
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLMS MUST THINK THRICE TO SOLVE EXECUTABLE
COUNTERFACTUALS

Anonymous authors
Paper under double-blind review

ABSTRACT

Counterfactual reasoning, a hallmark of intelligence, consists of three steps: in-
ferring latent variables from observations (abduction), constructing alternative
situations (intervention), and predicting the outcomes of the alternatives (pre-
diction). This skill is essential for advancing LLMs’ causal understanding and
expanding their applications in high-stakes domains such as scientific research and
healthcare. However, existing efforts in assessing LLM’s counterfactual reasoning
capabilities tend to skip the abduction step, effectively reducing to interventional
reasoning and leading to over-estimated LLM performance. To address this, we in-
troduce executable counterfactuals, a novel framework that operationalizes causal
reasoning through code and math problems. Our framework explicitly requires all
three steps of counterfactual reasoning and enables scalable synthetic data creation
with varying difficulty, creating a new frontier for evaluating and improving LLM’s
reasoning. Our results reveal substantial drop in accuracy (25-40%) from inter-
ventional to counterfactual reasoning for state-of-the-art models such as o4-mini
and Claude-4-Sonnet. To address this gap, we construct a training set comprising
counterfactual code problems having if-condition and test on out-of-domain code
structures (e.g., having while-loop); we also test whether a model trained on code
would generalize to counterfactual math word problems. While supervised finetun-
ing (SFT) on stronger models’ reasoning traces improves in-domain performance
of Qwen models, it leads to a decrease in accuracy on out-of-domain tasks such as
counterfactual math problems. In contrast, reinforcement learning (RL) induces
the core cognitive behaviors and generalizes to new domains, yielding substantial
accuracy gains over the base model on both code (↑~1.5–2X) and counterfactual
math problems. Analysis of the reasoning traces further reinforces these findings
and highlights the promise of RL with scalable data generation for improving
LLMs’ counterfactual reasoning.

1 INTRODUCTION

Counterfactual reasoning is the cognitive process of answering what-if questions that underpin
critical domains such as scientific discovery (Schölkopf et al., 2021), healthcare (Richens et al., 2020),
economics (Athey & Imbens, 2017), and public policy (Poulos & Zeng, 2021). Given an action and
an observed outcome, it involves inferring the latent state of a system when the action was performed
(abduction), constructing alternative scenarios through interventions, and predicting the outcomes
under those counterfactual scenarios (Pearl, 2002a; Epstude & Roese, 2008). Despite the importance
of counterfactual reasoning, it remains a widely documented weakness of current large language
models (LLMs; Jin et al., 2024; Yamin et al., 2025; Yu et al., 2023).

Evaluating and improving counterfactual reasoning is challenging because counterfactuals are inher-
ently unobservable and rely on hypothetical alternatives to reality. As a result, prior work considers
either synthetic graph-based settings that are hard to map to real-world problem solving (Jin et al.,
2024) or simplistic tasks that are expressed in counterfactual language but can be solved without
invoking all aspects of counterfactual reasoning. Examples include binary classification tasks given
full information about the causal graph (Would Y still occur if X didn’t happen?; Chen et al., 2025) or
benchmarks based on perturbations of existing reasoning problems (thus creating new “counterfactual”
problems; Wu et al., 2024). With full information and there are no latent confounders or noise, these

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Every catering tray is $6. There is a
per-tray service fee. For 6 trays the
total is $42. If instead 11 trays were
ordered, what amount would be shown?

The tumor did not shrink after
Interferon. Given the patient's
biology, what if they had
received Imatinib instead?

Given with
and an unknown , what would
 have been if we had set

, keeping the same ?

y = − 1 x = 1
r

y
x = 3 r

Infer based on the
observation

r ≥ 0.3
f(r, x = 1) = − 1

Overwrite x = 3

Infer the per-tray service fee is
$1 based on the observation

Infer the unobserved
tumor aggressiveness

Step 1:
Abduction

Step 2:
Intervention

Step 3:
Prediction Predict f(r > = 0.3,3) = − 3

Overwrite #trays to 11

Predict the amount 11 × (6 + 1) = 77

Set the alternative treatment

Predict alternative outcome

X RY

Structured Causal Model (SCM)

Executable Counterfactuals
Math (§3.2) Ilustrative Medical Toy ExampleExecutable Counterfactuals

Code (§3.1)

§3.1

§3.3

Figure 1: Executable counterfactuals across code, math, and a medical toy example to illustrate
abduction–intervention–prediction. Code offers a controlled, executable setting that maps naturally
to causal/computational graphs and transfers to natural-language tasks.

problems can be solved by simple forward reasoning (Gerstenberg, 2022): change the input variables’
values as instructed and solve it as a new problem, without any counterfactual reasoning.

These simplified interpretations of counterfactuals risk conflating them with simpler forms of causal
reasoning (more on this in §2) and thus misrepresent LLMs’ counterfactual abilities. To address
these limitations, we identify the three core cognitive skills from Pearl’s definition of counterfactual
reasoning (Pearl, 2002a)—Abduction , Intervention and Prediction—and construct tasks that requires
all three skills to obtain a correct solution. In line with prior work (Gandhi et al., 2025) that
evaluates cognitive behaviors in LLMs for self-improvement, we assess the behaviors required for
counterfactual reasoning. Key benefits of this perspective include explicit separation of counterfactual
reasoning from simpler forms of causal reasoning, fine-grained attribution of models’ strengths and
weaknesses, and an actionable framework for improvement (§3). Moreover, beyond counterfactuals,
improvements to these cognitive skills can independently serve as building blocks for stronger LLM
reasoning in general.

Our key idea is to use code understanding as a problem setting for studying counterfactual reasoning
(executable counterfactuals). We show how real-world partial information settings can be abstracted
in code through latent variables while still allowing for objective evaluation. Specifically, we introduce
random variables in the code understanding task such that their values are not revealed to the language
model. In the formal structural causal model framework, these random variables can be considered as
noise variables that need to be inferred before making any counterfactual prediction. As shown in the
illustrative example in Figure 1, the causal structure X → Y ← R where X and R independently
cause Y , converts to a program where X computes Y while R determines conditional branching. A
counterfactual question is constructed as: Given observation y = f(r, x = 1) = −1 with unknown r,
what would y have been if we had set x = 3, keeping the same r? Solving this problem requries the
agent to invoke all three cognitive skills, (1) infer r based on the observation y = −1 (abduction), (2)
mentally set x = 3 (intervention), and (3) compute the resulting y (prediction).

Beyond the aforementioned benefits, our code-based framework avoids the potential ambiguity of
natural language, and allows rich and controllable complexity for constructing evaluation problems
and generating synthetic training data (§3). It evaluates models’ ability to use counterfactual reasoning
for problem solving rather than reducing the task to answer binary classification questions based on
natural language templates (Jin et al., 2024; Chen et al., 2025). In addition, it facilitates evaluating
and improving out-of-distribution generalization by varying the program structures and translating

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

coding tasks into counterfactual math problems §3. We address the following important research
questions with executable counterfactuals:

1. How do current LLMs perform on counterfactual reasoning? Our experiments with open models
of sizes ranging from 1.5B to 72B parameter and commercial reasoning models show strong
performance on straightforward code-execution tasks, but poor performance on counterfactual
reasoning over the same code. Qualitative analysis indicates consistent failure at the abduction
step, leading to incorrect conditioning on the original observation to infer latent features.

2. Can SFT distillation from stronger models instill these skills and do they generalize? We
finetune Qwen 1.5B/3B/7B-Instruct on reasoning trajectories from DeepSeek-Distilled-Qwen-
32B, and observe ~40% performance improvements on in-domain evaluation. However, these
improvements do not generalize to unseen code structures or counterfactual math problems,
highlighting the limited generalization of SFT.

3. How does RL fare? Training the same models with RL from verifiable rewards (RLVR) using
GRPO (Shao et al., 2024) leads the models to acquire the necessary cognitive skills, showing strong
transfer across diverse code structures and counterfactual math problems in natural language, with
concrete evidence of improved generalization.

Our findings have two key implications. First, they reinforce recent evidence that current LLMs
remain weak at counterfactual and causal reasoning (Jin et al., 2024; 2023; Willig et al., 2023).
Second, our experiments call into question the effectiveness of SFT, a widely adopted approach
by recent works to improve counterfactual reasoning (Guo et al., 2025; Li et al., 2025), especially
regarding its ability to generalize to complex and high-impact real-world domains. In contrast, our
results show that RL elicits stronger generalization for counterfactual reasoning; despite training
only on code, the model internalizes the core skills and applies them directly to counterfactual math
problems, providing early evidence that RL is a promising pathway for eliciting such reasoning in
LLMs. Crucially, as shown in the experiments, our code-based framework has the potential to offer a
scalable way for learning counterfactual reasoning that transfers to new domains where training data
can be scarce. All code and data will be publicly released upon publication.

2 BACKGROUND AND RELATED WORK

In this section, we will first outline the cognitive skills required for counterfactual reasoning and then
show how it is often conflated with interventional reasoning in prior work.

From abduction to prediction. We use Figure 1 as a running example to expand the cognitive skills
required for counterfactual reasoning. Three steps are needed to answer the counterfactual question
Given observation y = f(r, x = 1), what would y have been had x = 3 instead in the original run?

Step 1: Hindsight reasoning for abduction: Rewind back to the point where the original
action was taken, to infer latent features and noise present in the system at that time. The above
counterfactual question, cannot be answered by simply re-running the program with x = 3. One
must first abduce the hidden latent variable r̂ ≥ 0.3 from the observed run f(r̂, x = 1) = 1.
Step 2: Taking a different action (intervention): Conditioned on the inferred latent features from
abduction stage, perform the counterfactual change by intervening the input to its counterfactual
value while keeping everything else the same as in the earlier observation. For the code example,
this means holding r̂ fixed while intervening by overwriting x = 3.
Step 3: Prediction: Based on the new action taken, compute its consequences in the counterfactual
scenario. In the example, computing ycf = f(r̂ ≥ 0.3, x = 3) is final prediction step.

Without latent states and the abduction step, counterfactual reasoning reduces to interventional
reasoning, corresponding to Level 2 in Pearl’s causal ladder (Pearl, 2009), which breaks down causal
reasoning to three progressively more advanced levels: Associational (Level 1), Interventional (Level
2), and Counterfactual (Level 3); see Appendix A for a detailed overview.

Past studies often overlook abduction. Prior evaluations of LLM counterfactual reasoning often use
fully observed settings with no latent noise. This effectively makes the abduction step unnecessary
since there is no unobserved variable or noise to abduce. In such regimes, a counterfactual query
collapses to an interventional one: the answer follows directly from taking a different action not
requiring the step of inferring hidden state. Take Figure 1 (left) as an example and consider the
following question q: What would y have been be if we had set r = 0.4, x = 3? Although q may

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

appear similar to the counterfactual question in Figure 1, it is fundamentally different. Crucially,
answering q does not require abducting the values of r, since it is explicitly specified. Therefore,
solving q relies solely on interventional reasoning (Level 2) rather than counterfactual reasoning
(Level 3); in this sense, q effectively collapses to an interventional question despite its seemingly
“counterfactual” framing.

The above example question q, though synthetic, conceptually illustrates the key reason for the
mischaracterization of counterfactuals in many recent works (Wu et al., 2024; Li et al., 2024; Chen
et al., 2025; Nguyen et al., 2024; Paranjape et al., 2022; Wu et al., 2021; Madaan et al., 2021; Ye
et al., 2021; Joshi & He, 2022; Vashishtha et al., 2023).1 See Appendix N for detailed discussion.

Clearly distinguishing counterfactual from interventional reasoning is important for accurately
understanding the capabilities and limitations of current LLM paradigms, and for designing algorithms
that advance their causal reasoning. It requires an explicit characterization of the three-step process
of abduction, intervention, and prediction, which motivates our executable counterfactual framework.

Other related work. Jin et al. (2024) provides formal benchmarks across the causal ladder, including
counterfactuals. While well grounded in causal theory, some tasks are less aligned with realistic
applications and often presuppose familiarity with advanced tools (do-calculus, d-separation, media-
tion/IV) which can make it harder to pinpoint whether errors stem from graph inference, identifiability,
effect decomposition, or numerical estimation. Similar trade-offs appear in recent causal benchmarks
(Yang et al., 2025; Zhou et al., 2024; Tandon et al., 2019). Operating on code and math—two domains
where recent LLMs have made rapid progress—our framework provides concrete mechanisms to
isolate their causal capabilities and to apply established methods such as SFT and RLVR to enhance
counterfactual reasoning, as we will do in the experiments.

3 OPERATIONALIZING COUNTERFACTUAL REASONING VIA CODE & MATH

We move beyond graphical approaches (Yang et al., 2025) and purely formal tests (Jin et al., 2023;
2024) by using executable code as an actionable environment for counterfactual reasoning. Because
programs are computational graphs, they map naturally onto mathematical and graph formalisms and
enable fine-grained control of task difficulty and latent-variable structures. This allows for designing
out-of-distribution (OOD) evaluation by encoding causal graphs with novel features and logic unseen
during training. Our framework produces executable counterfactuals with verifiable ground-truth
outcomes for both evaluation and training.

3.1 EXECUTABLE COUNTERFACTUALS: CODE

Overview. We generate distinct and executable Python functions from a small set of templates (8
for training, and 3-4 for each evaluation setup) by abstracting out the overall program structure and
isolating it from specific variables and operators. Unlike prior work that typically uses a checklist
approach which merely swaps numbers or operators while keeping the same control flow (Ribeiro
et al., 2020), we use function templates where complete code blocks with different functional purposes
are replaced by empty placeholders (Figure 2a). Specifically, we apply Claude-4-Sonnet to draft these
templates and potential code block candidates for each placeholder, and perform manual verification
to ensure quality and diversity. For each type of dataset split (training or evaluation) and control logic
(if-else, while loop, etc.), we fix a small set of templates along with a list of code block candidates.
For training datasets, we supply 15 combinations of function templates and code block candidates.
Moreover, to promote finer-grained variations in intermediate computations, we also make operators
and variables in the functions changeable. Finally, we deduplicate the generated functions using
techniques in Appendix M, which eventually results in a large and diverse set of executable functions
using an efficient and controllable recipe.

Template-based generation. We consider the following four function logic:

1It should be acknowledged that many of these works focus on robustness, generalization, and debiasing, and
never intend to study counterfactuals as in the causal sense. Nonetheless, the loose use of the counterfactual
framing can lead to misinterpretations by the readers Zhao et al. (2018); Kaushik et al. (2020); Vashishtha et al.
(2023), which highlights the importance of a precise characterization of counterfactuals.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1. If_else: These simple functions have at most one level of nesting structure, thus keeping the
intermediate computational steps at a low level (Figure 2a).

2. If_else-long: To test if the models can generalize to longer code structures with more statements,
we construct this evaluation dataset with higher levels of nested if-else structures (Table 7).

3. While: To test how models generalize counterfactual reasoning to control logic that it has never
seen during training, we construct this dataset with while loops (Table 8).

4. Multi_r: To test how models generalize to a different causal structure where multiple hidden
variables are present, we construct this dataset where each function has three unknown input
arguments. Moreover, we level up the complexity by introducing simple for loops (Table 9) apart
from if-else statements.

(a) Template instance for generating if-else
functions in the training set

(b) Code function generated from template in 2a

(c) Another structurally different code function
generated from the same template in 2a

Figure 2: Structural diversity emerges from
our nested template based approach where a
single template can generate structurally and
semantically different functions as shown in
2b and 2c

If_else is used for both training and in-distribution
(ID) evaluation, while If_else-long, While, and
Multi_r are used for out-of-distribution (OOD) eval-
uation and never used in the training data.

One important feature of our template approach is
that there are three different levels of placeholders
whose combinations can greatly advance the diversity
of our final datasets.

• Fixed placeholders: boilerplate such as the func-
tion name, a reproducible draw of a latent variable
r, by setting the random seed, and the final return
statement. To design functions with more than one
latent variables, we explicitly define placeholders
for each extra latent variable.

• Structural placeholders: Slots for complete code
blocks that define the program’s logic, including
the optional pre-processing steps, the main if-
condition (simple or compound), possible elif
clauses, code pieces inside each branch, and the
form of the return statement.

• Value placeholders: Specific operators and num-
bers (e.g., +, *, thresholds) that determine the func-
tion’s detailed behavior once the structure is cho-
sen.

To better mirror real-world ambiguity, where multiple
latent configurations can explain the same observa-
tion, we insert a modulo at the return statement in
training functions (i.e., return g(·) mod m). The
modulo’s periodicity induces a many-to-one mapping
from latent r to the observed output, so several r
values are consistent with the factual run, yielding
multiple valid counterfactual outcomes. At evalua-
tion, we score the model against the full set of valid
answers: we report exact match (set equality) and an
aggregated F1 that rewards partial coverage of the
ground-truth set.

To create the interventional version of the same pro-
gramming problem, we keep the code unchanged
and disclose the realized value(s) of r. Revealing
r removes the abduction step, so the task reduces
to re-evaluating the program under a new input x.
Accordingly, the performance gap between the inter-
ventional and counterfactual prompts depicts the lack
of model’s counterfactual reasoning ability. Please
refer to Table 10 for interventional prompt.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Qwen

2.5-72B-Instruct Llama

-3.3-70B-Instruct QwQ-
32B GPT-

4o Claude-
4-Sonnet o4-

mini
0

20

40

60

80

100

Ex
ac

t M
at

ch

37.0 36.4
41.3 41.7

58.8

42.3

75.9 76.3

97.7
93.6

99.5

85.0

9.0
4.0

58.5

4.4

46.9

74.4

55.1 58.2

98.8

71.5

89.8

99.4
multi_r-cf
multi_r-interv
while-cf
while-interv

Figure 3: Even for LLMs with strong general capabilities or thinking features, the performance gap
between counterfactual and interventional questions originated from the same code function can still
be huge, showing the importance of targeted improvements in counterfactual reasoning.

3.2 GSM MATH PROBLEM CONSTRUCTION
FOR COUNTERFACTUAL REASONING

To test whether models can generalize beyond code, we construct a new dataset of counterfactual
variants of GSM-8K-style problems. See Figure 1 (middle) for an illustrative example. The key idea
is to introduce a hidden factor in each problem. Taking inspiration from Ye et al. (2024), each problem
starts in an everyday setting (office party, school fundraiser, etc.) and is specified by a computational
graph that tracks the key quantities (such as counts, unit prices, or fees) and how they combine (sums,
percentages, etc.). Inside this graph, we introduce one hidden factor that also contributes to the
total; their value is known in the computational graph but not revealed in the narrative. The hidden
factors are simple but varied. Examples include: flat add-on (e.g., an unseen service fee), per-item
add-on (e.g., an extra fee per tray), and an unknown amount of additional items at a known unit
price (e.g., some dessert boxes per tray at $3 each). We verbalize the graph into GSM-style word
problems. To increase variety, we use a small set of phrasing templates for different settings (such
as office party, fundraiser, etc) and vary both the scenarios and the point where the hidden factor is
introduced into the graph. Ground truth answers are produced by executing the computational graphs,
therefore resulting in verifiable answers. For creating an interventional version of the problem, we
keep everything exactly the same and reveal the value of the latent variable in the problem statement
(Table 4). To ensure that the latent variable is used in final answer computation, for each problem
constructed, we vary the value of the latent variable and see if it leads to change in final answer. If
there is no change we regenerate the problem.

4 EXPERIMENTS

With our executable counterfactuals framework we answer the three research questions in §1.

4.1 LLMS SHOW WEAKNESSES IN COUNTERFACTUAL REASONING

Motivation and Setting. As discussed in §2, the lack of abduction in prior works reduces coun-
terfactual reasoning to interventional reasoning, thus failing to distinguish the true counterfactual
from interventional capabilities. In light of this, we pair each of the counterfactual evaluation dataset
of our framework with an interventional counterpart, which is built upon the same code function or
mathematical conditions except that the originally hidden variable is now revealed and fixed (Table 5
and 10). We evaluate a wide range of models with strong reasoning capabilities and present the com-
parison results in Figure 3 and Table 4. Please refer to Appendix L for the evaluation hyperparameters
adopted throughout this work.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Class Model
ID OOD

if_else if_else-long multi_r while

F1 EM F1 EM F1 EM F1 EM

Controllably
Trained Models

Qwen2.5-1.5B-Instruct 19.3 5.3 26.5 12.8 9.5 7.4 1.9 0.8
Qwen2.5-1.5B-Instruct-SFT 62.7 44.4 51.3 32.0 21.4 20.7 2.8 2.4
Qwen2.5-1.5B-Instruct-RL 34.7 20.2 50.3 39.6 25.5 25.2 5.0 4.2

Qwen2.5-3B-Instruct 32.1 11.8 38.7 16.7 14.0 11.1 5.4 2.7
Qwen2.5-3B-Instruct-SFT 70.8 53.2 55.4 34.7 22.8 21.6 2.6 2.2
Qwen2.5-3B-Instruct-RL 74.8 55.2 55.9 39.3 36.9 35.9 12.9 10.5

Qwen2.5-7B-Instruct 38.8 13.9 54.9 28.2 21.6 17.9 7.3 3.3
Qwen2.5-7B-Instruct-SFT 75.8 59.0 61.4 41.7 24.9 23.3 2.5 2.1
Qwen2.5-7B-Instruct-RL 81.7 67.8 75.0 58.3 40.3 36.3 11.2 8.1

General LLMs

Qwen2.5-32B-Instruct 42.9 17.2 63.3 29.9 40.1 34.8 11.2 6.2
Qwen2.5-72B-Instruct 47.0 20.3 65.0 32.8 42.3 37.0 13.6 9.0
Llama-3.3-70B-Instruct 50.0 22.0 62.8 28.7 41.8 36.4 12.0 4.0

GPT-4o 50.6 25.6 62.6 32.9 44.8 41.7 10.5 4.4
Claude-4-Sonnet 79.1 60.6 81.3 59.0 63.5 58.8 53.0 46.9

Reasoning LLMs
R1-Distill-Qwen-32B 86.0 69.1 89.7 77.9 57.1 47.9 69.7 63.1

QwQ-32B 73.5 54.9 85.1 73.0 44.7 41.3 63.2 58.5
o4-mini 91.1 76.2 95.9 90.2 51.9 42.3 84.6 74.4

Table 1: Evaluation results on in-distribution (ID) and out-of-distribution (OOD) counterfactual
coding tasks using our executable counterfactuals framework. Since each question may contain
multiple answers, we report both F1 and exact match scores in percentage units.

Findings. For six strong LLMs spanning four model families in both coding and math domains,
there consistently exists a significant performance gap between the counterfactual datasets of our
framework and their interventional counterparts, regardless of model providers, sizes, and test-time
scaling features. Notably, reasoning models (e.g., QwQ-32B (Team, 2025) and o4-mini) show nearly
perfect interventional reasoning performance in coding, yet achieve less than half on counterfactual
reasoning. Non-reasoning models mostly score below 10% in counterfactual datasets with while
loops, but can achieve over 70% in their interventional counterparts. Therefore, our framework reveals
the weakness of current strong LLMs in true counterfactual reasoning, suggesting the necessity of
targeted post-training improvements apart from traditional focus on general capabilities only.

4.2 DISTILLATION-BASED SFT GENERALIZES POORLY

Motivation and Setting. We then explore SFT, a widely adopted approach that has been tradi-
tionally shown effective for targeted improvements in counterfactual reasoning (Huyuk et al., 2025;
Huang et al., 2024) . Specifically, we opt for the popular long-Chain-of-Thought (long-CoT) SFT
paradigm, where the CoT annotations are distilled by a reasoning model with thinking features, due to
its proved benefits of better transfer in reasoning tasks (Guo et al., 2025; Li et al., 2025). We choose
DeepSeek-R1-Distill-Qwen-32B (Guo et al., 2025) as the teacher model, and Qwen2.5-1.5B/3B/7B-
Instruct series as the base models for all post-training attempts throughout this work. Please refer to
Appendix K for more data annotation and training details .

Findings. As shown in Table 1 and Figure 4, compared with their base, SFT models achieve strong
in-distribution (ID) counterfactual reasoning performance, as well as decent performance when
certain surface task features (e.g., length of code functions in if_else-long) are out-of-distribution
(OOD). However, when the fundamental reasoning structures of these tasks become OOD, including
the causal structure (e.g., more hidden variables in multi_r), control logic (e.g., while loops as the
control structure in while), and question domain (e.g., from code-based to natural language-based
math reasoning in gsm), the gains of SFT diminishes and it even hurts the performance in most cases.
Thus, our framework demonstrates that long-CoT SFT paradigm has only limited generalization of
counterfactual reasoning, despite the powerful external supervision signals. These findings call for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

investigations into other post-training approaches that are not only more supervision-efficient, but
can also generalize to complex and previously unseen task structures.

4.3 RLVR ELICITS GENERALIZABLE COUNTERFACTUAL REASONING SKILLS ACROSS CAUSAL
STRUCTURES AND QUESTION DOMAINS

Qwen2.5-1.5B Qwen2.5-3B Qwen2.5-7B0

10

20

30

40

50

9.0

22.0

39.0

1.5

8.5
12.911.0

27.7

46.3Instruct
SFT
RLVR

Figure 4: Accuracies on the GSM-
counterfactual dataset under domain-
transfer. RLVR consistently shows ef-
fective generalization from code-based
to natural language-based counterfactual
reasoning, while SFT consistently fails.
Moreover, the improvements of RLVR
also robustly scale with the model size.

Motivation and Setting. In search of a supervision-
efficient approach to generalize counterfactual reasoning
capabilities, we eventually resort to reinforcement learn-
ing. We use reinforcement learning from verifiable reward
(RLVR) with GRPO (Shao et al., 2024), a popular com-
bination that requires only outcome-based supervision.
Following prior work (Sun et al., 2025), we use exact
match scores as the outcome-based reward, and set the
prompt batch size and rollout size as 16 and 24 respec-
tively. Please refer to Appendix J for more details about
RLVR training.

Findings. As shown in Table 1 and Figure 4, RLVR
achieves consistent and significant gains for all scales of
models, and on all ID and OOD evaluation datasets. The
improvements are especially strong on multi_r, while, and
gsm, where involve fundamentally OOD causal structures
and reasoning contexts, and make our previous SFT at-
tempt uniformly fail. Notably, a Qwen2.5-7B-Instruct
model trained with RLVR achieves comparable perfor-
mance with Qwen2.5-72B-Instruct, and consistently better performance than its 32B variant across
the whole coding domain. Therefore, RLVR successfully achieves our goal of generalizing funda-
mental counterfactual reasoning skills to complex structures and previously unseen domains with
minimal supervision.

5 BEHAVIORAL ANALYSIS OF REASONING TRACES

We next analyze the models’ reasoning behaviors using executable counterfactuals. Table 2 illustrates
the three types of prototypical failure that we observe in the reasoning traces:

1. Brute-force enumeration of all possible hidden-variable values.
2. Assuming an arbitrary value for the hidden variable once the problem is considered too complex.
3. Complicating the problem through unnecessary case splitting and circular analyses.

Inspired by these observations, we evaluate each reasoning trace along two dimensions: planning
and execution. The planning score evaluates whether the three core cognitive skills of counterfactual
reasoning—abduction, intervention, and prediction—are sequentially applied. The execution score
evaluates the correctness of mathematical computation and code simulation, a general skill that is not
specific to counterfactual reasoning. Following prior work (Sun et al., 2025), we use o4-mini as the
LLM judge to rate each dimension on a scale of 1 to 5, and defer other technical details, including
the grading rubric in prompts, to Table 11 in Appendix. Figure 5 presents the results.

Scaling model size improves computational accuracy, but not abduction skills. As shown
in Figure 5, across all four coding tasks, scaling up the size of Qwen2.5-Instruct models leads to
consistent improvements in execution ratings, but not in planning. Instead, the 7B model consistently
receives higher ratings for its abduction skills than 32B on 3/4 tasks, and scores even higher than the
72B variant on both if_else-long and while. This suggests that scaling up the size of LLMs that are
post-trained on general domains improves the final accuracy in a way that does not comply with the
standard “abduction-intervention-prediction” strategy, thus resulting in poor counterfactual reasoning
performance even with a large model size.

SFT memorizes shallow abduction patterns that fail to generalize to complex problems. In
Figure 5, the planning scores of SFT models substantially drop in OOD tasks. Our inspection of
reasoning traces shows that when faced with OOD questions with increased complexity in completing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Brute-Force Enumeration Arbitrary Assumption
Since r is not given, list r and unroll loops:
r = 0→ local_sum = 1→ ⌊1/3⌋ = 0;
r = 1→ local_sum = 3→ ⌊3/3⌋ = 1;
r = 2→ local_sum = 5→ ⌊5/3⌋ = 1;

. . . scan until y = 120 fits at x = 15.

Assume r = 3. One outer iter:
local_sum = 3 + (3 + 1) = 7→

⌊7/3⌋ = 2. For x = 12:
y = 12 · 2 + 12 = 36.

Unnecessary Case-Splitting
Recover r from x = 15, y = 120 via inner-loop stops. Case 1: r ≤ 0→ inner never runs
→ y = x = 15. Case 2: r > 0→ local_sum after step1 is r. Split 2A: stop after step1 if
r ≥ 5r. Split 2B: take step2 if r < 5r → local_sum = 2r + 1. Also split by 2r + 1 vs. 5r

(<,=, >) and by (2r + 1) mod 3 ∈ {0, 1, 2}; then branch on q = ⌊(2r + 1)/3⌋ ∈ {6, 7, 8} . . .

Table 2: Examples of three prototypical failure modes in model-generated reasoning traces.

if-else if-else-long multi_r while1
1.5

2
2.5

3
3.5

4
4.5

5

if-else if-else-long multi_r while1
1.5

2
2.5

3
3.5

4
4.5

5
instruct-7B
sft
rlvr
instruct-32B
instruct-72B

Planning Execution

Figure 5: Evaluation results of the LLM-as-a-judge pipeline. For the responses generated by each
model on each dataset, the evaluation objective is decoupled into “planning” (row 1; i.e., whether
the “abduction-intervention-prediction” strategy is faithfully followed) and “execution” (row 2; i.e.,
whether the intermediate computations are correctly performed).

the abduction step, SFT models tend to override the standard reasoning strategy, and instead revert to
the prototypical failure modes discussed in Table 2 in order to evade true counterfactual reasoning. .

RLVR generalizes counterfactual reasoning strategies, but is still bottlenecked by computational
accuracy. As Figure 5 also reveals, RLVR models achieve the highest planning scores across all
evaluation datasets, demonstrating the generalizable counterfactual reasoning strategy that they learn
to apply even in fundamentally OOD tasks. On the other hand, the sharp decrease in execution
scores on both multi_r and while also suggests that a major error type for RLVR is computational
errors under the correct reasoning strategy. Therefore, our framework identifies the asynchronism in
learning counterfactual reasoning skills and general computational skills, and calls for future efforts
into improving both skills simultaneously to build a strong counterfactual reasoning agent.

6 CONCLUSION

We address gaps in evaluating counterfactual reasoning in LLMs by decomposing the skill into core
components by introducing an executable, code-based framework. Our setup builds dynamic testbeds
that require the full abduction, action, prediction rollout and allows for precise control over logic and
latent features. Using a template-based approach, we generate many structurally diverse functions
to form counterfactual queries and to train smaller models that currently struggle on these tasks.
We find that LLMs typically struggle at the abduction step, and this limitation is not resolved by
increasing model’s size as large scale models (up to 72B) also struggle with this. Our findings show
that models trained with SFT transfer these skills in-domain code evaluations but significantly falter
on OOD settings, whereas RL consistently induces them from code-only training and generalizes to
novel control flows and natural-language counterfactual math. We corroborate this with qualitative
case studies and LLM-as-a-Judge evaluations. Beyond counterfactuals, the same framework enables
flexible evaluation of other causal skills and can help pinpoint where current systems fall short.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS AND REPRODUCIBILITY STATEMENT

Ethics: All datasets used in our work are created synthetically and will be released publicly. We made
best efforts to cover contemporary benchmarks in a fair manner. There may be no direct harmful
impact, especially considering that our work is an analysis of an existing framework in causality.

Reproducibility: Our methods are fairly straightforward, and implementation details are already
included in our paper’s descriptions. We plan to release our code base for aiding reproducibility of
our results.

REFERENCES

Kabir Ahuja, Melanie Sclar, and Yulia Tsvetkov. Finding flawed fictions: Evaluating complex
reasoning in language models via plot hole detection, 2025. URL https://arxiv.org/abs/
2504.11900.

Susan Athey and Guido W. Imbens. The state of applied econometrics: Causality and policy
evaluation. Journal of Economic Perspectives, 31(2):3–32, 2017. doi: 10.1257/jep.31.2.3. URL
https://www.aeaweb.org/articles?id=10.1257/jep.31.2.3.

Taiyu Ban, Lyvzhou Chen, Xiangyu Wang, and Huanhuan Chen. From query tools to causal
architects: Harnessing large language models for advanced causal discovery from data. arXiv
preprint arXiv:2306.16902, 2023.

Yuefei Chen, Vivek K. Singh, Jing Ma, and Ruxiang Tang. Counterbench: A benchmark for
counterfactuals reasoning in large language models, 2025. URL https://arxiv.org/abs/
2502.11008.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural gener-
ation to benchmark reinforcement learning, 2020. URL https://arxiv.org/abs/1912.
01588.

Kai Epstude and Neal J. Roese. The functional theory of counterfactual thinking. Personality and
Social Psychology Review, 12(2):168–192, 2008. doi: 10.1177/1088868308316091.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax – a differentiable physics engine for large scale rigid body simulation, 2021. URL https:
//arxiv.org/abs/2106.13281.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL
https://arxiv.org/abs/2503.01307.

Tobias Gerstenberg. What would have happened? counterfactuals, hypotheticals and causal judge-
ments. Philosophical Transactions of the Royal Society B, 377(1866):20210339, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yinya Huang, Ruixin Hong, Hongming Zhang, Wei Shao, Zhicheng Yang, Dong Yu, Changshui
Zhang, Xiaodan Liang, and Linqi Song. Clomo: Counterfactual logical modification with large
language models, 2024. URL https://arxiv.org/abs/2311.17438.

Alihan Huyuk, Xinnuo Xu, Jacqueline Maasch, Aditya V. Nori, and Javier GonzÃąlez. Reasoning
elicitation in language models via counterfactual feedback, 2025. URL https://arxiv.org/
abs/2410.03767.

10

https://arxiv.org/abs/2504.11900
https://arxiv.org/abs/2504.11900
https://www.aeaweb.org/articles?id=10.1257/jep.31.2.3
https://arxiv.org/abs/2502.11008
https://arxiv.org/abs/2502.11008
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/2106.13281
https://arxiv.org/abs/2106.13281
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2311.17438
https://arxiv.org/abs/2410.03767
https://arxiv.org/abs/2410.03767

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona Diab,
and Bernhard Schölkopf. Can large language models infer causation from correlation? arXiv
preprint arXiv:2306.05836, 2023.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fer-
nando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard SchÃűlkopf.
Cladder: Assessing causal reasoning in language models, 2024. URL https://arxiv.org/
abs/2312.04350.

Nitish Joshi and He He. An investigation of the (in)effectiveness of counterfactually augmented data,
2022. URL https://arxiv.org/abs/2107.00753.

Divyansh Kaushik, Eduard Hovy, and Zachary C. Lipton. Learning the difference that makes a
difference with counterfactually-augmented data, 2020. URL https://arxiv.org/abs/
1909.12434.

Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language
models: Opening a new frontier for causality. arXiv preprint arXiv:2305.00050, 2023.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity, 2024. URL https://arxiv.org/abs/2310.06452.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015. doi: 10.1126/
science.aab3050. URL https://doi.org/10.1126/science.aab3050.

Yang Li, Youssef Emad, Karthik Padthe, Jack Lanchantin, Weizhe Yuan, Thao Nguyen, Jason Weston,
Shang-Wen Li, Dong Wang, Ilia Kulikov, et al. Naturalthoughts: Selecting and distilling reasoning
traces for general reasoning tasks. arXiv preprint arXiv:2507.01921, 2025.

Yongqi Li, Mayi Xu, Xin Miao, Shen Zhou, and Tieyun Qian. Prompting large language models
for counterfactual generation: An empirical study, 2024. URL https://arxiv.org/abs/
2305.14791.

Stephanie Long, Alexandre Piché, Valentina Zantedeschi, Tibor Schuster, and Alexandre Drouin.
Causal discovery with language models as imperfect experts. In ICML 2023 Workshop on Struc-
tured Probabilistic Inference & Generative Modeling, 2023.

Ximing Lu, Seungju Han, David Acuna, Hyunwoo Kim, Jaehun Jung, Shrimai Prabhumoye, Niklas
Muennighoff, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, and Yejin Choi. Retro-
search: Exploring untaken paths for deeper and efficient reasoning, 2025. URL https://
arxiv.org/abs/2504.04383.

Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Diptikalyan Saha. Generate your counterfactuals:
Towards controlled counterfactual generation for text, 2021. URL https://arxiv.org/
abs/2012.04698.

Van Bach Nguyen, Paul Youssef, Christin Seifert, and JÃűrg SchlÃűtterer. Llms for generating and
evaluating counterfactuals: A comprehensive study, 2024. URL https://arxiv.org/abs/
2405.00722.

Bhargavi Paranjape, Matthew Lamm, and Ian Tenney. Retrieval-guided counterfactual generation for
QA. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1670–1686, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/
v1/2022.acl-long.117. URL https://aclanthology.org/2022.acl-long.117/.

Judea Pearl. Reasoning with cause and effect. AI Magazine, 23(1):95, Mar. 2002a. doi: 10.1609/aimag.
v23i1.1612. URL https://ojs.aaai.org/aimagazine/index.php/aimagazine/
article/view/1612.

Judea Pearl. Reasoning with cause and effect. AI Magazine, 23(1):95–111, 2002b. doi: 10.1609/
aimag.v23i1.1612. URL https://doi.org/10.1609/aimag.v23i1.1612.

11

https://arxiv.org/abs/2312.04350
https://arxiv.org/abs/2312.04350
https://arxiv.org/abs/2107.00753
https://arxiv.org/abs/1909.12434
https://arxiv.org/abs/1909.12434
https://arxiv.org/abs/2310.06452
https://doi.org/10.1126/science.aab3050
https://arxiv.org/abs/2305.14791
https://arxiv.org/abs/2305.14791
https://arxiv.org/abs/2504.04383
https://arxiv.org/abs/2504.04383
https://arxiv.org/abs/2012.04698
https://arxiv.org/abs/2012.04698
https://arxiv.org/abs/2405.00722
https://arxiv.org/abs/2405.00722
https://aclanthology.org/2022.acl-long.117/
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1612
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1612
https://doi.org/10.1609/aimag.v23i1.1612

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Judea Pearl. Causality. Cambridge university press, 2009.

Jason Poulos and Shuxi Zeng. RNN-based counterfactual prediction, with an application to homestead
policy and public schooling. Journal of the Royal Statistical Society: Series C (Applied Statistics),
70(4):1124–1139, August 2021. doi: 10.1111/rssc.12511. URL https://doi.org/10.
1111/rssc.12511.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, and Yejin
Choi. Counterfactual story reasoning and generation. In Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 5043–5053, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1509. URL https://aclanthology.
org/D19-1509/.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy:
Behavioral testing of nlp models with checklist, 2020. URL https://arxiv.org/abs/
2005.04118.

Jonathan G. Richens, Ciarán M. Lee, and Saurabh Johri. Improving the accuracy of med-
ical diagnosis with causal machine learning. Nature Communications, 11:3923, 2020.
doi: 10.1038/s41467-020-17419-7. URL https://www.nature.com/articles/
s41467-020-17419-7.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612–634, 2021. doi: 10.1109/JPROC.2021.3058954.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Yiyou Sun, Shawn Hu, Georgia Zhou, Ken Zheng, Hannaneh Hajishirzi, Nouha Dziri, and Dawn
Song. Omega: Can llms reason outside the box in math? evaluating exploratory, compositional,
and transformative generalization. arXiv preprint arXiv:2506.18880, 2025.

Niket Tandon, Bhavana Dalvi Mishra, Keisuke Sakaguchi, Antoine Bosselut, and Peter Clark. Wiqa:
A dataset for "what if..." reasoning over procedural text, 2019. URL https://arxiv.org/
abs/1909.04739.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Aniket Vashishtha, Kabir Ahuja, and Sunayana Sitaram. On evaluating and mitigating gender biases
in multilingual settings, 2023. URL https://arxiv.org/abs/2307.01503.

Aniket Vashishtha, Abhinav Kumar, Atharva Pandey, Abbavaram Gowtham Reddy, Kabir Ahuja,
Vineeth N Balasubramanian, and Amit Sharma. Teaching transformers causal reasoning through
axiomatic training, 2025a. URL https://arxiv.org/abs/2407.07612.

Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhinav Kumar, Saketh Bachu, Vineeth N Bala-
subramanian, and Amit Sharma. Causal order: The key to leveraging imperfect experts in causal
inference, 2025b. URL https://arxiv.org/abs/2310.15117.

Alva West, Yixuan Weng, Minjun Zhu, Zhen Lin, and Yue Zhang. Abduct, act, predict: Scaffolding
causal inference for automated failure attribution in multi-agent systems, 2025. URL https:
//arxiv.org/abs/2509.10401.

Moritz Willig, Matej Zečević, Devendra Singh Dhami, and Kristian Kersting. Probing for correlations
of causal facts: Large language models and causality, 2023. URL https://openreview.
net/forum?id=UPwzqPOs4-.

12

https://doi.org/10.1111/rssc.12511
https://doi.org/10.1111/rssc.12511
https://aclanthology.org/D19-1509/
https://aclanthology.org/D19-1509/
https://arxiv.org/abs/2005.04118
https://arxiv.org/abs/2005.04118
https://www.nature.com/articles/s41467-020-17419-7
https://www.nature.com/articles/s41467-020-17419-7
https://arxiv.org/abs/1909.04739
https://arxiv.org/abs/1909.04739
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2307.01503
https://arxiv.org/abs/2407.07612
https://arxiv.org/abs/2310.15117
https://arxiv.org/abs/2509.10401
https://arxiv.org/abs/2509.10401
https://openreview.net/forum?id=UPwzqPOs4-
https://openreview.net/forum?id=UPwzqPOs4-

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. Polyjuice: Generat-
ing counterfactuals for explaining, evaluating, and improving models. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 6707–6723, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.523. URL
https://aclanthology.org/2021.acl-long.523/.

Yongliang Wu, Yizhou Zhou, Zhou Ziheng, Yingzhe Peng, Xinyu Ye, Xinting Hu, Wenbo Zhu,
Lu Qi, Ming-Hsuan Yang, and Xu Yang. On the generalization of sft: A reinforcement learning
perspective with reward rectification, 2025. URL https://arxiv.org/abs/2508.05629.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limi-
tations of language models through counterfactual tasks. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 1819–1862, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.naacl-long.102. URL https://aclanthology.org/2024.
naacl-long.102/.

Khurram Yamin, Gaurav Ghosal, and Bryan Wilder. Llms struggle to perform counterfactual reason-
ing with parametric knowledge, 2025. URL https://arxiv.org/abs/2506.15732.

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong
Tu, Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming
Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-
Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan,
and Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024. URL https:
//api.semanticscholar.org/CorpusID:274859421.

Shuai Yang, Qi Yang, Luoxi Tang, Jeremy Blackburn, and Zhaohan Xi. On the eligibility of llms for
counterfactual reasoning: A decompositional study, 2025. URL https://arxiv.org/abs/
2505.11839.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process, 2024. URL https://arxiv.org/abs/
2407.20311.

Xi Ye, Rohan Nair, and Greg Durrett. Connecting attributions and QA model behavior on realistic
counterfactuals. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 5496–5512, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.447. URL https:
//aclanthology.org/2021.emnlp-main.447/.

Wenhao Yu, Meng Jiang, Peter Clark, and Ashish Sabharwal. Ifqa: A dataset for open-domain
question answering under counterfactual presuppositions, 2023. URL https://arxiv.org/
abs/2305.14010.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in
coreference resolution: Evaluation and debiasing methods. In Marilyn Walker, Heng Ji, and
Amanda Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pp. 15–20, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-2003. URL https://aclanthology.org/N18-2003/.

Yu Zhou, Xingyu Wu, Beicheng Huang, Jibin Wu, Liang Feng, and Kay Chen Tan. Causalbench: A
comprehensive benchmark for causal learning capability of llms, 2024. URL https://arxiv.
org/abs/2404.06349.

13

https://aclanthology.org/2021.acl-long.523/
https://arxiv.org/abs/2508.05629
https://aclanthology.org/2024.naacl-long.102/
https://aclanthology.org/2024.naacl-long.102/
https://arxiv.org/abs/2506.15732
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://arxiv.org/abs/2505.11839
https://arxiv.org/abs/2505.11839
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2407.20311
https://aclanthology.org/2021.emnlp-main.447/
https://aclanthology.org/2021.emnlp-main.447/
https://arxiv.org/abs/2305.14010
https://arxiv.org/abs/2305.14010
https://aclanthology.org/N18-2003/
https://arxiv.org/abs/2404.06349
https://arxiv.org/abs/2404.06349

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

We used Large Language Models for analysis (LLM-as-a-Judge) in our work and data construction
which we have clearly defined in our paper’s methodology and analysis sections. Besides this, LLMs
were not used in our study.

B CAUSAL LADDER: LEVELS OF CAUSAL REASONING

The seminal work of Pearl (2009) breaks down causal reasoning in three progressively more advanced
levels: Associational (level 1), Interventional (level 2), and Counterfactual (level 3):

• Associational level concerns observational learning and forms causal hypothesis solely through
observations, often interpreted as pattern matching. This mirrors how most machine learning models
learn from input features and corresponding labels. This form of learning suffers from potential
confounding and selection bias as one cannot perform interventions to identify the underlying
causal structure.

• Interventional learning (level 2) requires learning through interventions, mirroring how humans
typically learn by taking actions and observing the outcomes. While this type of learning might
appear to be causal, due to the overall noise in the system which might be changing, identifying
whether the observed outcome was solely due to the action performed becomes challenging.

• Counterfactual reasoning (level 3) is the highest form of causal reasoning on the causal ladder.
It helps in disentangling the effect of other factors in the system, to identify the outcome had the
original action been different. However this requires stronger, unit-level structural assumptions,
many counterfactuals are not identifiable from data without modeling and this form of reasoning is
typically sensitive to model misspecification and “cross-world” assumptions.

Level Concept Expression Activity Question Example

I
Association /
Correlation

P (y | x) Seeing /
Observing

How does seeing x
change my belief in y?

Would the grass be dry
if we found the sprinkler

off?

II
Intervention /
Hypotheticals

P (y | do(x)) Doing
Would y happen if I did

x?

Would the grass be dry
if we made sure that the

sprinkler was off?

III Counterfactuals P (yx | x′, y′) Imagining

Would y have happened
instead of y′, if I had

done x instead of x′? /
What would have

happened if I had done
x, given that doing x′

led to y′?

Would the grass have
been dry if the sprinkler
had been off, given that
the grass is wet and the

sprinkler on?

Table 3: Definition of the causal ladder proposed by Pearl (Pearl, 2009), where {x, x′} denote
candidate causes, {y, y′} denote candidate effects, and P denotes the probability of an event. Notably,
Interventions and Hypotheticals are different names of the same reasoning paradigm, which only
thinks about changes that lie in the future (Gerstenberg, 2022). Counterfactuals differs from them by
thinking about changes that lie in the observed outcome or past.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C GSM: COUNTERFACTUAL VS INTERVENTIONAL

Model GSM-Interventional GSM-Counterfactual

Qwen2.5-1.5B-Instruct 0.184 0.090
Qwen2.5-3B-Instruct 0.403 0.220
Qwen2.5-7B-Instruct 0.604 0.390
Qwen2.5-32B-Instruct 0.885 0.731
Qwen2.5-72B-Instruct 0.797 0.731
Llama-3.3-70B-Instruct 0.951 0.822
GPT-4o 0.931 0.686
DeepSeek-R1-Distill-Qwen-32B 0.997 0.607

Table 4: GSM results: Interventional and counterfactual scores for baselines. Consistently models
tend to have a higher performance on interventional queries of GSM math problem then counterfactual
ones

D GSM EXAMPLES: COUNTERFACTUAL AND INTERVENTIONAL

Setting GSM Problem Answer

Counterfactual Ravi is organizing an office lunch. Every catering tray is priced at $68. There is
also a per-catering tray service fee. A discount of 14% is applied to the items
subtotal (before any fees). For 6 catering trays, the total shown is $353.88. If
instead 11 catering trays were ordered, with all else unchanged, what amount
would be shown?

$648.78

Interventional Ravi is organizing an office lunch. Every catering tray is priced at $68. There is
also a per-catering tray service fee of $0.50. A discount of 14% is applied to the
items subtotal (before any fees). For 6 catering trays, the total shown is $353.88.
If instead 11 catering trays were ordered, with all else unchanged, what amount
would be shown?

$648.78

Table 5: Two GSM-style instances derived via the dependency-graph approach inspired by Ye et al.
(2024). The first row is a counterfactual with a hidden latent variable (highlighted) that must be
inferred; the second row is the corresponding interventional instance with the fee (hidden latent
variable) revealed.

E ADDITIONAL RELATED WORK

Causality and LLMs. Recently a lot of work has focused on how effectively LLMs can be used as
domain priors for discovering causal relationship between different real world entities (Kıcıman et al.,
2023; Ban et al., 2023; Long et al., 2023; Willig et al., 2023; Vashishtha et al., 2025b). Furthermore,
some efforts have also focused on improving LLM’s causal reasoning via training on synthetic data
(Vashishtha et al., 2025a), or by testing different Chain-of-Thought (CoT) based methods (Jin et al.,
2024). Works like Jin et al. (2023; 2024) underline the current limitations of language models’ causal
reasoning in synthetic and formal settings across different types of reasoning including counterfactual
reasoning.

Using Counterfactuals for NLP tasks: Past work has also been focusing on improving robustness
in NLP tasks such as debiasing for gender based associations (Wu et al., 2024; Paranjape et al., 2022;
Wu et al., 2021; Madaan et al., 2021; Ye et al., 2021; Joshi & He, 2022; Vashishtha et al., 2023),
story generation (Qin et al., 2019), fictional complex reasoning (Ahuja et al., 2025), and improving
efficiency of reasoning trace (Lu et al., 2025). Recent work uses abduction-action-prediction based
promnpting strategy for accurate failure attribution in multi-agent systems for tasks like debugging,
showing promising improvement (West et al., 2025). These works have used counterfactuals as a way
to improve robustness in language models, and test reasoning abilities, while following a simplified
interpretation of counterfactual reasoning (Pearl, 2002b).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

RL vs SFT: Past studies have explored how the training paradigms of SFT and RL based training
differ, which guide our training design setup. Kirk et al. (2024) shows how Reinforcement Learning
from Human Feedback (RLHF), generalizes better then SFT under distribution shift from train set,
however results in lack of diversity. Chu et al. (2025) showed how RL trained on outcome based
reward generalizes better across both text and visual tasks, while SFT memorizes the task leading to
lack of generalization. However the work emphasises the importance of SFT before RL for effective
training. Wu et al. (2025) shows how standard SFT’s lack of generalization is due to gradients
encoding problematic reward leading to lack of generalization.

We take inspiration from cognitive science literature (Gerstenberg, 2022) to design our program-
based analysis in order to evaluate the core cognitive skills required for counterfactual inference. To
build math-based generalization tests we build upon the framework of Ye et al. (2024) to generate
counterfactual variant of grade school level math problems following a dependency graph based
approach. Past work uses programs as world models and simulations, including concept learning
from programs (Lake et al., 2015) and code driven or physics based simulators (Cobbe et al., 2020;
Freeman et al., 2021) showing the potential of graph for this, which we leverage for our work.

F META TEMPLATES: STRUCTURAL PLACEHOLDER DESCRIPTION

Placeholder What it controls Code/line type inserted

{function_name} Name of the generated function. Identifier used in def header
(snake_case).

{min_r}, {max_r} Bounds for the random draw r. Integer literals or simple expressions
inside random.randint(a,b).

{preprocessing_block} Optional setup before branching. One or more Python statements (e.g.,
assignments, helper calls).

{condition_type} The top-level if condition. Boolean expression (comparisons,
logical ops).

{if_branch_content} Body when if is true. Indented suite: one or more Python
statements.

{elif_block} Optional middle branch. Either empty, or elif <boolean
expr>: + indented suite.

{else_branch_content} Body when previous conditions are
false.

Indented suite: one or more Python
statements.

{return_expression} Value the function returns. Expression used in return (identi-
fier, arithmetic expr, tuple, etc.).

Table 6: Placeholders, roles, and expected code/line types for the if–else meta-template.

G COUNTERFACTUAL REASONING PROMPTS FOR CODE FUNCTIONS

Below we show examples of prompts for each control logic of our code-based datasets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G.1 IF-ELSE-LONG LOOP BASED COUNTERFACTUAL REASONING PROMPT

You are a language model that reasons about code without using any external execution envi-
ronment. Do not simply repeat the prompt. Instead, analyze the Python function below, provide
step-by-step reasoning, and answer the counterfactual question.

Python function:

def generated_func_1194(x, r):
alt4 = 10
final2 = 1
final3 = 0
final4 = 4
temp1 = 3
temp2 = 3
temp3 = 2
r = abs(r)

if r > 9:
temp1 = (x % 1) - (r % 10)
if (r % 10) == 5:

if temp1 < 5:

if (temp3 * x) < r:
final4 = (temp3 * x) + 2
result = final4 + x

else:
alt4 = x - temp3
result = alt4 + r

else:
final3 = temp2 + r
result = final3 - x

else:
final2 = (temp1 ** 5) * r
result = final2 * r

else:
else_val = (r ** 4) * x
result = else_val + r

return result % 6

Observed call:
When this function was called with input x = 18, it produced the output y = 4.

Counterfactual query:
If instead of x = 18, we had called this function with a different input value of x = 20 while
keeping everything else unchanged, what could the output y have been? Let’s think step by step
to get the answer. Enclose your reasoning within <think></think> tags.

Required answer format:
\boxed{ans1, ans2, ans3}

Table 7: Example instance of if-else-long function

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G.2 WHILE LOOP BASED COUNTERFACTUAL REASONING PROMPT

You are a language model that reasons about code without using any external execution envi-
ronment. Do not simply repeat the prompt. Instead, analyze the Python function below, provide
step-by-step reasoning, and answer the counterfactual question.

Python function:

def generated_func_997660_100(x, r):

primary_sum = 0
secondary_sum = 0
counter = 0

while counter < x:
primary_sum += r + counter
secondary_sum += counter * 2

if primary_sum > secondary_sum:
primary_sum -= 5

counter += 1

return (primary_sum + secondary_sum) // 5

Observed call:
When this function was called with input x = 10, it produced the output y = 36.

Counterfactual query:
If instead of x = 10, we had called this function with a different input value of x = 8 while
keeping everything else unchanged, what could the output y have been? Let’s think step by step
to get the answer.

Required answer format:
\boxed{ans1, ans2, ans3}

Table 8: Counterfactual code prompt for while dataset

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G.3 MULTI-R COUNTERFACTUAL REASONING PROMPT

You are a language model that reasons about code without using any external execution envi-
ronment. Do not simply repeat the prompt. Instead, analyze the Python function below, provide
step-by-step reasoning, and answer the counterfactual question.

Python function:

import random

def generated_func_1136(x, r1, r2, r3):

prep = x * (r2 + r3)

if x == r1:
result = x * r3
for i in range(2):

pass
result = result = x + r2

else:
result = x - r2
for j in range(6):

pass
result = result = x + r1

result = result * (r1 + r2 * r3)
return result

Observed call:
When this function was called with input x = 16, it produced the output y = 3640.

Counterfactual query:
If instead of x = 16, we had called this function with a different input value of x = 18 while

keeping everything else unchanged, what would the output y have been? Show all potential
outputs if there is more than one. Let’s think step by step to get the answer.

Required answer format:
\boxed{ans1, ans2, ans3}

Table 9: Counterfactual code prompt for multi-r dataset

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H INTERVENTIONAL PROMPT EXAMPLE

You are a language model that reasons about code without using any external execution envi-
ronment. Do not simply repeat the prompt. Instead, analyze the Python function below, provide
step-by-step reasoning, and answer the interventional question.

Python function:

def generated_func_1273(x, r1, r2, r3):

prep = x + (r2 - r3)

if x != r1:
result = x + r2
for i in range(6):

pass
result = result = x * r1

else:
result = x + r3
for j in range(2):

pass
result = result = x + r3

result = result + (r1 - r2 - r3)
return result

Observed call:
When this function was called with inputs x = 18, r1 = 20, r2 = 5, and r3 = 17, it produced
the output y = 358.

Interventional query:
If instead of x = 18, we had called this function with x = 20 while keeping r1 = 20, r2 = 5,
and r3 = 17 unchanged, what could the output y have been? Let’s think step by step to get
the answer. Enclose your reasoning process within <think></think> tags. Then, list all
possible answers in the required format below.

Required answer format:
\boxed{ans1, ans2, ans3}

Table 10: Interventional code prompt for multi-r

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

I O4-MINI RUBRIC FOR LLM-AS-A-JUDGE ANALYSIS

You are presented with a counterfactual reasoning question about a code function, along with a
sample solution. Your task is to carefully analyze this solution and rate how it performs in terms
of planning and execution, on a scale from 1 to 5.

Criteria for rating planning:
5 – The solution adopts a perfect plan for all such counterfactual questions with two stages: (1)
Backward Reasoning with Original Data: determine the value(s) of the unknown variable r by
setting up a mathematical equation based on the arithmetic operations performed on r and the
original input x within the code path that produced the original output y. (2) Forward Reasoning
with Counterfactual Data: use the value(s) of r found in the previous step to determine the new
output(s) based on the counterfactual input.
3 – The solution shows awareness of first finding values of r from the original x and y, and then
computing the new outputs using the same r, but it does not follow this Backward-then-Forward
plan faithfully or decisively. For instance, it hesitates about solvability without an explicit r, or
resorts to brute-force enumeration without persisting in the desired plan.
1 – The solution does not align with the Backward-then-Forward plan at all (e.g., starts with
brute-force enumeration of r without using the given x, y to determine r smartly).

Criteria for rating execution:
Score execution based on whether the solution follows the code-simulation paths and performs
step-by-step numerical computations faithfully and correctly. More simulation/computation
mistakes → lower execution score.

Question:
{prompt}

Ground Truth Answers:
{ground_truth}

Solution:
{response}

Required response format (JSON):

1 {
2 "planning": [1|2|3|4|5],
3 "planning_explanation": "first briefly describe the

planning or strategy this solution adopts, and then explain
why you gave this planning score",

4 "execution": [1|2|3|4|5],
5 "execution_explanation": "brief explanation of why you gave

this execution score"
6 }

Table 11: Generic evaluation prompt for rating planning and execution

J RL TRAINING SETUPS

We fine-tuned Qwen2.5-1.5/3/7B-Instruct models with VERL–GRPO (PPO; learning rate
10−6) using batch 16 (micro-batch 4), 512-token prompts and up to 2000-token responses, 24 vLLM
rollouts per prompt at Temperature = 1.0, a low-variance KL auxiliary loss (coef 10−3; excluded
from the reward) and an exact-match reward, for 1,500 steps (or if it gets saturatd) on one node with
four H100 GPUs for trainin 1.5B and 3B models. For 7B models, we conducted the training on eight
H100 GPUs.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

K SFT DATA CURATION AND TRAINING SETUPS

Reasoning trace generation for training: Our training set consists of 5.5k unique counterfactual
prompts made of if-else logic functions (with moderately easy difficulty level). To generate reasoning
traces for getting the final answers of the prompt for training a language model on it, we leverage
DeepSeek-Distilled-Qwen-32B-Instruct as an annotator model Guo et al. (2025) for generating the
reasoning traces to get the correct answer, on which we finetune smaller and weaker models like
Qwen 1.5B, 3B and 7B instruct models Yang et al. (2024), which don’t perform well on this task.
Following the rejection sampling method Li et al. (2025), for each question in our train set, we
generate N samples until the model solves it or the limit is reached, where we keep N=8.

L EVALUATION SETUPS

After the responses for all questions are obtained, we filter out the truncated responses (i.e., responses
whose length exceeds 16K). This step prevents the model from learning from “indefinite repetitions”
when trained with Supervised Finetuning. Since DeepSeek-distilled models are good at this task, but
require a longer generation length (16k tokens), the reasoning traces are typically longer.

M DEDUPLICATION AND VERIFICATION OF CODE FUNCTIONS

We validate each function by executing it on a small, randomly generated verification set to ensure it
runs without errors.. We also parse the code into Python’s Abstract Syntax Tree (AST) to confirm that
it compiles without syntax errors. For computing the similarity we convert each generated function
into a structural fingerprint by counting key elements (if-statements, assignments, operators) and
analyzing the overall code pattern. To analyze patterns, it walks through the code structure and
identifies sequences like “preprocessing→ condition check→ branch calculations→ return result”.
It then compares these fingerprints numerically: if two functions have similar counts of each element
type and follow the same logical flow pattern, they get a high similarity score s ∈ [0, 1]. Functions
with identical structure and execution sequence get a score of s = 1.0, while completely different
functions score near s = 0. Based on manual analysis, we set the threshold at 0.8. This helps identify
when the generation process is creating duplicate or overly similar functions that should be filtered
out to maintain training data diversity.

N DETAILED DISCUSSION: WHEN COUNTERFACTUALS AND INTERVENTIONS
CONFLATE

Wu et al. (2024) analyze GPT-4 under altered premises; since their tasks contain no latent variables,
intervention and counterfactual queries coincide, so the reported failures does not probe abductive
backtracking effectively. For example one of their evaluated tasks in arithmetic, switching the base
from 10 to 9 is simply do(base = 9): 2710 + 6210 = 8910 but 279 + 629 = (100)9; no latent
state needs to be inferred. Consequently, these setups don’t diagnose whether a model can perform
abduction. Using Fig. 1 as an comparison, the base is x and there is no r in this example. Similar
approaches are also adopted in previous works (Li et al., 2024; Nguyen et al., 2024; Paranjape et al.,
2022; Wu et al., 2021; Madaan et al., 2021; Ye et al., 2021; Joshi & He, 2022; Vashishtha et al.,
2023). Most of these works use counterfactuals for robustness, debiasing and other purposes. They
operate in fully observed settings without latent variability, where the query effectively reduces to an
intervention. In contrast, our evaluation targets cases that require abduction, testing whether LLMs
can execute the full Abduction-Action-Prediction rollout.

22

	Introduction
	Background and Related Work
	Operationalizing Counterfactual Reasoning via Code & Math
	Executable Counterfactuals: Code
	GSM Math Problem Construction for Counterfactual Reasoning

	Experiments
	LLMs Show Weaknesses in Counterfactual Reasoning
	Distillation-based SFT Generalizes Poorly
	RLVR elicits generalizable counterfactual reasoning skills across causal structures and question domains

	Behavioral Analysis of Reasoning Traces
	Conclusion
	LLM Usage Statement
	Causal Ladder: Levels of Causal Reasoning
	GSM: Counterfactual vs Interventional
	GSM Examples: Counterfactual and Interventional
	Additional Related Work
	Meta Templates: Structural Placeholder Description
	Counterfactual Reasoning Prompts for Code Functions
	If-Else-Long loop based counterfactual reasoning prompt
	While loop based counterfactual reasoning prompt
	Multi-r counterfactual reasoning prompt

	Interventional Prompt Example
	o4-mini rubric for llm-as-a-judge analysis
	RL Training Setups
	SFT Data Curation and Training Setups
	Evaluation Setups
	Deduplication and Verification of Code Functions
	Detailed Discussion: When Counterfactuals and Interventions Conflate

