
T-GAE: Transferable Graph Autoencoder for Network
Alignment

Jiashu He
University of Pennsylvania

jiashuhe@seas.upenn.edu

Charilaos Kanatsoulis
Stanford University

charilaos@cs.stanford.edu

Alejandro Ribeiro
University of Pennsylvania

aribeiro@seas.upenn.edu

Abstract
Network alignment is the task of establishing one-to-one correspondences be-
tween the nodes of different graphs. Although finding a plethora of applications
in high-impact domains, this task is known to be NP-hard in its general form.
Existing optimization algorithms do not scale up as the size of the graphs in-
creases. While being able to reduce the matching complexity, current GNN
approaches fit a deep neural network on each graph and requires re-train on
unseen samples, which is time and memory inefficient. To tackle both challenges
we propose T-GAE, a transferable graph autoencoder framework that leverages
transferability and stability of GNNs to achieve efficient network alignment on
out-of-distribution graphs without retraining. We prove that GNN-generated
embeddings can achieve more accurate alignment compared to classical spec-
tral methods. Our experiments on real-world benchmarks demonstrate that
T-GAE outperforms the state-of-the-art optimization method and the best GNN
approach by up to 38.7% and 50.8%, respectively, while being able to reduce
90% of the training time when matching out-of-distribution large scale networks.
We conduct ablation studies to highlight the effectiveness of the proposed en-
coder architecture and training objective in enhancing the expressiveness of
GNNs to match perturbed graphs. T-GAE is also proved to be flexible to uti-
lize matching algorithms of different complexities. Our code is available at
https://github.com/Jason-Tree/T-GAE.

1 Introduction
Network alignment, also known as graph matching, is a classical problem in graph theory, that
aims to find node correspondence across different graphs and is vital in a number of high-impact
domains [Emmert-Streib et al., 2016]. In social networks, for instance, network alignment has been
used for user deanonymization [Nilizadeh et al., 2014] and analysis [Ogaard et al., 2013], while in
bioinformatics it is a key tool to identify functionalities in protein complexes [Singh et al., 2008],
or to identify gene–drug modules [Chen et al., 2018a]. Graph matching also finds application in
computer vision [Conte et al., 2003], sociology [Racz and Sridhar, 2021], to name a few. However,
this problem is usually cast as a quadratic assignment problem (QAP), which is in general NP-hard.

Various approaches have been developed to tackle network alignment and can be divided into two main
categories; i) optimization algorithms that attempt to approximate the QAP problem by relaxing the
combinatorial constraints, ii) embedding methods that approach the problem by implicitly or explicitly
generating powerful node embeddings that facilitate the alignment task. Optimization approaches, as
[Anstreicher and Brixius, 2001, Vogelstein et al., 2015] employ quadratic programming relaxations,
while [Klau, 2009] and [Peng et al., 2010] utilize semidefinite or Lagrangian-based relaxations
respectively, [Du et al., 2019] and [Du et al., 2022] proposed to solve network alignment together with
link prediction. Successive convex approximations were also proposed by [Konar and Sidiropoulos,
2020] to handle the QAP. Challenges associated with these methods include high computational
cost, infeasible solutions, or nearly optimal initialization requirements. Embedding methods, on the
other hand, overcome these challenges, but they usually produce inferior solutions, due to an inherent

J. He et al., T-GAE: Transferable Graph Autoencoder for Network Alignment. Proceedings of the Third Learning
on Graphs Conference (LoG 2024), PMLR 269, Virtual Event, November 26–29, 2024.

https://github.com/Jason-Tree/T-GAE

T-GAE: Transferable Graph Autoencoder for Network Alignment

Figure 1: To enhance the expressiveness of GNNs to align the unseen graphs, our proposed encoder
processes the input features by a local MLP, we then incorporate attention mechanism on (1) input to
each message-passing layer by attending to the output of the last layer and processed input feature.
(2) output of the encoder by attending to the output of each message passing layer.

trade-off between embedding permutation-equivariance and the ability to capture the structural
information of the graph. Typical embedding techniques include spectral and factorization methods
[Umeyama, 1988, Feizi et al., 2019, Zhang and Tong, 2016, Kanatsoulis and Sidiropoulos, 2022],
structural feature engineering methods [Berlingerio et al., 2013, Heimann et al., 2018], and random
walk approaches [Perozzi et al., 2014, Grover and Leskovec, 2016a]. Recently [Chen et al., 2020,
Karakasis et al., 2021] have proposed joint node embedding and network alignment, to overcome
these challenges, but these methods do not scale up as the size of the graph increases.
Graph Neural Networks (GNNs) are powerful architectures that learn graph representations (em-
beddings) in a self-supervised way [Kipf and Welling, 2016, You et al., 2020]. They have shown
state-of-the-art performance in several tasks, including biomedical [Gainza et al., 2020, Strokach
et al., 2020, Jiang et al., 2021, Hu et al., 2023, Li et al., 2024], quantum chemistry [Gilmer et al.,
2017], social networks and recommender systems [Ying et al., 2018, Wu et al., 2020, Liu et al.,
2023a, Yang et al., 2024]. A line of studies has been conducted to formulate key-point matching on
images as graph matching problems [Fey et al., 2020, Yu et al., 2020]. These frameworks rely on a
powerful domain-specific encoder (CNNs, for example) to provide high-quality features. Given these
high-quality features, GNNs are able to match graphs without training [Liu et al., 2022]. However,
expressive features are expensive and sometimes infeasible to build [Zhang et al., 2020, Zhou et al.,
2021]. [Liang et al., 2021] uses another trainable matrix to parameterize the internal connectivity
between nodes of different graphs for faithful node alignment. Recently, [Gao et al., 2021] proposed
use GNNs to learn node embedding, and match nodes with small Wasserstein distances. However,
this method needs to fit a GNN on every input graph, which results in very high training cost, since
training deep GNNs with large sizes graphs is computationally prohibitive, as GNNs have limited
scalability with respect to graph and model sizes [Chen et al., 2018b,c, Chiang et al., 2019, Zeng
et al., 2020].

To address these challenges, we propose T-GAE, a novel self-supervised GNN framework to perform
network alignment. Specifically, we propose to utilize the transferability and robuseness of GNN to
produce permutation equivariant and highly expressive embeddings. T-GAE trains the encoder on
multiple families of small graphs and produce expressive/permutation equivariant representations for
larger unseen networks. We further prove that GNN representations combine the eigenvectors of the
graph in a nonlinear fashion and are at least as good in network alignment as certain spectral methods.
T-GAE is a one-shot solution that tackles the challenges of real-time network alignment from (1)
Optimization based algorithms: high computational cost, assume ground truth node correspondence
as initialization. (2) Deep-learning based frameworks: re-train for every pair of graphs, rely on
high quality of node features. Extensive experiments with real-world benchmarks demonstrate the
effectiveness and efficiency of the proposed approach in both graph and sub-graph matching, thereby
sheds light on the potential of GNN to tackle the highly-complex network optimization problems.

2

T-GAE: Transferable Graph Autoencoder for Network Alignment

Figure 2: Proposed training objective: For each of the training graph, we generate a number of
augmented samples by randomly adding or removing edges. The node embedding of these augmented
samples are decoded non-parametrically, and compared with the corresponding original graph to train
the T-GAE encoder.

2 Preliminaries
Graphs are represented by G := (V, E), where V = {1, . . . , N} is the set of vertices (nodes) and
E = {(v, u)} correspond to edges between pairs of vertices. A graph is represented in a matrix form
by a graph operator S ∈ RN×N , where S(i, j) quantifies the relation between node i and node j
and N = |V| is the total number of vertices. In this work, we use the normalized graph adjacency
and study the most general form of network alignment where there is no given graph attributes and
ground truth node correspondence(anchor links).

2.1 Network Alignment

Definition 2.1 (Network Alignment). Given a pair of graphs G := (V, E), Ĝ := (V̂, Ê), with graph
adjacencies S, Ŝ, network alignment aims to find a bijection g : V → V̂ which minimizes the
number of edge disagreements between the two graphs. Formally, the problem can be written as:

min
P∈P

∥∥∥ S − PŜP T
∥∥∥2
F
, (1)

where P is the set of permutation matrices.

As mentioned in the introduction, network alignment, is equivalent to the QAP, which has been
proven to be NP-hard [Koopmans and Beckmann, 1957].

2.2 Spectral Decomposition of the Graph

A popular approach to tackle network alignment is by learning powerful node embeddings associated
with connectivity information in the graph. Network alignment can be achieved by matching the
node embeddings of different graphs rather than graph adjacencies, as follows:

min
P∈P

∥∥∥ E − PÊ
∥∥∥2
F
, (2)

where E ∈ RN×F is embedding matrix and E[i, :] is the vector representation of node i. The
optimization problem in (2) is a linear assignment problem and can be optimally solved in O

(
N3
)

by the Hungarian method [Kuhn, 1955a]. Simpler sub-optimal alternatives also exist that operate
with O

(
N2
)

or O (N log(N)) flops.

A question that naturally arises is how to generate powerful node embeddings that capture the network
connectivity and also be effective in aligning different graphs. A natural and effective approach
is to leverage the spectral decomposition of the graph, S = V ΛV T , where V is the orthonormal
matrix of the eigenvectors, and Λ is the diagonal matrix of corresponding eigenvalues. Note that
we assume undirected graphs and thus S is symmetric. Spectral decomposition has been proven to

3

T-GAE: Transferable Graph Autoencoder for Network Alignment

be an efficient approach to generating meaningful node embedding for graph matching [Umeyama,
1988, Feizi et al., 2019]. In particular, E = V or E = V Λ are node embeddings that capture the
network connectivity since they can perfectly reconstruct the graph. However, V is not unique. Thus
computing the spectral decomposition of the same graph with node relabelling, S̃ = PSP T is not
guaranteed to produce a permuted version of V , i.e., PV . Even in the case where S does not have
repeated eigenvalues V is only unique up to column sign, which prevents effective matching.

To overcome the aforementioned uniqueness limitation, one can focus on the top m eigenvectors that
correspond to non-repeated eigenvalues in both S and Ŝ and compute their absolute values. Then
network alignment can be cast as:

min
P∈P

∥∥∥ |Vm| − P
∣∣∣V̂m

∣∣∣ ∥∥∥2
F
, (3)

where Vm ∈ RN×m corresponds to the subspace of non-repeated eigenvalues. The formulation in
(3) is a similar to the problem solved in [Umeyama, 1988].

3 Graph Neural Networks (GNNs) Upper-Bounds Spectral Methods for
Network Alignment

A GNN is a cascade of layers and performs local, message-passing operations that are usually defined
by the following recursive equation:

x(l+1)
v = g

(
x(l)
v , f

({
x(l)
u : u ∈ N (v)

}))
, (4)

where N (v) is the neighborhood of vertex v, i.e., u ∈ N (v) if and only if (u, v) ∈ E . The function
f operates on multisets ({·} represents a multiset) and f, g are ideally injective. Common choices
for f are the summation or mean function, and for g the linear function, or the multi-layer perceptron
(MLP).

Overall, the output of the L−th layer of a GNN is a function ϕ (X;S,H) : RN×D → RN×DL ,
where S is the graph operator, and H is the tensor of the trainable parameters in all L layers and
produces DL− dimensional embeddings for the nodes of the graph defined by S.

GNNs admit some very valuable properties. First, they are permutation equivariant:

Theorem 3.1 ([Xu et al., 2019a, Maron et al., 2018]). Let ϕ (X;S,H) : RN×D → RN×DL

be a
GNN with parameters H. For X̃ = PX and S̃ = PSP T that correspond to node relabelling
according to the permutation matrix P , the output of the GNN takes the form:

X̃(L) = ϕ
(
X̃; S̃,H

)
= Pϕ (X;S,H) (5)

The above property is not satisfied by other spectral methods. GNNs are also stable [Gama et al.,
2020, Parada-Mayorga et al., 2023, Ruiz et al., 2021], transferable [Ruiz et al., 2020], and have high
expressive power [Xu et al., 2019a, Abboud et al., 2021, Kanatsoulis and Ribeiro, 2022].

3.1 GNNs and Network Alignment

To characterize the ability of a GNN to perform network alignment we first pointed out the GNNs
perform nonlinear spectral operations. Details can be found in Appendix Section D.1. We can further
prove that:
Theorem 3.2. Let G, Ĝ be graphs with adjacencies S, Ŝ that have non-repeated eigenvalues. Also
let P ⋄, P̌ be solutions to the optimization problems in (1) and (3) respectively. Then there exists a
GNN ϕ (X;S,H) : RN×D → RN×DL

such that:∥∥∥ S − P ⋄ŜP ⋄T
∥∥∥2

F
≤

∥∥∥ S − P ∗ŜP ∗T
∥∥∥2

F
≤

∥∥∥ S − P̌ ŜP̌ T
∥∥∥2

F

with

P ∗ = argmin
P∈P

∥∥∥ ϕ (X;S,H)− Pϕ
(
X̂; Ŝ,H

) ∥∥∥2
F
.

4

T-GAE: Transferable Graph Autoencoder for Network Alignment

The proof can be found in Appendix D. The assumption that the graph adjacencies have different
eigenvalues is not restrictive. Real nonisomorphic graphs have different eigenvalues with very high
probability [Haemers and Spence, 2004]. Theorem 3.2 compares the network alignment power of
a GNN with that of a spectral algorithm Umeyama [1988], that uses the absolute values of graph
adjacency eigenvectors to match two different graphs. According to Theorem 3.2 there always exists
a GNN that can perform at least as well as the spectral approach. The proof studies a GNN with white
random input and measures the variance of the filter output. Then it shows that message-passing
layers are able to compute the absolute values of the graph adjacency eigenvectors when the adjacency
has non-repeated eigenvalues. As a result there always exists a single layer GNN that outputs the
same node features as the ones used in Umeyama [1988], which concludes our proof. The questions
is: How do we train such a GNN that is (1) Expressive to the structural information thus its output
can be used to match corresponding nodes. (2) Robust to different perturbations and even larger scale
unseen graphs so that it can be deployed efficiently without re-training. (3) Agnostic to the ground
truth node correspondence so that it can be trained unsupervisedly, which makes it generalizable to
most real-world settings. To answer these questions, we introduce our proposed training framework
in the following section.

4 Proposed Method
We now leverage the favorable properties of GNNs (permutation equivariance, expressivity, and
transferability) to tackle real-world network alignment. Our approach learns low-dimensional node
embeddings (Eq. 4) that enable graph matching via solving the linear assignment in (2) rather than
a quadratic assignment problem in (1). We design a robust GNN framework such that the node
embeddings are expressive to accurately match similar nodes and also stable to graph perturbations.

4.1 Learning Network Geometry with Transferable Graph Auto-encoders

The goal of the proposed framework is to learn a function that maps graphs to node representations
and effectively match nodes from different graphs. This function is modeled by a GNN encoder
ϕ (X;S,H), described by Fig. 1. The learned encoder should work for a family of training graphs
{G0, . . . ,Gi, . . . ,GI} with a set of adjacency matrices S = {S0, . . . ,Si, . . . ,SI}, rather than a single
graph. So the idea is not to train a GNN on a single graph [Kipf and Welling, 2016], but train a
transferable graph auto-encoder by solving the following optimization problem.

min
H

E
[
l
(
ρ
(
ϕ (X;Si,H)ϕ (X;Si,H)

T
)
,Si

)]
, (6)

where l (·) is the binary cross entropy (BCE) and ρ (·) is the logistic function. Si ∈ S is a realization
from a family of graphs and the expectation (empirical expectation is practice) is computed over this
graph family. The generalized framework in (6) learns a mapping from graphs to node representations,
and can be applied to out-of-distribution graphs that have not been observed during training. This
twist in the architecture enables node embedding and graph matching for the unseen and larger
scale networks without re-training, where fitting a GNN is computationally prohibitive in real-world
applications.

4.2 Robust and Generalizable Node representations with self-supervised learning (data
augmentation)

So far we proposed a GNN framework to produce expressive node representations to perform
network alignment. In this subsection, we further upgrade our framework by ensuring the robustness
and generalization ability of the proposed mapping. In particular, for each graph, Si ∈ S, we
augment the training set with perturbed versions that are described by the following set of graph
adjacencies Mi =

{
S

(0)
i , . . . ,S

(j)
i , . . . ,S

(J)
i

}
, that are perturbed versions of Si. To do so we add

or remove an edge with a certain probability yielding S̃i ∈ M, such that S̃i = Si + Mi, where
Mi ∈ {−1, 0, 1}N×N . Note that M changes for each S̃i, and M [m,n] can be equal to 1 and −1
only if S[m,n] is equal to 0 and 1 respectively. To train the proposed transferable graph-autoencoder
we consider the following optimization problem:

min
H

ES

[
EMi

[
l

(
ρ

(
ϕ
(
X; S̃i,H

)
ϕ
(
X; S̃i,H

)T
)
,Si

)]]
, (7)

5

T-GAE: Transferable Graph Autoencoder for Network Alignment

Figure 3: The pre-trained encoder operates on out-of-distribution samples. The generated node
embeddings are then matched greedily.

where ES is the expectation with respect to the family of graphs S and EMi is the expectation with
respect to the perturbed graphs Mi. In practice, ES, EM correspond to empirical expectations. Note
that training according to (7) also benefits the robustness of the model, which is crucial in deep
learning tasks [Wang et al., 2022, He, 2021]. A schematic illustration of the training process can be
found in Fig. 2.
Remark 4.1. (Large-scale network alignment by transferability of GNN)

The proposed framework learns a mapping ϕ : G → RN×F that produces expressive and robust
node representations for a family of graphs G ∈ G. This mapping is designed in such a way that the
problem in (2) approximates the problem in (1) and allows solving network alignment in polynomial
time. One of the main benefits of the proposed framework is that it enables large-scale network
alignment. Task specific augmentation during training is the key to prompt transferability of deep
neural networks [Li et al., 2022]. And the transferability analysis of GNN encoders [Ruiz et al.,
2020] suggests that we can train with small graphs and efficiently execute with much larger graphs
when the substructures (motifs) that appear in the tested graphs, were also partially observed during
training. Since the proposed transferable graph auto-encoder is trained with multiple graphs, a variety
of motifs are observed during training, which cannot be observed with a classical graph autoencoder,
and the proposed GNN encoder can be transferred to larger-scale out-of-distribution graphs.

4.3 Alignment and Complexity analysis

After learning the powerful node embeddings, network alignment is performed by solving the linear
assignment problem in (2). An illustration of the assignment is presented in Fig. 3. The node
features produced by T-GAE are used to calculate a pairwise distance matrix, followed by the
greedy Hungarian algo rithm to predict node correspondences. To analyze the complexity of our
approach we study the 3 main parts of T-GAE: a) The design of the input structural features, b) The
message-passing GNN that produces node embeddings, and c) the linear assignment algorithm.

The computation of our neighborhood-based structural features is expected to take O (|V|) in real
graphs, as proved in Henderson et al. [2011]. The computational and memory complexity of
the message-passing GNN is O

(
|V| c2 + |E| c

)
, and O (|V| c), where c is the width of the GNN.

The computational complexity to align the nodes of the graph is O
(
|V|2

)
since we are using the

suboptimal greedy Hungarian. If we want to optimally solve the linear assignment problem we need
to use the Hungarian algorithm that has O

(
|V|3

)
complexity. If we want to process large graphs

we can use efficient nearest neighbors algorithms with complexity O (|V| log (|V|)) to perform soft
linear assignment. However, this efficient algorithm only works to match graphs with its permuted
samples. We include detailed discussion in Appendix Section H. Overall the complexity of T-GAE is
O
(
|V|2

)
, or O

(
|V| c2 + |E| c+ |V| log (|V|)

)
for un-perturbed samples.

5 Experiments
5.1 Experiments Setup

The experiments included in this section are designed to answer the following research questions:(1)
Can T-GAE generate competing graph matching accuracy on real-world networks from various

6

T-GAE: Transferable Graph Autoencoder for Network Alignment

domains with different sizes, while being efficient by utilizing transferability of GNN for large-
scale our-of-distribution graphs? We answer this question in Section 5 and Appendix Section G
by comparing the performance on matching small to middle sized graphs with unseen perturbed
samples, and large scale out-of-distribution networks under different perturbation distributions. (2) Is
T-GAE robust to different graph matching tasks and real-world noise distributions? In Section 5.3, we
conduct sub-graph matching experiments to align two different real-world networks that are partially
aligned. (3) How does the proposed network architecture (Figure 1) and the training objective (Figure
2) contribute to network alignment? To demonstrate the contribution of each proposed component,
we conduct ablation studies in Section 5.4, to compare T-GAE with untrained T-GAE, T-GAE trained
with GAE objective, and GAE. (4) How much efficiency does T-GAE offer compared to the existing
optimization and GNN approaches, and what are the possible trade-offs between efficiency and
matching accuracy of T-GAE? We compare the efficiency of different matching algorithms and
empirically prove that (a) The matching accuracy of T-GAE can be further improved by leveraging
the exact Hungarian algorithm. (b) The efficiency of T-GAE to match graphs with their permuted
samples can be enhanced if we adopt the more efficient matching algorithm introduced in Section 4.3.
This set of experiments are included in Appendix Section H.

For each of the above mentioned experiments, we compare T-GAE with three categories of graph
matching approaches: (a)GNN based methods: WAlign [Gao et al., 2021], GAE and VGAE [Kipf
and Welling, 2016]; (b)Graph/Node embedding techniques: NetSimile [Berlingerio et al., 2013],
Spectral [Umeyama, 1988], DeepWalk [Perozzi et al., 2014], [Grover and Leskovec, 2016b],
GraphWave [Donnat et al., 2018] and LINE [Tang et al., 2015]. (c)Optimization based graph matching
algorithms: S-GWL [Xu et al., 2019b], ConeAlign [Chen et al., 2020] and FINAL [Zhang and Tong,
2016]. Note that LINE, VGAE, DeepWalk, and Node2Vec are omitted from some experiments
since they show very poor performance. The reason behind that is that they are not permutation
equivariant. GraphWave is also excluded from the sub-graph matching experiment, it could not
identify correlated nodes in two different graphs. In the case of graphs without attributes FINAL is
equivalent to the popular Isorank [Singh et al., 2008] algorithm, and FINAL is omitted in sub-graph
matching experiments due to weak performance.

We include detailed descriptions of our included datasets, implementation details of T-GAE and all
the competing baselines in Appendix Section E.

5.2 Graph Matching Experiments

In this subsection we compare the performance of T-GAE with all competing baselines to match the
graphs with permuted and perturbed versions of them. In particular, let G be a graph with adjacency
matrix S. We then produce 10 permuted-perturbed versions according to Ŝ = P (S +M)P T ,
where M ∈ {−1, 0, 1}N×N and P is a permutation matrix. For each perturbation level p ∈
{0, 1%, 5%}, the total number of perturbations is defined as p|E|, where |E| is the number of edges
of the original graph.

Specifically, we train T-GAE according to (7), where S consist of the small-size networks, i.e.,
Celegans, Arena, Douban, and Cora. Then we resort to transfer learning and use the T-GAE encoder
to produce node embedding for perturbed versions of (a) Celegans, Arena, Douban, and Cora, and
(b) larger graphs, i.e., Dblp, and Coauthor CS. Note that none of these perturbed versions were
considered during training. This is in contrast with all GNN baselines that are retrained on every
pair of networks in the testing dataset. We report the average and standard deviation of the matching
accuracy for 10 randomly generated perturbation samples under uniform edge editing in Table 1,
where each edge and non-edge shares the same probability of being removed or augmented. We
report the results for removing edges according to degrees and the relevant discussed in Appendix G.

T-GAE framework results in a robust and transferable GNN to perform network alignment
at a large scale. Our first observation is that for zero perturbation most algorithms are able to
achieve a high level of matching accuracy. This is expected, since for zero perturbation the network
alignment is equivalent to graph isomorphism. On the smaller networks(Celegans, Arenas, Douban,
Cora), T-GAE performs at least as well as the current state-of-the-art optimization approaches (S-GWL
and ConeAlign). Specifically, it achieves up to 38.7% and 44.7% accuracy increase compared to
S-GWL and ConeAlign, respectively. Regarding the ability of T-GAE to perform large-scale network
alignment the results are definitive. T-GAE enables low-complexity training with small graphs,
and execution at larger settings by leveraging transfer learning, and it consistently outperforms all

7

T-GAE: Transferable Graph Autoencoder for Network Alignment

Table 1: Graph matching accuracy on 10 randomly perturbed samples under different levels of edge
editing on Uniform model. The proposed T-GAE is trained on the clean Celegans, Arena, Douban,
and Cora networks, and tested on noisy versions of them and the larger Dblp, and Coauthor CS.
Accuracy above 80% is highlighted in green, 60% to 80% accuracy is in yellow, and performance
below 60% is in red.

Dataset \ Algorithm Feature Engineering based Optimization based GNN based
Spectral Netsimile GraphWave FINAL S-GWL ConeAlign WAlign GAE T-GAE

0
%

pe
rt

ur
ba

tio
n Celegans 87.8± 1.5 72.7± 0.9 65.3± 1.7 92.2± 1.2 93.0± 1.5 66.6± 1.2 88.4± 1.6 86.3± 1.3 91.0± 1.1

Arenas 97.7± 0.4 94.7± 0.3 81.7± 0.7 97.5± 0.3 97.5± 0.3 87.8± 0.6 97.4± 0.5 97.6± 0.4 97.8± 0.4
Cora 85.0± 0.4 73.7± 0.4 8.3± 0.4 87.5± 0.7 87.3± 0.7 38.5± 0.7 87.2± 0.4 87.1± 0.8 87.5± 0.4

Douban 89.9± 0.4 46.4± 0.4 17.5± 0.2 89.9± 0.3 90.1± 0.3 68.1± 0.4 90.0± 0.4 89.5± 0.4 90.1± 0.3
Dblp 84.5± 0.1 63.7± 0.2 doesn’t scale 85.6± 0.2 > 48 hours 44.3± 0.6 85.6± 0.2 85.2± 0.3 85.6± 0.2

Coauthor CS 97.5± 0.1 90.9± 0.1 doesn’t scale 97.6± 0.1 > 48 hours 75.8± 0.5 97.5± 0.2 97.6± 0.3 97.6± 0.1

1
%

pe
rt

ur
ba

tio
n Celegans 68.5± 16.1 66.3± 3.8 22.5± 22.4 33.2± 7.8 87.1± 6.1 60.9± 2.5 80.7± 3.0 33.2± 8.4 86.5± 1.1

Arenas 85.0± 10.0 87.8± 1.0 40.5± 23.8 32.5± 5.9 94.2± 0.7 84.6± 1.0 90.0± 3.1 30.1± 17.6 96.0± 1.0
Cora 59.1± 9.3 66.4± 1.6 3.7± 2.9 30.0± 3.3 46.4± 6.9 33.5± 1.6 80.1± 1.2 57.9± 5.3 85.1± 0.5

Douban 25.8± 27.2 40.0± 1.2 9.9± 5.9 27.8± 5.7 72.1± 0.7 64.7± 0.4 77.2± 4.8 38.3± 16.4 87.3± 0.4
Dblp 55.6± 19.0 55.1± 1.7 doesn’t scale 15.2± 3.3 > 48 hours 37.8± 1.1 73.1± 1.6 19.4± 0.6 83.3± 0.4

Coauthor CS 58.2± 22.1 75.2± 2.2 doesn’t scale 13.3± 5.0 > 48 hours 68.5± 2.8 75.2± 5.4 49.5± 7.8 93.2± 0.8

5
%

pe
rt

ur
ba

tio
n Celegans 24.9± 15.9 41.1± 13.0 7.6± 9.2 10.4± 2.7 68.3± 12.7 50.5± 3.4 42.4± 21.1 6.5± 2.4 69.2± 2.1

Arenas 52.1± 16.5 52.3± 5.3 6.9± 7.2 7.2± 2.6 88.3± 3.2 75.0± 2.7 30.4± 17.5 1.4± 1.4 81.2± 1.4
Cora 29.5± 0.8 41.2± 3.3 0.8± 0.3 6.7± 2.8 39.9± 5.5 23.0± 2.0 33.4± 7.3 9.6± 2.7 67.7± 1.3

Douban 23.8± 20.6 20.7± 4.6 1.9± 2.8 7.8± 3.0 68.6± 0.8 54.1± 1.2 36.6± 13.4 0.6± 0.3 70.2± 2.5
Dblp 28.0± 7.8 19.5± 4.8 doesn’t scale 2.7± 0.9 > 48 hours 24.4± 2.9 15.9± 8.3 1.4± 0.2 60.8± 1.9

Coauthor CS 9.7± 5.0 26.3± 6.0 doesn’t scale 2.0± 0.4 > 48 hours 51.4± 5.1 11.3± 7.5 0.6± 0.1 66.0± 1.4

Table 2: Subgraph matching performance comparison. The proposed T-GAE is trained on the two
real-world graphs, and test to match the aligned portion of them.

Algorithm \ Hit Rate ACM-DBLP Douban Online-Offline
Hit@1 Hit@5 Hit@10 Hit@50 Hit@1 Hit@5 Hit@10 Hit@50

Netsimile 2.59% 8.32% 12.09% 26.42% 1.07% 2.77% 4.74% 15.03%
Spectral 1.40% 4.62% 7.21% 16.34% 0.54% 1.34% 2.95% 13.95%

GAE 8.1% 22.5% 30.1% 45.1% 3.3% 9.2% 14.1% 32.1%
WAlign 62.02% 81.96% 87.31% 93.89% 36.40% 53.94% 67.08% 85.33%
T-GAE 73.89% 91.73% 95.33% 98.22% 36.94% 60.64% 69.77% 89.62%

competing baselines on the two networks with more than 10k nodes. In particular, it is able to achieve
very high levels of matching accuracy for both Dblp and Coauthor CS, for p = 0%, 1%. It is also the
only method that consistently achieves at least 60% accuracy at 5% perturbation. To the best of our
knowledge, our experiments on DBLP [Pan et al., 2016] and Coauthor CS [Shchur et al., 2018] are
the first attempts to perform exact alignment on networks at the order of 20k nodes and 80k edges.

The benefits of processing structural node features with T-GAE is clear. There is a clear benefit
of processing the structural embeddings with TGAE since it offers up to 43.7% performance increase
compared to NetSimile. When some perturbation is added, the conclusions are straightforward. Es-
pecially when perturbations are added, our proposed T-GAE markedly outperforms all the competing
GNN alternatives(WAlign and GAE) and shows the desired robustness to efficiently perform network
alignment. We observe that neither GAE nor WAlign is robust to noise. This highlights the benefit
of T-GAE in handling the distribution shift brought by the structural dissimilarity between different
graphs.

5.3 Sub-graph Matching Experiments

We further test the performance of T-GAE in matching subgraphs of different networks that have
aligned nodes (nodes that represent the same entities in different networks). Specifically, in ACM-
DBLP, the task is to match the papers that appear in both citation networks; in Douban Online-Offline,
we aim to identify the users that take part into both online and offline activities. Note that this is the
most realistic graph matching experiment we can perform since we match 2 different real graphs with
partially aligned nodes.

T-GAE uniformly achieves the best performance in the most realistic scenario of network
alignment. Most optimization based approaches do not generalize to this real-world scenario
because their optimization objective usually prevents from matching graphs with different numbers
of nodes. There is a significant improvement in matching accuracy with GNN-based methods

8

T-GAE: Transferable Graph Autoencoder for Network Alignment

Figure 4: Graph matching performance comparison of T-GAE,T-GAE trained on a single graph(T-
GAE single), the untrained T-GAE (T-GAE untrained), and GAE. The proposed training objective
and encoder structure helps to prompt the expressiveness of GNN thus achieve higher accuracy as we
introduce more perturbations.

(TGAE and WAlign) compared to traditional graph or node embedding techniques. In particular,
T-GAE consistently achieves the best performance among all competing methods. This suggests
that the encoder model illustrated in Fig. 1 and the training framework (7) illustrated in Fig. 2,
provide an efficient approach to generate powerful node embedding, that is robust to real-world noise
distributions for the task of network alignment, compared to the existing GNN frameworks.

5.4 Ablation study

The proposed architecture and training objective prompts the robustness of GNN when match-
ing graphs with their highly perturbed versions. From Figure 4, we observe that T-GAE outper-
forms the untrained T-GAE by a great margin when matching highly permuted samples. This implies
that the proposed training objective effectively improves the robustness of GNN, which is the key
property to deploy GNN to match perturbed graphs. Further, the performance gap between GAE and
T-GAE single underscores the efficacy of incorporating attention mechanism on each layer for both
input and output node features, as illustrated in Figure 1.

6 Limitation
Although our approach achieves state-of-the-art performance in aligning real-graphs, on both graph
matching and sub-graph matching tasks, approaching network alignment with a learning method,
remains a heuristic and does not offer optimality guarantees. Furthermore, in order to process large
graphs we cast network alignment as a self-supervised task. As a result in small-scale settings
where the task can be tackled with computationally intensive efficient methods, our algorithm is not
expected to perform the best. Finally, the complexity of T-GAE O(|V|2) is limiting, this bottleneck
comes from the greedy linear assignment algorithm to match the node embedding, and therefore
the alternative method with complexity O(|V|c2 + |E|c+ |V|log(|V|)) should be deployed when we
match very large scale graphs with their permuted versions.

7 Conclusion
We proposed T-GAE, a graph autoencoder framework that utilizes transferability and robustness
of GNN to perform network alignment. T-GAE is an unsupervised approach that tackles
the high computational cost of existing optimization based algorithms, and can be trained on
multiple small to middle sized graphs to produce robust and permutation equivariant embeddings
for larger scale unseen networks. We proved that the produced embeddings of GNNs are
related to the spectral decomposition of the graph and are at least as good in graph matching
as certain spectral methods. Our experiments with real-world benchmarks on both graph
matching and sub-graph matching demonstrated the great potential of utilizing the good prop-
erties of GNNs to solve network optimization problems in a more efficient and scalable way.

9

T-GAE: Transferable Graph Autoencoder for Network Alignment

References
Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty years of graph matching, network

alignment and network comparison. Information sciences, 346:180–197, 2016. 1

Shirin Nilizadeh, Apu Kapadia, and Yong-Yeol Ahn. Community-enhanced de-anonymization of
online social networks. In Proceedings of the 2014 acm sigsac conference on computer and
communications security, pages 537–548, 2014. 1

Kirk Ogaard, Heather Roy, Sue Kase, Rakesh Nagi, Kedar Sambhoos, and Moises Sudit. Discovering
patterns in social networks with graph matching algorithms. In Ariel M. Greenberg, William G.
Kennedy, and Nathan D. Bos, editors, Social Computing, Behavioral-Cultural Modeling and
Prediction, pages 341–349, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-
642-37210-0. 1

Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction networks
with application to functional orthology detection. Proceedings of the National Academy of
Sciences, 105(35):12763–12768, 2008. 1, 7, 21

Jiazhou Chen, Hong Peng, Guoqiang Han, Hongmin Cai, and Jiulun Cai. HOGMMNC: a higher
order graph matching with multiple network constraints model for gene–drug regulatory modules
identification. Bioinformatics, 35(4):602–610, 07 2018a. ISSN 1367-4803. doi: 10.1093/
bioinformatics/bty662. URL https://doi.org/10.1093/bioinformatics/bty662. 1

D. Conte, P. Foggia, C. Sansone, and M. Vento. Graph matching applications in pattern recognition
and image processing. In Proceedings 2003 International Conference on Image Processing (Cat.
No.03CH37429), volume 2, pages II–21, 2003. doi: 10.1109/ICIP.2003.1246606. 1

Miklos Racz and Anirudh Sridhar. Correlated stochastic block models: Exact graph matching with
applications to recovering communities. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 22259–22273. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper/2021/file/baf4f1a5938b8d520b328c13b51ccf11-Paper.pdf. 1

Kurt M Anstreicher and Nathan W Brixius. Solving quadratic assignment problems using convex
quadratic programming relaxations. Optimization Methods and Software, 16(1-4):49–68, 2001. 1

Joshua T Vogelstein, John M Conroy, Vince Lyzinski, Louis J Podrazik, Steven G Kratzer, Eric T
Harley, Donniell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Fast approximate quadratic
programming for graph matching. PLOS one, 10(4):e0121002, 2015. 1

Gunnar W Klau. A new graph-based method for pairwise global network alignment. BMC bioinfor-
matics, 10(1):1–9, 2009. 1

Jiming Peng, Hans Mittelmann, and Xiaoxue Li. A new relaxation framework for quadratic assign-
ment problems based on matrix splitting. Mathematical Programming Computation, 2:59–77,
2010. 1

Xingbo Du, Junchi Yan, and Hongyuan Zha. Joint link prediction and network alignment via cross-
graph embedding. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, pages 2251–2257. International Joint Conferences on Artificial Intelligence
Organization, 7 2019. doi: 10.24963/ijcai.2019/312. URL https://doi.org/10.24963/ijcai.
2019/312. 1

Xingbo Du, Junchi Yan, Rui Zhang, and Hongyuan Zha. Cross-network skip-gram embedding
for joint network alignment and link prediction. IEEE Transactions on Knowledge and Data
Engineering, 34(3):1080–1095, 2022. doi: 10.1109/TKDE.2020.2997861. 1

Aritra Konar and Nicholas D Sidiropoulos. Graph matching via the lens of supermodularity. IEEE
Transactions on Knowledge and Data Engineering, 34(5):2200–2211, 2020. 1

S. Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(5):695–703, 1988. doi: 10.1109/
34.6778. 2, 4, 5, 7, 20

Soheil Feizi, Gerald Quon, Mariana Recamonde-Mendoza, Muriel Medard, Manolis Kellis, and Ali
Jadbabaie. Spectral alignment of graphs. IEEE Transactions on Network Science and Engineering,
7(3):1182–1197, 2019. 2, 4

10

https://doi.org/10.1093/bioinformatics/bty662
https://proceedings.neurips.cc/paper/2021/file/baf4f1a5938b8d520b328c13b51ccf11-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/baf4f1a5938b8d520b328c13b51ccf11-Paper.pdf
https://doi.org/10.24963/ijcai.2019/312
https://doi.org/10.24963/ijcai.2019/312

T-GAE: Transferable Graph Autoencoder for Network Alignment

Si Zhang and Hanghang Tong. Final: Fast attributed network alignment. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, page 1345–1354, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342322. doi: 10.1145/2939672.2939766. URL https://doi.org/10.1145/2939672.
2939766. 2, 7, 19, 20, 21

Charilaos I Kanatsoulis and Nicholas D Sidiropoulos. Gage: Geometry preserving attributed graph
embeddings. In Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining, pages 439–448, 2022. 2

Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. Network similarity
via multiple social theories. In Proceedings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pages 1439–1440, 2013. 2, 7, 20, 21

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. Regal: Representation learning-based
graph alignment. In Proceedings of the 27th ACM international conference on information and
knowledge management, pages 117–126, 2018. 2

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’14. ACM, August 2014. doi: 10.1145/2623330.2623732. URL http:
//dx.doi.org/10.1145/2623330.2623732. 2, 7, 20

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 855–864, 2016a. 2

Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. Cone-align: Consistent
network alignment with proximity-preserving node embedding. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pages 1985–1988, 2020. 2,
7, 21

Paris A Karakasis, Aritra Konar, and Nicholas D Sidiropoulos. Joint graph embedding and alignment
with spectral pivot. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 851–859, 2021. 2

Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016. URL https://arxiv.
org/abs/1611.07308. 2, 5, 7, 20

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
5812–5823. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf. 2

P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M. M. Bronstein, and B. E. Correia.
Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning.
Nature Methods, 17(2):184–192, February 2020. 2

Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M. Kim. Fast
and flexible protein design using deep graph neural networks. Cell Systems, 11(4):402–411.e4,
October 2020. 2

Dejun Jiang, Zhenxing Wu, Chang Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao Shen,
Dongsheng Cao, Jian Wu, and Tingjun Hou. Could graph neural networks learn better molecular
representation for drug discovery? a comparison study of descriptor-based and graph-based models.
Journal of Cheminformatics, 13(1):12, dec 2021. 2

Xinyue Hu, Zenan Sun, Yi Nian, Yifang Dang, Fang Li, Jingna Feng, Evan Yu, and Cui Tao.
Explainable graph neural network for alzheimer’s disease and related dementias risk prediction,
2023. 2

Chenxin Li, Xinyu Liu, Cheng Wang, Yifan Liu, Weihao Yu, Jing Shao, and Yixuan Yuan. Gtp-4o:
Modality-prompted heterogeneous graph learning for omni-modal biomedical representation, 2024.
URL https://arxiv.org/abs/2407.05540. 2

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pages
1263–1272. PMLR, 2017. 2

11

https://doi.org/10.1145/2939672.2939766
https://doi.org/10.1145/2939672.2939766
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf
https://arxiv.org/abs/2407.05540

T-GAE: Transferable Graph Autoencoder for Network Alignment

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 10:974–983,
June 2018. 2

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: A survey, 2020. URL https://arxiv.org/abs/2011.02260. 2

X. Liu, R. Wang, D. Sun, J. Li, C. Youn, Y. Lyu, J. Zhan, D. Wu, X. Xu, M. Liu, X. Lei, Z. Xu,
Y. Zhang, Z. Li, Q. Yang, and T. Abdelzaher. Influence pathway discovery on social media. In 2023
IEEE 9th International Conference on Collaboration and Internet Computing (CIC), pages 105–
109, Los Alamitos, CA, USA, nov 2023a. IEEE Computer Society. doi: 10.1109/CIC58953.2023.
00023. URL https://doi.ieeecomputersociety.org/10.1109/CIC58953.2023.00023.
2

Qikai Yang, Panfeng Li, Zhicheng Ding, Wenjing Zhou, Yi Nian, and Xinhe Xu. A comparative
study on enhancing prediction in social network advertisement through data augmentation. arXiv
preprint arXiv:2404.13812, 2024. 2

Matthias Fey, Jan E. Lenssen, Christopher Morris, Jonathan Masci, and Nils M. Kriege. Deep graph
matching consensus, 2020. URL https://arxiv.org/abs/2001.09621. 2

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rJgBd2NYPH. 2

Zhiyuan Liu, Yixin Cao, Fuli Feng, Xiang Wang, Jie Tang, Kenji Kawaguchi, and Tat-Seng Chua.
Training free graph neural networks for graph matching, 2022. URL https://arxiv.org/abs/
2201.05349. 2

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey, 2020. URL https:
//arxiv.org/abs/1812.04202. 2

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications,
2021. URL https://arxiv.org/abs/1812.08434. 2

Zhehan Liang, Yu Rong, Chenxin Li, Yunlong Zhang, Yue Huang, Tingyang Xu, Xinghao Ding,
and Junzhou Huang. Unsupervised large-scale social network alignment via cross network
embedding. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, CIKM ’21, page 1008–1017, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450384469. doi: 10.1145/3459637.3482310. URL
https://doi.org/10.1145/3459637.3482310. 2

Ji Gao, Xiao Huang, and Jundong Li. Unsupervised graph alignment with wasserstein distance
discriminator. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, KDD ’21, page 426–435, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467332. URL https://doi.org/
10.1145/3447548.3467332. 2, 7, 20

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction, 2018b. URL https://arxiv.org/abs/1710.10568. 2

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling, 2018c. URL https://arxiv.org/abs/1801.10247. 2

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’19, page 257–266, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362016. doi: 10.1145/3292500.3330925. URL https://doi.org/10.1145/3292500.
3330925. 2

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method, 2020. URL https://arxiv.org/abs/
1907.04931. 2

Tjalling C Koopmans and Martin Beckmann. Assignment problems and the location of economic
activities. Econometrica: journal of the Econometric Society, pages 53–76, 1957. 3

12

https://arxiv.org/abs/2011.02260
https://doi.ieeecomputersociety.org/10.1109/CIC58953.2023.00023
https://arxiv.org/abs/2001.09621
https://openreview.net/forum?id=rJgBd2NYPH
https://arxiv.org/abs/2201.05349
https://arxiv.org/abs/2201.05349
https://arxiv.org/abs/1812.04202
https://arxiv.org/abs/1812.04202
https://arxiv.org/abs/1812.08434
https://doi.org/10.1145/3459637.3482310
https://doi.org/10.1145/3447548.3467332
https://doi.org/10.1145/3447548.3467332
https://arxiv.org/abs/1710.10568
https://arxiv.org/abs/1801.10247
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://arxiv.org/abs/1907.04931
https://arxiv.org/abs/1907.04931

T-GAE: Transferable Graph Autoencoder for Network Alignment

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955a. 3

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019a. URL https:
//openreview.net/forum?id=ryGs6iA5Km. 4, 21

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations, 2018. 4

Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of graph neural networks.
IEEE Transactions on Signal Processing, 68:5680–5695, 2020. 4

Alejandro Parada-Mayorga, Zhiyang Wang, Fernando Gama, and Alejandro Ribeiro. Stability of
aggregation graph neural networks. IEEE Transactions on Signal and Information Processing over
Networks, 9:850–864, 2023. doi: 10.1109/TSIPN.2023.3341408. 4

Luana Ruiz, Zhiyang Wang, and Alejandro Ribeiro. Graphon and graph neural network stability. In
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5255–5259, 2021. doi: 10.1109/ICASSP39728.2021.9414838. 4

Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Gated graph recurrent neural networks. IEEE
Transactions on Signal Processing, 68:6303–6318, 2020. 4, 6

Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In IJCAI, 2021. 4

Charilaos I Kanatsoulis and Alejandro Ribeiro. Graph neural networks are more powerful than we
think. arXiv preprint arXiv:2205.09801, 2022. 4

Willem H Haemers and Edward Spence. Enumeration of cospectral graphs. European Journal of
Combinatorics, 25(2):199–211, 2004. 5

Xuezhi Wang, Haohan Wang, and Diyi Yang. Measure and improve robustness in nlp models: A
survey, 2022. 6

Jiashu He. Performance analysis of facial recognition: A critical review through glass factor, 2021. 6

Chenxin Li, Xin Lin, Yijin Mao, Wei Lin, Qi Qi, Xinghao Ding, Yue Huang, Dong Liang, and Yizhou
Yu. Domain generalization on medical imaging classification using episodic training with task
augmentation. Computers in Biology and Medicine, 141:105144, 2022. ISSN 0010-4825. doi:
https://doi.org/10.1016/j.compbiomed.2021.105144. URL https://www.sciencedirect.com/
science/article/pii/S0010482521009380. 6

Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong, and
Christos Faloutsos. It’s who you know: graph mining using recursive structural features. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 663–671, 2011. 6

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks, 2016b. 7, 21

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node em-
beddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’18. ACM, July 2018. doi:
10.1145/3219819.3220025. URL http://dx.doi.org/10.1145/3219819.3220025. 7, 21

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World
Wide Web, WWW ’15. International World Wide Web Conferences Steering Committee, May 2015.
doi: 10.1145/2736277.2741093. URL http://dx.doi.org/10.1145/2736277.2741093. 7,
21

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
partitioning and matching, 2019b. 7, 21

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network
representation. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages
1895–1901. IJCAI/AAAI Press, 2016. 8, 19

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://www.sciencedirect.com/science/article/pii/S0010482521009380
https://www.sciencedirect.com/science/article/pii/S0010482521009380
http://dx.doi.org/10.1145/3219819.3220025
http://dx.doi.org/10.1145/2736277.2741093

T-GAE: Transferable Graph Autoencoder for Network Alignment

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS 2018,
2018. 8, 19, 24

Jiashu He, Mingyu Derek Ma, Jinxuan Fan, Dan Roth, Wei Wang, and Alejandro Ribeiro. Give:
Structured reasoning with knowledge graph inspired veracity extrapolation, 2024. URL https:
//arxiv.org/abs/2410.08475. 15

Congcong Ge, Xiaoze Liu, Lu Chen, Baihua Zheng, and Yunjun Gao. Make it easy: An effective
end-to-end entity alignment framework. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’21, page 777–786,
New York, NY, USA, 2021a. Association for Computing Machinery. ISBN 9781450380379. doi:
10.1145/3404835.3462870. URL https://doi.org/10.1145/3404835.3462870. 15

Congcong Ge, Xiaoze Liu, Lu Chen, Yunjun Gao, and Baihua Zheng. Largeea: aligning entities for
large-scale knowledge graphs. Proceedings of the VLDB Endowment, 15(2):237–245, October
2021b. ISSN 2150-8097. doi: 10.14778/3489496.3489504. URL http://dx.doi.org/10.
14778/3489496.3489504. 15

Yunjun Gao, Xiaoze Liu, Junyang Wu, Tianyi Li, Pengfei Wang, and Lu Chen. Clusterea: Scalable
entity alignment with stochastic training and normalized mini-batch similarities. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’22, page 421–431, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393850. doi: 10.1145/3534678.3539331. URL https://doi.org/10.1145/3534678.
3539331. 15

Congcong Ge, Pengfei Wang, Lu Chen, Xiaoze Liu, Baihua Zheng, and Yunjun Gao. Collaborem: A
self-supervised entity matching framework using multi-features collaboration. IEEE Transactions
on Knowledge and Data Engineering, 35(12):12139–12152, 2023. doi: 10.1109/TKDE.2021.
3134806. 15

Xiaoze Liu, Junyang Wu, Tianyi Li, Lu Chen, and Yunjun Gao. Unsupervised entity alignment
for temporal knowledge graphs. In Proceedings of the ACM Web Conference 2023, WWW ’23,
page 2528–2538, New York, NY, USA, 2023b. Association for Computing Machinery. ISBN
9781450394161. doi: 10.1145/3543507.3583381. URL https://doi.org/10.1145/3543507.
3583381. 15

Bolin Zhu, Xiaoze Liu, Xin Mao, Zhuo Chen, Lingbing Guo, Tao Gui, and Qi Zhang. Universal
multi-modal entity alignment via iteratively fusing modality similarity paths, 2023. URL https:
//arxiv.org/abs/2310.05364. 15

Jian Ding, Zongming Ma, Yihong Wu, and Jiaming Xu. Efficient random graph matching via degree
profiles, 2020. 15

Yihong Wu, Jiaming Xu, and Sophie H. Yu. Settling the sharp reconstruction thresholds of random
graph matching, 2022. 15

Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H. Yu. Random graph matching at otter’s threshold
via counting chandeliers, 2023. 15

Stefania Sardellitti, Sergio Barbarossa, and Paolo Di Lorenzo. On the graph fourier transform for
directed graphs. IEEE Journal of Selected Topics in Signal Processing, 11(6):796–811, 2017. 16

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955b. 18, 24

Jérôme Kunegis. Konect: the koblenz network collection. Proceedings of the 22nd International
Conference on World Wide Web, 2013. 19, 24

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014. 19

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008. 19

Si Zhang and Hanghang Tong. Attributed network alignment: Problem definitions and fast solutions.
IEEE Transactions on Knowledge and Data Engineering, 31:1680–1692, 2019. URL https:
//api.semanticscholar.org/CorpusID:70142000. 19

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. 20

14

https://arxiv.org/abs/2410.08475
https://arxiv.org/abs/2410.08475
https://doi.org/10.1145/3404835.3462870
http://dx.doi.org/10.14778/3489496.3489504
http://dx.doi.org/10.14778/3489496.3489504
https://doi.org/10.1145/3534678.3539331
https://doi.org/10.1145/3534678.3539331
https://doi.org/10.1145/3543507.3583381
https://doi.org/10.1145/3543507.3583381
https://arxiv.org/abs/2310.05364
https://arxiv.org/abs/2310.05364
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://api.semanticscholar.org/CorpusID:70142000
https://api.semanticscholar.org/CorpusID:70142000

T-GAE: Transferable Graph Autoencoder for Network Alignment

A Appendix

B Notation
Our notation is summarized in Table 1.

Table 1: Key notations used in this paper.

G ≜ Graph
V ≜ Set of nodes
E ≜ Set of edges
N ≜ Number of nodes
D ≜ Degree matrix
S ≜ {0, 1}N×N adjacency matrix
X ≜ N ×D feature matrix
H ≜ aggregation results of GNN convolution
W ≜ weight matrix of the Graph Neural Network
Nv ≜ neighbors of node v
I ≜ Identity matrix
0 ≜ vector or matrix of zeros

AT ≜ transpose of matrix A

Arc ≜ entry at r-th row and j-th column of matrix A

∥·∥F ≜ Frobenius norm

C Network Alignment in broader domains
In this paper, we study the general form of network alignment to match nodes between two graphs.
This task is challenging because of the little given information. However, it’s not trivial to correctly
and efficiently utilize the information contained in text-rich networks, such as KGs [He et al., 2024].
In the domain of knowledge graph (KG) mining, entity alignment (EA) is the task to identify the
same entities existing in knowledge graphs. [Ge et al., 2021a] proposes to replace the labor-intensive
pre-processing with entity names mining. A structural-based refinement procedure is then applied to
refine the entity name matching results. [Ge et al., 2021b, Gao et al., 2022] solves large scale EA by
aligning the KG in mini-batches. [Ge et al., 2023] further proposes a self-supervised EA framework
by automatically generating positive and negative matched node pairs. [Liu et al., 2023b] generalizes
the unsupervised matching algorithm to temporal KGs. Specifically, it encodes the temporal and
relational information respectively before an innovative jointly decoding process. Recently, the ability
to deploy EA algorithms in real-world scenarios is enhanced by [Zhu et al., 2023], which aligns
multi-modal knowledge graphs.

Network alignment, as an important problem, has been studied not only by the community of data
mining, it has also been mathematically and statistically investigated. A number of approaches have
been proposed to solve this problem for Erdős Rényi random graphs G(n, d

n). It has been proved that
a perfectly true vertex correspondence can be recovered in polynomial time with high probability
[Ding et al., 2020]. Furthermore, a sharp threshold has been proved for both Erdős Rényi model and
Gaussian model [Wu et al., 2022]. Most recently, a novel approach to calculate similarity scores
based on counting weighted trees rooted at each vertex has been proposed Mao et al. [2023]. Such
approach has been proved to be effective in solving the aforementioned network alignment problem
on random graphs with high probability. Readers are encouraged to refer to the authors of these
publications [Ding et al., 2020, Wu et al., 2022, Mao et al., 2023] for further reading.

D Proof of Theorem 3.2
D.1 Spectral characterization of GNNs

What remains to be answered is the ability of a GNN to approximate a function that performs graph
alignment. To understand the function approximation properties of GNNs we study them in the

15

T-GAE: Transferable Graph Autoencoder for Network Alignment

spectral domain. To this end, we consider the recursive formula in (4) where f is the summation
function and g is multivariate linear for K − 2 layers, and the MLP in the (K − 1)-th layer. The
overall operation can be written in a matrix form as:

X(l+1) = σ

(
K−1∑
k=0

SkX(l)H
(l)
k

)
, (8)

where H
(l)
k ∈ RDl+1×Dl

is a linear mapping. Computing the spectral decomposition of S yields:

X(l+1) = σ

(
K−1∑
k=0

V ΛkV TX(l)H
(l)
k

)
= σ

(
K−1∑
k=0

N∑
n=1

λk
nvnv

T
nX

(l)H
(l)
k

)
. (9)

Then each each column of X(l+1) can be written as

X(l+1)[:, i] = σ

(
K−1∑
k=0

N∑
n=1

λk
nvnv

T
nX

(l)H
(l)
k [:, i]

)
= σ

(
N∑

n=1

a(i)n vn

)
, (10)

where λn,vn are the n−th eigenvalue and eigenvector and a
(i)
n = vT

nX
(l)
∑K−1

k=0 λk
nH

(l)
k [:, i] is a

scalar related to the Graph Fourier Transform (GFT) of X(l) [Sardellitti et al., 2017]. It is clear from
equation (10) that the output of each layer is a linear combination of the adjacency eigenvectors,
followed by a pointwise non-linearity. Thus, a GNN can produce unique and more powerful graph
embeddings than spectral methods by processing the eigenvectors and eigenvalues of the adjacency
matrix. To prove Theorem 3.2. We consider one layer GNN with a vector input x ∈ RN . This GNN
can be represented by the following equation:

Y = σ

(
K−1∑
k=0

SkxhT
k

)
, (11)

where hk ∈ Rm and xhT
k is an outer-product operation. The equation in (11) describes a set of m

graph filters of the form:

yi = σ

(
K−1∑
k=0

hi
kS

kx

)
, for i = 1, . . . ,m (12)

D.2 White random input and variance computation

Let x be a white random vector with E [x] = 0 and E
[
xxT

]
= I , where I is the diagonal matrix.

Also let σ (·) = (·)2 be the elementwise square function. Then (12) can be written as:

yi =

(
K−1∑
k=0

hi
kS

kx

)2

= diag

K−1∑
k=0

hi
kS

kxxT
K−1∑
j=0

hi
jS

jT

 (13)

Since x is a random vector yi is also a random vector. The expected value of yi yields:

E [yi] = E

diag

K−1∑
k=0

hi
kS

kxxT
K−1∑
j=0

hi
jS

jT

 (14)

= diag

K−1∑
k=0

hi
kS

kE
[
xxT

]K−1∑
j=0

hi
jS

jT


= diag

K−1∑
k=0

hi
kS

k
K−1∑
j=0

hi
jS

jT

 (15)

16

T-GAE: Transferable Graph Autoencoder for Network Alignment

D.3 Single band filtering

In the second part of the proof we study the graph filter using the spectral decomposition of the graph:

y =

K−1∑
k=0

hkS
kx (16)

=

K−1∑
k=0

hkV ΛkV Tx (17)

=

K−1∑
k=0

hk

N∑
n=1

λk
nvnv

T
nx (18)

=

N∑
n=1

vT
nx

K−1∑
k=0

hkλ
k
nvn. (19)

Let us focus on the following polynomial:

h̃ (λ) =
K−1∑
k=0

hkλ
k, (20)

that represents a graph filter in the frequency domain by. For q distinct eigenvalues we can write a
system of linear equations using the polynomial in (20):

h̃ (λ1)

h̃ (λ2)
...

h̃ (λq)

 =


1 λ1 λ

2
1 . . . λ

K−1
1

1 λ2 λ
2
2 . . . λ

K−1
2

...
1 λq λ

2
q . . . λ

K−1
q




h0

h1

...
hK−1

 = Wh (21)

W is a Vandermonde matrix and when K = q the determinant of W takes the form:

det (W) =
∏

1≤i<j≤q

(λi − λj) (22)

Since the values λi are distinct, W has full column rank and there exists a graph filter with unique
parameters h that passes only the λ eigenvalue, i.e.,

h̃ (λi) =

{
1, if λi = λ
0, if λi ̸= λ

(23)

Under this parametrization, equation (16) takes the form y = vλv
T
λx, where vλ is the eigenvector

corresponding to λ.

D.4 GNN and absolute eigenvectors

Using the previous analysis we can design parameters hk such that:

K−1∑
k=0

hkS
k = vλv

T
λ (24)

and then equation (14) takes the form:

E [yi] = diag

K−1∑
k=0

hi
kS

k
K−1∑
j=0

hi
jS

jT

 (25)

= diag
(
vλv

T
λ vλv

T
λ

)
(26)

= diag
(
vλv

T
λ

)
(27)

= |vλ|2 (28)

17

T-GAE: Transferable Graph Autoencoder for Network Alignment

We can therefore design hk ∈ Rm for k = 0, . . . ,m − 1 to compute the absolute value of m
eigenvectors of S that correspond to the top m distinct eigenvalues, i.e.,

E [yi] = |ui|2, i = 1, . . . ,m (29)
(30)

We can do the same for graph Ŝ and compute:

E [ŷi] = |ûi|2, i = 1, . . . ,m (31)
(32)

Since both S, Ŝ have distinct eigenvalues, we can concatenate the output of each neuron and result
in layer-1 outputs as:

Y (1) = |U |, Ŷ (1) = |Û | (33)

As a result, the previously described GNN can a least yield the same alignment accuracy as the
absolute values of the eigenvectors.

D.5 Generalization to multiple graph pairs

The analysis in the previoius subsections is indeed presented for a pair of graphs but can be directly
extended for any set of graphs. We can generalize the Theorem 3.2, to read as: Let {G1, . . . ,GM} be
a set of graphs with adjacencies {S1, . . . ,SM} that have non-repeated eigenvalues. Then for any
S, Ŝ ∈ {S1, . . . ,SM}, there exists a GNN ϕ (X;S,H) : RN×D → RN×DL

such that:∥∥∥ S − P ⋄ŜP ⋄T
∥∥∥2

F
≤

∥∥∥ S − P ∗ŜP ∗T
∥∥∥2

F
≤

∥∥∥ S − P̌ ŜP̌ T
∥∥∥2

F

with

P ∗ = argmin
P∈P

∥∥∥ ϕ (X;S,H)− Pϕ
(
X̂; Ŝ,H

) ∥∥∥2
F
,

where P ⋄, P̌ are solutions to the optimization problems in (1) and (3) respectively.

E Implementation Details

In this section we discuss the implementation details of our framework.

E.1 Assignment Optimization

The proposed T-GAE learns learns a GNN encoder that can produce node representations for different
graphs. Let ϕ (X;S,H) represent the embeddings of the nodes corresponding to the graph with
adjacency S and ϕ

(
X̂; Ŝ,H

)
represent the embeddings of the nodes corresponding to the graph

with adjacency Ŝ. Then network alignment boils down to solving the following optimization problem:

min
P∈P

∥∥∥ ϕ (X;S,H)− Pϕ
(
X̂; Ŝ,H

) ∥∥∥2
F
. (34)

The problem in (34) can be optimally solved in O
(
N3
)

flops by the Hungarian algorithm [Kuhn,
1955b]. To avoid this computational burden we employ the greedy Hungarian approach that has
computational complexity O

(
N2
)

and usually works well in practice.

The greedy Hungarian approach is described in Algorithm 1. For each row of
ϕ (X;S,H) , ϕ

(
X̂; Ŝ,H

)
, which corresponds to the node embeddings of the different graphs, we

compute the pairwise Euclidean distance which is stores in the distance matrix D. Then, at each
iteration, we find the nodes with the smallest distance and remove the aligned pairs from D. This
process is repeated until all the nodes are paired up for alignment.

18

T-GAE: Transferable Graph Autoencoder for Network Alignment

Algorithm 1: Greedy Hungarian Algorithm

Input: Feature matrices X , X̂
Output: Assignment Matrix

1 P := 0N×N // Initialize permutation matrix

2 D := PairwiseDistance
(
X, X̂

)
// pairwise Euclidean distance

3 rows := 0,1,. . . ,N -1 // Corresponds to X

4 cols := 0,1,. . . ,N -1 // Corresponds to X̂
/* Iterate to assign node pairs with minimum Euclidean distance */

5 for n=1 to N do
6 i, j := argmin (D)
7 r := rows [i]
8 c := cols [j]
9 Prc := 1

10 Remove r from rows
11 Remove c from cols
12 Remove the i-th row from D
13 Remove the j-th column from D

14 return P

Table 2: Summary of Dataset statistics that are included in Section 5

Task Dataset |V| |E| # Aligned Edges Network Type

Graph Matching

Celegans [Kunegis, 2013] 453 2,025 2,025 Interactome
Arenas [Leskovec and Krevl, 2014] 1,133 5,451 5,451 Email Communication

Cora [Sen et al., 2008] 2,708 5,278 5,278 Citation Network
Douban [Zhang and Tong, 2016] 3,906 7,215 7,215 Social Network

Dblp [Pan et al., 2016] 17,716 52,867 52,867 Citation Network
Coauthor CS [Shchur et al., 2018] 18,333 81,894 81,894 Coauthor Network

Subraph Matching

ACM-DBLP [Zhang and Tong, 2019] 9,872
9,916

39,561
44,808 6,352 Citation Network

Douban Online-Offline [Zhang and Tong, 2016] 3,906
1,118

1,632
3,022 1,118 Social Network

E.2 Datasets

We include statistics of the datasets used in our experiments in Table 2. The detailed descriptions of
each dataset are presented below:

• Celegans [Kunegis, 2013]: The vertices represent proteins and the edges their protein-protein
interactions.

• Arenas Email [Leskovec and Krevl, 2014]: The email communication network at the University
Rovira i Virgili in Tarragona in the south of Catalonia in Spain. Nodes are users and each edge
represents that at least one email was sent.

• Douban [Zhang and Tong, 2016]: Contains user-user relationship on the Chinese movie review
platform. Each edge implies that two users are contacts or friends.

• Cora [Sen et al., 2008]: The dataset consists of 2708 scientific publications, with edges repre-
senting citation relationships between them. Cora has been one of the major benchmark datasets
in many graph mining tasks.

• Dblp [Pan et al., 2016]: A citation network dataset that is extracted from DBLP, Association
for Computing Machinery (ACM), Microsoft Academic Graph (MAG), and other sources. It is
considered a benchmark in multiple tasks.

• Coauthor_CS [Shchur et al., 2018]: The coauthorship graph is generated from MAG. Nodes are
the authors and they are connected with an edge if they coauthored at least one paper.

• ACM−DBLP [Zhang and Tong, 2019]: The citation networks that share some common nodes.
The task is to identify the publications that appear in both networks.

19

T-GAE: Transferable Graph Autoencoder for Network Alignment

• Douban Online−Offline [Zhang and Tong, 2016]: The two social networks contained in this
dataset represents the online and offline events of the Douban social network. The task is to
identify users that participate in both online and offline events.

E.3 Baselines

E.3.1 Graph Neural Network(GNN) based methods

To have a fair comparison with the node embedding models, GAE is implemented using the same
set of parameters as T-GAE, which can be found at Section E.4. WAlign is implemented using
parameters suggested by the author. We report the best results they achieved during training.

• WAlign [Gao et al., 2021] fits a GNN to each of the input graphs, trains the model by reconstruct-
ing the given inputs and minimizing an approximation of Wasserstein distance between the node
embeddings. We use the author’s implementation from https://github.com/gaoji7777/
walign.git.

• GAE, VGAE[Kipf and Welling, 2016] are self-supervised graph learning frameworks that are
trained by reconstructing the graph. The encoder is a GCN[Kipf and Welling, 2017] and linear
decoder is applied to predict the original adjacency. In VGAE, Gausian Noise is introduced
to the node embeddings before passing to the decoder. We use the implementation from
https://github.com/DaehanKim/vgae_pytorch. We train GAE by reconstructing the
given network using the netsimile node embedding.

E.3.2 Graph/Node embedding techniques

• NetSimile [Berlingerio et al., 2013] uses the structural features described earlier to match the
nodes of the graphs. Since the NetSimile features are used as input to the T-GAE, they provide
a measure to assess the benefit of using T-GAE for node embedding. It proposed 7 egonet-based
features, to measure network similarity. We process these features by Algorithm 1 to perform
network alignment. The 7-dimensional Netsimile features are:

– di = degree of node i
– ci = number of triangles connected to node i over the number of connected triples centered

on node i
– d̄Ni

= 1
di

∑
j∈Ni

dj , average number of two-hop neighbors

– c̄Ni
= 1

di

∑
j∈Ni

cj , average clustering coefficient
– Number of edges in node i’s egonet
– Number of outgoing edges from node i’s egonet
– Number of neighbors in node i’s egonet

The implementation is based on netrd library where we use the feature extraction function.
The source code can be found at https://netrd.readthedocs.io/en/latest/_modules/
netrd/distance/netsimile.html

• Spectral [Umeyama, 1988] It solves the following optimization problem:

min
P∈P

∥∥∥ |V | − P
∣∣∣V̂ ∣∣∣ ∥∥∥2

F
, (35)

where V , V̂ are the eigenvectors corresponding to the adjacencies of the graphs that we want to
match. In our initial experiments, we observed that a subset of the eigenvectors yields improved
results compared to the whole set. We tried 1 − 10 top eigenvectors and concluded that 4
eigenvectors are those that yield the best results on average. Thus we solve the above problem
with the top-4 eigenvectors.

• DeepWalk [Perozzi et al., 2014]: A node embedding approach, simulates random walks on the
graph and apply skip-gram on the walks to generate node embedding. We use the implementation
from Karateclub. The algorithm is implemented with the default parameters as suggested by this
repository, the number of random walks is 10 with each walk of length 80. The dimensionality
of embedding is set to be 128. We run the algorithm with 1 epoch and set the learning rate to be
0.05.

20

https://github.com/gaoji7777/walign.git
https://github.com/gaoji7777/walign.git
https://github.com/DaehanKim/vgae_pytorch
https://netrd.readthedocs.io/en/latest/_modules/netrd/distance/netsimile.html
https://netrd.readthedocs.io/en/latest/_modules/netrd/distance/netsimile.html
https://github.com/benedekrozemberczki/karateclub/blob/master/karateclub/node_embedding/neighbourhood/deepwalk.py

T-GAE: Transferable Graph Autoencoder for Network Alignment

• Node2Vec [Grover and Leskovec, 2016b]: An improve version of DeepWalk, it has weights
on the randomly generated random walks, to make the neighborhood preserving objective
more flexible. We use the implementation from Karateclub. The default parameters are used.
We simulate 10 random walks on the graph with length 80. p and q are both equal to 1.
Dimensionality of embeddings is set to be 4 and we run 1 epoch with learning rate 0.05.

• GraphWave [Donnat et al., 2018]: The structure information of the graphs is captured by
simulating heat diffusion process on them. We use the implementation from Karateclub with
the default parameters: number of evaluation points is 200, step size is 0.1, heat coefficient
is 1.0 and Chebyshev polynomial order is set to be 100. Note that this implementation does
not work on graphs with more than 10,000 nodes, so we exclude this model on the DBLP and
Coauthor_CS dataset.

• LINE [Tang et al., 2015]: An optimization based graph embedding approach that aims to preserve
local and global structures of the network by considering substructures and structural-quivariant
nodes. We use the PyTorch implementation from https://github.com/zxhhh97/ABot. All
parameters are set to default as the authors suggested.

E.3.3 Optimization based graph matching algorithms

• FINAL [Zhang and Tong, 2016] is an optimization approach, following an alignment consistency
principle, and tries to match nodes with similar topology. In the case of graphs without attributes
FINAL is equivalent to the popular

• Isorank [Singh et al., 2008] algorithm, whereas using NetSimile as an input to FINAL resulted
in inferior performance and was therefore omitted. We use the code in https://github.com/
sizhang92/FINAL-KDD16 with H being the degree similarity matrix, α = 0.8, maxiter =
30, tol = 1e− 4 as suggested in the repository.

• ConeAlign [Chen et al., 2020] is a graph embedding based approach. The matching is optimized
in each iteration by the Wasserstein Procrustes distances between the matched embeddings cal-
culated on a mini batch in order to preserve scalability. We use the official implementation from
https://github.com/GemsLab/CONE-Align and preserved all the suggested parameters.

• S-GWL [Xu et al., 2019b] matches two given graphs by retrieving node correspondence from the
optimal transport associated with the Gromov-Wasserstein discrepancy between the graphs. We
use the implementation by the authors in https://github.com/HongtengXu/s-gwl, since
the performance of S-GWL is very sensitive to the parameter gamma, as suggested by the
authors, we fine-tuned this parameter over the range of [0.001, 0.1] for each dataset on the
cleaned graph, and use that optimal parameter for all other experiments on this dataset.

E.4 T-GAE model details

As illustrated in Figure 1, the structure of our proposed encoder consists of two MLPs and a series
of GNN layers. The node features are processed by a 2-layer MLP and passed to all the GNN
layers. We add skip connections between this MLP layer and all the subsequent GNN layers. The
outputs of all GNN layers are concatenated and passed to another 2-layer MLP, followed by a linear
decoder to generate the reconstructed graph. The model is optimized end to end by equation 7. For
graph matching experiments, since we consider the general case where graphs are given without
node attributes, we use the 7 structural features proposed in [Berlingerio et al., 2013]. The features
include the degree of each node, the local and average clustering coefficient, and the number of
edges, outgoing edges, and neighbors in each node’s egonet. This input feature is applied for all
GNN-based methods. As a result, the performance of NetSimile, vanilla GAE and WAlign provide
measures to assess the benefit of using T-GAE for node embedding. Note that one can choose different
message passing functions as f and g in Equation (4), and any structure-preserving node features.
Our reported results are based on GIN [Xu et al., 2019a] and Netsimile [Berlingerio et al., 2013].

F More Baseline Results
We present the graph matching accuracy for the baseline methods that are not permutation equavariant
in Table 3, and sub-graph matching accuracy on Douban Online-Offline dataset for GraphWave in
Table 4, as it is not scalable on ACM/DBLP.

21

https://github.com/benedekrozemberczki/karateclub/blob/master/karateclub/node_embedding/neighbourhood/node2vec.py
https://github.com/benedekrozemberczki/karateclub/blob/master/karateclub/node_embedding/structural/graphwave.py
https://github.com/zxhhh97/ABot
https://github.com/sizhang92/FINAL-KDD16
https://github.com/sizhang92/FINAL-KDD16
https://github.com/GemsLab/CONE-Align
https://github.com/HongtengXu/s-gwl

T-GAE: Transferable Graph Autoencoder for Network Alignment

Table 3: Graph matching accuracy on 10 randomly perturbed samples under different levels of edge
editing for VGAE, LINE and DeepWalk.

Dataset VGAE LINE DeepWalk

0
%

Celegans 0.3± 0.1 1.0± 0.5 1.8± 0.6
Arenas 0.1± 0.1 0.2± 0.1 0.3± 0.2
Douban 0.0± 0.0 0.0± 0.0 0.1± 0.0

Cora 0.1± 0.0 0.0± 0.0 0.1± 0.0

1
%

Celegans 0.3± 0.1 1.0± 0.4 1.2± 0.5
Arenas 0.1± 0.1 0.1± 0.1 0.3± 0.1
Douban 0.0± 0.0 0.0± 0.0 0.1± 0.0

Cora 0.1± 0.1 0.1± 0.0 0.2± 0.1
5
%

Celegans 0.6± 0.3 0.9± 0.3 1.0± 0.3
Arenas 0.2± 0.1 0.2± 0.2 0.2± 0.1
Douban 0.0± 0.0 0.0± 0.0 0.0± 0.0

Cora 0.1± 0.0 0.1± 0.0 0.1± 0.0

Table 4: Sub-graph matching performance for GraphWave on Douban Online-Offline

Hit rate GraphWave

Hit@1 0.09
Hit@5 0.36

Hit@10 0.81
Hit@50 4.74

Hit@100 9.12

G Degree Perturbation Model Results

Table 5: Graph matching accuracy on 10 randomly perturbed samples under different levels of edge
removal on Degree model. The proposed T-GAE is trained on the clean Celegans, Arena, Douban,
and Cora networks, and tested on noisy versions of them and the larger Dblp, and Coauthor CS.
Accuracy above 80% is highlighted in green, 60% to 80% accuracy is in yellow, and performance
below 60% is in red.

Dataset \ Algorithm Feature Engineering based Optimization based GNN based
Spectral Netsimile GraphWave FINAL S-GWL ConeAlign WAlign GAE T-GAE

0
%

pe
rt

ur
ba

tio
n Celegans 87.8± 1.5 72.7± 0.9 65.3± 1.7 92.2± 1.2 93.0± 1.5 66.6± 1.2 88.4± 1.6 90.9± 2.6 91.0± 1.1

Arenas 97.7± 0.4 94.7± 0.3 81.7± 0.7 97.5± 0.3 97.5± 0.3 87.8± 0.6 97.4± 0.5 97.6± 0.4 97.8± 0.4
Douban 89.9± 0.4 46.4± 0.4 17.5± 0.2 89.9± 0.3 90.1± 0.3 68.1± 0.4 90.0± 0.4 89.5± 0.4 90.1± 0.3

Cora 85.0± 0.4 73.7± 0.4 8.3± 0.4 87.5± 0.7 87.3± 0.7 38.5± 0.7 87.2± 0.4 87.1± 0.8 87.5± 0.4
Dblp 84.5± 0.1 63.7± 0.2 doesn’t scale 85.6± 0.2 > 48 hours 44.3± 0.6 85.6± 0.2 85.2± 0.3 85.6± 0.2

Coauthor CS 97.5± 0.1 90.9± 0.1 doesn’t scale 97.6± 0.1 > 48 hours 75.8± 0.5 97.5± 0.2 97.6± 0.3 97.6± 0.1

1
%

pe
rt

ur
ba

tio
n Celegans 21.8± 16.9 63.1± 1.4 4.9± 1.1 62.5± 4.1 73.1± 11.7 61.4± 3.2 70.7± 4.4 7.8± 2.5 63.4± 6.1

Arenas 66.0± 21.6 90.9± 0.7 5.8± 2.6 56.7± 2.7 92.3± 1.2 86.1± 0.6 96.0± 0.5 0.9± 0.5 96.7± 0.6
Douban 9.8± 13.5 37.6± 0.6 0.6± 0.3 35.0± 1.1 69.9± 1.2 59.6± 2.2 81.3± 1.9 0.4± 0.0 83.7± 2.2

Cora 25.3± 13.4 64.4± 1.2 0.1± 0.0 32.0± 2.0 31.1± 4.4 30.6± 2.7 74.6± 0.7 28.2± 0.3 81.0± 2.5
Dblp 3.4± 0.8 52.2± 0.5 doesn’t scale 24.5± 0.6 > 48 hours 21.1± 1.9 67.4± 1.1 10.5± 0.6 77.1± 0.6

Coauthor CS 8.6± 4.6 76.8± 0.6 doesn’t scale 19.1± 0.5 > 48 hours 64.0± 2.0 88.9± 0.8 3.8± 0.1 94.0± 0.4

Degree Model: In this model we only remove edges. Edges with higher degrees are more likely to
be removed to preserve the structure of the graph. Specifically, the probability of removing edge
(i, j) is set to sijdidj∑

ij sijdidj
, where di is the degree of node vi and si,j is the (i, j) element of the graph

adjacency.

We test the performance of T-GAE for large-scale network alignment on the degree perturbation
model, as described in Section 5.2. We adopt the same setting as in Section 5.2 to train the T-GAE
according to (6) on small-size networks, i.e., Celegans, Arena, Douban, and Cora, and conduct
transfer learning experiments on the larger graphs, i.e., Dblp, and Coauthor CS. The trained T-GAE
is used to generate node embedding for the graphs, and Algorithm 1 computes the assignment matrix.
The results presented in Table 5 are based on the average and standard deviation of the matching
accuracy over 10 randomly generated perturbed samples.

22

T-GAE: Transferable Graph Autoencoder for Network Alignment

We observe that the benefit of processing the NetSimile embeddings with GNNs is still significant in
this perturbation model as we observe up to 46% performance increase at the presence of perturbation.
When testing on perturbed graphs at 1% level of edge removal, our proposed T-GAE consistently
outperforms all the competing baselines, while being robust and efficient when performing network
alignment under different perturbation models. Especially, on large-scale networks, T-GAE is able to
achieve very high levels of matching accuracy for both Dblp and Coauthor CS, for p = 0%, 1%.

The benefit of our proposed T-GAE framework in improving the expressiveness of GNN still stands
out if we compare the accuracy with WAlign and GAE. It also consistently achieves the best result
among all baseline methods that are salable.

H Efficiency analysis

H.1 Running time comparison

T-GAE is a scalable and efficient approach for network alignment. We analyze the efficiency
of the proposed graph matching framework by comparing its running time with the competing
algorithms. T-GAE achieves at most ×2000 less running time, on graph matching tasks, compared
to the optimization-based methods, as shown in Table 6. Compared to the existing GNN based
approaches, T-GAE consistently achieves the shortest training time and inference time, this is because
we replace some message passing layers by the local MLP which serves as an attention function on
the output of all GNN layers, such models are empirically proved to be more efficient, at the same
time, prompting the expressiveness of GNN layers, to generate node embedding for graph matching.
It should be noted that T-GAE is also the only approach that is transferable, which means it does not
need to re-train on every pair of new graphs. T-GAE greatly improves the scalability of optimization
based methods, as well as the effectiveness of the existing GNN frameworks.

Figure 5: Training time comparison (20 epoches) between T-GAE and WAlign for graph-matching.
TGAE_s is the specific setting where we train the encoder GNN according to Equation (7), whereas
TGAE_t means training according to Equation (8) on a family of graphs. (Celegans, Arenas, Cora,
Douban)

23

T-GAE: Transferable Graph Autoencoder for Network Alignment

Table 6: Runtime(inference+matching) in seconds for the competing algorithms on graph matching
tasks.

Algorithm Celegans Arenas Cora Douban Dblp Coauthor CS

Spectrul 5.712 2.819 54.770 60.298 > 48 hours > 48 hours
Netsimile 1.212 1.560 1.616 4.400 195.542 225.546
GraphWave 8.308 32.994 131.230 281.629 5470.724 6291.368

FINAL(Matlab) 0.030 0.081 0.498 1.007 86.788 118.065
S-GWL 27.844 37.443 311.201 3394.522 > 48 hours > 48 hours
ConeAlign 1.333 3.500 13.799 31.955 887.090 1099.145

WAlign 0.078 0.205 0.766 1.800 169.694 189.032
GAE 0.074 0.212 0.757 1.749 164.410 184.062
T-GAE(ours) 0.068 0.201 0.742 1.734 163.836 183.289

The proposed training objective (7) scales well from networks with 400 nodes [Kunegis, 2013] to
denser networks with ×50 nodes [Shchur et al., 2018], with minor running time increase, compared
to other GNN-based frameworks(WAlign), as shown in Figure 5.

H.2 Matching algorithms comparison

In this subsection, we evaluate the accuracy and matching time of different matching algorithms, to
demonstrate how matching algorithms of different time complexity influence the performance of
the proposed T-GAE framework. To guarantee fairness of comparison, we use an untrained T-GAE
encoder to encode the graphs, and use (1) approximated NN algorithm introduced in Section 4.3 of
time complexity O(NlogN). (2) greedy Hungarian algorithm as applied in Section 5 and 5.3 of time
complexity O(N2). (3) exact Hungarian algorithm [Kuhn, 1955b] of time complexity O(N3), where
N is the number of nodes in the graph. We report average accuracy and running time on matching 10
randomly generated samples.

Table 7: Graph matching performance and matching time on Celegans and Arenas using untrained
T-GAE encoder. We report results of approximated NN matching algorithm, greedy Hungarian
algorithm, and exact Hungarian algorithm. We highlight the performance gain of exact Hungarian
over the approximated NN and Greedy Hungarian.

Dataset/Perturbation
Celegans Arenas

0 0.01 0.05 0 0.01 0.05
Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time

O(NlogN)
1 Approximated NN 89.8± 1.0 0.004 0.8± 0.3 0.004 0.7± 0.2 0.004 98.0± 2.6 0.009 0.1± 0.1 0.009 0.0± 0.0 0.009

O(N2)
2 Greedy Hungarian 88.4± 0.9 0.068 80.3± 0.3 0.068 58.2± 3.5 0.067 97.6± 0.4 0.173 93.1± 0.5 0.176 60.2± 5.2 0.174

O(N3)
3 Exact Hungarian 88.5± 0.8 0.225 84.0± 0.2 24.778 64.7± 1.8 73.674 97.6± 0.4 0.411 93.8± 0.4 562.221 70.0± 2.0 1624.713

O(N3)
4 Acc Gain in % (Exact vs Approx/Greedy) -1.3 / +0.1 +83.2 / +3.7 +64.0 / +6.5 -0.4 / 0 +93.7 / +0.7 +70.0 / +9.8

The performance of T-GAE to match small graphs can be further improved by adopting the
exact Hungarian algorithm. Comparing Exact Hungarian and Greedy Hungarian, we observe that
when there is no perturbation involved, greedy Hungarian and exact Hungarian achieves comparable
performance. However, the exact Hungarian algorithm outperforms the greedy version in occurrence
of perturbations, and the performance gap increases as we introduce more topology noise. Specifically,
it offers a 6.5% and 9.8% matching accuracy increase on Celegans and Arenas, respectively, on an
untrained T-GAE encoder. However, it can take more than ×9000 longer than the greedy algorithm,
on Arenas 5% perturbation, for example. This implies that whenever applicable, the exact Hungarian
algorithm should be applied to further improve the performance of T-GAE to match small graphs,
especially when the noise level is high, but there is a trade-off between matching accuracy and
efficiency.

The efficiency of T-GAE to match permuted graphs can be enhanced by applying the approxi-
mated NN algorithm. We observe that the approximated NN algorithm we introduced in Section
4.3 effectively match the aligned nodes of permuted graphs, and on Arenas dataset of 1,133 nodes, it

24

T-GAE: Transferable Graph Autoencoder for Network Alignment

saves 95% matching time compared to the greedy Hungarian algorithm. However, this algorithm
fails to match perturbed graphs. This is because the 1-dimensional feature is not expressive enough
to to catch the topological noise. Our experiments prove that this efficient NN algorithm should be
applied when we match very large scale networks with their permuted versions.

Overall, we divide graph matching using T-GAE in three scenarios: (1) Matching small graphs, exact
Hungarian algorithm should be applied. (2) Matching large scale networks without perturbation, the
approximation NN algorithm should be deployed to enhance efficiency. (3) The greedy Hungarian
algorithm provides a good trade-off between time and efficiency for the general form of graph
matching.

25

	1 Introduction
	2 Preliminaries
	2.1 Network Alignment
	2.2 Spectral Decomposition of the Graph

	3 Graph Neural Networks (GNNs) Upper-Bounds Spectral Methods for Network Alignment
	3.1 GNNs and Network Alignment

	4 Proposed Method
	4.1 Learning Network Geometry with Transferable Graph Auto-encoders
	4.2 Robust and Generalizable Node representations with self-supervised learning (data augmentation)
	4.3 Alignment and Complexity analysis

	5 Experiments
	5.1 Experiments Setup
	5.2 Graph Matching Experiments
	5.3 Sub-graph Matching Experiments
	5.4 Ablation study

	6 Limitation
	7 Conclusion
	A Appendix
	B Notation
	C Network Alignment in broader domains
	D Proof of Theorem 3.2
	D.1 Spectral characterization of GNNs
	D.2 White random input and variance computation
	D.3 Single band filtering
	D.4 GNN and absolute eigenvectors
	D.5 Generalization to multiple graph pairs

	E Implementation Details
	E.1 Assignment Optimization
	E.2 Datasets
	E.3 Baselines
	E.3.1 Graph Neural Network(GNN) based methods
	E.3.2 Graph/Node embedding techniques
	E.3.3 Optimization based graph matching algorithms

	E.4 T-GAE model details

	F More Baseline Results
	G Degree Perturbation Model Results
	H Efficiency analysis
	H.1 Running time comparison
	H.2 Matching algorithms comparison

