.73 85.78 53.05 75.37 70.08 78.63 66.08 49.23 69.25
RED (Wu et al., 2024a) 84.23 86.72 55.74 75.09 73.05 79.00 67.28 51.08 71.52
RePE (Zou et al., 2023) 78.90 83.51 55.49 74.18 68.38 81.45 63.20 53.72 69.85
ReFT (Wu et al., 2024b) 79.29 87.57 58.88 77.72 71.96 82.41 69.66 54.01 72.69
LoFIT (Yin et al., 2024) 78.32 84.25 54.14 75.00 72.53 79.27 66.60 49.30 69.93

JOLA 88.31 95.29 68.10 88.53 86.40 87.05 75.79 69.69 82.40

Table 11. The performance of LLaMA-3 across multiple domains in the MMLU-Pro benchmark.
Biology Business Chemistry Computer Science Economics Engineering Health History Law Math Other Philosophy Physics Psychology #AVG

zero shot 75 31 27 36 53 26 55 46 31 20 34 43 24 59 40
LoRA 65 35 35 30 47 40 54 51 36 31 32 36 44 53 42

BitFit 62 31 20 30 49 23 47 43 20 22 24 45 21 53 35
RED 59 26 26 31 52 26 61 46 34 23 33 42 21 41 37
RePE 67 30 22 30 56 26 49 37 24 14 24 35 28 55 36
ReFT 71 31 31 35 57 26 55 45 31 23 32 46 29 61 41
LoFIT 55 17 13 29 37 32 29 49 37 16 19 16 7 33 28

JOLA 70 42 43 34 53 43 55 54 40 37 40 39 46 62 47

Table 12. The performance of Qwen-2.5 across multiple domains in the MMLU-Pro benchmark.
Biology Business Chemistry Computer Science Economics Engineering Health History Law Math Other Philosophy Physics Psychology #AVG

zero shot 71 20 17 36 55 17 46 44 27 13 44 48 19 64 37
LoRA 68 32 36 45 58 36 48 53 34 40 33 40 50 74 46

BitFit 49 25 13 17 40 26 25 30 9 18 25 29 29 66 29
RED 73 21 20 40 56 23 49 43 28 15 45 46 20 65 39
RePE 57 32 20 22 42 23 17 14 21 34 22 9 27 68 29
ReFT 74 38 37 46 55 29 53 50 37 36 42 44 54 74 48
LoFIT 73 25 23 43 58 35 51 47 29 27 44 49 31 67 43

JOLA 75 41 39 49 62 38 56 57 42 45 42 45 55 76 52
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Table 13. The performance of LLaMA-3 across various natural language generation tasks (Commen Gen, E2E NLG, WEB NLG, and
Xsum), using BLEU, ROUGE-L, and BERTScore as evaluation metrics.

Commen Gen E2E NLG WEB NLG Xsum

BLEU Rouge-L BertScore BLEU Rouge-L BertScore BLEU Rouge-L BertScore BLEU Rouge-L BertScore

zero shot 16.19 46.59 79.69 8.26 27.47 74.10 21.65 52.11 83.79 4.14 20.65 71.35
LoRA 18.17 49.54 81.15 13.15 39.75 77.50 19.53 34.50 82.18 2.25 24.11 70.12

BitFit 13.16 31.02 77.51 9.25 31.28 74.77 12.25 40.25 76.86 2.35 12.68 70.19
RED 17.19 45.41 80.43 10.31 30.44 75.51 14.45 42.62 78.43 2.99 11.14 70.60
RePE 11.24 30.15 76.15 8.12 25.46 74.01 12.36 42.36 76.94 2.25 12.46 70.12
ReFT 20.22 48.26 82.69 12.60 32.71 77.11 13.09 43.36 77.46 4.49 23.22 71.58
LoFIT 12.17 30.53 76.81 14.77 38.88 78.66 18.12 46.38 81.11 2.47 12.57 70.26

Our 23.13 53.47 84.93 15.54 42.52 79.22 24.39 38.09 85.92 5.24 28.50 72.07

Table 14. The performance of Qwen-2.5 across various natural language generation tasks (Commen Gen, E2E NLG, WEB NLG, and
Xsum), using BLEU, ROUGE-L, and BERTScore as evaluation metrics.

Commen Gen E2E NLG WEB NLG Xsum

BLEU Rouge-L BertScore BLEU Rouge-L BertScore BLEU Rouge-L BertScore BLEU Rouge-L BertScore

zero shot 14.58 41.85 78.53 8.08 25.63 73.97 31.13 56.11 91.40 2.32 13.59 70.17
LoRA 17.16 52.39 80.40 23.39 46.65 85.14 31.00 55.50 91.30 6.29 26.84 72.77

BitFit 14.92 40.16 78.77 15.25 35.03 79.01 21.49 43.27 83.66 2.23 13.94 70.11
RED 13.91 41.75 78.04 8.25 26.55 74.09 26.58 54.64 87.67 2.50 16.06 70.28
RePE 11.46 41.01 76.31 13.11 30.46 77.47 21.94 46.25 84.01 2.26 14.58 70.13
ReFT 15.84 41.37 79.43 18.05 35.43 81.07 25.04 48.93 86.44 5.15 23.85 72.01
LoFIT 11.23 40.73 76.15 9.17 28.47 74.72 26.47 54.50 87.58 2.36 15.02 70.19

Our 21.12 57.54 83.38 28.32 52.60 89.08 35.32 58.54 94.99 11.24 32.25 76.15

Case 1: Commonsense Reasoning Task (ARC-c) on LLaMA-3.1-8B

Instruction: Please choose the correct answer to the question: {Question}\n\n Answer1: {answer1}\n
Answer2: {answer2}\n Answer3: {answer3}\n Answer4: {answer4} \n\n Answer format: an-
swer1/answer2/answer3/answer4\n\n ### Response:\n
Question: A definite shape and a definite volume are properties of which state of matter?
Answers: Answer1: solid, only\n Answer2: liquid, only\n Answer3: solid and liquid\n Answer4: liquid and gas\n

Zero-Shot: solid, only/liquid, only/solid and liquid/liquid and gas. (Non Results)
LoRA: answer1 (True Answer)
BitFit: solid, only/liquid, only (Non Results)
RED: answer3 (Wrong Answer)
REPE: answer3 (Wrong Answer)
ReFT: answer3 (Wrong Answer)
LoFIT: answer4 (Wrong Answer)
JOLA: answer1 (True Answer)
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Case 2: Natural Language Understanding Task (Math) on Qwen-2.5-7B

Instruction: The following are multiple choice questions (with answers) about {domain}. Please return the answer
in the format of “The answer is (X)” at the end.\n Question: {question} \n Options: A. {A} B. {B} C. {C} D.
{D} E. {E} F. {F} G. {G} H. {H} I. {I} J. {J}\n ### Response:\n
Question: Use Euler’s Method to calculate the approximation of y(0.2) where y(x) is the solution of the initial-value
problem that is as follows. y′′ + xy′ + y = 0 and y(0) = 2 and y′(0) = 3.
Options: A. 2.67 B. 2.33 C. 1.76 D. 1.98 E. 2.10 F. 2.58 G. 2.82 H. 3.14 I. 3.02 J. 2.45 \n

Zero-Shot: E (Wrong Answer)
LoRA: E (Wrong Answer)
BitFit: B (Wrong Answer)
RED: E (Wrong Answer)
REPE: C (Wrong Answer)
ReFT: !!!!!”!!!!#!!!!$ (Non Results)
LoFIT: F (True Answer)
JOLA: F (True Answer)

Case 3: Natural Language Generation Task (E2E NLG) on Qwen-2.5-7B

Instruction: Please generate a restaurant description from the information given below: {data} \n\n ###
Response:\n
Data: name[Zizzi], eatType[pub], near[The Sorrento]
Reference: There is a pub called Zizzi located near The Sorrento.

Zero-Shot: Nestled in the heart of the city, just a stone’s throw away from The Sorrento, Zizzi is a charming and
cozy pub that offers a delightful dining experience. With its warm and inviting atmosphere, Zizzi is the perfect spot
for a casual meal, a relaxing drink, or a lively gathering ... (Tend to generate without end)
LoRA: Zizzi is a pub located near The Sorrento. It is a great place to grab a bite to eat and enjoy a drink in a lively
atmosphere. Zizzi’s menu features a variety of delicious dishes, from classic pub fare to more adventurous options.
Whether you’re in the mood for a hearty burger... (Tend to generate without end)
BitFit: There is a pub called Zizzi near The Sorrento. It is a good place to eat. It is a pub. It is near The Sorrento. It
is called Zizzi. It is a good place to eat. It is a pub... (Tend to generate repetitions without end)
RED: Nestled in the heart of the city, just a stone’s throw away from The Sorrento, Zizzi is a charming and cozy
pub that offers a delightful dining experience. With its warm and inviting atmosphere, Zizzi is the perfect spot for a
casual meal, a relaxing drink, or a... (Tend to generate without end)
REPE: Zizzi is a pub. It is located near The Sorrento. Zizzi is a place where you can go to eat. Zizzi is a place
where you can go to drink. Zizzi is a place where you can go to socialize. Zizzi... (Tend to generate repetitions
without end)
ReFT: Zizzi is a pub in The Sorrento. Zizzi is a restaurant in The Sorrentos. Zizzis is a restaurant in the sorrentos.
The Zizzis is a restaurant at the sorrentos.. Zizzi’s is a restaurant in sor... (Tend to generate repetitions without end)
LoFIT: Nestled in the heart of the city, just a stone’s throw away from The Sorrento, Zizzi is a charming and cozy
pub that offers a delightful dining experience. With its warm and inviting atmosphere, Zizzi is the perfect spot for a
casual meal or a relaxing drink with friends. (Ends normally, but no Sorrento-related information.)
JOLA: Zizzi is a pub near The Sorrento. (True Answer)
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