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ABSTRACT

Survival analysis requires modeling complex temporal dependencies and mul-
timodal data to predict outcomes accurately. Existing state-of-the-art methods,
such as Dynamic-DeepHit, have advanced temporal survival modeling but remain
constrained to tabular data and cannot leverage multimodal information, leav-
ing critical gaps in handling irregular sampling, heterogeneous modalities, and
cross-modal alignment. In this way, we introduce MultiTimeSurv, a novel deep
learning framework that integrates longitudinal tabular data with image analysis
for dynamic survival prediction. Our approach addresses three key challenges:
(1) capturing temporal evolution through attention-based recurrent networks, (2)
processing multimodal data via specialized feature encoders for tabular embed-
dings and a transformer-based image analysis module, and (3) handling missing
data patterns common in real-world settings. MultiTimeSurv employs contextual
embeddings for categorical and continuous variables, a temporal attention mech-
anism for longitudinal modeling, and a fully transformer-based architecture for
extracting visual-textual features from images. We evaluate MultiTimeSurv on
multiple datasets, including hospitalization data, longitudinal studies, and mul-
timodal image-text datasets, outperforming the current state-of-the-art survival
analysis methods. On SYMILE-MIMIC, it consistently surpasses classical and
neural baselines across all horizons, exceeding a C-index of 0.70 at long-term
predictions.

1 INTRODUCTION

Temporal multimodal data plays a central role in numerous applications, from medical prognosis
to dynamic risk assessment. A particularly important setting is survival analysis, where the goal is
to model time-to-event outcomes under the presence of censoring and competing risks (Cox, 1972;
Kalbfleisch & Prentice, 2002; Wiegrebe et al., 2024). Unlike standard predictive tasks, survival
modeling must contend with incomplete event information, irregular observation times, and hetero-
geneous input sources (Wang et al., 2019; Kvamme et al., 2019). These challenges make temporal
multimodal survival analysis substantially more complex than conventional sequence learning (Lee
et al., 2019; Wiegrebe et al., 2024).

Real-world datasets for survival analysis typically violate the assumptions of most deep learning
architectures (Lee et al., 2019). Tabular time series mix categorical and continuous variables arriv-
ing at irregular intervals (Shukla & Marlin, 2021; Futoma et al., 2017); high-dimensional modalities
such as medical imaging are sparsely sampled (Rajpurkar et al., 2022; Çallı et al., 2021); and tem-
poral alignment across modalities is often noisy or missing entirely (Guarrasi et al., 2025). Existing
neural architectures usually assume uniform sampling, homogeneous input types, and consistent
temporal resolution (Zerveas et al., 2021; Lim et al., 2021), leading to poor robustness in practice
(Harutyunyan et al., 2019).

Current approaches fall short in several key aspects. First, fusion strategies commonly rely on con-
catenation or early fusion, which ignore cross-modal interactions and temporal dependencies (Guar-
rasi et al., 2025; Tsai et al., 2019). Processing each modality independently before fusion discards
valuable synchronization cues, resulting in suboptimal joint representations (Akbari et al., 2021).
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Second, handling irregular temporal sampling remains a bottleneck: recurrent or transformer-based
models typically assume fixed time steps (Vaswani et al., 2017), while naive imputation introduces
artifacts (Shukla & Marlin, 2021). Third, survival analysis introduces its own algorithmic con-
straints. Classical methods such as the Cox model assume proportional hazards and static features
(Cox, 1972), while recent neural survival models, such as DeepSurv (Katzman et al., 2018), Deep-
Hit (Lee et al., 2018), and Dynamic-DeepHit (Lee et al., 2019), capture temporal dynamics but are
restricted to tabular data, leaving multimodal integration underexplored. Furthermore, multimodal
integration exploits complementary information across heterogeneous sources, imaging captures
spatial phenotypes orthogonal to tabular measurements, enabling more expressive joint represen-
tations that reduce predictive uncertainty and mitigate unimodal information bottlenecks(Guarrasi
et al., 2025).

To address the challenges of heterogeneity, irregular sampling, and censored event modeling in tem-
poral multimodal survival analysis, we propose MultiTimeSurv, a principled and general framework
designed to capture complex temporal dependencies across diverse clinical modalities. The core
idea is to explicitly model non-stationary patterns in tabular data, sparsity in temporal sequences,
and semantic alignment across modalities within a unified survival analysis framework. Specifi-
cally, MultiTimeSurv introduces three key components: (1) periodic and piecewise linear transfor-
mations to flexibly encode mixed categorical–continuous tabular features, enabling the capture of
complex, non-stationary relationships; (2) temporal attention mechanisms that operate directly on
irregularly sampled sequences, explicitly modeling sparsity and missingness; and (3) semantically-
informed multimodal fusion via an extension of the CheXReport architecture (Zeiser et al., 2024),
which jointly extracts and aligns visual features and textual semantics to produce robust cross-modal
representations. MultiTimeSurv achieves state-of-the-art performance across two datasets, outper-
forming both general-purpose and survival-specific baselines. Ablation studies further confirm that
each module contributes meaningfully, with multimodal fusion consistently improving performance
across prediction horizons. Our contributions can be summarized as follows:

• We introduce MultiTimeSurv, a general-purpose survival analysis model that can process
multimodal and longitudinal data by transforming the data into dense vector representa-
tions, allowing for the capture of multimodal information from censored and missing data
over time.

• We introduce embedding techniques for categorical and continuous variables, transforming
them into dense vector representations. This allows the capture of complex, non-linear
relationships within the data, improving the model’s ability to integrate and interpret diverse
types of patient information for more accurate survival analysis.

• We employ a multitask learning approach to handle multiple competing health risks simul-
taneously. This enables the identification and differentiation of risk factors, providing a
comprehensive assessment of patient prognosis and facilitating treatment strategies.

• We conduct an extensive experimental evaluation across two datasets (MDH and SYMILE-
MIMIC), demonstrating that each architectural component contributes meaningfully and
that MultiTimeSurv achieves state-of-the-art performance in both unimodal and multi-
modal survival prediction.

2 RELATED WORK

Early works such as DeepSurv (Katzman et al., 2018) extended the Cox proportional hazards frame-
work by replacing linear predictors with neural networks, enabling the capture of complex non-linear
covariate effects while preserving hazard ratio interpretability. However, these methods inherited the
restrictive proportional hazards assumption and struggled with time-varying covariates. Discrete-
time formulations marked a significant shift: DeepHit (Lee et al., 2018) introduced a multi-task
learning framework to model the probability mass function of survival times directly, naturally ac-
commodating competing risks. Extensions such as N-MTLR (Fotso, 2018) and PCHazard (Kvamme
et al., 2019) further advanced hazard function parameterization but remained confined to static tab-
ular inputs. To address temporal dynamics, Dynamic-DeepHit (Lee et al., 2019) incorporated re-
current neural networks with attention to model longitudinal covariates, achieving state-of-the-art
performance but still limited by RNN weaknesses (e.g., long-range dependencies, irregular sam-
pling). Recent approaches have shifted toward transformers, with continuous-time survival trans-
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formers (Kvamme et al., 2019) leveraging self-attention for scalable temporal modeling. In parallel,
multimodal survival models have emerged, such as Deep-CR MTLR (Kim et al., 2021), which inte-
grates imaging and clinical features for competing risks, and SAMVAE (Garrido et al., 2025), which
learns continuous-time multimodal survival distributions through variational inference. More recent
methods, such as HySurvPred (Yang et al., 2025), employ hyperbolic embeddings and contrastive
learning to capture censored and ordinal outcomes more effectively.

While recent advances have improved survival prediction, existing methods remain fragmented and
fail to jointly address heterogeneous features, irregular sampling, and cross-modal alignment. Cur-
rent approaches either handle temporal dynamics in isolation or focus on static multimodal fusion,
leaving a gap for unified architectures that can effectively integrate both temporal and multimodal
data. To overcome these limitations, we propose MultiTimeSurv, a principled framework that inte-
grates multimodal, temporal, and tabular representations for survival analysis.

3 MULTITIMESURV: TEMPORAL MULTIMODAL NETWORKS FOR DYNAMIC
SURVIVAL ANALYSIS

This section presents MultiTimeSurv, a general-purpose architecture for temporal multimodal sur-
vival analysis. In Figure 3, we present an overview of the MultiTimeSurv architecture. The frame-
work jointly processes heterogeneous inputs, including clinical, laboratory, and imaging modalities,
through modality-specific encoders and fusion layers that align representations in a shared latent
space. By explicitly modeling temporal dynamics, irregular sampling, and cross-modal interac-
tions, MultiTimeSurv captures a more comprehensive and clinically meaningful characterization of
patient trajectories. This design enables more accurate survival predictions while providing inter-
pretable representations of underlying risk factors, facilitating personalized treatment strategies and
improved clinical decision support.

3.1 PROBLEM FORMULATION

We consider a longitudinal survival setting with multimodal inputs and competing risks. Let the
dataset consist of N subjects (e.g., a hospitalized patient). For each subject i ∈ {1, . . . , N} we
observe:

Xi = (Ci,Mi, Ii), Yi = (ρi, δi), (1)

where Ci, Mi, and Ii denote tabular covariates, missingness indicators, and imaging data, respec-
tively. The survival outcome is represented by the event time ρi ∈ {1, . . . , T} and event type
δi ∈ {0, 1, . . . ,K}, with δi = 0 indicating right-censoring.

Multimodal longitudinal covariates. - Ci = {ci,j,t} contains mixed categorical and continuous
variables for covariate j at time t. - Mi = {mi,j,t} is a binary mask indicating whether ci,j,t is
missing. - Ii = {(ιi,t, ϵi,t)} denotes imaging modalities (e.g., chest X-rays) paired with optional
textual reports at irregularly sampled time points.

Modeling objective. The goal is to learn a mapping

fθ : Xi 7→ Pi(t, k), (2)

that outputs discrete hazard probabilities

Pi(t, k) = Pr(ρi = t, δi = k | Xi, ρi ≥ t), (3)

for each time t ∈ {1, . . . , T} and event type k ∈ {1, . . . ,K}. This formulation naturally accommo-
dates competing risks and censored observations.

Challenges. This setup introduces several key challenges: (i) heterogeneous covariates, as Ci

combines categorical, continuous, and missing values; (ii) irregular temporal sampling, since not
all modalities are observed at each time step; and (iii) multimodal alignment, as image–text pairs
must be integrated with tabular signals for coherent survival prediction. Addressing these challenges
requires an architecture that can flexibly embed heterogeneous features, handle missingness without
heavy imputation, and fuse modalities while respecting temporal dynamics.
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Figure 1: MultiTimeSurv model. Feature encoders process the tabular data, generating a vector
of embeddings econcat. Patient i has the samples up to time t processed in Temporal Attention,
which generates a contextual vector ci,t. The chest X-ray exam is processed by CheXReport, which
produces a latent space vector vi,t with the main features identified. The vectors are concatenated zi
and processed in the multitask networks to generate the probability for each time t and event k.
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3.2 FEATURE ENCODERS

Categorical Embeddings. For each categorical variable j ∈ Jcat with vocabulary Vj , we learn
embeddings that incorporate frequency information:

ecat,j(ci,j,t) = Ej [idx(ci,j,t)] + fj · log(freq(ci,j,t) + 1) (4)

where Ej ∈ R|Vj |×d are learned embeddings and fj ∈ Rd weights category frequency.

Continuous Embeddings. We combine three complementary strategies: periodic embeddings for
cyclical patterns, piecewise embeddings for distribution modeling, and distributional embeddings
for statistical properties:

eper,j(c) = [sin(2πWper,jc+ ϕj), cos(2πWper,jc+ ϕj)] (5)

epiece,j(c) =

B∑
b=1

wb · ReLU
(

c− qj,b−1

qj,b − qj,b−1
− 1

)
(6)

edist,j(c) = MLPdist([µj , σj , skewj , kurtj ]) (7)

The final continuous embedding fuses all representations:

econt,j(c) =Wfusion,j [eper,j(c), epiece,j(c), edist,j(c), c] + bfusion,j (8)

Missing Data. The dataset may be sparse and not have all covariates collected at all time points
t. Therefore, for each covariate j missing from patient i, we assign a value −∞. To incorporate
information into the MultiTimeSurv model regarding missing data, we provide the model with a
mask M = {mi,1,mi,2, . . . ,mi,j}, where: mi,j = 1 if xi,j = −∞, 0 otherwise

3.3 TEMPORAL ATTENTION MECHANISM

Temporal Processing. We employ a Gated Recurrent Unit (GRU) to encode the temporal sequence
of patient embeddings. At each time step t, the GRU updates the hidden state using the current input
e(concat),i,t and the previous state hi,t−1:

hi,t = GRU(e(concat),i,t, hi,t−1). (9)

The sequence of hidden states Hi = [hi,1, . . . , hi,T ] ∈ RT×d(hidden) is aggregated into a context
vector Ci via an attention mechanism:

Ci =

T∑
t=1

ςi,thi,t, ςi,t =
exp(ei,t)∑T
t=1 exp(ei,t)

, ei,t = q⊤hi,t, (10)

where q is a trainable query vector.

The context vector Ci provides a compact summary of temporally relevant information, which is
used to produce a longitudinal prediction one step ahead:

yi,t+1 =WCi + b. (11)

This formulation regularizes the temporal network while preserving predictive information (Lee
et al., 2019).

3.4 CHEXREPORT

CheXReport adopts a fully transformer-based encoder–decoder architecture for joint visual–textual
representation learning. Unlike CNN–RNN hybrids, our design leverages Swin Transformer blocks

5
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in both encoder and decoder to capture hierarchical visual features from chest X-rays and align
them with textual embeddings for report generation. The encoder applies stacked Swin Transformer
blocks (Liu et al., 2021), which progressively merge patches to build multi-scale feature maps while
reducing complexity compared to ViT (Dosovitskiy et al., 2021). Local attention within windows is
implemented via W–MSA and SW–MSA, where shifted partitions preserve cross-window con-
text. Formally, self-attention is computed as

Attention(Q,K, V ) = softmax

(
QKT

√
d

+B

)
V, (12)

with relative position bias B ∈ RM2×M2

. Each block alternates W–MSA and SW–MSA with
residual MLP layers and layer normalization, ensuring both local efficiency and global consistency.

The decoder receives the input report sequence, tokenized into K units and embedded with multi-
lingual BERT vectors. After adding positional embeddings, tokens are processed through masked
self-attention, layer normalization, and cross-attention to integrate image-derived features. Finally,
a linear projection maps the hidden states to the vocabulary space, generating the report suggestion.
This design enables CheXReport to extract clinically relevant visual features, align them with textual
semantics, and produce context-aware radiology reports.

3.5 MULTITASK NETWORKS

We adopt a multitask learning structure to estimate the specific risk k for each patient i at time
t. Each network specializes in one event type while sharing intermediate representations, allowing
MultiTimeSurv to capture dependencies across risks without interfering with event-specific patterns.
The input to each multitask network combines three components: the temporal context vector ci,t,
the most recent embedding e(concat),i,t, and the CheXReport latent vector vi,t, formally:

zi =
[
ci,t, e(concat),i,t, vi,t

]
. (13)

Each multitask network is a feed-forward model with L hidden layers. The first hidden layer is:

h(0) = ReLU(W (0)zi + b(0)), (14)

followed by
h(l) = ReLU(W (l)h(l−1) + b(l)), l = 1, . . . , L, (15)

with dropout applied at each layer:

h(l) = Dropout(h(l), p). (16)

The output layer for risk k is given by:

ok =W (L+1)h(L) + b(L+1). (17)

Outputs across all risks are concatenated:

O = [o1, o2, . . . , oK ] , (18)

and normalized with a softmax to yield event probabilities over time:

P = softmax(O). (19)

3.6 MULTITIMESURV MODEL OPTIMIZATION

MultiTimeSurv is trained with a composite loss

L(total) = L1 + L2 + L3, (20)

where L1 captures survival events via binary cross-entropy, L2 enforces temporal consistency with a
masked MSE that ignores missing values (Lee et al., 2019), and L3 regularizes CheXReport through
cross-entropy with stochastic attention (Xu et al., 2015). Full definitions of these loss terms are
provided in Appendix B.

The computational complexity is O(HW · dv + T 2 · d + K · L · d2) with space requirements
O(HW + T · |J | · d+Nv · dv), remaining tractable for typical clinical sequences with T < 100.
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4 SURVIVAL ANALYSIS RESULTS

We evaluate MultiTimeSurv on two datasets of increasing complexity: (i) MDH, a multimodal hos-
pital dataset with longitudinal clinical, laboratory, and imaging data; and (ii) SYMILE-MIMIC, a
multimodal dataset integrating EHR and imaging. We report C-index and Brier score across predic-
tion times t ∈ {1, 3, 5, 7} and evaluation horizons ∆t ∈ {1, 3, 5, 7}].

4.1 RESULTS ON MDH

Table 1 presents the results on the multimodal MDH dataset. Across all prediction horizons, Mul-
tiTimeSurv achieves the best discriminative performance, with gains of up to +0.300 in C-index
compared to CoxPH and +0.100 over Dynamic-DeepHit. In terms of calibration, MultiTimeSurv re-
mains competitive, with Brier scores that are consistently among the lowest across both short- and
long-term horizons. Importantly, MultiTimeSurv maintains stable performance even at the most
challenging setting (t = 7,∆t = 7), where most baselines show substantial degradation.

Table 1: Comparison of MultiTimeSurv with various methods across prediction times t and horizons
∆t. Left: C-index (higher is better). Right: Brier score (lower is better). Values are mean ± std.

C-index Brier Score
t Algorithms ∆t = 1 ∆t = 3 ∆t = 5 ∆t = 7 ∆t = 1 ∆t = 3 ∆t = 5 ∆t = 7

t = 1

CoxPH† 0.377± 0.08 0.312± 0.01 0.380± 0.01 0.406± 0.04 0.010± 0.00 0.023± 0.00 0.037± 0.00 0.056± 0.00
CoxCC† 0.463± 0.07 0.340± 0.01 0.400± 0.01 0.436± 0.02 0.010± 0.00 0.023± 0.00 0.038± 0.00 0.057± 0.00
DeepSurv† 0.361± 0.01 0.326± 0.07 0.378± 0.09 0.410± 0.02 0.010± 0.00 0.023± 0.00 0.037± 0.00 0.056± 0.00
PCHazard† 0.555± 0.08 0.552± 0.01 0.506± 0.03 0.524± 0.03 0.028± 0.07 0.054± 0.05 0.066± 0.04 0.071± 0.03
DeepHit† 0.533± 0.01 0.462± 0.01 0.480± 0.06 0.456± 0.07 0.012± 0.00 0.026± 0.00 0.041± 0.00 0.061± 0.00
N-MTLR† 0.453± 0.01 0.452± 0.06 0.465± 0.03 0.453± 0.05 0.011± 0.00 0.026± 0.00 0.043± 0.00 0.066± 0.00
DynamicDeepHit† 0.666± 0.02 0.622± 0.02 0.629± 0.01 0.648± 0.01 0.060± 0.00 0.092± 0.00 0.130± 0.00 0.163± 0.00
Model A † 0.693± 0.02 0.708± 0.02 0.702± 0.02 0.701± 0.01 0.066± 0.00 0.074± 0.00 0.102± 0.00 0.147± 0.00
Model B 0.695± 0.01 0.711± 0.02 0.701± 0.01 0.703± 0.01 0.065± 0.00 0.073± 0.00 0.103± 0.00 0.146± 0.00
MultiTimeSurv 0.723± 0.08 0.735± 0.01 0.711± 0.02 0.706± 0.01 0.071± 0.00 0.024± 0.01 0.097± 0.00 0.147± 0.00

t = 3

CoxPH† 0.282± 0.07 0.388± 0.09 0.418± 0.07 0.420± 0.03 0.036± 0.00 0.051± 0.00 0.072± 0.00 0.098± 0.00
CoxCC† 0.362± 0.01 0.435± 0.01 0.461± 0.02 0.463± 0.05 0.037± 0.00 0.052± 0.00 0.073± 0.00 0.073± 0.00
DeepSurv† 0.340± 0.01 0.404± 0.01 0.430± 0.02 0.439± 0.04 0.036± 0.00 0.051± 0.00 0.072± 0.00 0.097± 0.00
PCHazard† 0.541± 0.04 0.492± 0.03 0.503± 0.03 0.476± 0.04 0.080± 0.02 0.082± 0.01 0.081± 0.01 0.107± 0.00
DeepHit† 0.472± 0.01 0.534± 0.06 0.510± 0.06 0.495± 0.06 0.040± 0.00 0.056± 0.00 0.077± 0.00 0.104± 0.01
N-MTLR† 0.410± 0.07 0.452± 0.05 0.447± 0.05 0.460± 0.04 0.042± 0.00 0.060± 0.00 0.085± 0.00 0.117± 0.01
DynamicDeepHit† 0.584± 0.04 0.635± 0.03 0.639± 0.02 0.633± 0.02 0.097± 0.00 0.136± 0.00 0.168± 0.00 0.186± 0.00
Model A† 0.740± 0.01 0.720± 0.02 0.728± 0.02 0.714± 0.02 0.094± 0.00 0.141± 0.00 0.172± 0.00 0.191± 0.00
Model B 0.742± 0.01 0.718± 0.01 0.730± 0.01 0.715± 0.01 0.094± 0.00 0.142± 0.00 0.171± 0.00 0.190± 0.00
MultiTimeSurv 0.742± 0.00 0.729± 0.03 0.735± 0.00 0.726± 0.00 0.088± 0.01 0.112± 0.00 0.152± 0.00 0.180± 0.00

t = 5

CoxPH† 0.387± 0.09 0.420± 0.01 0.423± 0.02 0.396± 0.02 0.068± 0.01 0.092± 0.00 0.119± 0.00 0.139± 0.01
CoxCC† 0.359± 0.01 0.438± 0.04 0.451± 0.06 0.441± 0.04 0.069± 0.01 0.094± 0.00 0.120± 0.00 0.140± 0.00
DeepSurv† 0.362± 0.08 0.425± 0.05 0.437± 0.03 0.438± 0.03 0.068± 0.01 0.092± 0.00 0.118± 0.00 0.137± 0.00
PCHazard† 0.454± 0.04 0.487± 0.05 0.480± 0.04 0.486± 0.04 0.087± 0.01 0.099± 0.01 0.136± 0.01 0.151± 0.01
DeepHit† 0.547± 0.04 0.526± 0.03 0.512± 0.06 0.523± 0.03 0.073± 0.01 0.098± 0.01 0.126± 0.01 0.149± 0.01
N-MTLR† 0.457± 0.01 0.451± 0.06 0.467± 0.04 0.475± 0.04 0.080± 0.00 0.109± 0.01 0.144± 0.01 0.174± 0.01
DynamicDeepHit† 0.605± 0.02 0.617± 0.03 0.614± 0.02 0.611± 0.02 0.143± 0.00 0.174± 0.00 0.192± 0.00 0.195± 0.00
Model A † 0.722± 0.02 0.728± 0.01 0.720± 0.01 0.706± 0.02 0.134± 0.00 0.194± 0.00 0.190± 0.00 0.203± 0.00
Model B 0.725± 0.01 0.729± 0.01 0.721± 0.01 0.709± 0.01 0.133± 0.00 0.193± 0.00 0.189± 0.00 0.202± 0.00
MultiTimeSurv 0.726± 0.06 0.731± 0.01 0.722± 0.03 0.714± 0.04 0.117± 0.00 0.161± 0.01 0.182± 0.01 0.199± 0.01

t = 7

CoxPH† 0.371± 0.08 0.404± 0.05 0.382± 0.03 0.358± 0.02 0.117± 0.01 0.146± 0.01 0.163± 0.01 0.177± 0.01
CoxCC† 0.420± 0.06 0.443± 0.07 0.437± 0.04 0.430± 0.03 0.119± 0.01 0.147± 0.01 0.164± 0.01 0.178± 0.00
DeepSurv† 0.396± 0.06 0.432± 0.06 0.440± 0.04 0.422± 0.03 0.117± 0.01 0.144± 0.00 0.161± 0.00 0.175± 0.00
PCHazard† 0.494± 0.09 0.478± 0.09 0.496± 0.08 0.479± 0.08 0.133± 0.01 0.161± 0.01 0.180± 0.02 0.203± 0.01
DeepHit† 0.563± 0.01 0.510± 0.07 0.520± 0.04 0.533± 0.07 0.124± 0.01 0.154± 0.01 0.175± 0.01 0.191± 0.01
N-MTLR† 0.420± 0.01 0.467± 0.05 0.476± 0.04 0.452± 0.03 0.140± 0.01 0.178± 0.02 0.206± 0.02 0.231± 0.02
DynamicDeepHit† 0.605± 0.02 0.617± 0.03 0.614± 0.02 0.611± 0.02 0.185± 0.00 0.202± 0.00 0.202± 0.00 0.212± 0.00
Model A† 0.694± 0.03 0.696± 0.02 0.695± 0.01 0.688± 0.01 0.165± 0.00 0.200± 0.00 0.208± 0.00 0.211± 0.00
Model B 0.692± 0.02 0.698± 0.01 0.696± 0.01 0.690± 0.01 0.164± 0.00 0.199± 0.00 0.206± 0.00 0.209± 0.00
MultiTimeSurv 0.725± 0.01 0.715± 0.02 0.702± 0.03 0.695± 0.03 0.150± 0.00 0.168± 0.00 0.186± 0.00 0.193± 0.01

† Trained only with tabular data.
Model A: baseline with an embedding model.

Model B: baseline with an embedding model and ResNet50v2 as image encoder.

Across prediction times, MultiTimeSurv consistently achieves the highest C-index values compared
to all baselines, showing stronger discriminative ability. Traditional models such as CoxTime and
DeepSurv tend to underperform, particularly at longer horizons. For Brier scores, simple tabular-
only methods yield the lowest values at very short horizons (reflecting good short-term calibration),
but MultiTimeSurv remains competitive and achieves better overall balance between discrimination
and calibration. Among the baselines, Model B and Model C perform competitively, but the in-
clusion of multimodal features in MultiTimeSurv further improves performance, highlighting the
benefit of joint representation learning.
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4.2 RESULTS ON SYMILE-MIMIC

The SYMILE-MIMIC dataset combines structured EHR data with longitudinal survival outcomes.
Results in Table 2 demonstrate that MultiTimeSurv achieves consistently higher concordance indices
compared to classical baselines such as CoxPH and CoxCC, as well as neural methods including
DeepHit and MTLR. In particular, gains are most pronounced at longer horizons (∆t = 5, 7), where
standard models tend to degrade.

Table 2: Comparison of MultiTimeSurv with various methods on SYMILE-MIMIC across predic-
tion times t and horizons ∆t. Left: C-index (higher is better). Right: Brier score (lower is better).
Values are mean ± std.

C-index Brier Score
t Algorithms ∆t = 1 ∆t = 3 ∆t = 5 ∆t = 7 ∆t = 1 ∆t = 3 ∆t = 5 ∆t = 7

t = 1

CoxPH† 0.150± 0.08 0.205± 0.06 0.217± 0.04 0.234± 0.03 0.003± 0.00 0.013± 0.00 0.024± 0.00 0.036± 0.00
CoxCC† 0.381± 0.20 0.407± 0.15 0.401± 0.13 0.416± 0.13 0.003± 0.00 0.013± 0.00 0.025± 0.00 0.038± 0.00
PCHazard† 0.471± 0.08 0.482± 0.13 0.475± 0.05 0.476± 0.03 0.343± 0.15 0.584± 0.07 0.695± 0.04 0.740± 0.03
PMF† 0.502± 0.08 0.479± 0.10 0.492± 0.07 0.484± 0.07 0.011± 0.00 0.025± 0.00 0.040± 0.01 0.060± 0.01
DeepHit† 0.642± 0.10 0.602± 0.04 0.579± 0.04 0.573± 0.03 0.003± 0.00 0.013± 0.00 0.025± 0.00 0.038± 0.00
MTLR† 0.481± 0.11 0.498± 0.07 0.505± 0.09 0.513± 0.09 0.027± 0.05 0.037± 0.05 0.050± 0.05 0.065± 0.05
MultiTimeSurv 0.682± 0.01 0.711± 0.02 0.674± 0.02 0.668± 0.02 0.226± 0.15 0.245± 0.13 0.247± 0.13 0.245± 0.12

t = 3

CoxPH† 0.260± 0.08 0.237± 0.03 0.252± 0.03 0.261± 0.02 0.023± 0.00 0.035± 0.01 0.047± 0.01 0.058± 0.01
CoxCC† 0.409± 0.15 0.415± 0.13 0.435± 0.12 0.449± 0.10 0.024± 0.00 0.037± 0.01 0.050± 0.01 0.063± 0.01
PCHazard† 0.532± 0.10 0.488± 0.05 0.491± 0.05 0.489± 0.02 0.795± 0.03 0.841± 0.01 0.849± 0.01 0.830± 0.01
PMF† 0.474± 0.15 0.501± 0.07 0.480± 0.11 0.510± 0.05 0.039± 0.01 0.055± 0.01 0.077± 0.01 0.103± 0.01
DeepHit† 0.543± 0.10 0.548± 0.08 0.549± 0.07 0.547± 0.07 0.024± 0.00 0.037± 0.01 0.050± 0.01 0.063± 0.01
MTLR† 0.504± 0.10 0.514± 0.11 0.525± 0.10 0.517± 0.08 0.049± 0.05 0.062± 0.05 0.079± 0.05 0.095± 0.06
MultiTimeSurv 0.744± 0.02 0.736± 0.01 0.737± 0.01 0.726± 0.01 0.161± 0.13 0.200± 0.14 0.239± 0.14 0.234± 0.14

t = 5

CoxPH† 0.213± 0.06 0.265± 0.06 0.278± 0.04 0.287± 0.04 0.047± 0.01 0.058± 0.01 0.070± 0.01 0.080± 0.01
CoxCC† 0.460± 0.14 0.464± 0.11 0.474± 0.09 0.472± 0.08 0.050± 0.01 0.063± 0.01 0.076± 0.01 0.088± 0.01
PCHazard† 0.465± 0.08 0.493± 0.08 0.483± 0.04 0.501± 0.04 0.875± 0.01 0.866± 0.01 0.834± 0.01 0.801± 0.02
PMF† 0.565± 0.07 0.478± 0.11 0.516± 0.05 0.514± 0.03 0.072± 0.01 0.097± 0.01 0.126± 0.01 0.149± 0.01
DeepHit† 0.565± 0.11 0.544± 0.06 0.534± 0.05 0.529± 0.05 0.050± 0.01 0.063± 0.01 0.076± 0.01 0.088± 0.01
MTLR† 0.555± 0.11 0.531± 0.07 0.513± 0.05 0.510± 0.05 0.076± 0.05 0.094± 0.06 0.111± 0.06 0.128± 0.07
MultiTimeSurv 0.720± 0.02 0.737± 0.02 0.729± 0.01 0.727± 0.01 0.115± 0.11 0.157± 0.12 0.200± 0.13 0.223± 0.13

t = 7

CoxPH† 0.319± 0.16 0.297± 0.10 0.308± 0.07 0.314± 0.06 0.071± 0.01 0.081± 0.01 0.091± 0.01 0.102± 0.01
CoxCC† 0.480± 0.14 0.488± 0.08 0.474± 0.07 0.469± 0.06 0.077± 0.01 0.089± 0.01 0.101± 0.01 0.114± 0.02
PCHazard† 0.475± 0.13 0.479± 0.09 0.512± 0.08 0.500± 0.06 0.847± 0.02 0.805± 0.02 0.772± 0.02 0.738± 0.02
PMF† 0.544± 0.09 0.560± 0.05 0.526± 0.05 0.515± 0.05 0.124± 0.01 0.154± 0.01 0.175± 0.01 0.193± 0.01
DeepHit† 0.562± 0.11 0.536± 0.08 0.526± 0.06 0.527± 0.06 0.076± 0.01 0.089± 0.01 0.101± 0.01 0.113± 0.01
MTLR† 0.523± 0.12 0.497± 0.06 0.494± 0.06 0.499± 0.05 0.109± 0.06 0.128± 0.07 0.144± 0.07 0.158± 0.07
MultiTimeSurv 0.719± 0.01 0.716± 0.02 0.704± 0.01 0.699± 0.01 0.150± 0.11 0.169± 0.12 0.188± 0.12 0.197± 0.12

† Trained only with tabular data. MultiTimeSurv combines tabular and temporal information with multi-event modeling.

The results on the SYMILE-MIMIC dataset highlight consistent improvements of MultiTimeSurv
over traditional tabular survival methods (CoxPH, CoxCC) and baselines, including PCHazard,
PMF, DeepHit, and MTLR. Across all prediction times t and horizons ∆t, MultiTimeSurv achieves
higher concordance indices, often exceeding 0.70, indicating superior discriminative ability. While
some neural baselines (e.g., DeepHit, PMF) approach competitive performance, their gains are less
stable across horizons, and methods like PCHazard suffer from inflated Brier scores, reflecting poor
calibration despite moderate ranking power. Importantly, MultiTimeSurv maintains balanced per-
formance between discrimination (C-index) and calibration (Brier score), with particularly strong
gains at longer horizons (∆t = 5 and 7). This suggests the model’s ability to leverage both tabular
covariates and temporal structure to capture long-term survival dynamics.

4.3 CASE STUDY ON MDH DATASET

To better understand the behavior of MultiTimeSurv, we present a qualitative analysis of patient-
specific risk trajectories in the MDH test set (Figure 2). For each patient, the model outputs time-
dependent risks for discharge and death, allowing us to assess whether predictions align with ob-
served clinical outcomes.

Patient A. The predicted discharge risk increases as hospitalization progresses, peaking near the
actual discharge date. This aligns with the observed event and suggests that MultiTimeSurv can
capture gradual improvements in health status. Notably, death risk remains high in the early days,
consistent with the severity of the overall cohort.

Patient B. This patient was right-censored (e.g., transferred or lost to follow-up). During the ob-
served period, the model consistently assigned higher discharge risk relative to death, which may
reflect a plausible transfer to a less critical facility.
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Figure 2: Predicted independent risks for discharge (purple) and death (red) over a 50-day horizon.
Stars mark the observed event type and time.
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Patient C. In this case, the model did not assign the highest risk to the observed event. Early
predictions emphasized death risk, which later decreased, while discharge risk increased but without
clear alignment to the actual outcome. The intersection of risk trajectories highlights the model’s
uncertainty and evolving perception of patient status.

Patient D. Predictions for this patient exhibit fluctuations in death risk, potentially reflecting vari-
able clinical stability during hospitalization. These oscillations suggest sensitivity of the model to
dynamic health conditions and reinforce the importance of continuous monitoring for timely inter-
ventions.

5 CONCLUSION

In this paper, we presented MultiTimeSurv, a unified framework for multimodal temporal sur-
vival analysis that integrates clinical, laboratory, and imaging data. Our design combines periodic
and piecewise embeddings for heterogeneous tabular variables, temporal attention for irregular se-
quences, and semantically aligned multimodal fusion via CheXReport. Evaluations on MDH and
SYMILE-MIMIC highlight three key insights: (i) multimodal fusion consistently enhances discrim-
ination and calibration, particularly in settings with irregular sampling; (ii) ablations confirm com-
plementary contributions from each component, with temporal attention improving long-horizon
stability and tabular embeddings strengthening short-term estimation; and (iii) the model general-
izes well to unimodal benchmarks, outperforming classical and deep learning baselines. Limitations
and directions for future research are discussed in Appendix F.
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Håvard Kvamme, Ørnulf Borgan, and Ida Scheel. Time-to-event prediction with neural networks
and cox regression. Journal of machine learning research, 20(129):1–30, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Changhee Lee, William R Zame, Jinsung Yoon, and Mihaela van der Schaar. Deephit: A deep learn-
ing approach to survival analysis with competing risks. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2018.

Changhee Lee, Jinsung Yoon, and Mihaela van der Schaar. Dynamic-deephit: A deep learning
approach for dynamic survival analysis with competing risks based on longitudinal data. In IEEE
Transactions on Biomedical Engineering, volume 67, pp. 122–133, 2019.
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A SURVIVAL ANALYSIS

Survival analysis, or time-to-event analysis, studies the expected duration until one or more events
occur (Kaplan & Meier, 1958). Applications range from time-to-death and cancer recurrence to
mechanical component failure (Bradburn et al., 2003). The primary goals are to estimate the dis-
tribution of survival times, compare groups, and model the relationship between time-to-event and
covariates (Cox, 1972; Bradburn et al., 2003).

A.1 KEY FUNCTIONS

Survival data are typically described by the survival function S(t) and the hazard function
λ(t) (Clark et al., 2003). The survival function represents the probability of surviving beyond time
t:

S(t) = P (T > t), (21)
where T is the random variable denoting time-to-event. It is non-increasing, with S(0) = 1 and
limt→∞ S(t) = 0 (Wang et al., 2019).

The hazard function, λ(t), captures the instantaneous event rate at time t, conditional on survival up
to t:

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
. (22)

It is a rate rather than a probability, useful for identifying high- or low-risk periods (Clark et al.,
2003; Wang et al., 2019).

A.2 CENSORING

A key challenge in survival analysis is censoring, which arises when the event time is not fully ob-
served (Kleinbaum et al., 2012). Common cases include patients not experiencing the event during
follow-up, loss to follow-up, or occurrence of a competing event (Clark et al., 2003). Improperly
handling censored data can bias estimates and distort conclusions (Lee et al., 2019). Moreover,
high censoring reduces effective sample size, widening confidence intervals and lowering preci-
sion (Klein, 2003).

A.3 SURVIVAL MODELS

The Kaplan–Meier estimator and the Cox proportional hazards (CoxPH) model are the most widely
used survival models (Wang et al., 2019). The Kaplan–Meier estimator provides a non-parametric
estimate of S(t):

Ŝ(t) =
∏
ti≤t

(
1− di

ni

)
, (23)

where di is the number of events at ti and ni the number at risk just prior to ti. While robust to
censoring, it does not incorporate covariates or heterogeneity among subjects (Klein, 2003; Clark
et al., 2003).

The CoxPH model, by contrast, estimates the hazard function conditioned on covariates X =
(X1, . . . , Xp) (Cox, 1972):

λ(t | X) = λ0(t) exp(β1X1 + · · ·+ βpXp), (24)

where λ0(t) is the baseline hazard and β are regression coefficients (Bradburn et al., 2003).
The proportional hazards assumption—that hazard ratios remain constant over time—is central to
CoxPH (Wang et al., 2019). Violations of this assumption may lead to biased or misleading re-
sults (Lee et al., 2019).

B LOSS FUNCTION DETAILS

For completeness, we provide the explicit formulations of the loss terms used to train Multi-
TimeSurv.
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B.1 SURVIVAL EVENT LOSS L1

We adapt binary cross-entropy to capture the probability of observed survival events. For patient i,
Ii is an indicator of event occurrence and mi,k encodes the event type k:

L1 =
1

N

N∑
i=1

[
Ii log2

( K∑
k=1

mi,koi,k

)
+ (1− Ii) log2

( K∑
k=1

mi,koi,k

)]
. (25)

B.2 TEMPORAL CONSISTENCY LOSS L2

L2 enforces temporal smoothness using a masked mean squared error, excluding missing variables
(represented as xi,t = −∞) (Lee et al., 2019):

L2 =
1

N

N∑
i=1

T∑
t=2

mi,t(1−mi,t)(yi,t − xi,t)
2. (26)

B.3 CHEXREPORT REGULARIZATION LOSS L3

To optimize multimodal feature extraction, we combine cross-entropy with double stochastic atten-
tion regularization (Xu et al., 2015). Given ground-truth sequence y∗1:T and predictions y∗t under
parameters Θ, we minimize:

L3(Θ) = −
T∑

t=1

log2
(
pΘ(y

∗
t |y∗t−1)

)
+

L∑
l=1

1

L

D∑
d=1

M2∑
i=1

(
1−

T∑
c=1

αctdl

)
, (27)

where αctdl are attention weights, D is the number of heads, and L the number of layers. This
regularization enforces more uniform attention distribution across spatial regions of the X-ray image.

C COMPUTATIONAL COMPLEXITY

We now provide an analysis of the computational complexity of MultiTimeSurv. The total cost can
be decomposed into three main parts: image encoding, temporal modeling, and multitask prediction.

Image encoding. The Swin Transformer encoder processes an H × W chest X-ray into HW
patches of dimension dv . Since attention is restricted to local windows, the complexity is linear in
the number of patches:

Ωimage = O(HW · dv). (28)

Temporal modeling. For a sequence of length T with hidden size d, the GRU update cost is
O(Td2), while the temporal attention mechanism adds O(T 2d). As T is typically below 100 in
clinical records, this term remains tractable:

Ωtemporal = O(T 2 · d). (29)

Multitask prediction. Each of theK risk-specific networks has L dense layers of width d, resulting
in:

Ωmultitask = O(K · L · d2). (30)

Overall. Summing across components, the total time complexity of MultiTimeSurv is:

ΩMultiT imeSurv = O(HW · dv + T 2 · d+K · L · d2). (31)

The memory cost is given by

O(HW + T · |J | · d+Nv · dv), (32)

accounting for image patches, temporal embeddings for |J | variables, andNv visual tokens in cross-
attention.

In practice, these requirements remain tractable for typical clinical settings where T < 100 and
HW is moderate (e.g., downsampled X-rays). Thus, MultiTimeSurv balances expressivity with
efficiency in real-world scenarios.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D MYDIGITALHEALTH DATASET ANALYSIS

Between March 20, 2020, and June 02, 2022, we collected 1,891 hospitalization cases (1,815 unique
patients) from Hospital de Clı́nicas de Porto Alegre (HCPA), Brazil. All patients were treated by
the Brazilian public health system (SUS) and had a positive RT-qPCR test for SARS-CoV-2 at
admission. Of these, 1,266 were admitted to the ICU. The dataset contains 36.57% deaths and
13.27% censored cases (patients transferred or who abandoned treatment).

Most cases originated from the state of Rio Grande do Sul (1,884 cases), with few from other states
(SC, SP, RJ, RO, AM). The majority (1,193) were from Porto Alegre, reflecting the hospital’s role
as a regional reference center (Figure 3).

10 1 100 101 102 103

Quantity (log scale)

Figure 3: Patient stratification by city of origin in Rio Grande do Sul.

Table 3 summarizes sociodemographic information. The mean age was 59.15 years (IQR
48.0–71.0), with most cases in the 60–69 age group (25.54%). Male patients represented 51.51% of
the cohort, with slightly higher mortality compared to females (28.34% vs. 27.58%). The majority
self-identified as White (82.21%). Mortality was higher among Asian patients (45.46%) and de-
creased with higher educational attainment. Admission triage showed most patients were classified
as very urgent (46.06%), with the highest mortality in emergency cases (45.00%).

Laboratory tests were available for 776 patients, yielding 15,289 collection records. Frequently
collected tests included electrolytes (potassium, sodium), renal function markers (creatinine, urea,
CKD-EPI, MDRD), and complete blood count parameters (Table 4).

In addition, 1,066 chest X-ray images were collected from 677 patients. Two detectors were used
(DRX-1, 202 images; DRXPLUS3543C, 561 images), while 303 lacked metadata. Most exams
were acquired in AP view (987 images), followed by PA (66) and lateral (13).

Finally, patients were temporally aligned by admission date. The time-to-event ranged from 0 to
209 days (IQR 5.0–23.0). Few samples had time-to-event greater than 50 days (Figure 4).

D.1 SURVIVAL ANALYSIS METRICS

In survival analysis, risk prediction supports personalized treatment decisions (Pencina &
D’Agostino, 2015). Model evaluation commonly relies on the Concordance index (C-index), which

14
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Table 3: Patient characteristics stratified by outcome.

General Discharged Death Censored
Age, in years
Min 18 18 21 20
Max 102 95 102 94
Mean 59.15 56.22 65.00 59.94
Median 61 57 67 61
Standard deviation 15.94 15.65 15.12 15.45
Interquartile range 48.0 - 71.0 44.0 - 67.0 57.0 - 75.0 50.0 - 70.0
Age groups, in years
18 to 29 74 (3.91%) 50 (4.46%) 15 (2.84%) 9 (3.72%)
30 to 39 181 (9.57%) 138 (12.32%) 27 (5.10%) 16 (6.61%)
40 to 49 261 (13.80%) 194 (17.32%) 35 (6.62%) 32 (13.22%)
50 to 59 373 (19.73%) 232 (20.71%) 85 (16.07%) 56 (23.14%)
60 to 69 483 (25.54%) 275 (24.55%) 141 (26.65%) 67 (27.69%)
70 to 79 330 (17.45%) 154 (13.75%) 137 (25.90%) 39 (16.12%)
80 ¡ 189 (9.99%) 77 (6.88%) 89 (16.82%) 23 (9.50%)
General 1 891 1 120 (59.23%) 529 (27.97%) 242 (12.80%)
Sex
Female 917 (48.49%) 546 (48.75%) 253 (47.83%) 118 (48.76%)
Male 974 (51.51%) 574 (51.25%) 276 (52.17%) 124 (51.24%)
Self-reported race
Asian 11 (0.58%) 4 (0.36%) 5 (0.95%) 2 (0.83%)
White 1 548 (82.21%) 910 (81.61%) 432 (81.82%) 206 (85.83%)
Brown 59 (3.13%) 38 (3.41%) 15 (2.84%) 6 (2.50%)
Black 265 (14.07%) 163 (14.62%) 76 (14.39%) 26 (10.83%)
Scholarity
Illiterate 61 (3.23%) 24 (2.14%) 24 (4.54%) 13 (5.37%)
Elementary School 580 (30.67%) 331 (29.55%) 186 (35.16%) 63 (26.03%)
Middle School 407 (21.52%) 236 (21.07%) 115 (21.74%) 56 (23.14%)
High School 497 (26.28%) 341 (30.45%) 101 (19.09%) 55 (22.73%)
College / University 117 (6.19%) 75 (6.70%) 29 (5.48%) 13 (5.37%)
Without information 229 (12.11%) 113 (10.09%) 74 (13.99%) 42 (17.36%)
Condition at admission
Emergency 20 (1.06%) 10 (0.89%) 9 (1.70%) 1 (0.41%)
Very urgent 871 (46.06%) 589 (52.59%) 182 (34.40%) 100 (41.32%)
Urgent 124 (6.56%) 96 (8.57%) 20 (3.78%) 8 (3.31%)
Less urgent 7 (0.37%) 6 (0.54%) 0 (0.00%) 1 (0.41%)
Not classified 869 (45.95%) 419 (37.41%) 318 (60.11%) 132 (54.55%)
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Table 4: Percentage of patients exams results available in the HCPA sample.
Exam % Exam % Exam %
Potassium 25.51 Sodium 25.84 Serum creatinine 30.37
Urea 30.46 CKD-EPI 30.52 MDRD 30.54
Magnesium 57.96 Leukocytes 68.98 Monocytes % 68.98
Absolute monocytes 68.98 Absolute segmented neutrophils 68.98 Segmented neutrophils % 68.98
Hematocrit 68.98 Hemoglobin 68.98 Absolute lymphocytes 68.98
Lymphocytes % 68.98 Absolute eosinophils 68.99 Absolute basophils 68.99
Basophils % 68.99 Eosinophils % 68.99 MCV Failace 68.99
MCH 68.99 MCHC 68.99 Erythrocytes 68.99
RDW 69.00 Erythroblasts 69.02 C-reactive protein result 72.08
H obs1 blood count 80.70 APTT control 81.39 APTT seconds 81.39
Blood count observation neutrophil bands 83.12 Calcium VR 88.42 Corrected calcium 88.44
Absolute band neutrophils 88.59 Band neutrophils % 88.59 Absolute myelocytes 89.52
Myelocytes % 89.52 H obs2 blood count 89.68 PT control 91.75
PT INR 91.75 PT seconds 91.75 PT activity 91.75
H D-dimers 93.03 Serum chloride 93.09 Direct bilirubin 93.37
Indirect bili result 93.37 Total bilirubin 93.39 CK 93.43
Metamyelocytes % 93.81 Absolute metamyelocytes 93.81 GPT 94.38
GOT/AST result 94.42 Plasma lactate 94.72 H obs3 blood count 95.08
Troponin-T 95.70 LDH VR 96.08 STA compact fibrinogen 97.32
H obs4 blood count 97.90 Albumin 98.16 Observation 98.26
Estimated average glucose 98.79 A1C 98.79 Plasma cells % 98.86
Absolute plasma cells 98.86 Ferri result 99.18 H obs5 blood count 99.29
Absolute promyelocytes 99.30 Promyelocytes % 99.30 Minor/major indicator 99.37
Triglycerides 99.44 Sample creatinine 99.48 Absolute reticulocytes 99.57
Reticulocytes 99.57 Urine sample sodium 99.62 H obs6 blood count 99.67
Biochemical observations 99.67 E170 signal 99.69 Indicator seconds 99.74
Obs 99.76 Sample urea 99.84 CKD-EPI alpha 99.86
Urine sample potassium 99.88 C3 result 99.89 C4 result 99.89
Rheumatoid factor result 99.91 Result 99.93 CD3 value 99.95
H IF CD45/UL 99.95 H CD8 % 99.95 H CD4 % 99.95
CD4/CD8 ratio 99.95 CD4 value 99.95 CD8 value 99.95
H CD3 % 99.95 CSF lactate 99.95 Urine sample chloride 99.95
IgG result 99.95 Mean fluorescence index (MFI) 99.97 Thrombin time numeric 99.97
H obs7 blood count 99.97 IgM result 99.97 CSF ADA support 99.97
Urine volume 99.98 CSF LDH 99.98 Iron 99.99
24h creatinine 99.99 Urine alpha calcium 99.99 Magnesium result 99.99
24h calcium 99.99 ADA support 99.99 Urine alpha creatinine 99.99
CEA result 99.99 Ascites albumin 99.99 Absolute blasts 99.99
Blasts % 99.99 Urine sample calcium 99.99 Urinary urea 99.99
APTT obs 99.99 Activity indicator 99.99 INR indicator 99.99
Total ascites bili 1 99.99 CD4 observation 99.99 Total potassium volume 99.99
Urine alpha sodium 99.99 Serous fluid ADA 99.99 Thrombin time signal 99.99
Biochemical results outside measurement
range

99.99 Urine alpha urea 99.99 Urine alpha potassium 99.99

24h urine sodium 99.99 Calcitonin result 100.00 Antithrombin result 100.00
FO urea 100.00
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Figure 4: Time-to-event distribution in the dataset.
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measures the proportion of correctly ordered patient pairs with respect to observed event times (Park
et al., 2021). Values range from 0.5 (random ordering) to 1.0 (perfect discrimination). Formally, the
C-index is defined as

C-index =

∑
i,j I(hi > hj) I(ti < tj)φi∑

i,j I(ti < tj)
, (33)

where hi and hj denote predicted risk scores, ti and tj the observed survival times, I(·) an indicator
function, and φi indicates whether the event was observed (1) or censored (0).

Beyond discrimination, overall predictive accuracy can be assessed using the Brier score (Park et al.,
2021), which measures the mean squared error between predicted survival probabilities and observed
outcomes:

Brier score =
1

N

N∑
i=1

(pi − oi)
2, (34)

where N is the number of observations, pi the predicted event probability, and oi ∈ {0, 1} the
observed outcome. Lower values indicate better calibration, with 0 representing perfect prediction.

D.2 HYPERPARAMETER SEARCH SPACE

Hyperparameters for the MultiTimeSurv training were optimized using Random Search. The ranges
explored are summarized in Table 5.

Table 5: Search space for MultiTimeSurv network hyperparameters.
Hyperparameter Value Space
Batch size 32
Dense layers activation {ReLU, ELU, tanh}
RNN activation {ReLU, ELU, tanh}
Dense output activation {ReLU, ELU, tanh}
Dense dropout {0.2, 0.4, 0.6}
RNN dropout {0.2, 0.4, 0.6}
RNN cell {GRU, LSTM}
RNN hidden size {25, 50, 100, 150, 200}
Dense hidden size {25, 50, 100, 150, 200}
Dense number of layers {1, 2, 3}
RNN dense number of layers {1, 2, 3}
Attention number of layers {2, 4, 6, 8, 10}
Learning rate {1e-3, 1e-4, 1e-5}
Embeddings dropout {0.2, 0.4, 0.6}
Embeddings size {8, 16, 32, 64}

For the CheXReport network, we performed an architecture evaluation using the MIMIC-CXR
dataset. We compared Swin-T, Swin-S, and Swin-B encoders pre-trained on ImageNet. The number
of encoder layers was fixed to Nd = 2, and the visual embedding dimension was set to 256. Mul-
tilingual BERT embeddings were frozen for the first 10 epochs to allow the image encoder to adapt
to the medical domain. During inference, report generation used a beam size of 5, stopping at the
<eos> token or when reaching the maximum token length.

We also evaluated traditional feature extraction pipelines for image captioning. Specifically, we
compared ResNet50-v2 and ResNet101-v2 encoders combined with two decoders: (i) fusion of
visual features with BERT embeddings, and (ii) the CheXReport decoder. These models were pre-
trained for 100 epochs with Adam (learning rate 1e−4, reduced by 25% after 10 epochs without
BLEU-4 improvement). Batch size was fixed to 64. All experiments were implemented in Python
using PyTorch and OpenCV, and executed on a system with a 24GB Quadro RTX 6000 GPU, Intel
Xeon Silver 4216 CPU @ 2.10GHz, and 64GB RAM.
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D.3 BASELINES

We benchmarked MultiTimeSurv against established survival analysis architectures: CoxTime,
CoxCC, DeepSurv, PCHazard, DeepHit, and N-MTLR.

• CoxTime extends Cox proportional hazards by incorporating neural networks to capture
non-linear effects over time (Kvamme et al., 2019).

• CoxCC combines case-control sampling with neural networks for improved efficiency and
accuracy (Kvamme et al., 2019).

• DeepSurv is a deep learning adaptation of the Cox model designed for time-to-event pre-
diction (Katzman et al., 2018).

• PCHazard partitions time into intervals and estimates hazards piecewise via neural net-
works, allowing temporal variation in risk (Kvamme et al., 2019).

• DeepHit directly models the time-to-event distribution as a multi-class classification prob-
lem (Lee et al., 2018).

• N-MTLR employs neural multi-task logistic regression to estimate the survival function,
capturing temporal dependence and covariate interactions (Fotso, 2018).

D.4 PRE-PROCESSING

Data used in survival analysis is heterogeneous across hospital systems. Clinical variables are often
stored in Clinical Information Systems (CIS), images in PACS, and biomarkers in Laboratory In-
formation Systems (LIS). Differences in data formats, collection protocols, and measurement units
necessitate a dedicated pre-processing pipeline.

For each patient i, we define a dataset Di = {(Xi, ρi, δi)}Ni=1, where N is the number of pa-
tients, Xi = (Ci,Mi, Ii) is the feature tuple at time t ∈ τ = {1, . . . , T}, ρi is the survival
time, and δi is the event indicator. The covariate set Ci = {ci,1, . . . , ci,j} includes categorical
and continuous variables. To represent missing values, we assign xi,j = −∞ and provide a mask
M = {mi,1, . . . ,mi,j} defined as

mi,j =

{
1, if xi,j = −∞,

0, otherwise.
(35)

The event indicator is defined as

δ =

{
k, if patient i experienced cause k ∈ K = {1, . . . ,K},
0, if censored.

(36)

Continuous covariates are standardized to zero mean and unit variance:

J(cont),z =
cz − uz
σz

, (37)

where uz and σz are the mean and standard deviation of variable z.

Image Pre-processing. Each chest X-ray image ι with height h and width w is resized to ω × ω.
Padding of size γ = max(h,w)−min(h,w) is applied along the smaller axis:

(h′, w′) =


(h+ γ,w), if h < w,

(h,w + γ), if h > w,

(h,w), otherwise.
(38)

To mitigate contrast variability, we apply Contrast Limited Adaptive Histogram Equalization
(CLAHE). An image is partitioned into blocks B of size u× v. For each block Ba,b, the histogram
Ha,b(z) of pixel intensities z is clipped with threshold

ψ = α
u× v

L
, (39)
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where α is the clipping factor and L is the number of intensity levels. The clipped histogram is

H ′
a,b(z) = min(Ha,b(z), ψ), (40)

and redistributed as

H ′′
a,b(z) =

H ′
a,b(z) +

∑
z(Ha,b(z)− ψ)

L
. (41)

The transformation function is

Fa,b(z) =
L− 1

uv

z∑
l=0

H ′′
a,b(l), (42)

applied to each pixel p as p′ = Fa,b(p). For pixels at block edges, bilinear interpolation ensures
smooth transitions.

E RESULTS ON PBC2

PBC2 provides a unimodal benchmark with longitudinal tabular covariates. As shown in Table 6,
MultiTimeSurv achieves the best performance despite not leveraging imaging, with C-index im-
provements of +0.100 over CoxPH and +0.03 over Dynamic-DeepHit. This demonstrates that
the inductive biases for irregular sampling and temporal embeddings generalize beyond multimodal
contexts.

Table 6: Comparison of algorithms at different prediction times t and horizons ∆t for respiratory
failure. Values are mean ± std.

t Algorithms ∆t = 1 ∆t = 3 ∆t = 5 ∆t = 10

t = 30

CoxPH 0.840±0.09† 0.837±0.08† 0.837±0.08† 0.837±0.08†
RSF 0.931±0.02* 0.931±0.02* 0.929±0.01* 0.927±0.01*
JM 0.896±0.04* 0.897±0.04* 0.897±0.04* 0.897±0.04*
JM-LC 0.897±0.04* 0.897±0.04* 0.897±0.04* 0.897±0.04*
DynamicDeepHit 0.948±0.01 0.939±0.01 0.938±0.01 0.937±0.01
MultiTimeSurv 0.951 ± 0.01 0.943 ± 0.00 0.944 ± 0.01 0.941 ± 0.02

t = 40

CoxPH 0.887±0.09* 0.887±0.09* 0.887±0.09* 0.887±0.09*
RSF 0.888±0.10* 0.887±0.10* 0.887±0.10* 0.887±0.10*
JM 0.911±0.04† 0.913±0.04† 0.913±0.04† 0.913±0.04†
JM-LC 0.911±0.04† 0.913±0.04† 0.913±0.04† 0.913±0.04†
DynamicDeepHit 0.956±0.01 0.956±0.01 0.956±0.01 0.958±0.01
MultiTimeSurv 0.969 ± 0.01 0.967 ± 0.00 0.966 ± 0.01 0.961 ± 0.02

t = 50

CoxPH 0.851±0.11* 0.851±0.11* 0.851±0.11* 0.851±0.11*
RSF 0.896±0.10* 0.896±0.10* 0.896±0.10* 0.896±0.10*
JM 0.919±0.04* 0.919±0.04* 0.919±0.04* 0.919±0.04*
JM-LC 0.919±0.04* 0.919±0.04* 0.919±0.04* 0.919±0.04*
DynamicDeepHit 0.962±0.01 0.962±0.01 0.962±0.01 0.961±0.01
MultiTimeSurv 0.978 ± 0.01 0.975 ± 0.00 0.974 ± 0.01 0.973 ± 0.02

F LIMITATIONS AND FUTURE DIRECTIONS

The MultiTimeSurv model presents several limitations. First, the dataset originates from a single in-
stitution, which constrains generalizability. Its demographic and regional homogeneity may restrict
applicability in settings with different populations or healthcare practices. Second, model perfor-
mance is dependent on the quality and completeness of EHRs and imaging data. Despite employing
mechanisms for handling missing values, inconsistencies, and sparsity, uncertainty and potential
bias are introduced. Third, the reliance on chest X-ray images and structured clinical data only
partially reflects the multifactorial nature of COVID-19. The absence of richer modalities (e.g., CT
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scans, longitudinal patient histories, genomic data) limits predictive scope. Moreover, interpretabil-
ity remains challenging: although explainability components were incorporated, the underlying deep
models retain black-box characteristics, which may hinder clinician trust and adoption.

The evaluation was retrospective, highlighting the need for prospective validation in diverse settings
to confirm its utility in real-time decision-making. The clinical impact of MultiTimeSurv on out-
comes, resource allocation, and patient management also remains unassessed. In addition, while
robust for short- and medium-term horizons, long-term prediction capabilities were not systemati-
cally evaluated. Given the dynamic evolution of patient health trajectories and treatment protocols,
continual model updates will be required to sustain accuracy.

Future work should address these issues by incorporating multi-institutional and multi-regional
datasets, integrating additional modalities (e.g., CT, genomics), and conducting prospective stud-
ies to assess real-world effectiveness. Enhancing transparency and interpretability will be essential
for clinical integration. Furthermore, adaptive and continual learning strategies (e.g., transfer learn-
ing, online learning) should be explored to ensure resilience to evolving data distributions. Finally,
ethical and privacy considerations remain critical: mitigating biases, protecting patient data, and
establishing governance frameworks for responsible AI deployment will be necessary for broader
acceptance and trust.
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