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ABSTRACT

Large language models (LLMs) excel at complex reasoning tasks such as mathe-
matics and coding, yet they frequently struggle with simple interactive tasks that
young children perform effortlessly. This discrepancy highlights a critical gap
between declarative knowledge (knowing about something) and procedural knowl-
edge (knowing how to do something). Although traditional reinforcement learning
(RL) agents can acquire procedural knowledge through environmental interaction,
they often operate as black boxes and require substantial training data. In contrast,
LLMs possess extensive world knowledge and reasoning capabilities, but are un-
able to effectively convert this static knowledge into dynamic decision-making in
interactive settings. To address this challenge, we propose Think-In Games (TiG),
a novel framework that empowers LLMs to develop procedural understanding
through direct interaction with game environments, while retaining their inher-
ent reasoning and explanatory abilities. Specifically, TiG reformulates RL-based
decision-making as a language modeling task: LLMs generate language-guided
policies, which are refined iteratively through online reinforcement learning based
on environmental feedback. Our experimental results show that TiG successfully
bridges the gap between declarative and procedural knowledge, achieving competi-
tive performance with dramatically lower data demands compared to conventional
RL methods. Moreover, TiG provides step-by-step natural language explanations
for its decisions, greatly improving its transparency and interpretability in com-
plex interactive tasks. Furthermore, when adapted to downstream tasks through
supervised fine-tuning, the model surpasses larger models containing multiples of
its parameters, demonstrating that its acquired reasoning capabilities generalize
effectively.

1 INTRODUCTION

Large language models (LLMs) can write poetry, solve complex math problems, and even generate
code (Li et al., 2025; Yu et al., 2024; DeepSeek-AI et al., 2025)—yet they fail at tasks that human
children master effortlessly through play. When asked to navigate a simple game environment, these
powerful models struggle with basic concepts like spatial reasoning (Dihan et al., 2024; Kolner et al.,
2024; Wu et al., 2024) and cause-effect relationships (Ashwani et al., 2024) that emerge naturally
from interaction. This paradox reveals a fundamental gap in how AI systems acquire understanding:
the difference between knowing about something and knowing how to do something.

This gap between declarative (knowing about something) and procedural knowledge (knowing how
to do something) poses a critical challenge for AI development. To bridge it, we need environments
where AI systems can safely explore, experiment, and learn from consequences—much like children
do through play. Digital games provide precisely such environments, offering controlled yet complex
worlds where theoretical knowledge must be transformed into practical understanding through
multi-turn interaction with the real world (Ye et al., 2020; Xu et al., 2025).

From classical games like chess and poker (Silver et al., 2016; Southey et al., 2012; Zhuang et al.,
2025) to modern video games like Atari (Bellemare et al., 2013), StarCraft II (Vinyals et al., 2017),
DOTA II (Font & Mahlmann, 2019), and sandbox games like Minecraft (Wang et al., 2023), these
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environments provide rich grounds for measuring and advancing cognitive capabilities of AI including
pattern recognition, reasoning, sophisticated planning, and generalization (Xu et al., 2025).

Traditional AI approaches to game solving, such as search algorithms (Silver et al., 2016), handcrafted
heuristics (Fernández & Salmerón, 2008; Zhang et al., 2024), and reinforcement learning (RL) (Mnih
et al., 2013; Oh et al., 2022), have achieved impressive results in different game environments.
However, these methods often rely on extensive domain-specific engineering and require massive
amounts of training, limiting their ability to generalize to new or dynamic environments (Xu et al.,
2025). Moreover, their decision-making processes are typically opaque (Yang et al., 2025), making
it difficult for humans to interpret or trust their decisions. While these systems excel at doing, they
are not inherently designed to explain their reasoning, and their capacity is particularly limited in
scenarios that require strategic thinking.

The advent of LLMs introduce potential paradigm shift (Wang et al., 2023; 2024). Trained on vast and
diverse textual data, LLMs possess broad world knowledge and can generate contextually relevant
responses, making them attractive for interactive and reasoning-intensive tasks (Hu et al., 2024b).
However, their knowledge is static and derived from text on the web rather than direct interaction
with game environments. As our preliminary studies reveal (Appendix C), LLMs often lack the
nuanced, procedural understanding required for complex and dynamic games. For example, an
LLM can learn strategy such as "avoid pushing the lane too far" from online game walkthroughs.
However, LLMs cannot execute this knowledge—the precise definition of "too far" is ambiguous
and requires additional understanding that only from actual gameplay experience. Although prompt
engineering (Wang et al., 2023) can inject additional game mechanics information, it does not
fundamentally transform declarative knowledge into procedural understanding.

This brings us back to our central paradox: traditional RL agents know how but cannot explain why,
while LLMs know why but cannot execute how. To bridge this gap, we propose Think-In Games
(TiG), a novel framework that enables LLMs to develop procedural understanding through direct
interaction with the game environment while maintaining their natural ability to reason and explain.
Specifically, we reformulate traditional RL decision-making task as a language modeling task: our
approach uses an LLM to generate policies in language, which are then refined through online
reinforcement learning based on direct interaction with game environments. The game environment
provides rewards for each action, and the policy model learns from this feedback while generating
step-by-step explanations of its reasoning.

We validate our proposed method in the Honor of Kings (HoK) game. Our experiments demonstrate
that TiG bridges the gaps of knowing about something and how to do something. It achieves a
deeper understanding of the game mechanics, enabling it to both generate effective strategies and
articulate the reasoning process behind these strategies. Moreover, the reasoning capalities can be
generalized to downstream applications related to the game, allowing the model to surpass larger
models containing multiples of its parameters.

2 FORMALIZATION

Our goal is to develop LLMs that are capable of high-level strategic reasoning and decision-making
within game environments. While our approach is designed to be broadly applicable across various
game genres, this study focuses on Multiplayer Online Battle Arena (MOBA) games as a represen-
tative and challenging testbed. MOBA games offer a rich environment for investigating high-level
reasoning due to their emphasis on team coordination, long-term planning, and dynamic objectives.

2.1 MOTIVATION

To enable LLMs to develop a deep, intrinsic understanding of game mechanics, we draw inspiration
from the reasoning processes of expert MOBA players when making decisions. Expert gameplay
in MOBA environments is characterized by macro-level reasoning, which involves devising and
executing team-wide strategies, such as objective control, map pressure1, and coordinated team
maneuvers. Unlike micro-level actions (e.g., precise skill execution), macro-level reasoning prioritizes

1Map Pressure: A strategically advantageous situation that compels opponents into unfavorable positions, facilitating control of the map or
capture of major objectives.
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long-term objectives and team synergy. Our goal is to equip LLMs with these macro-level reasoning
capabilities, fostering a comprehensive understanding of game mechanics and enabling generalization
across diverse tasks. We do not focus on micro-level actions, as they require tracking the rapidly
changing game states, which is not suited to LLMs given their inherent latency and non-realtime
nature.

2.2 NOTATION FOR TIG

Game State Representation. We formalize the MOBA environment as a sequence of discrete time
steps, where each time step t corresponds to a comprehensive game state st. The game state st
captures all visible information from the primary player’s perspective essential for strategic decision-
making, including teammate attributes, visible turrets, and map vision data. Hidden information, such
as unseen enemy stats, is excluded to maintain realistic gameplay conditions. Formally, a match m is
represented as a sequence of T game states {st}Tt=1, where each st is a structured representation of
the environment at time t. To leverage the capabilities of recent LLMs in processing structured data,
we represent the game state as a JSON object to facilitate the model understanding the game state.
An example JSON object is provided in Appendix Figure 5.

Macro-level Action Space. To focus the model on strategic reasoning, we define a finite set of
macro-level actions A = {a1, a2, . . . , aK}, where each ak corresponds to a predefined team objective
(e.g., “Push Top Lane”, “Secure Dragon”, “Defend Base”). This abstraction enables the model to
reason about high-level strategies rather than low-level mechanics. In our setting, we define K = 43
actions shown in Appendix Table 5, to comprehensively cover the range of meaningful strategies
encountered within the gameplay. The finite action space also facilitates subsequent rule-based
reward design and evaluation.

Policy Model. The policy model in our framework refers to an LLM trained to map game states to
macro-level actions. We impose no constraints on the model’s architecture, requiring only that it
possesses robust instruction-following and structural understanding capabilities, achievable through
pre-training on diverse datasets. The policy model is designed to learn effective MOBA strategies
and demonstrate a nuanced understanding of game states through our training paradigm.

2.3 TASK DEFINITION.

We formalize the task as follows: Given the current game state st, the model is tasked with predicting
the next macro-level action at ⊆ A in natural language that best aligns with optimal team strategy,
and provide the corresponding reasoning chains ct for how to reach the answer. Formally, the model
learns a mapping f ∶ (st, it) ↦ (at, ct), where it denotes any additional context or instructions
provided to the LLM. This (st, it) ↦ (at, ct) prediction task encourages the LLM to analyze the
current environment, extract salient information, and predict the most appropriate macro-level action
using natural language. As the game state representation can be lengthy and information-rich, the
model have to actively explore the environment, identify relevant features, and make informed
decisions. The prompt template is shown in Table 1, where the placeholders will be replaced with
real data during training and inference time.

3 METHOD

To tackle the challenges of traditional RL agents know how but cannot explain why, while LLMs know
why but cannot execute how. Our new framework Think-In Games (TiG), enables LLMs to develop
procedural understanding through direct interaction with the game environment, while maintaining
their natural ability to reason and explain. By grounding the learning process in environmental
rewards and state transitions, our approach fosters a deep, intrinsic understanding of game mechanics,
such as positioning and risk assessment, moving beyond brittle pattern-matching of existing strategies.

In this section, we first outline our systematic data collection and sampling strategies from real
game-plays. We then detail our reinforcement learning framework, including the GRPO algorithm
and the design of our rule-based reward function.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Given the real-time in-game situation information of a Honor of Kings match, please analyze the
current status and provide decision-making objectives.
In-game situation information: <game_state> </game_state>
Key points for consideration:
1. Situational Awareness: tracking unit states (health, items, cooldowns), map states (minion waves,
structures), and vision control (ward coverage, fog of war).
2. Strategic Composition: leveraging team synergies, identifying key power spikes (levels, items),
and defining clear roles and responsibilities.
3. Real-Time Analysis: assessing game momentum, predicting opponent intent, and performing the
tactical calculus of engagements and resource trades.
4. Scenario Handling: adapting to high-stakes objectives (Tyrant, Overlord), and executing or
countering specialized mechanics and strategies.
Suggested action: Select the most suitable action from the candidate options. Place the deci-
sion/thinking process in <think> </think>, and place the sugggested action in <answer> </answer>.
The candidate options are <action_candidates> </action_candidates>

Table 1: Prompt Template for TiG. <game_state> </game_state> will be replaced with the real game state during
training and inference and <action_candidates> </action_candidates> will be replaced with the predefined action
sets of A defined in Appendix Table 5.

3.1 DATASET COLLECTION

Our dataset were sampled from anonymized records of real game matches, where neither user
identifiers nor any personally identifiable information were collected to safeguard player privacy.
To ensure balanced representation, we maintain an equal ratio of wins and losses, and only include
matches played by users above a skill threshold.

3.1.1 DATA SAMPLING STRATEGY

For each match, we first extract the full sequence of game states, and label the main player’s action
as the ground truth for each game state. Since state transitions could lead to inconsistent or sparse
action labels, we develop a relabeling algorithm to densify and smooth the annotation sequence. The
relabeling algorithm (Section 3.1.2) ensures that each game state with a macro-level action label.
After relabeling, we employ a random sampling strategy to select one frame per minute of gameplay
to ensure the diversity of our training data.

3.1.2 RELABELING ALGORITHM

Priority-based Hierarchy of Macro-level Action. During the game-play, actions exhibit varing
degrees of priority. For example, critical objectives such as “Tyrant or Overlord" and “Team Fight"
should be prioritized. We formalize action priority as a function of criticality, temporal window,
and overall game impact: Priority(at) = f(criticality, time_window, game_impact). We provide the
hierarchy based on expert human player knowledge as shown in Table 5.

Relabeling Algorithm. Since game state transitions could lead to inconsistent or sparse action labels,
we develop a relabeling algorithm to densify and smooth the annotation sequence. Formally, given a
sequence of game states from gameplay, our labeling algorithm first propagate the detected action
label backward to preceding unlabeled frames within a window of Lfill frames. This ensures that
each game state is associated with a relevant macro-level action, even if the original annotation was
sparse. After backward filling, some frames may be associated with multiple overlapping actions due
to the temporal proximity of different actions. To resolve conflicts and ensure that the most important
action is represented, we leverage the predefined priority hierarchy (also shown in Table 5). Within
a window of Loverwrite frames, if multiple actions overlap, we overwrite lower-priority action labels
with higher-priority ones according to the hierarchy. This process guarantees that, at any given frame,
the label reflects the most critical macro-level action occurring at that time.

By explicitly incorporating action priority into the relabeling process, our algorithm produces a dense
and consistent sequence of game states, where each game state is labeled with the most contextually
important macro-level action. This results in a robust training signal for downstream learning tasks.
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Figure 1: Demonstration of GRPO training with Game State. refers to trained models, and refers to
frozen models. Given the current game state, the model is asked to predict the proper action, and provide
the thinking process as the analysis of why consider this action. We then compare the predicted action with
ground-truth values using a rule-based verifier to update the policy model. This process enables the model to
perform decision making within the game environment and refining its decision-making accordingly.

3.2 REINFORCEMENT LEARNING WITH GAME STATE

To enable effective learning of strategic reasoning in game environments, we adopt a reinforcement
learning (RL) framework that directly optimizes the policy model using feedback from game state-
action pairs. Specifically, we employ Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), an online RL algorithm designed to maximize the advantage of generated completions while
constraining policy divergence from a reference model. We provide further analysis on why we use
GRPO for our task and explain how our adaptation differs from the original version in Appendix D.

GRPO Formalization. We formalize our training process of TiG using GRPO below. Let q denote
a sampled prompt (e.g., a game state st and context it), and let {o1, o2, . . . , oG} be a group of G
completions generated by the current policy πθ. For each completion oi, a reward ri is computed
using a rule-based reward function (see Reward Modeling below). The group-relative advantage for
each completion is then calculated as:

Âi,t =
ri − mean(r)

std(r) , (1)

where mean(r) and std(r) denote the mean and standard deviation of rewards within the group. This
normalization ensures that the advantage reflects the relative quality of each completion.

To regularize policy updates, we estimate the token-level Kullback-Leibler (KL) divergence between
the current policy πθ and a reference policy πref using Schulman’s approximator (Schulman et al.,
2017):

DKL [πθ∥πref] =
πref(oi,t∣q, oi,<t)
πθ(oi,t∣q, oi,<t)

− log
πref(oi,t∣q, oi,<t)
πθ(oi,t∣q, oi,<t)

− 1. (2)

The overall GRPO objective is to maximize the expected group-relative advantage while penalizing
excessive policy drift. The loss function is defined as:

LGRPO(θ) = −
1

∑G
i=1 ∣oi∣

G

∑
i=1

∣oi∣
∑
t=1

[min ( πθ(oi,t∣q, oi,<t)
πθold

(oi,t∣q, oi,<t)
Âi,t, clip ( πθ

πθold
, 1 − ϵ, 1 + ϵ) Âi,t) − βDKL] ,

(3)
where the clipping operator clip(⋅, 1 − ϵ, 1 + ϵ) constrains the update magnitude, and β controls the
strength of KL regularization. This formulation enables token-level optimization with sequence-level
rewards, facilitating efficient and stable learning.

Reward Modeling. The reward function serves as the primary training signal, guiding the opti-
mization process in RL. Following the success in Deepseek-R1 (DeepSeek-AI et al., 2025) using
rule-based reward, we adopt a similar rule-based reward system that consists solely of final outcome
rewards, which assess the correctness of the model’s responses. Formally, given a predicted action
Ât at time step t and the corresponding ground truth action A

∗
t obtained from the replay data, the

reward rt is defined as:

rt = {1, if Ât = A
∗
t ,

0, otherwise.
(4)
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The reward is assigned 1 if the predicted action matches the ground truth action; otherwise, the reward
is 0. This binary reward encourages the model to generate action predictions that closely match
real player behavior while penalizing overly verbose or irrelevant outputs. We do not incorporate
format rewards, as our learned model already demonstrates strong structural adherence. Furthermore,
following Deepseek-R1 (DeepSeek-AI et al., 2025), we avoid training neural reward models. The
decision is motivated by the sensitivity of LLMs to specific forms of rewards in large-scale RL
training process, as well as the additional computational cost and complexity introduced by retraining
these models.

4 EXPERIMENTS

In this section, we first illustrate the experiment setup for our experiments, including datasets,
environments and the baseline models for the comparison (Section 4.1). Then we discuss the training
details of our method (Section 4.2), and provide the detailed analysis of the main results (Section 4.3).
We also present ablation studies, error analysis (Section 4.4) and case studies (Section 4.5) to further
analyze the effectiveness of the proposed method.

4.1 EXPERIMENT SETUP

Environment. All experimental results are obtained on four servers with 8 NVIDIA H20 (96 GB)
GPUs. For SFT, we use the Megatron-LM (Shoeybi et al., 2019) training platform. For online RL,
we use the OpenRLHF (Hu et al., 2024a) training platform.

Datasets. We evaluate our models in two settings. First, within game environments, we utilize
complex scenarios sampled from the HoK game, as described in Section 3.1. To prevent data leakage,
we re-sample a subset of examples and slightly modify the output format. This allows us to assess
whether the trained models can generalize to new tasks beyond their training distribution. In this
setting, the model is provided with the current game state in JSON format and a finite action space; it is
tasked to select the appropriate action and generate a corresponding reasoning process. Given the need
for detailed analysis of the game state and a strategic understanding of game mechanics, we employ
expert human evaluators (experienced game players) to assess the quality of the model’s outputs.
To further verify whether our models sacrifice their native language understanding and reasoning
capabilities, we further evaluate their performance on diverse standard benchmarks: Ape210K (Zhao
et al., 2020), MMLU (Hendrycks et al., 2021), CEval (Huang et al., 2023), School-Chinese (lanhin,
2018), BBH (Suzgun et al., 2023), IfEval (Zhou et al., 2023) and CharacterEval (Tu et al., 2024). The
detailed description of the benchmarks and the public data links can be found in Appendix B.1.

Baselines. We consider LLMs of various scales as baselines. We include several other publicly
available models in our experiments: Qwen-2.5-7B-Instruct, Qwen-2.5-14B-Instruct, Qwen-2.5-32B-
Instruct, Qwen-3-14B-Instruct, and Deepseek-R1. All model checkpoints are accessible via Hugging
Face2. For training, we set prompt_max_len = 8192 and generate_max_len = 2048.

4.2 TRAINING DETAILS

We follow the insights from Deepseek-R1 (DeepSeek-AI et al., 2025) to employ multi-stage training
that combines supervised fine-tuning (SFT) and reinforcement learning (RL) to enhance the capabili-
ties of our language models. Specifically, SFT helps improve foundational language understanding
and reasoning of our models, while online RL teaches the models to efficiently explore and select the
most effective solutions through trial and error.

For the SFT stage, we distill the training data from Deepseek-R1, which demonstrates strong reasoning
capabilities in game environments and can thoroughly analyze the game states based on its pre-existing
knowledge. We consider this makes the training data a valuable resource for training smaller models
to acquire deep reasoning capabilities. For the online RL stage, we use real gameplay data collected
as described in Section 3 and train the models with the GRPO algorithm (Shao et al., 2024). Due
to computational constraints, we vary the number of training steps across models: Qwen2.5-14B is

2https://huggingface.co/models
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Method Accuracy (%)
QwQ-32B 75.22
Deepseek-R1 86.67
Qwen-2.5-32B 66.67
Qwen-2.5-32B + GRPO (our work, steps = 160) 86.84
Qwen2.5-14B 53.25
Qwen2.5-14B + SFT 70.13
Qwen2.5-14B + GRPO (steps = 360) 79.22
Qwen2.5-14B + SFT + GRPO (our work, steps = 480) 77.92
Qwen2.5-14B + SFT + GRPO (our work, steps = 600) 83.12
Qwen-3-14B 82.89
Qwen-3-14B + SFT + GRPO (our work, steps = 400) 85.71
Qwen-3-14B + SFT + GRPO (our work, steps = 2000) 90.91

(a) Action Prediction Task. (b) Distribution of Error Cases

Figure 2: (left) Action Prediction Task, (right) Distribution of the Error Cases across different models. The
definition of error cases can be found in Table 4.

trained for up to 700 steps, Qwen-2.5-32B for up to 160 steps, and Qwen3-14B—showing consistently
strong performance—is trained for over 2,000 steps to better observe training dynamics.

4.3 MAIN RESULTS

For our experiments, we explore different combinations of multi-stage training: (1) GRPO: Train the
base model using GRPO only without applying SFT training. (2) SFT: Train the base model using
SFT training dataset. (3) SFT + GRPO: Start by training the base model with SFT, then apply the
GRPO algorithm to further train the model to improve its reasoning abilities.

The main results can be found in Table 2a, from which we draw several key findings. First, multi-
stage training—particularly the combination of SFT and GRPO—leads to substantial improvements
in model performance across different model sizes. For example, Qwen-2.5-32B improves from
66.67% (base) to 86.84% with GRPO, while Qwen2.5-14B increases from 53.25% (base) to 83.12%
after sequential application of SFT and GRPO. This demonstrates the effectiveness of our approach in
enhancing complex reasoning abilities. Second, our training strategy enables smaller models to rival
or even surpass much larger models. Notably, Qwen-3-14B with SFT and extended GRPO training
(2000 steps) achieves 90.91% accuracy, outperforming Deepseek-R1 (86.67%), which is an order of
magnitude larger in parameter count. This highlights the efficiency and scalability of our method.
Third, reinforcement learning via GRPO is a key driver of reasoning improvement. The introduction
of GRPO, either alone or following SFT, consistently yields significant accuracy gains. For instance,
Qwen-2.5-32B + GRPO achieves a 20-point increase over the base model, and Qwen2.5-14B +
GRPO (79.22%) outperforms SFT only. These results confirm that GRPO is particularly effective for
boosting the reasoning capabilities of language models.

4.4 ANALYSIS

Generalization of TiG. To verify TiG’s generalizability on other tasks, we propose another dataset
collected from real gameplay in question-answering format (denoted as TiG-QA). In the TiG-QA
task, the model is given the game state and an open-ended user question, and is asked to generate
a comprehensive answer grounded in the game context. As shown in Table 2 (TiG-QA Task).
While Deepseek-R1 still shows some advantages on certain general capability questions related to
game states, as seen in Table 2, we believe this is because these questions are less tied to the game
environment and more like open-ended queries that rely on prior knowledge from the web rather than
interaction with the game. This is an area where Deepseek-R1 excels.

Error Analysis. We conduct further error analysis in Figure 2b, where we categorize errors occured in
TiG-QA based on the definitions in Appendix Table 4. We find that our method generally outperforms
the base model and achieves results comparable to Deepseek-R1 (671B). Considering that our model
only has 32B parameters, this highlights the effectiveness of our approach.
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Model Game-state Strong Related (e.g., decision) Game-state Weak Related (e.g., items)
0 1 2 0 1 2

Deepseek-R1 17.14% 25.71% 57.14% 3.70% 16.67% 79.63%
Qwen-2.5-32B 31.43% 38.57% 30.07% 34.78% 26.09% 39.13%
Qwen-2.5-32B + GRPO (our work, steps = 160) 21.43% 38.57% 40.00% 28.89% 33.33% 37.78%

Table 2: Model performance on board-related tasks. Numbers indicate count (percentage) of correct responses.
Scoring: 0 = Incorrect, 1 = Partially Correct, 2 = Correct.

4.5 CASE STUDIES

To provide a comprehensive evaluation of TiG’s capabilities, we conduct a detailed case study based
on the real-time game scenario depicted from Figure 3 to Figure 14. They qualitatively showcase that
TiG advanced capacity for deep, context-aware reasoning and its ability to translate complex game
states into actionable, natural language guidance for the player.

Figure 3: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and <result>
</result> refers to the model guidance to the main player in natural language.

As illustrated in the Figure 3, the scenario involves the main player controlling the hero A Guduo,
who is pushing the mid-lane with a teammate, Jiang Ziya, against a weakened enemy tier-one
tower. The model’s internal reasoning process, displayed on the right, is methodical and multi-
faceted: (1) Situation Analysis: The model first performs a holistic assessment of the game state.
It identifies that the match has progressed beyond the early game, noting that the “defensive tower
and jungle protection mechanisms have expired." However, it mistakenly accounts for the team’s
numerical disadvantage, as for two teams, they all have three heroes remained. It then analysis that
there is a recent skirmish and highlights the low health of the enemy mid-lane tower as a primary
opportunity. Crucially, it also identifies key risks, such as the unknown positions of the enemy heroes
and A Guduo’s low health, which necessitates caution. (2) Objective Prioritization: Based on
its analysis, the model prioritizes objectives. It determines that destroying the mid-lane tower is
the most immediate and achievable goal to capitalize on the current momentum and expand the
team’s advantage. It emphasizes the importance of teamwork, specifically coordinating with the
nearby Jiang Ziya to leverage his crowd-control abilities for a safer and more efficient push. (3)
Strategy Formulation: The model then synthesizes this analysis into a concrete action plan. The
core directive is to “join Jiang Ziya at the enemy mid-lane tier-one tower and focus fire to bring
it down." This strategy is coupled with a critical risk mitigation warning: “Be aware that enemy
heroes may be lying in ambush; maintain vigilance." (4) Hero-Specific Playstyle Integration: The
reasoning demonstrates an understanding of hero roles, advising that A Guduo, as a marksman,
should "maintain a safe distance for output" and utilize her skills in tandem with Jiang Ziya’s control
effects.

Finally, the model distills this intricate chain of reasoning into a single, clear, and concise instructional
output for the player: “Jointly push down the enemy mid-lane tier-one tower with Jiang Ziya; be
mindful of a potential enemy ambush." This case study effectively showcases that TiG is not merely
reactive but engages in a proactive, strategic decision-making process within the game environment.

8
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It balances opportunity with risk, incorporates hero-specific knowledge, and ultimately provides
guidance that is both tactically sound and immediately executable for a human player.

5 RELATED WORK

Game Understanding of LLMs. While large language models (LLMs) excel at language-based
reasoning, effectively applying them to games remains challenging. This difficulty stems from their
reliance on static pre-training data and a lack of true environmental grounding (Hu et al., 2024b).
The main challenges are as follows: (1) Contextual grounding: LLMs struggle to interpret dynamic
and evolving game states, making it difficult for them to make consistent and accurate decisions
based on real-time information from the game environment (Hu et al., 2024c); (2) Symbolic precision:
LLMs can misinterpret subtle differences in game terminology or item attributes—such as confusing
a "dagger" with a "shortsword"—which can disrupt their interaction with the game engine (Southey
et al., 2012); and (3) Long-term planning and memory: Many games require strategic reasoning
over extended time horizons, a task that remains difficult for LLMs due to their limited memory
and planning capabilities (Silver et al., 2016; Vinyals et al., 2017; He et al., 2025). In this paper,
we address these challenges by bridging the gap between LLMs and game environments, enabling
LLMs to develop experiential understanding through direct interaction while preserving their natural
strengths in reasoning and explanation.

Role of RL in LLMs. Recent advances in LLMs have highlighted the crucial role of RL in aligning
model outputs with human preferences (Sui et al., 2025; Jin et al., 2025). While pre-training LLMs
on vast text corpora enables them to generate fluent and grammatically correct text, this alone
is insufficient for ensuring that models are helpful, harmless, and aligned with user expectations.
Supervised fine-tuning (SFT) can improve structure but often fails to guarantee factual accuracy or
mitigate biases. RL, particularly through RL from human feedback (RLHF) (Ouyang et al., 2022),
addresses these limitations by training a reward model based on human preferences to guide further
policy optimization, commonly using Proximal Policy Optimization (PPO) (Schulman et al., 2017).
However, PPO introduces complexity due to its reliance on multiple optimization rounds and the need
for a separate reward model. To simplify this process, methods such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023) and SimPO (Meng et al., 2024) have been proposed. These approaches
reframe the problem as a classification task between preferred and rejected responses, eliminating the
need for a separate reward model by leveraging preference data directly.

More recently, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has emerged as
a flexible alternative for obtaining reward signals. Unlike PPO, GRPO does not strictly require a
reward model; instead, it can incorporate reward signals from any function or model capable of
evaluating response quality. For example, one could use a length function to reward concise answers,
a mathematical solver to verify solution correctness, or a factuality checker to encourage more
accurate responses. This flexibility makes GRPO particularly versatile for a wide range of alignment
tasks. Despite these advancements, the application of RL-based alignment methods—especially in
game-related domains—remains an open area for further exploration.

6 CONCLUSION

In this work, we introduced Think-In-Games (TiG), a novel framework that empowers LLMs to
acquire procedural knowledge through direct interaction with game environments, while retaining
their natural strengths in reasoning and explanation. By reformulating RL as a language modeling
task, TiG enables LLMs to generate interpretable, language-guided policies that are refined via online
feedback. Our experiments demonstrate that TiG not only bridges the gap between knowing about
and knowing how to do, but also achieves competitive performance with significantly reduced data
and computational requirements compared to traditional RL approaches. Furthermore, TiG produces
step-by-step explanations for its decisions, enhancing transparency and interpretability in complex,
interactive tasks. We believe this framework opens new avenues for developing AI agents that can
both act effectively and explain their reasoning in dynamic environments.
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A RESPONSE LENGTH VS. REWARDS.

We illustrate how rewards and response lengths change during RL training process in Figure 4. For
Qwen2.5-14B and Qwen-2.5-32B, response length follows a pattern of decreasing, then increasing,
and finally stabilizing, which aligns with their overall performance trends. In contrast, Qwen-3-14B’s
response length steadily increases throughout training. This may be because Qwen-3-14B is designed
to support deeper thinking and benefits from scaling laws—generating more tokens tends to improve
its capabilities.

(a) Qwen2.5-14B (b) Qwen2.5-32B (c) Qwen3-14B

Figure 4: Demonstration of Rewards & Response Length change during the RL training process.

B EXPERIMENT SETUP

B.1 DETAILED DESCRIPTIONS OF THE BENCHMARKS

We evaluate our models on several different benchmarks that target on various capabilities of large
language models, including reasoning (math), memorization, domain-specific knowledge (subject
examination), dialogue, logical reasoning and the instruction following, etc. The details of the
benchmarks are as follows:

• Ape210K (Zhao et al., 2020): A large-scale and template-rich math word problem dataset. For our
experiments, we randomly sample 200 examples from the test set.

• MMLU (Hendrycks et al., 2021): A comprehensive benchmark covers knowledge from 57 subjects
across STEM, the humanities, the social sciences, etc. It ranges in difficulty from an elementary
level to an advanced professional level, and it tests both world knowledge and problem solving
ability. We sample the first 50 examples from each subject and collect 50 ∗ 57 = 2850 cases for
our experiments.

• CEval (Huang et al., 2023): Similar to MMLU, CEval is a Chinese-language benchmark comprising
52 subtasks across four categories: STEM, social sciences, humanities, and others. We consider it
as an additional testbed to evaluate language mixing challenges (DeepSeek-AI et al., 2025).

• School-Chinese (lanhin, 2018): This benchmark assesses memorization capabilities of LLMs on
classical Chinese poems by requiring the model to predict subsequent content given introductory
text. We collect these datasets manually from the public data repository and construct a benchmarks
covering 269 samples.

• BBH (Suzgun et al., 2023): A subset of the BIG-Bench (Srivastava et al., 2023) focusing on a
suite of 23 challenging tasks that require multi-step reasoning. It is widely regarded as a standard
evaluation set for assessing the logical reasoning abilities of language models.

• IfEval (Zhou et al., 2023): A standard benchmark for evaluating instruction following capabilities
of LLMs. It contains approximately 500 verifiable instructions, such as "write more than 400
words" or "mention the keyword ’AI’ at least three times," which can be automatically checked
using heuristics.

• CharacterEval (Tu et al., 2024): A Chinese benchmark for evaluating role-playing conversational
abilities. It includes 1,785 multi-turn dialogues and 23,020 examples featuring 77 characters drawn
from Chinese novels and scripts.
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B.2 EVALUATION ON GENERAL BENCHMARKS

Model Math Memorization Subject Exam Dialogue Logical Reasoning Instruction Following
ape_210k SchoolChinese MMLU Ceval CharacterEval BBH IfEval

Qwen2.5-14B 79.0 95.7 76.2 76.7 3.05 60.7 64.8
Qwen2.5-14B+SFT+GRPO 78.8 95.8 76.3 76.2 3.04 61.3 64.9
Qwen3-14B 93.5 91.6 80.3 83.1 3.01 65.8 65.8
Qwen3-14B+SFT+GRPO 94.1 91.3 80.4 82.8 3.01 66.9 65.3
Qwen2.5-32B 84.0 98.1 83.2 87.7 3.13 67.5 85.8
Qwen-2.5-32B + GRPO 85.0 97.9 83.5 87.4 3.13 69.7 85.3

Table 3: Performance on different benchmarks regarding general capabilities of language models.

Table 3 presents the performance of our models on a range of standard benchmarks that assess general
language understanding and reasoning abilities. By comparing our trained models with the original
models, we find that our training method preserves, and in some cases slightly improves, general
language and reasoning abilities across diverse benchmarks. Specifically, we observe a consistent
improvement in the logical reasoning task (BBH). These results confirm that our approach enables
domain-specific improvements without sacrificing overall language model capabilities.

C PRELIMINARY STUDY OF DEEPSEEK-R1 PERFORMANCE ON GAME

Recent investigations and preliminary experiments have demonstrated that DeepSeek-R1 (DeepSeek-
AI et al., 2025), leveraging its powerful logical reasoning capabilities, can effectively integrate
knowledge about the MOBA game, acquired from publicly available textual data. This knowledge
includes hero skills, game strategies, equipment information, and more. As a result, DeepSeek-R1
exhibits strong in-game analytical abilities, which have shown promising improvements in existing
business applications.

Despite these strengths, DeepSeek-R1 faces two critical challenges: (1) Efficiency limitations: While
a certain model scale is necessary for a general reasoning model to generalize its capabilities to the
HoK domain, the large size of DeepSeek-R1 hinders its practical deployment. The computational cost
impacts real-time user experience, making it difficult to guarantee responsiveness in live scenarios;
(2) Performance ceiling: The model’s analytical power fundamentally relies on the combination
of data and strategy guides, rather than a deep understanding of the underlying game mechanics.
Human-authored guides often omit implicit knowledge; for example, a strategy might advise “avoid
pushing the lane too far,” but the precise definition of “too far” requires experiential understanding
gained through gameplay. Although prompt engineering can inject some additional game mechanic
information to partially compensate for this gap, it does not fundamentally enhance the model’s
reasoning ability within the HoK environment.

Motivated by these limitations, this work aims to develop a lightweight reasoning model tailored for
HoK that approaches or even surpasses the reasoning capabilities of DeepSeek-R1. Our objectives
are twofold: to reduce computational costs and to achieve a deeper, more intrinsic understanding of
game mechanics than general-purpose reasoning models. This approach promises both improved
efficiency and enhanced analytical performance in the HoK domain.

D FORMALIZATION OF REINFORCEMENT LEARNING USING GRPO

Motivation for GRPO. Traditional RL algorithms such as PPO (Schulman et al., 2017) have
demonstrated effectiveness in language model fine-tuning, but often struggle with high-variance
rewards and inefficient credit assignment when applied to long, structured outputs. GRPO addresses
these challenges by leveraging group-wise relative advantages, which normalize rewards within a
batch of generated completions. This approach not only stabilizes training but also encourages the
model to generate responses that are comparatively better within each group, aligning well with the
competitive and multi-agent nature of MOBA games.

Differences from Standard GRPO. While our approach is based on the original GRPO frame-
work (Shao et al., 2024), we introduce several adaptations to better suit the MOBA reasoning task.
First, we employ a rule-based, binary reward function tailored to the correctness of macro-level
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action predictions, rather than relying on human preference or neural reward models. Second, we
restrict the action space to a finite set of interpretable strategies, which simplifies reward computation
and evaluation. Finally, we omit format-based rewards, as our model demonstrates strong structural
adherence by design. These modifications ensure that the RL signal is both reliable and directly
aligned with the objectives of strategic reasoning in MOBA games.

Error Type Definition
Basic Game Knowledge Errors Errors caused by misunderstanding core game mechanics or roles.

E.g., the Support role should prioritize protecting allies and not
take Buffs, but the model suggests taking the Buff.

Game State Misinterpretation LLM fails to extract or interpret key battlefield information cor-
rectly (e.g., ally/enemy confusion, incorrect HP assessment). E.g.,
A team fight is occurring in our Blue Buff zone, but the model
identifies it as the enemy’s Blue Buff zone.

Critical Event Oversight LLM fails to detect or respond to major in-game events (e.g., team
fights, High Ground pushes, Dragon/objective contests). E.g., A
team fight is happening nearby in Bot Lane, but the model focuses
on defending Mid Lane instead.

Situational Misjudgment Poor overall game-state assessment, prioritizing minor/local infor-
mation over critical objectives. E.g., When the team should push
the Base, the model chooses to push an Outer Turret because one
enemy hero is low HP.

Spatio-Temporal Miscoordination Inability to judge distances between map zones or positioning
accurately, leading to inefficient pathing/decisions. E.g., Bot Lane
is far away, yet the model decides to kill the Bot Lane Bird creep
instead of the closer Spatial Spirit.

Table 4: Definition of the Common Error Types

Figure 5: Demonstration of JSON object for each game state.

E LIMITATIONS AND FUTURE WORK

Limitations. Despite the promising results of the TiG framework, there are some limitations that
need to be acknowledged:

• Dependence on LLM Quality: The effectiveness of TiG is inherently tied to the capabilities of
the underlying LLM backbones. Limitations in language understanding or generation, particularly
in highly complex or real-time environments, may restrict policy performance.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Category id Action Explanation
None 0 None No Action triggered for a short period

Dragon
1 Lord Deal damage to the Lord (Main Dragon)
2 Tyrant Deal damage to the Tyrant (Early Game Dragon)
3 Dragon King Deal damage to the Dragon King (Late Game Dragon)

Tower

4 Crystal Deal damage to enemy Crystal (Nexus)
5 Top Tower Deal damage to Top Lane Tower
6 Mid Tower Deal damage to Mid Lane Tower
7 Bot Tower Deal damage to Bottom Lane Tower

Defense

8 Defend Crystal Defend our Crystal
9 Defend Top Tower Defend Top Lane Tower

10 Defend Mid Tower Defend Mid Lane Tower
11 Defend Bot Tower Defend Bottom Lane Tower

Hero

12 Top Hero Damage enemy heroes in Top Lane
13 Mid Hero Damage enemy heroes in Mid Lane
14 Bot Hero Damage enemy heroes in Bottom Lane
15 River Top Hero Damage enemies in Upper River (including dragon pit)
16 River Bot Hero Damage enemies in Lower River
17 Allied Jungle Hero Damage enemies in our Jungle
18 Enemy Jungle Hero Damage enemies in opponent’s Jungle
19 Ally High-ground Hero Damage enemies on our High-ground
20 Enemy High-ground Hero Damage enemies on enemy High-ground

Line

21 Top Minions Clear Top Lane minions
22 Mid Minions Clear Mid Lane minions (including super minions)
23 Bot Minions Clear Bottom Lane minions
24 Ally High-ground Minions Clear minions on our High-ground
25 Enemy High-ground Minions Clear minions on enemy High-ground

Buff

26 Allied Red Take our Red Buff
27 Enemy Red Steal enemy Red Buff
28 Allied Blue Take our Blue Buff
29 Enemy Blue Steal enemy Blue Buff

Jungle

30 Allied Camps Clear our Jungle camps (non-buff)
31 Enemy Camps Invade enemy Jungle camps
32 Void Spirit (Top Crab) Kill Void Spirit (River objective)
33 Crimson Raptor (Bot Crab) Kill Crimson Raptor (River objective)

Grouping

34 Top Grouping Group in Top Lane
35 Mid Grouping Group in Mid Lane
36 Bot Grouping Group in Bottom Lane
37 River Top Grouping Group in Upper River
38 River Bot Grouping Group in Lower River
39 Allied Jungle Group Group in our Jungle
40 Enemy Jungle Group Group in enemy Jungle
41 Ally High-ground Group Group on our High-ground
42 Enemy High-ground Group Group on enemy High-ground

Recall 43 Recall Hero at fountain (including walk-back)

Table 5: Action Category Definition.

• Domain Generalization: Our current experiments are primarily conducted within digital game
environments. The generalizability of TiG to other interactive domains—such as robotics or
real-world tasks—remains to be thoroughly investigated.

• Sample Efficiency: Although TiG improves sample efficiency compared to baseline methods, it
still requires a substantial amount of environment interaction. This requirement may be prohibitive
in scenarios where data collection is expensive or time-consuming.

• Interpretability of Policies: The interpretability of language-based policies depends on the clarity
and faithfulness of the generated explanations. In some cases, these explanations may not fully or
accurately reflect the underlying decision-making process.

Future Works. Several directions can be explored to improve upon TiG:

• Scaling and Generalization: Future work will focus on scaling TiG to a broader range of
environments, including those with greater complexity and diversity. Additionally, we aim to
enhance the fidelity of generated explanations and incorporate multimodal feedback (e.g., visual or
auditory cues) to support richer procedural learning.

• Long-Term Reasoning: Another promising direction is to investigate tasks that require long-term
memory or reasoning across extended state transitions. Addressing such challenges will require
more sophisticated mechanisms for temporal abstraction and memory management.
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F MORE CASES

Figure 6: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and <result>
</result> refers to the model guidance to the main player in natural language.

Figure 7: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and <result>
</result> refers to the model guidance to the main player in natural language.

Figure 8: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and <result>
</result> refers to the model guidance to the main player in natural language.

G LARGE LANGUAGE MODELS(LLMS) USAGE DECLARATION

In the preparation of thie work, the authors used DeepSeek-R1 to assist with language polishing and
to translate certain content related to the HoK Game from Chinese to English. After using this tool,
the authors reviewed and edited the content as needed and take full responsibility for the content of
the publication.
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Figure 9: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and <result>
</result> refers to the model guidance to the main player in natural language.

Figure 10: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and
<result> </result> refers to the model guidance to the main player in natural language.

Figure 11: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and
<result> </result> refers to the model guidance to the main player in natural language.
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Figure 12: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and
<result> </result> refers to the model guidance to the main player in natural language.

Figure 13: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and
<result> </result> refers to the model guidance to the main player in natural language.

Figure 14: One of the cases of TiG. <think> </think> refers to the thinking process of model output, and
<result> </result> refers to the model guidance to the main player in natural language.
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