
MaskLLM: Learnable Semi-Structured Sparsity
for Large Language Models

Gongfan Fang♣,♢ † Hongxu Yin♢ Saurav Muralidharan♢ Greg Heinrich♢

Jeff Pool♢ Jan Kautz♢ Pavlo Molchanov♢‡ Xinchao Wang♣‡

NVIDIA♢ National University of Singapore♣
gongfan@u.nus.edu, xinchao@nus.edu.sg

{dannyy,sauravm,gheinrich,jpool,jkautz,pmolchanov}@nvidia.com

Abstract

Large Language Models (LLMs) are distinguished by their massive parameter
counts, which typically result in significant redundancy. This work introduces
MaskLLM, a learnable pruning method that establishes Semi-structured (or “N:M”)
Sparsity in LLMs, aimed at reducing computational overhead during inference.
Instead of developing a new importance criterion, MaskLLM explicitly models
N:M patterns as a learnable distribution through Gumbel Softmax sampling. This
approach facilitates end-to-end training on large-scale datasets and offers two
notable advantages: 1) High-quality Masks - our method effectively scales to
large datasets and learns accurate masks; 2) Transferability - the probabilistic
modeling of mask distribution enables the transfer learning of sparsity across
domains or tasks. We assessed MaskLLM using 2:4 sparsity on various LLMs,
including LLaMA-2, Nemotron-4, and GPT-3, with sizes ranging from 843M to
15B parameters, and our empirical results show substantial improvements over
state-of-the-art methods. For instance, leading approaches achieve a perplexity
(PPL) of 10 or greater on Wikitext compared to the dense model’s 5.12 PPL, but
MaskLLM achieves a significantly lower 6.72 PPL solely by learning the masks
with frozen weights. Furthermore, MaskLLM’s learnable nature allows customized
masks for lossless application of 2:4 sparsity to downstream tasks or domains.
Code is available at https://github.com/NVlabs/MaskLLM.

1 Introduction

Frozen LLM

Weight

Weight

Weight

Weight1 1 0 0 0 1 0 1
1 0 1 0 0 1 0 1

Task 2 (HTML)

Frozen weights Trainable

Large Language Model

0 1 0 1 1 1 0 0
1 0 1 0 0 0 1 1

1 1 0 0 1 0 1 0
1 0 1 0 0 0 1 1

General Mask Transfer

Transfer
General LLM

 LLM for HTML (Lossless)

LLM for French (Lossless)

1.4x Faster, 73% Memory

Method Learnable Transfer Downstream Task

Oneshot

MaskLLM

No

Yes

N/A

Yes

Lossy (Avg PPL=18.80)

Lossless (Avg PPL=7.39)

7B Wiki PPL

～10

6.72

Learnable Masks
Task 1 (French)

Figure 1: Learnable N:M sparsity for
Large Language Models.

Large Language Models (LLMs) have demonstrated re-
markable effectiveness across a diverse range of tasks [19,
6, 48, 13]. However, the generality and robustness of
LLMs are largely attributed to their vast scale, with pa-
rameter counts ranging from one billion to several hun-
dred billion [39, 45, 5]. This substantial model size, in
turn, makes it challenging and resource-intensive to de-
ploy LLMs in real-world applications. One effective and
practical approach to address this issue is semi-structured
pruning [29, 32, 12, 38], which introduces N:M sparsity
into LLMs to improve both memory and computational
efficiency. The N:M pattern, with N non-zero values

†The work was done at NVIDIA
‡Corresponding Authors: Pavlo Molchanov, Xinchao Wang

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/NVlabs/MaskLLM

among M consecutive parameters, is typically hardware-friendly to accelerators like GPUs and has
thus garnered considerable attention [12, 38, 32].

Despite the simplicity of its core idea, semi-structured pruning still presents considerable challenges
within the realm of LLMs. Sparsity aims to identify a subset of parameters that attain a comparable
quality to the dense model. Nevertheless, the extensive parameter scale of large language models
usually leads to a vast search space. In a fully sparsified LLaMA2-7B model with 2:4 sparsity, for
instance, there are 1.6 billion 2:4 masks to be chosen for dense layers. This makes the combinatorial
problem of finding the optimal mask set exceedingly challenging. In the literature, leading approaches
such as SparseGPT [12] and Wanda [38], utilize a small calibration set and carefully designed
importance criteria to identify redundant parameters. While these techniques have demonstrated
remarkable results on several large language models, two substantial challenges remain: Firstly, the
small calibration set is insufficient to represent the comprehensive knowledge embedded in
LLMs, which are pre-trained on extensive and diverse data domains [39, 7, 31]. As demonstrated in
our experiments, hand-crafted importance criteria are only applicable to a compact subset of data, and
enlarging the calibration set beyond 256 entries does not improve the resulting quality. This limits
the generalizability of pruned LLMs in different domains. Secondly, using handcrafted criteria
as a proxy for the true discrepancy inevitably results in errors. A considerable gap remains
between the real discrepancy induced by pruning and existing importance indicators, such as gradient
information [30], weight magnitude [15], and the Hessian Matrix [23, 12].

To tackle the outlined challenges, we propose MaskLLM, a learnable method that facilitates end-to-
end training of LLM sparsity on large-scale datasets. In the context of N:M sparsity, pruning an LLM
involves selecting masks from a discrete and finite set. However, the non-differentiability of mask
selection and combination hinders the direct use of backpropagation for mask learning. To address
this, our work frames the mask selection problem from a probabilistic perspective, associating each
candidate mask with a probability and modeling the mask selection as a stochastic sampling process.
We incorporate the Gumbel Softmax [21] for differentiable sampling, which re-parameterizes the
randomness of sampling into an independent random variable. This makes the probabilities of
each mask candidate optimizable with gradient descent. During training, MaskLLM aims to learn
appropriate mask distributions, from which the sampled masks can preserve the original quality of
dense LLMs. The differentiable mask offers two advantages in addressing the challenges mentioned
above: (1) it effectively scales to large-scale datasets, thereby preserving the rich knowledge in LLMs,
and (2) the end-to-end training explicitly optimizes the language modeling loss of LLMs, which
exactly measures the discrepancy induced by pruning. Furthermore, inspired by the power of transfer
learning, we introduce prior masks, a simple strategy to fully leverage pre-computed masks and
enable fast transfer learning of sparsity across domains and tasks as illustrated in Figure 1

To evaluate the proposed method, we conduct experiments on several LLMs including LLaMA-2 7B,
LLaMA-2 13B [39], Nemotron-4 15B [31], and two in-house LLMs, GPT-3 843M and GPT-3 2B
pre-trained using Megatron framework [36]. Our method can learn high-quality masks for pruning
through end-to-end training on large-scale datasets. For example, compared to SparseGPT which
archives a perplexity (PPL) of 10.42 on LLaMA-2 7B, our method improves the PPL to 6.72, without
any update to the LLM parameters. Besides, our method facilitates the learning of domain-specific
masks, which can even achieve lossless compression of LLMs on some downstream tasks or domains.

The principal contribution of this work lies in a learnable method for semi-structured pruning of
LLMs. MaskLLM is designed to fully harness large-scale datasets to learn accurate masks, applicable
to both general-purpose and domain-specific pruning. Additionally, the framework facilitates the
transfer learning of sparsity patterns across different tasks, enabling efficient training of sparsity.

2 Related Works

Pruning Large Language Models. Network Pruning [15, 30, 17, 18, 41] have been proven an
efficient approach to compress pre-trained language models via the removal of redundant parameters.
According to the granularity of pruning, existing methods can be classified into three categories:
Structured Pruning [26, 43, 24], Unstructured Pruning [17, 15], and Semi-Structured Pruning [12,
38, 29, 32, 33]. Structured pruning physically eliminates substructures like attention heads [26],
embeddings or depth [43] in the model, facilitating acceleration independent of specialized hardware
or software infrastructure [32]. However, structured approaches typically necessitate huge retraining

2

efforts to recover network quality due to coarse removal of parameters [26, 43, 27, 2]. Conversely,
unstructured methods aim to find a sparse model by zeroing out parameters in LLMs, which is
characterized by its flexibility and minimal detrimental effect on LLMs’ accuracy [12, 38, 20, 42, 44].
The acceleration of sparse models is typically impeded by the irregular nature of the resulting sparse
patterns, presenting challenges in achieving computational efficiency. Positioned between structured
and unstructured methods, the semi-structured approach introduces hardware-friendly patterns such as
N:M sparsity, which leaves only N nonzero values in each group of M values and thereby harmonizes
the acceleration benefits of a structured pattern with the flexibility of fine-grained sparsity [32, 33, 12].
In this study, we focus on N:M semi-structured sparsity within Large Language Models and present a
learnable framework to obtain high-quality masks via end-to-end training.

Learnable Semi-Structured Sparsity. On another hand, a burgeoning interest exists in developing
learnable masks [49, 25, 47], especially in the field of vision models. Markedly contrasted with
traditional one-shot pruning methods that rely on a predetermined metric of importance, learnable
sparsity can fully leverage the rich information in training data, enabling the identification of more
effective sparsity masks. A particularly popular strategy is to directly update the network weight, such
as pushing partial weights to zero with Sparse-Refined Straight-Through Estimator (SR-STE) [3, 17,
25] or permuting parameters to achieve better quality [33]. Other methods learn additional indicators
to reveal the importance of weight, such as differentiable indexing [35], optimizable combination [47],
or decaying [22]. In this work, we make the first attempt to learn N:M masks for frozen LLMs, which
is much more challenging due to the huge parameter amount and problem scale.

3 Method

3.1 N:M Sparsity

We motivate and introduce a learnable framework, MaskLLM, to sparsify Large Language Models
(LLMs) for improved inference efficiency. Sparsifying an LLM with N:M patterns imposes the
constraint of having (no more than) N non-zero values within each consecutive set of M parameters.
This task can be formulated as a mask selection problem with the candidate set of |S| =

(
M
N

)
=

M !
N !(M−N)! candidates, where |S| denotes the size of the candidate set, and

(
M
N

)
represents the

combination number of potential N:M masks. For simplicity, this work primarily focuses on 2:4
sparsity, which can be naturally extended to other patterns such as 1:4 and 4:8. Given a parameter
block comprising four consecutive parameters, denoted as W ∈ R1×4, the goal of sparsification is
to identify the optimal binary mask M∗ ∈ B1×4 of the same size, ensuring that the pruned weight
maintains its behavior on observed data x ∼ p(x). For 2:4 sparsity, the binary mask M must contain
exactly two zeros, resulting in a discrete candidate set S2:4 with |S2:4| =

(
4
2

)
= 6 candidates:

S2:4 = {M ∈ B1×4|
∑

M = 2} = {M̂1,M̂2,M̂3,M̂4,M̂5,M̂6} (1)

= {[1, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 1, 1]}. (2)

For an LLM, there exists a substantial number of parameter blocks, denoted as {Wi}, each requiring
the selection of corresponding masks {Mi}. To maintain satisfactory behavior after pruning, it is
natural to define the following objective for N:M sparsity:

{M∗
i } = argmin

{Mi|Mi∈S2:4}
Ex∼p(x) [LLM (x; {Wi ⊙Mi})] , (3)

where LLM refers to the language modeling loss for pre-training. The operator ⊙ denotes element-
wise multiplication, which masks partial parameters for sparsification. However, finding the optimal
combination of masks M∗ can be extremely challenging in the context of LLMs due to the non-
differentiable nature of mask selection and the huge parameter scale. In the following sections, we
demonstrate that the mask selection can be transformed into a sampling process.

3.2 MaskLLM: Learnable Semi-Structured Sparsity

Consider a single parameter block W ∈ R1×4 consisting of only 4 parameters: directly determining
the exact optimal mask for this block is not feasible, since the behavior of the pruned LLM also

3

Differentiable Mask

Domain Mask #1 for French

Domain Mask #2 for HTML

Bonjour

1.4× Faster, 73% Memory

Frozen Weights

⨀

Input

Backward

Output

Backward
Mask Distribution

Transfer

Lossless Masks for Downstream TasksEnd-to-end Learning of N:M Sparsity

Figure 2: This work introduces learnable semi-structured sparsity for LLMs. MaskLLM models
mask selection as a distribution learning problem, enabling the creation of accurate masks through
end-to-end training on large-scale datasets. The learned and general mask can be further transferred
to downstream tasks or domains, achieving lossless compression.

depends on the pruning of other parameter blocks. Nevertheless, it remains feasible to sample masks
independently for each block and assess the overall model quality after pruning. To facilitate random
sampling of M, we define a categorical distribution with class probability p1, p2, . . . p|S|, which
satisfy

∑
j pj = 1. During the random sampling phase, if a certain mask achieves good quality

during pruning, it’s reasonable to adjust the categorical distribution by increasing the probability of
the sampled mask. With sufficient sampling and updates, this process ends with a distribution where
the mask with high probability is more likely to maintain good quality after pruning. Formally, we
model the combination problem in Equation 3 from the perspective of random sampling:

{p∗(Mi)} = argmin
{p(Mi)}

Ex∼p(x),Mi∼p(Mi) [LLM (x; {Wi ⊙Mi})] , (4)

where p(Mi) refers to the categorical distribution of i-th mask Mi. If it is feasible to get the
gradient w.r.t. the distribution, then the above objective can be optimized with gradient descent
as demonstrated in Figure 2. Nonetheless, drawing samples from a categorical distribution is still
non-differentiable.

Differentiable Sampling of Masks An effective method to model a sampling operation is Gumbel
Max [14], a re-parameterization trick that disentangles the randomness of sampling into a noise
variable. This trick introduces a method to draw samples from the categorical distribution p with an
additional noise variable ϵ. It produces the one-hot index y for sampling:

y = onehot(argmax
i

[log(pi) + gi]), gi = − log(− log ϵi), ϵi ∼ U(0, 1), (5)

where ϵi is a random noise following uniform distribution, and the gi = − log(− log ϵi) is known
as the Gumbel noise. With the Gumbel Max trick, the randomness of sampling is parameterized to
an independent variable gi. The only issue towards differentiable sampling lies in the argmax and
onehot operation. To address this, we leverage Gumbel Softmax [21] to approximate the index with
Softmax, leading to a soft and differentiable index ỹ = [ỹ1, ỹ2, . . . , ỹ|S|]:

ỹi =
exp((log(pi) + gi)/τ)∑
j exp((log(pj) + gj)/τ)

. (6)

The temperature term τ is a hyper-parameter, controlling the hardness of the sampled index. While
τ → 0, the soft index will be more close to a one-hot vector, resulting in ỹi → yi. With the soft index
ỹ as a row vector and the mask set S as a matrix where each row i refers to the i-th candidate mask
M̂i, it’s easy to craft a differentiable mask through a simple matrix multiplication:

M̃ = ỹ × S =

|S|∑
i=1

ỹi · M̂i. (7)

This operation produces a weighted average of candidate masks according to the soft index. As
shown in Figure 3, we can find all operations, including the sampling and weighted averaging are
differentiable, and the gradient w.r.t. the probability p can be easily computed. This allows using the
differentiable mask M̃ to optimize the sampling problem defined in Equation 4.

4

Mask Set 𝒮!:#	
1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

Logits 𝜋 (Learnable)

𝑔	~𝐺𝑢𝑚𝑏𝑒𝑙(0,1)

Diff. Sampling
(Gumbel Softmax)

Sampled Index 𝑦

Weighted Averaging

Hard Mask ℳ
(For Inference)

Parameters 𝒲

1 0 1 0 ⨀

Soft Mask 'ℳ
(For Training)

~0.95

0.02

0.02

0.01

0.02

0.01

0.91

0.05 0.93 0.05 𝜏 → 0

!ℳ1

!ℳ2

!ℳ3

!ℳ4

!ℳ5

!ℳ6

Figure 3: Drawing a random mask from the learnable distribution with Gumbel Softmax. Each
consecutive M parameters are associated with a learnable distribution for candidate masks. All
illustrated computations, including Gumbel Softmax, and the weighted averaging are differentiable.

Learning Masks for LLMs Equation 7 provides a differentible mask sampled from the underlying
distribution p. The gradient flow can easily reach the probability pi, making it an optimizable variable
in the system. Typically, we do not directly learn the probability and instead, learn the logits πi with
a scaling factor κ, which produces the probability as pi = exp(πi·κ)∑

j exp(πj ·κ) . As will be discussed in
Section 4.3, the scaling factor κ will be used to balance the relative magnitude of logits and Gumbel
noises, which controls the randomness of sampling. During training, all parameter blocks {Wi} are
associated with the corresponding distributions {pπ(Mi)}, and optimal distribution can be learned
in an end-to-end manner. However, our empirical experiments on several large language models
reveal a new issue with the learnable masks: the gradient may vanish due to the pruning operation
that produces zero parameters in the network. This issue will adversely affect downstream transfer
and fine-tuning. To address this, we introduce Sparse Weight Regularization, which maintains an
appropriately large magnitude in the remaining weights, leading to the following learning objective:

min
{pπ(Mi)}

Ex,M̃i∼pπ(Mi)

[
LLM (x; {Wi ⊙ M̃i})

]
− λ

∑
i

∥Wi ⊙ M̃i∥22. (8)

The regularization term weighted by λ encourages a large magnitude after pruning.

Transfer Learning of Sparsity. Transfer learning is one of the most popular paradigms in deep
learning. In this section, we show the feasibility of transfer learning in sparsity, which crafts new
masks by inheriting pre-computed ones. The pre-computed masks can be obtained with oneshot
pruning methods like Magnitude Pruning [15], SparseGPT [12] and Wanda [38], or produced by
another learning process. Note that given a probability [p1, p2, . . . , p|S|], the transformation to the
final mask is straightforward with a simple argmax. However, if it is possible to map a pre-computed
mask back to the class probabilities, then the proposed MaskLLM can begin with a good initialization
for sampling. This can hugely improve learning efficiency and quality. To achieve this, we propose
Mask Prior, a simple technique to initialize a distribution. Given a prior mask denoted as M0, we
compute its similarity to all candidate masks as:

sim(M0,M̂i) = M0M̂⊤
i − 1

|S|
∑
i

(MiM̂⊤) = MiM̂⊤ − (N/2), (9)

which computes the inner product of two masks and re-centers the results with the mean. Note that
for N:M sparsity, the range of M0M̂⊤

i will always be [0, N], the mean value
∑

i(MiM̂⊤) = N/2
is a constant. For candidate masks with high similarity to the prior mask, we increase its probability
at the initialization stage with:

π′
i = πi + σ(π) ∗ sim(M0,M̂i) ∗ α, (10)

where σ(o) is the standard deviation of logits and α is a hyper-parameter that controls the strength of
prior. When α = 0, we learn the differentiable mask without any prior from one-shot methods.

Method Summary. The learning process of MaskLLM is straightforward. We begin with randomly
initialized logits and update it with prior masks as Equation 10 if available. Then we optimize the
logits to solve the objective in Equation 8. The mask Mi with the largest logits will be taken as the
final mask for inference. This process is summarized in Algorithm 1.

5

Algorithm 1 MaskLLM: Learnable Semi-Structured Sparsity for LLMs (2:4)

1: procedure DIFFERENTIABLEMASK(π, S)
2: Obtain the soft index ỹ = exp((πi·κ+gi)/τ)∑

j exp((πj ·κ+gj)/τ)
, gi = − log(− log ϵi), ϵi ∼ U(0, 1).

3: Compute the differentiable mask M̃ = ỹ × S =
∑|S|

i=0 pi · Mi

4: return M̃
5: end procedure
6: S = {M̂1,M̂2, . . . ,M̂|S|} = {[1, 1, 0, 0], [1, 0, 1, 0], . . . [0, 0, 1, 1]}
7: ▷ Parallel for all parameter blocks W:
8: Initialize logits πi ∼ N (0, σ) for the parameter block W
9: Incorporate prior π′

i = πi + σ(π) ∗ sim(M0,M̂i) ∗ α with prior mask M0

10: while Training not terminated do
11: M̃ = DifferentiableMask(π,S)
12: Update logits π with ∇π[LLM (x;W ⊙M̃)− λ∥W ⊙ M̃∥22]
13: end while
14: Get the index k = argmax(π)

15: Obtain the mask M∗ = M̂k for pruning

4 Experiments

4.1 Implementation Details.

We evaluated MaskLLM on three large language model families, ranging in size from 843M to 15B
parameters. This included public models like LLaMA-2 7B and 13B [39], Nemotron-4 15B [31], and
two in-house models, multilingual GPT-3 843M and 2B [36]. For LLaMA-2 and Nemotron-4, we
collected a blended training set following the original papers [36, 31] for training. For the GPT-3
multilingual models, we used the original training set for mask learning. To learn masks, we trained
the Gumbel logits for 2,000 steps without updating the LLM parameters. For evaluation, we follow
SparseGPT [12] to use C4 dataset [34] for one-shot pruning and Wikitext [28] for evaluation. In
addition, we also deploy LM-Eval-Harness [13] for zero-shot evaluation. More details about the
models, datasets, training, and evaluation can be found in the appendix.

4.2 Learning 2:4 Sparsity in LLMs

Finding 1. Learnable Sparsity scales effectively to large-scale datasets and can fully leverage
computational resources to learn precise masks through end-to-end training.

End-to-end training yields accurate masks. In Table 1, we report the perplexity and accuracies
of our method, compared to three 2:4 sparse baselines: Magnitude Pruning [16], SparseGPT [12],
and Wanda [38]. Previous works can produce satisfactory 2:4 masks efficiently but often suffer
from inaccurate estimation of weight importance. The inaccuracy mainly arises from two factors:
(1) Accuracy of importance metric: Due to the difficulty of computing the error caused by pruning,
existing methods use approximated metrics to estimate weight importance, which inevitably results
in errors. (2) Scalability: LLMs are usually pre-trained on large-scale datasets with rich knowledge,
but the calibration sets used in existing methods contain very limited samples. With the learnable
mask, the above challenges can be naturally addressed through end-to-end training on large-scale
datasets, which directly optimizes the language modeling loss. As illustrated in Table 1, MaskLLM
yields superior results compared to existing baselines. For instance, with the LLaMA-2 7B model, the
proposed method learns a mask with a PPL of 6.72, which is better than the PPL of 10.42 obtained
by SparseGPT with weight update. More results such as comparison to other baselines (Table 13)
and visualization of mask difference (Figure 8) can be found in the appendix.

Scaling to large-scale datasets. To further elaborate on the above analysis, we illustrate the
relationship between the number of consumed samples and the Wikitext PPL of pruned LLaMA-
2 7B in Figure 4. For one-shot methods such as SparseGPT, all consumed samples are used to
compute the Hessian for importance estimation. Increasing the calibration set size from 32 to 256
samples improves the results, but expansion beyond 256 samples yields no notable advantages.

6

Method Wikitext PPL HellaS. RACE PIQA WinoG. ARC-E ARC-C OBQA Avg.

LLaMA-2 7B [39] 5.12 57.03 44.11 78.07 69.39 75.38 42.92 33.20 57.16
- Magnitude 54.71 44.60 33.01 68.93 61.56 60.23 31.40 23.60 46.19
- SparseGPT 10.42 43.36 36.84 71.38 63.69 62.84 29.18 22.80 47.16
- Wanda 11.29 41.05 35.02 70.78 62.67 61.99 27.56 22.80 45.98
- MaskLLM 6.72 50.91 40.77 74.92 64.48 69.57 36.00 28.00 52.09

LLaMA-2 13B [39] 4.57 60.15 44.59 79.27 72.45 78.93 47.18 34.60 59.60
- Magnitude 8.32 48.69 38.47 70.24 59.67 61.32 29.69 22.00 47.15
- SparseGPT 8.20 48.62 39.62 74.54 70.00 70.29 36.00 27.20 52.32
- Wanda 8.47 46.96 38.09 74.05 66.69 68.64 34.81 25.00 50.61
- MaskLLM 5.85 55.09 41.24 77.69 67.80 73.15 40.44 30.00 56.74

Nemotron-4 15B [31] 5.78 62.60 47.75 81.34 77.11 77.69 50.77 33.00 61.47
- Magnitude 2.78E+03 26.30 21.91 54.62 50.67 29.29 18.52 15.60 30.98
- SparseGPT 13.38 47.06 40.86 75.73 68.90 66.96 31.83 26.60 51.13
- Wanda 25.05 41.13 34.16 71.71 61.72 58.46 29.78 23.80 45.82
- MaskLLM 7.31 55.92 45.45 76.22 69.14 75.93 43.94 30.60 56.74

GPT3 2B [36] 9.35 47.74 36.94 75.73 61.09 63.22 29.78 27.80 48.90
- Magnitude 6.02E+04 28.52 24.50 57.62 51.93 33.33 21.67 15.40 33.28
- SparseGPT 22.14 34.93 29.28 66.60 54.62 53.07 22.10 16.20 39.54
- Wanda 27.08 34.61 29.76 67.14 53.20 49.79 22.44 16.80 39.11
- MaskLLM 11.42 42.64 33.88 73.34 58.72 57.37 26.02 21.80 44.82

GPT3 843M [36] 12.42 39.24 33.59 70.02 54.30 53.20 21.67 21.40 41.92
- Magnitude 1.15E+04 25.84 21.82 55.66 50.75 28.41 19.20 15.20 30.98
- SparseGPT 38.78 30.26 28.33 63.38 51.62 39.27 18.86 14.80 35.22
- Wanda 51.37 30.44 28.52 61.64 49.96 40.82 18.17 14.80 34.91
- MaskLLM 15.39 34.65 30.91 66.76 51.86 49.07 20.48 20.00 39.10

Table 1: Evaluation of 2:4 Sparsity with frozen weights (SparseGPT does perform the weight update
step). One-shot pruning methods are calibrated with C4 and evaluated on Wikitext-2 following [12].
More results for Llama-3 [1] or other SOTA methods can be found in Table 12 and 13 of the appendix.

102 103 104 105

Consumed Samples (Unique)

5

6

7

8

9

10

11

12

13

W
ik

ite
xt

-2
 P

PL

Dense

32
64 128

256 512 1024 2560

256

512

1280

2560

12800
32000 64000128000

256000512000SparseGPT
Ours

Figure 4: Consumed samples vs. PPL on LLaMA-
2 7B. MaskLLM requires 128 samples for the prior
and outperforms SparseGPT after 1280 samples.

In contrast, our proposed learnable method effec-
tively scales to large datasets. Results in Figure
4 show that increasing the number of samples
within our framework consistently improves
mask quality, with positive results still observ-
able when scaling up to 512k samples. Addi-
tionally, our method is also data-efficient and
thus applicable to low-resource scenarios with
only 1280 samples. With a batch size of 256,
the learnable mask is updated for only 5 steps
and still produces slightly better masks than
SparseGPT. If limited to only one or two steps,
the training-based method fails to be comparable
to one-shot methods, as this limits the random
exploration for finding high-quality masks.

4.3 How to Learn a Good Mask for LLMs

Finding 2. Taking pre-computed masks as prior improves training efficiency and mask quality.

Transfer Learning with Mask Prior. An important feature of the proposed method lies in transfer
learning. We can initialize the Gumbel logits with pre-computed masks, which significantly accelerate
the training. In Table 2, we learn masks using different prior types, including Magnitude prior [15],
SparseGPT prior [12], and Wanda prior [38]. Firstly, even without any prior, the learnable mask still
achieves superior quality compared to the existing baseline methods, demonstrating its capability to
independently discover high-quality masks through end-to-end training. However, learning accurate
masks in only 2,000 steps can be challenging due to the massive parameter scale of LLMs. Using
prior masks pre-computed by one-shot methods can provide substantial benefits. For example, with
the Magnitude prior that can be easily pre-computed according to the weight magnitude, we can
improve the wikitext perplexity of LLaMA-2 7B from 9.12 to 6.77.

7

0 250 500 750 1000 1250 1500 1750 2000
Steps

0.0

0.1

0.2

0.3

0.4

0.5

M
as

k
D

iff
er

en
ce

 (L
1)

Convergence

=1
=1e2
=1e3
=1e5

Softmax

(a) The mask difference between adjacent steps

0 250 500 750 1000 1250 1500 1750 2000
Steps

0.2

0.4

0.6

0.8

1.0

M
ax

 P
ro

ba
bi

lit
ie

s

Convergence

=1
=1e2
=1e3
=1e5

Softmax

(b) The Maximum probability of mask distribution

Figure 5: (a) The L1 distance of sampled masks between adjacent training steps. (b) The maxi-
mum probability of mask distribution, serving as an indicator of convergence. In our method, the
randomness of mask sampling is regulated by the scaling factor κ. A too-small κ introduces huge
randomness, resulting in slow convergence as shown in (b). And an inappropriately large κ will
suppress mask exploration and yield zero mask difference throughout the training process in (a).

Prior Type GPT-3 843M GPT-3 2B LLaMA-2 7B
Prior Mask Learned Mask Prior Mask Learned Mask Prior Mask Learned Mask

Magnitude 1.15E+04 16.07 6.02E+04 12.06 54.71 6.77
SparseGPT 79.84 15.39 24.43 11.59 10.46 6.72
Wanda 51.37 16.39 27.08 12.18 11.29 6.80
No Prior - 18.62 - 14.31 - 9.12

Table 2: The effectiveness of transfer learning with prior masks. We report the Wikitext PPL of both
prior and learned masks. The learned masks use the corresponding prior for initialization and refine
the logits through end-to-end training. All results are obtained with frozen weights.

Finding 3. The randomness of sampling is crucial for mask learning.

Encouraging stochastic exploration on candidate masks. At the early stage of mask learning, the
optimal mask is unknown. The stochastic sampling with Gumbel softmax allows for the exploration
of different candidate masks, which is crucial for effective learning. As mentioned in Section 3.2, the
scaling factor κ controls the randomness of sampling. To illustrate this, we visualize the learning
process in Figures 5a and 5b, showing the mask difference between adjacent steps and the maximum
probability of the learnable distribution, respectively. With a large factor, such as κ=1e5, the Gumbel
softmax will be dominated mainly by the logits rather than the Gumbel noises, which produce similar
masks with high confidence throughout the training process. In contrast, with a small scaling factor,
such as κ=1, the Gumbel noises contribute more to the sampling. As illustrated in Figure 5a, the
mask is continuously changing during training, leading to slow convergence. Therefore, selecting an
appropriate scaling factor is crucial, which should guarantee sufficient randomness and an acceptable
convergence speed. In this work, we use a κ=1e2 and linearly increase it to 5e2 for all experiments.

Finding 4. Maintaining a large magnitude of the remaining weights improves downstream tasks.

Task (2B) w/o Reg. w/ Reg.

Mask-only 11.59 11.42
Sub-domain 7.61 7.39
Finetuning 10.21 9.96

Table 3: Weight Regularization on re-
maining weights helps mask learning

Maintaining a large magnitude of the remaining weights.
In Equation 8, we introduce a regularizer in the form of
−λ

∑
i ∥Wi ⊙ M̃i∥22. This regularizer is crucial for both mask

learning and transfer learning, as it directly influences the mag-
nitude of gradients during training. For instance, if certain
layers are pruned to a small magnitude, the gradients passed to
their inputs will also diminish, thereby impeding mask learning
and transfer to downstream tasks. In Table 3, we demonstrate
the effectiveness of weight regularization under different sce-
narios, such as mask training, LLM fine-tuning after pruning, and transfer learning to downstream
tasks. As will be elaborated in subsequent sections, the proposed regularization helps the learning of
lossless masks for downstream tasks. We provide more analysis in Section F of the Appendix.

8

Domain C# HTML Pascal Story French Japanese Chinese OpenWeb Average
GPT3-2B Dense 1.78 1.54 2.50 14.76 9.71 8.75 8.25 12.05 7.42
- Magnitude 1.38E+03 1.72E+03 1.64E+03 2.12E+05 6.950E+02 5.67E+02 7.22E+02 1.23E+05 4.27E+04
- SparseGPT 2.54 2.41 3.86 30.37 26.99 28.69 26.93 28.66 18.80
- SparseGPT-Update 2.20 2.11 3.09 25.43 20.35 22.34 20.55 26.69 15.36
- Wanda 2.86 2.68 4.75 40.07 31.37 36.75 33.03 35.34 23.36
- MaskLLM 1.76 1.54 1.94 15.58 9.61 7.96 6.92 13.84 7.39

Domain CUDA VHDL Javascript BigScience Reddit-Plus Book Arxiv MedAbs Average
LLaMA2-7B Dense 1.74 1.86 2.01 6.28 11.05 7.02 3.49 4.95 4.80
- Magnitude 9.92 13.60 2.52 66.80 81.56 72.95 32.17 29.31 38.60
- SparseGPT 2.09 2.30 2.52 9.57 15.46 9.91 4.54 6.73 6.64
- SparseGPT-Update 1.91 2.08 2.32 9.63 14.52 9.78 4.21 6.14 6.32
- Wanda 2.32 2.59 2.80 11.56 18.62 12.83 5.23 8.36 8.04
- MaskLLM 1.80 1.83 2.01 6.88 10.12 8.10 3.51 4.95 4.90

Table 4: Learning customized masks for downstream tasks with frozen LLM weights.

Mask Type (2B) Avg. Task PPL

Dense 7.42
General Mask 10.61
Scratch Mask 7.51
Transfer Mask 7.39

Table 5: Transfer learning is ef-
fective for downstream tasks.

Methods Storage per Task Model Size Speed(bits per param) in Memory

Finetuning 16 100% 1.0×
Learned 2:4 masks 0.65 (↓ 25×) 73% 1.4×

Table 6: Storage and inference cost of of llama-2 7B for downstream tasks

4.4 Learning N:M Sparsity for Downstream Tasks

Finding 5. Learned masks can losslessly adapt frozen LLMs to downstream tasks, offering a
1.4× wall clock GPU speed up and 73% memory footprint.

Large language models can achieve satisfactory quality across a variety of tasks. In many cases,
we are more interested in one particular ability of these large models under a specific task, such as
programming or translation, for which an LLM is over-parameterized. This naturally introduces a
new problem: can we learn a mask for specific tasks to achieve lossless compression? To evaluate
this, we learn masks for 2,000 steps separately on different domains and tasks and report the task-wise
PPL in Table 4. We considered one-shot pruning as baselines, where we collected 256 samples from
the task dataset for calibration. Results show that lossless masks can be learned for many tasks with
our method.

We also evaluated the power of transfer learning for downstream tasks in Table 5. To deploy sparse
LLMs for a single task, we can directly pick the pre-computed general mask from Table 1, or train
an “expert” mask from scratch. However, both strategies show a quality drop compared to the dense
model (PPL=7.42) since they either allocate some capacity for other domains (PPL=10.61) or only
see limited data from target domains (PPL=7.51). Our work leverages the general mask as prior and
transfers it to the downstream tasks, which can produce lossless models (PPL=7.39).

Updating parameters for downstream tasks results in additional copies of the model for each task,
incurring higher storage costs. Learning masks alone allows for encoding task-specific masks with
minimal space while keeping only a single, shared copy of the original parameters. As shown in
Table 6, task-specific masks only need 0.65 bits per parameter for storage on disk using simple
arithmetic coding3 with a static, uniform symbol distribution. For BS=1 inference on an A6000 GPU,
2:4 sparsity brings 1.4× acceleration and 27% reduction in the memory footprint (broader speedup
results appear in Table 16 in the appendix).

5 Conclusion

In this work, we present MaskLLM, a learnable pruning method that crafts accurate N:M sparsity in
LLMs, thereby reducing computational overhead during inference. Our empirical experiments on
several models show the scalability of MaskLLM to large-scale data and the effectiveness of end-to-
end training for mask learning. Furthermore, we demonstrate that lossless compression with N:M
sparsity is attainable in downstream tasks, underscoring its practicality for real-world applications.

3https://pypi.org/project/arithmetic-compressor/ (log2(6)/4 bits for 6 mask candidates per group)

9

Acknowledgments and Disclosure of Funding

This work is in part supported by the Singapore Ministry of Education Academic Research Fund
Tier 1 (WBS: A-0009440-01-00). We would like to thank Jorge Albericio Latorre for the fruitful
discussion and feedback on the project.

References
[1] AI@Meta. Llama 3 model card. 2024.

[2] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv preprint
arXiv:2401.15024, 2024.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] Vladimír Boža. Fast and optimal weight update for pruned large language models. arXiv preprint
arXiv:2401.02938, 2024.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena: An open
platform for evaluating llms by human preference, 2024.

[7] Together Computer. Redpajama: an open dataset for training large language models, October 2023.

[8] Rocktim Jyoti Das, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape pruning decisions in
large language models. arXiv preprint arXiv:2311.04902, 2023.

[9] Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu. Pruner-
zero: Evolving symbolic pruning metric from scratch for large language models. In Forty-first International
Conference on Machine Learning, 2024.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[11] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[12] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, pages 10323–10337. PMLR, 2023.

[13] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris
Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation,
12 2023.

[14] Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series of
lectures, volume 33. US Government Printing Office, 1954.

[15] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. International Conference on Learning Representations
(ICLR), 2016.

[16] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. International Conference on Learning Representations
(ICLR), 2016.

[17] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. In Advances in Neural Information Processing Systems, pages 1135–1143, 2015.

10

[18] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.

[19] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

[20] Ajay Jaiswal, Shiwei Liu, Tianlong Chen, and Zhangyang Wang. The emergence of essential sparsity in
large pre-trained models: The weights that matter. arXiv preprint arXiv:2306.03805, 2023.

[21] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[22] Sheng-Chun Kao, Amir Yazdanbakhsh, Suvinay Subramanian, Shivani Agrawal, Utku Evci, and Tushar
Krishna. Training recipe for n: M structured sparsity with decaying pruning mask. arXiv preprint
arXiv:2209.07617, 2022.

[23] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

[24] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms at inference
time. In International Conference on Machine Learning, pages 22137–22176. PMLR, 2023.

[25] Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir
Yazdanbakhsh. Step: Learning n: M structured sparsity masks from scratch with precondition. In
International Conference on Machine Learning, pages 22812–22824. PMLR, 2023.

[26] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. In Advances in Neural Information Processing Systems, 2023.

[27] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language models are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

[28] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models,
2016.

[29] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu,
and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint arXiv:2104.08378,
2021.

[30] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for
neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11264–11272, 2019.

[31] Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Mostofa Patwary, Sandeep Subramanian, Dan Su,
Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, Ayush Dattagupta, et al. Nemotron-4 15b technical
report. arXiv preprint arXiv:2402.16819, 2024.

[32] Jeff Pool, Abhishek Sawarkar, and Jay Rodge. Accelerating inference with sparsity using the nvidia
ampere architecture and nvidia tensorrt. NVIDIA Developer Technical Blog, https://developer. nvidia.
com/blog/accelerating-inference-with-sparsityusing-ampere-and-tensorrt, 2021.

[33] Jeff Pool and Chong Yu. Channel permutations for n: M sparsity. Advances in neural information
processing systems, 34:13316–13327, 2021.

[34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv e-prints, 2019.

[35] Dibyanshu Shekhar, Sree Harsha Nelaturu, Ashwath Shetty, and Ilia Sucholutsky. End-to-end learnable
masks with differentiable indexing. 2023.

[36] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[37] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

11

[38] Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large
language models. arXiv preprint arXiv:2306.11695, 2023.

[39] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[41] Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pages 6151–6162, Online, November 2020.
Association for Computational Linguistics.

[42] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei Lin,
and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large generative model
inference with unstructured sparsity. arXiv preprint arXiv:2309.10285, 2023.

[43] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

[44] Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy, Yi Liang,
Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing secret sauce for
pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

[45] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

[46] Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-and-
play: An efficient post-training pruning method for large language models. In The Twelfth International
Conference on Learning Representations, 2023.

[47] Yuxin Zhang, Mingbao Lin, Zhihang Lin, Yiting Luo, Ke Li, Fei Chao, Yongjian Wu, and Rongrong Ji.
Learning best combination for efficient n: M sparsity. Advances in Neural Information Processing Systems,
35:941–953, 2022.

[48] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena.
Advances in Neural Information Processing Systems, 36, 2024.

[49] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hong-
sheng Li. Learning n: m fine-grained structured sparse neural networks from scratch. arXiv preprint
arXiv:2102.04010, 2021.

12

A Implementation Details

Here we provide more details about the models, training data, training configurations and other
resources used in our experiments.

LLaMA-2 For LLaMA-2, we collected a blended training set following the official paper [39],
which consists of corpuses from 69 domains, covering CUDA, VHDL, Reddit etc. For training, we
selected a subset of 512k samples from the dataset and updated the learnable mask for 2,000 steps,
with a global batch size of 256. We used 64 A100 GPUs during training with an 8-way tensor parallel
configuration. The full training took 1,280 GPU hours for LLaMA-2 7B and 2,304 GPU hours for
LLaMA-2 13B. In Table 11, we also provide training results solely using the C4 dataset.

Nemotron-4 For Nemotron-4, we collected a small training dataset covering three domains: CC-
MAIN-2021-31, Open Web Math, and Gutenberg Fuzzy. We used a subset of 512k samples and
trained the model with 64 A100 GPUs using an 8-way tensor parallel configuration. The training
process took 2,304 GPU hours.

GPT-3 (An Internal LLM). The GPT-3 multilingual models were pre-trained using the Megatron
framework on a corpus of 1.1 trillion tokens. These models share a similar network architecture with
the official GPT [5], utilizing the standard transformer architecture [40] with layer normalization,
SwiGLU activation function, and Rotary Positional Embeddings (ROPE) [37]. Both the 2B and 843M
parameter models comprise 24 transformer layers with 16 attention heads. The hidden sizes are 2048
for the 2B model and 1024 for the 843M model. Furthermore, the maximum sequence length for
these models is 4096 tokens. For pre-training, a multilingual dataset was collected, encompassing
110 domains such as HTML, C++, French, etc.

B Hyper-parameters

We summarize the hyper-parameters used in our experiments in Table 7. The main results of hyper-
parameter tuning are available in Table 10, where we assessed different temperature, logit scaling
factors and prior strength with GPT-3 843M.

Model Optimizer Training Steps Logits Init Scaling Factor κ Gumbel Temp. τ Prior and Strength α Sparse Reg.
LLaMA-2 7B AdamW(5e-4, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
LLaMA-2 13B AdamW(5e-4, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
LLaMA-3 8B AdamW(5e-4, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
Nemotron-4 14B AdamW(5e-4, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
GPT-3 2B AdamW(1e-3, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5
GPT-3 843M AdamW(1e-3, wd=0.1) 2,000 N (0, 0.01) [1e2, 5e2] [4, 0.05] SparseGPT(α=3) 1e-5

Table 7: Training details and hyper-parameters for mask training

Temperature τ 1 → 0.05 2 → 0.05 4 → 0.05 10 → 0.05

Wikitext PPL 17.52 16.69 15.39 15.68

Table 8: Hyper-parameter tuning on GPT-3 843M for Gumbel softmax temperature

Scaling Factor κ 1 → 5 1e2 → 5e2 1e3 → 5e3 1e5 → 5e5

Wikitext PPL 5.97E+06 15.39 15.59 24.81

Table 9: Hyper-parameter tuning on GPT-3 843M for the logit scaling factor

Prior Strength α 0 1 2 3 5

Wikitext PPL 18.62 23.65 15.59 15.39 15.48

Table 10: Hyper-parameter tuning on GPT-3 843M for the logit prior strength

13

C Mask Learning with the C4 Dataset

In table 11, we compare the learned masks on the C4 dataset [34] with those on the blended datasets
discussed in Section A. Our blended dataset encompasses a broader range of topics and domains
compared to the C4 dataset, including coding, different languages, etc. Despite this, the result in
table 11 still indicates that MaskLLM is able to learn accurate masks on the C4 dataset, with a minor
difference (∆PPL=0.07) compared to the result obtained on the blended dataset.

Method Blended Data (See Sec. A) C4 [34]

Llama-2 7B 5.12 5.12

SparseGPT [12] 9.88 10.42
Wanda [38] 11.25 10.29
MaskLLM 6.72 6.79

Table 11: Wikitext-2 PPL of 2:4 LLaMA-2 7B pruned with different datasets

D 2:4 Results on Llama-3 8B

In table 12, we present additional pruning results for Llama-3 8B [1], adhering to the same training
protocol as described in Table 7. For reproducibility, we utilize the C4 dataset for both calibration
and mask learning.

Method Weight Update Wikitext-2 PPL

Llama-3 8B Dense - 5.76

Magnitude [17] - 2.61E+03
SparseGPT [12] ✓ 17.64
Wanda [38] - 23.40
MaskLLM - 8.50

Table 12: Wikitext-2 PPL of 2:4 LLaMA-3 8B, with the sequence length of 4096. We took the
SparseGPT mask as the prior and learned the mask on the C4 dataset.

E Comparison to More Pruning Methods for LLMs

In Table 13, we compare MaskLLM to several baseline methods that were not implemented using
the Megatron framework. We report the official results on Wikitext-2 PPL and LLaMA-2 13B.
Even compared to methods that incorporate weight updates, our method achieves superior perplexity
results.

Method Weight Update Wikitext-2 PPL

Llama-2 13B Dense - 4.57

SparseGPT [12] ✓ 8.32
Wanda [38] - 8.27
ADMM-Iter [4] ✓ 7.78
GBLM [8] - 8.80
RIA [46] - 8.41
Pruner-Zero [9] - 7.41
MaskLLM - 5.85

Table 13: Comparison to SOTA 2:4 pruning methods on LLaMA-2 13B, with all results collected
from original papers or official implementations.

14

F Sparse Weight Regularization

Weight Norm of Sparse LLMs. In Equation 8, we introduce an additional term to preserve
sufficient gradients during training. As shown in Table 14, a larger weight regularization facilitates
large gradients during training, which is beneficial for mask exploration. We also illustrate the
weight magnitude of pruned LLMs, obtained using magnitude pruning, SparseGPT (Hessian) and
MaskLLM in Figures 6a and 6b. These figures show the relative L1 norm of pruned weights
compared to the magnitude pruning baseline, which produces the largest weight norm after pruning.
An interesting observation is that, even when initialized with a magnitude prior, learnable method
may still select some smaller values during pruning, resulting in a 10% lower norm than magnitude
pruning. Introducing sparse weight regularization can effectively improve the weight norm of sparse
LLMs and enhance their quality in further transfer learning or fine-tuning for downstream tasks.

Regularization Average Gradient Norm
0 0.219

1e-5 0.542
1e-4 0.559

Table 14: Average Gradient Norm over the First 500 Training Steps of GPT-3 2B, with Varying
Levels of Sparse Weight Regularization. In this study, we use a regularization strength of 1e-5 for
mask learning, as it offers a stable gradient while imposing minimal constraints on the search space.

0 20 40 60 80
Layer ID

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e

L1
 N

or
m

Magnitude Mask (Baseline)
Learned Mask
Hessian
Regularized Learned Mask (1e-4)
Regularized Learned Mask (1e-5)

(a) Relative norm of remaining weights (GPT-3 2B).

0 20 40 60 80 100 120
Layer ID

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Re
la

tiv
e

L1
 N

or
m

Magnitude Mask (Baseline)
Learned Mask
Hessian
Regularized Learned Mask (1e-4)
Regularized Learned Mask (1e-5)
Learned Mask (Magnitude Prior)

(b) Relative norm of remaining weights (LLaMA2 7B).

Figure 6: The relative L1 norm of pruned weights compared to magnitude pruning

G Layer Sensitivity

Sensitivity Analysis with Learnable Method. In Figure 7, we analyze the sensitivity of LLaMA-2
7B using both the learnable and one-shot methods. For efficiency, we update the learnable masks for
500 steps and use Wikitext PPL as the metric. We observe a similar trend in the learned masks and
SparseGPT masks, suggesting that a fast one-shot pruning method can reliably indicate sensitivity.
Additionally, for 2:4 sparsity, the last layer is typically more sensitive than other layers. To maintain
satisfactory results, we can keep the last layer dense, achieving a good trade-off between efficiency
and quality. In Table 15, we report the pruning results when a few layers are kept dense.

0 5 10 15 20 25 30
Layer ID

5.15

5.20

5.25

5.30

5.35

PP
L

Learned Mask
SparseGPT w/ Update
SparseGPT w/o Update

Figure 7: Layer Sensitivity of LLaMA-2 7B

Strategy Story OpenWeb
Dense 14.76 12.05
Full Sparsity 15.58 13.84
Skip the last 1 layer 15.18 13.61
Skip the first 1 layer 15.41 13.88
Skip the last 4 layers 15.07 13.24
Skip the last 8 layers 14.95 12.92

Table 15: Keeping sensitive layers dense can
be a way to trade-off quality and efficiency.

15

H Throughput of 2:4 LLaMA-2 7B.

In Table 16, we benchmark the throughput of LLaMA-2 7B with 2:4 sparsity on an A6000 GPU using
TensorRT-LLM for a batch size of 1. Throughput is evaluated as the number of tokens processed per
second. Over a variety of input and output lengths, 2:4 sparsity achieves an overall acceleration of
1.36× to 1.41× compared to the dense model.

Model Input Len. Output Len. Throughput (Token/s/GPU)
Dense 2:4 Speed Up

Llama-2 7B

128 128 61.74 86.92 1.41×
128 2048 59.18 82.11 1.39×

2048 128 57.55 78.81 1.37×
2048 2048 55.40 75.10 1.36×

Llama-2 13B

128 128 32.97 51.64 1.57×
128 2048 31.81 49.00 1.54×

2048 128 31.14 47.19 1.55×
2048 2048 30.09 45.06 1.50×

Table 16: Benchmarking LLaMA-2 7B and 13B on A6000 with TensorRT-LLM.

I Mask Difference

In Figure 8, we visualize the differences between learned masks and one-shot masks, using SparseGPT
as the prior for the learnable mask. We observe that SparseGPT and Wanda produce similar masks,
with differences typically ranging from 5% to 10%, due to their similar pruning objectives. Our
method, however, can produce distinct masks compared to these baselines, as shown in Figures
8a and 8b. Additionally, we find that weight regularization is crucial for effective mask learning.
Without weight regularization, the vanished gradient can hinder mask learning, resulting in only a
2.83% difference from the prior, as shown in Figure 8c.

Mag
nit

ud
e

Sp
ars

eG
PT

Wan
da

Lea
rne

d

Magnitude

SparseGPT

Wanda

Learned

0% 10.19% 5.25% 24.28%

10.19% 0% 10.16% 18.77%

5.25% 10.16% 0% 24.35%

24.28% 18.77% 24.35% 0%

Mask Difference (SparseGPT Prior)

0

5

10

15

20

25

30

(a) Mask Difference on LLaMA-2
7B with regularization

Mag
nit

ud
e

Sp
ars

eG
PT

Wan
da

Lea
rne

d

Magnitude

SparseGPT

Wanda

Learned

0% 10.52% 6.07% 23.28%

10.52% 0% 10.29% 17.96%

6.07% 10.29% 0% 23.21%

23.28% 17.96% 23.21% 0%

Mask Difference (SparseGPT Prior)

0

5

10

15

20

25

(b) Mask Difference on GPT-3 2B
with regularization

Mag
nit

ud
e

Sp
ars

eG
PT

Wan
da

Lea
rne

d

Magnitude

SparseGPT

Wanda

Learned

0% 10.19% 5.25% 12.42%

10.19% 0% 10.16% 2.83%

5.25% 10.16% 0% 12.4%

12.42% 2.83% 12.4% 0%

Mask Difference (SparseGPT Prior)

0

2

4

6

8

10

12

14

(c) Mask difference on LLaMA-2
7B without regularization.

Figure 8: (a) & (b) Notable mask difference exists between learned masks and one-shot ones. (c)
without sparse weight regularization, the vanished gradient caused by pruning will hinder mask
training, leading to a low difference between prior masks and learned masks.

J MaskLLM for Vision Transformers

To evaluate the generalizability of learnable semi-structured sparsity, we further extend the proposed
method to Vision Transformers (ViTs) [10]. Table 17 presents the top-1 accuracy on ImageNet-1K
by pruning an off-the-shelf ViT-B/16. In the one-shot pruning scenario, we randomly selected 128
samples from the training dataset as the calibration set, and no additional fine-tuning was conducted
post-pruning. For MaskLLM, we utilized the SparseGPT mask as a prior and directly optimized the
learnable mask on the ImageNet dataset while keeping the model weights frozen. Remarkably, with
just a single epoch of optimization, the learnable mask achieved an accuracy of 76.23%, significantly
outperforming SparseGPT’s 71.52%. Moreover, a fully optimized mask with 20 epochs of training

16

Method Sparsity Pattern Weight Update Top-1 Acc. (%)

ViT-B/16 Dense - 79.15
Magnitude 2:4 - 65.92
Wanda 2:4 - 63.28
SparseGPT 2:4 ✓ 71.52
SparseGPT w/o Update 2:4 - 59.72
MaskLLM-4V (1 Epoch) 2:4 - 76.23
MaskLLM-4V (20 Epochs) 2:4 - 79.46

Table 17: MaskLLM for Vision Transformers

achieved lossless compression (∆Acc = +0.31%) for the ViT-B/16 model. This observation also
suggests the presence of a Lottery Ticket phenomenon [11] in modern Vision Transformers, where a
sparse sub-network can match the original model’s performance without any weight update.

K Limitations.

In this work, we explore an end-to-end learning method for semi-structured pruning. Although our
method yielded superior results, training LLMs with learnable masks inevitably consumes more
resources compared to one-shot methods, which can produce masks efficiently. Improving the training
efficiency of learnable masks is an important topic in future works.

L Broader Impacts.

The technique proposed in this paper will not lead to negative societal impact. On the contrary, it
offers significant benefits, including the reduction of energy costs and carbon emissions associated
with the deployment of Large Language Models. By optimizing for Semi-structured (or ‘N:M’)
Sparsity, our method reduces the computational resources required for inference, thereby contributing
to more sustainable and environmentally friendly AI applications.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This submission introduces a learnable method to learn semi-structured sparsity
in large language models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of this submission was discussed in section K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

18

Justification: No theoretical results in this submission.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All hyperparameters and training settings are available in Table 7 of the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [No]
Justification: This submission is not about data or models.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss our datasets, hyper-parameters, and tuning results in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: error bar is not available in this submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the number of GPUs and GPU hours in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This submission follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This submission discusses potential societal impacts in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

21

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This submission is not about data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Assets are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

22

paperswithcode.com/datasets

Answer: [NA]
Justification: No new asset in this submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Related Works
	Method
	N:M Sparsity
	MaskLLM: Learnable Semi-Structured Sparsity

	Experiments
	Implementation Details.
	Learning 2:4 Sparsity in LLMs
	How to Learn a Good Mask for LLMs
	Learning N:M Sparsity for Downstream Tasks

	Conclusion
	Appendices
	Implementation Details
	Hyper-parameters
	Mask Learning with the C4 Dataset
	2:4 Results on Llama-3 8B
	Comparison to More Pruning Methods for LLMs
	Sparse Weight Regularization
	Layer Sensitivity
	Throughput of 2:4 LLaMA-2 7B.

	Mask Difference

	MaskLLM for Vision Transformers
	Limitations.
	Broader Impacts.

