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Abstract

3D editing with Gaussian splatting is exciting in creating realistic content, but it
also poses abuse risks for generating malicious 3D content. Existing 2D defense
approaches mainly focus on adding perturbations to single image to resist malicious
image editing. However, there remain two limitations when applied directly to 3D
scenes: (1) These methods fail to reflect 3D spatial correlations, thus protecting
ineffectively under multiple viewpoints. (2) Such pixel-level perturbation is easily
eliminated during the iterations of 3D editing, leading to failure of protection. To
address the above issues, we propose a novel Defense framework against malicious
3D Editing for Gaussian splatting (DEGauss) for robustly disrupting the trajectory
of 3D editing in multi-views. Specifically, to enable the effectiveness of pertur-
bation across various views, we devise a view-focal gradient fusion mechanism
that dynamically emphasizes the contributions of the most challenging views to
adaptively optimize 3D perturbations. Furthermore, we design a dual discrepancy
optimization strategy that both maximize the semantic deviation and the edit di-
rection deviation of the guidance conditions to stably disrupt the editing trajectory.
Benefiting from the collaborative designs, our method achieves effective resistance
to 3D editing from various views while preserving photorealistic rendering quality.
Extensive experiments demonstrate that our DEGauss not only performs excellent
defense in different scenes, but also exhibits strong generalization across various
state-of-the-art 3D editing pipelines.

1 Introduction

Recent advances in scene editing with 3D Gaussian Splatting (3DGS) [17] have substantially enhanced
the controllability and expressiveness scene manipulation driven by natural language prompts, largely
powered by the integration of diffusion models with neural 3D representations [12, 39]. However,
such convenience also brings significant security risks: anyone with access to a rendered 3D model
can change identity, appearance, or contextual details without authorization [25, 22], which can lead
to serious consequences such as identity deception, misinformation, or reputational damage [31, 40].
Therefore, it is imperative to develop effective protection method for 3D digital assets and personal
portraits against unauthorized modifications, in order to prevent the spread of malicious content.

Unlike 2D editing that operates on single image [15, 38], 3D editing fundamentally involves ma-
nipulating spatially structured data [20, 35], which brings in unique properties such as multi-view
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Figure 1: Malicious 3D editing and our defense. The 3D scenes protected by our DEGauss are able
to disrupt the direction of malicious editing and preserve the original 3D appearance and structure.

consistency, structural integrity, and global iterative optimization. Existing studies [24, 3] on 3D edit-
ing based on Gaussian splatting and diffusion models have emphasized better semantic controllability,
multi-view consistency, and editing flexibility. These methods aim to enable precise modifications of
3D content that align with user intent by local region mapping [7], while ensuring consistency across
diverse viewpoints through the integration of semantic information from different viewpoints [4, 34].
Furthermore, recent works [18, 19] have increasingly focused on the editing efficiency and speed,
enabling high-quality results with reduced computational cost and minimal guidance. Despite these
significant advances, existing researches neglect the security risks posed by malicious use of 3D
editing, which raises concerns about unauthorized modifications.

To defend against malicious editing on 2D images, various adversarial-based defense methods [22,
14, 26] have been proposed to disrupt the editing capabilities of diffusion models through embedded
imperceptible perturbations. For example, AdvDM [22], Mist [21] and PhotoGuard [30] optimize
the perturbations by maximizing the noise prediction loss of the diffusion model, thereby inducing
significant degradation in downstream editing results. Posterior Collapse Attack [10] achieves attacks
in latent space by inducing a posterior collapse in the VAE encoder, thus disrupting a variety of editing
methods based on latent diffusion models. In addition, Semantic Attack [23] and AdvPaint [16]
degrade editing quality by manipulating the self-attention and cross-attention mechanisms within the
diffusion process, leading to misaligned attention maps and impaired semantic alignment. However,
the aforementioned 2D defense methods are inherently unsuitable for 3D scenarios due to two main
limitations: (1) Their 2D perturbations failed to reflect 3D spatial correlations, leading to poor
protection across varying viewpoints. (2) Such perturbations are also easily erased during iterative
optimization of 3D editing, resulting in defense failure.

To tackle the above challenges, we propose a tailored Defense framework against malicious 3D
Editing for Gaussian splatting (DEGauss), which stably disrupts the multi-view editing trajectory to
suppress unauthorized 3D modifications, as shown in Fig. 1. Specifically, to ensure the effectiveness
of perturbations across different viewpoints, we design a view-focal gradient fusion mechanism
that dynamically emphasizes the gradient of the most challenging viewpoints in broadly sampled
cameras, thereby adaptively optimizing the 3D perturbations under varying viewpoints. Furthermore,
we devise a dual discrepancy optimization strategy that simultaneously maximizes the semantic
deviation and the directional bias of the guidance condition, therefore enabling the 3D perturbation to
robustly disrupt editing trajectories throughout the iterative optimization. With the support of these
two dedicated designs, our method achieves strong resistance to multi-view editing, while preserving
high-fidelity rendering with photorealistic visual details. Extensive experiments illustrate that our
DEGauss effectively prevents malicious 3D editing across diverse scenes and exhibits promising
generalization across a variety of 3D editing frameworks.

The main contributions of this paper are as follows:

e We propose DEGauss, a noval defense framework against malicious 3D editing for Gaussian
splatting that actively disturbs the editing trajectory from multiple viewpoints. To the best
of our knowledge, this is the first framework for defense against 3D malicious editing.



o A view-focus gradient fusion mechanism is designed to adaptively update 3D perturbations
by emphasizing challenging views, thereby enhancing defense effectiveness in multi-views.

e We devise a dual-discrepancy optimization strategy that amplifies semantic divergence and
editing directions errors in iterative optimization, stably disrupting the editing trajectory.

e Experiments on several datasets and state-of-the-art 3DGS editing schemes demonstrate the
effectiveness and generalization of our DEGauss.

2 Related Works

3D Editing with Gaussian Splatting. Recent researches on 3D editing with 3DGS have focused
almost on improving the fidelity [4, 18, 33], controllability [39, 7, 12, 28], and efficiency [18, 19]. For
instance, to achieve controllable editing, GaussianEditor [7] introduces a dynamic semantic tracking
strategy for precise localization by back-projecting 2D segmentation masks into 3D Gaussians.
To ensure multi-view consistency, DGE [4] integrates spatio-temporal self-attention and epipolar
constraints to achieve effective fusion of edits across views, while GaussCtrl [34] leverages geometric
constraints on depth maps and cross-view attention mechanism to align edits across different views.
To improve editing efficiency, ProEdit [3] adopts subtask-based optimization to gradually realize
complex edits with better stability. On the contrary, DreamCatalyst [18] accelerates convergence via
improved inversion and loss design, while EditSplat [19] further enhances speed through attention-
weighted pruning and hierarchical densification. Despite the impressive progression of 3D editing,
there are also raised concerns about its potential misuse to maliciously modify private 3D assets.
Aiming at this problem, we propose DEGauss, the first defense framework against malicious 3D
editing for protecting digital assets from arbitrary manipulation by unauthorized editor.

Defenses against Malicious Image Editing. To defend against malicious images editing, a series
of adversarial-based defense methods [22, 6, 5, 14, 26] have been proposed to disrupt the editing
process by exploiting imperceptible pixel-space perturbations. Among them, AdvDM [22] introduces
a systematic theoretical framework that maximizes denoising loss of the diffusion models [29, 13],
thereby generating perturbations to hinder feature extraction. On this basis, Mist [21] further combines
semantic and texture losses to improve transferability of the perturbations, while DiffusionGuard [8]
prevents the synthesis in sensitive regions by interfering with the early stages of the denoising process.
In addition, SDS [36] accelerates optimization and reduces consumption through score distillation
sampling, while Posterior Collapse Attack [10] induces potential spatial collapse by perturbing the
VAE encoder in the latent diffusion model, thereby significantly disrupting the semantics of the
encoding. Recently, Semantic Attack [23] and AdvPaint [16] perturb the text-image cross-attention
or image self-attention in the diffusion model to distract the model attention to the specific region,
and both of them showing better performance than conventional approaches. These defense schemes
are investigated from the output space to the model structure to construct a more defense system
against malicious editing of 2D images.

However, the above methods pose intrinsic challenges when applied directly to 3D scene protection,
as they are specifically designed for single-view and single-pass 2D editing. On the one hand,
the perturbations generated by 2D defense are unable to reflect 3D spatial relationships, leading
to insufficient effectiveness across multiple viewpoints. On the other hand, simple perturbations
optimized for single-pass editing are typically eliminated during the iterative optimization in 3D
editing, resulting in failure of protection. In contrast, we propose DEGauss, a specialized defense
framework against malicious 3D editing, which combines view-focal gradient fusion with dual-
discrepancy optimization to robustly disrupt multi-view editing results during iterations of 3D editing.

3 Methodology

3.1 Preliminary

3D Editing with Gaussian Splatting. Existing mainstream of 3D editing with 3DGS employ pre-
trained 2D diffusion models (e.g., InstructPix2Pix [2], ControlNet [37]) as powerful generative priors
to supervise the editing results. Within these framework, text prompts are used to guide diffusion-
based image editing for multiple viewpoints. The resulting edited images serve as supervision
to update the Gaussian parameters © = {u, 3, a, ¢}, where p denotes the 3D center position, X



represents the covariance matrix controlling shape, « is the opacity, and c defines the RGB color. The
updated 3D representation is iteratively rendered to generate a new image for further editing.

Formally, given a constructed scene G, the goal of the editor is to update the Gaussian parameters ©
so that its rendered images from all viewpoints match the edited images according to the text prompt
Yext- Lhis update is performed iteratively:

0= arg Hgn EkEM(O,K),UEV'Cedit(va Dq’)(Iga Iva ytext))a (D

where I¥ = R, (G*) denotes the k-th round of iterations and the v-th view of the rendered image,
I, represents the initial rendered image being used as image guidance to preserve the original
information. Dy denotes the diffusion model, and L4, is the loss of rendering, which is commonly
used to align the appearance of rendering (e.g., L1, LPIPS) or geometric depth.

Defense against Malicious Image Editing. To defend against malicious image editing, existing
researches has proposed adversarial-based methods to disrupt the editing process of diffusion models.
The core principle of these approaches is to introduce a small-magnitude perturbation 4 to the input
image x to make the diffusion model deviate from the original denoising process, thus affecting the
normal editing operation. It can be formalized as:

§:= argmo_inp(m—t—d), s.t]|d] < &, (2)

where p(z) denotes the probability distribution of the image x generated by the diffusion model and
& denotes the bound limit of the perturbation. To solve Eq. (2), AdvDM [22] represents the solution
of the defense perturbation § uniformly according to Monte Carlo as follows:

2

d = arg Jnax Eiri(1,1),e~n (0,1) || €0 (21, T + 0, Ytexts ) — €l]3, 3)
where t ~ U(1,T) denotes the number of denoising steps in the diffusion model, e ~ A/ (0, I) denotes
normally distributed noise, and €y is the denoising network. By encouraging the noise predictions to
deviate from the correct values at all time steps ¢, the denoising results of the diffusion model can be
actively perturbed and ultimately achieve a robust defense against malicious image editing.

3.2 Problem Definition

In this paper, we present a defense against malicious 3D editing, aiming to prevent unauthorized
modifications to 3D scenes performed by diffusion model-based editors. For a scene G constructed
by 3DGS, let py (G| G, Yrext) is the conditional probability distribution of the target 3D scene Gy
produced by the diffusion editor (parameterized by ¢) given a text prompt 7'. We define the defense
against malicious 3D editing as a probabilistic optimization problem.

Definition 3.1 (Defense against malicious 3D editing). Given a 3D editor, there exists 3D perturba-
tion A added to the original scene G that minimize the conditional probability of generating a valid
edit result at text prompt yex.. The perturbation A is given by the following equation:

A = arg mAinp(b(Gm\G + A yext), st Al <E. 4)

Our goal is not limited to dissimilarity to a specific target distribution Gy, but to reduce the probability
of similarity to any edit distribution. Thus, the above equation can be written as:

A = arg HIEI({\E(& EG i~ (-1C yiex) [—10g Py (Gear| G + A, Yrext)]- 5)
Combined with the optimization objective for 3D editing given in Eq. (1), we can reinterpret the
defense problem as a maximization of the editing loss, as follows:

A = arg Hréll?‘),i(gEkW Leait(IF, Dy (IF, Ry (G + A), Yrext))- (6)

However, this rendering loss is essentially an iterative fitting process to the explicit model, aiming
to align the rendered image with the target edited image produced by the diffusion model. It is not

possible to optimize the perturbation by maximizing this render loss Leq;. Therefore, we turn to
replace the original editing loss with a differentiable diffusion loss, which drives the 3D edit to fit to
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Figure 2: Overview of the proposed DEGauss. Firstly, a wide-viewpoint sampling is performed to
obtain a rendered image of the 3D scene, and then feature discrepancy loss and guidance discrepancy
loss are computed between the rendered and original view images. These losses from multiple
viewpoints are subsequently fused using a view-focal weighting to guide perturbation optimization.
The perturbation A = {A,,, A, Ay, A.} is initialized to zero and optimized in iterations.

the wrong edit direction by making the diffusion process in multiple views deviate from the original
edit direction. This objective is formally defined as follows:

Hglllm Eyev Lt (Ro (G + A), Yiext) (7

2
= max E e lle G+ A < t) — €l - 8
HAII<E kov,t, || o(1y;, R )s Yrexts t ||2 3

Although Eq. (8) constructs theoretically reasonable attack targets based on the noise prediction
of the diffusion model, it results in limited direct optimization due to the fact that the denoiser of
the diffusion model is extremely robust to perturbations and the gradient is weak and unstable [36].
Therefore, we propose two loss terms, Feature Discrepancy (FD) and Guidance Discrepancy (GD),
which directly measure the semantic differences and bias in the guidance direction in latent space.
These contribute to more stable convergence and better gradient propagation.

A = arg max By, |le(Ro(G + A)) —e(L,)]3
lAll<g

Feature Discrepancy

+ H€9(I o(G + A), Yeexts 1) — 69(1L31U7ytext7t)||za

Guidance Discrepancy

)

where ¢ represents the image encoder. The purpose of FD is to drive the protected view away from
the original feature in latent space and increase the uncertainty of the editor. While the purpose of the
GD is to alter the guidance direction of the diffusion model to deviate from the original trajectory,
weakening its semantic understanding of y.x; and editing behavior.

Following the above analysis, we propose DEGauss, a dedicated framework that introduces targeted
perturbations to disrupt editing across multiple views, as illustrated in Fig. 2. Our DEGauss consists
of two key components: a view-focal gradient fusion mechanism and a dual-discrepancy optimization
strategy. These components work collaboratively to optimize 3D spatial perturbations that reliably
disrupt multi-view editing throughout the iterative process.

3.3 Dual Discrepancy Optimization

Based on Eq. (9), we devise a dual discrepancy optimization strategy that provides supervision from
both the semantic feature and guidance direction in the latent space. Specifically, this module contains
two dedicated loss functions: feature discrepancy loss and guidance discrepancy loss, which jointly
guide the optimization of the perturbations, thus deviating editing results from target semantics.



Feature Discrepancy Loss. The feature discrepancy loss is used to measure the consistency between
the original views and the perturbed 3D views in the latent space, and we utilize the encoder of
pre-trained InstructPix2Pix [2] model to extract the feature representations of the rendered image and
the original image, which can be represented as:

Lrp = —Eypev [l (R (G + A) *5(10))”;' (10)

Guidance Discrepancy Loss. The guidance discrepancy loss is designed to ensure that the editing
direction of the protected 3D scene deviates from that of the original scene under the same viewpoint.
To achieve this, we utilize features from the noise space of the pre-trained InstructPix2Pix [2] model
to represent guidance features. The loss is defined as follows:

2
EGD = _]Ek,v,t,e,y[we}’];b ||€9 (Iqlfv R'U(G + A), Ytext, t) — €9 (Il,j7 I’Ua Ytext, t) H2 ) (11)

where Y}, represent a library of text prompt, as in DreamFusion [27], which contains 415 different
prompts. It is used to introduce semantic diversity and prevent overfitting to a specific prompt.

Overall Loss. During training, the above two losses are jointly optimized with the main rendering
loss, and the total loss can be expressed as:

»Ctotal = Crender + )\FD ' EFD + )\GD ' »CGD7 (12)

where Lenger denotes the rendering loss, defined as the Lo distance between rendered views and
original views. App and Agp are the hyperparameters for the feature and guidance terms, respectively.
The total loss is then used for view-focal gradient fusion to update the perturbation parameters.

3.4 View-Focal Gradient Fusion

During 3D object optimization, updates from different viewpoint may interfere with one another,
leading to inconsistencies across multiple viewpoints. This effect is particularly noticeable in the
optimization of fine-grained perturbations, resulting in extremely poor protection in some viewpoints.
To mitigate this issue, we devise a View-Focal Gradient Fusion (VFGF) strategy that consists of two
parts, a wide-view sampling and a view-focal weighting, which aims to improve the consistency and
effectiveness of the perturbations across multiple views.

Wide-View Sampling. To ensure a uniform spatial distribution and broad coverage of the selected
viewpoints, we design the wide-view sampling strategy to avoid concentration in locally similar or
redundant views. For the a reference viewpoint v; and v;, each is associated with a camera translation
vector T € R? and the rotation matrix R € SO(3). We define the distance between two viewpoints
as the sum of normalized translation and angular differences:

I'T: — Tyll2 n Z(Ri, R;)

d(’l)iﬂ)j) = |

13
Do p— (13)
Translation distance Rotation angle
¢ R,R) -1
Z(R;,R;) = arccos < race( ]2 i) ) , (14)

where Dy, is the maximum translation distance in view space and trace(-) denotes the trace of
the matrix. Both components are mapped to [0, 1] and equally weighted. Start from a initial set of
viewpoints V7 = {ver}, we select the next viewpoint furthest from all previously selected viewpoints
based on all the statistics until /N viewpoints have been selected:

VN =VNn_1U {’U*

v* = ar max min d(v;,v;) ¢ . 15

g’U_jGV\VN—l vi€VN_1 ( v '7) (15
At each iteration, from the unselected viewpoints, find that viewpoint that has the largest distance
from the nearest point in the current sampling set and add it to the sampling set. This sampling
strategy avoids focusing the samples on locally similar viewpoints, thus providing stronger global
structural constraints for the subsequent gradient fusion.

View-Focal Weighting. For the widely sampled set of viewpoints, we further propose a view-focal
weighting strategy, which weights the gradient according to the difficulty of each viewpoint for



subsequent perturbation updates. Specifically, we treat the loss associated with each viewpoint as an
indicator of its resistance to editing, and assign weights to the viewpoints based on the magnitude of
the loss value, formally defined as follows:

(‘C::)tal + T)’Y
> vev (L +7)7
v

where L., denotes the total loss at viewpoint v, vy is focusing parameter controlling the degree of
nonlinearity in the weighting, and 7 is a stabilization term to prevent zero values. This strategy biases
the optimizer toward viewpoints with higher loss values (i.e., with weak defenses against editing),
thereby generating perturbations that are effective across views to improve resistance to editing.

Vo Ltocal = Z Wy * v@)‘c:i)tal’ where w, = (16)

veV

Benefiting from the above designs, our DEGauss effectively optimize 3D perturbations in space while
maintaining perturbation validity across different views. This enables stable and view-generalizable
protection against malicious 3D editing throughout the iterative optimization process.

4 Experiments

4.1 Experimental Setup

Datasets and Editing Models. We verified the effectiveness on common 3D editing dataset [11, 32,
1], including ‘face’, ‘girl’, ‘person’, ‘bear’, ‘bicycle’, and ‘garden’ scenes, with varying viewpoints
and data scales. In addition, we validate our generalization leveraging the latest released 3D editing
models, including GaussianEditor [7], DGE [4], DreamCatalyst [18], and EditSplat [19].

Baselines. Since the defense schemes for malicious 3D editing are still pending, we compare our
DEGauss with state-of-the-art 2D editing defense schemes and migrated them to 3DGS to ensure
fairness, including AdvDM [22], Mist [21], SDS [36], and AdvPaint [16].

Evaluation Metrics. We utilize Peak Signal-to-Noise Ratio (PSNR) to measure the difference
between protected and original samples, reflecting the imperceptibility of perturbations. In addition,
Contrastive Language-Image Pretraining (CLIP) similarity evaluates the semantic gap between
protected and normal editing results. CLIP-T measures the semantic distance between the protected
result and the editing prompt. CLIP Direction similarity (CLIP-D) [9] quantifies the consistency
between text differences (from source to editing) and image differences (from source to edited).

Implementation Details. All experiments are conducted on a single NVIDIA RTX 4090 GPU. We
set the number of sampled views N = 6, the weighting factor 7 = le-6, and v = 1.0. To balance
loss terms, we set hyperparameters App = Agp = le-5. The total number of training steps is set to
2,000. More settings and algorithm are provided in the Supplementary.

4.2 Comparisons

We compare existing 2D-based editing defense methods with our DEGauss, focusing on the ability
to resist malicious editing in 3D scenarios. As shown in Fig. 3, existing 2D defense methods suffer
from obvious editing artifacts and multi-view inconsistencies when directly applied to 3D scenes. For
example, AdvDM [22] and Mist [21] introduce some noise or artifacts that degrade the quality of the
edits, but still maintain normal editing effects without preserving the original scene detail. SDS [36]
exhibit weaker suppression of malicious edits, offering limited resistance. Although AdvPaint [16]
performs slightly better in suppressing editing effects, it still introduces noticeable editing traces,
noise, and inconsistencies across different viewpoints. In contrast, our DEGauss better preserves the
global structure and appearance of the original scene, producing natural and artifact-free renderings
with high visual fidelity across multiple views.

Moreover, Table 1 quantitatively evaluates our DEGauss against existing methods. It can be seen
that our DEGauss achieves the highest PSNR, indicating that the introduced perturbations are more
imperceptible. Regarding CLIP-based scores, our DEGauss attains the lowest similarity between
the edited and original samples, demonstrating its effectiveness in disrupting malicious editing
trajectories. In contrast, existing 2D defense methods such as AdvDM and Mist exhibit significantly
lower performance in all metrics. Even AdvPaint, which performs relatively better among the
baselines, still lags behind DEGauss on several metrics. Both visual and quantitative comparisons
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Figure 3: Visual comparison with existing methods. Comparisons include AdvDM [22], Mist [21],
SDS [36], and AdvPaint [16]. Our DEGauss is resistant to 3D editing achieves optimal visualization
in preserving the original 3D scene. The editing method used is GaussianEditor.

Table 1: Quantitative comparison with existing methods. Our DEGauss achieves the superior PSNR

while offering the optimal resistance to 3D editing. The editing method used is GaussianEditor. 'Red
indicates optimal and orange indicates suboptimal. {: higher is better, |: lower is better.

Method face girl
PSNRt CLIP, CLIP-T|, CLIP-D| | PSNRT CLIP, CLIP-T|] CLIP-D|
AdvDM [22]+3DGS 32.63  0.9235 0.2465 0.0710 30.83  0.8716 0.2401 0.0586
Mist [21]+3DGS 33.63  0.9599 0.2539 0.0828 3263 09131 0.2588 0.0872
SDS [36]+3DGS 3239 0.9707 0.2493 0.0863 34.97 0.9573 0.2631 0.1071
AdvPaint [16]+3DGS 3295  0.8996  0.2266 0.0355 3293  0.8514  0.2434 0.0464
DEGauss (Ours) 3392 0.8860  0.2193 0.0325 3559  0.8689 0.2380 0.0446
Method bear bicycle
PSNRT CLIP| CLIP-T|, CLIP-D] | PSNRT CLIP|] CLIP-T|] CLIP-D|
AdvDM [22]+3DGS 29.26  0.9072 0.3057 0.0378 29.84  0.9385 0.2514 0.0732

Mist [21]+3DGS 31.10  0.9564 0.3106 0.0373 3252 0.9675 0.2380 0.0567
SDS [36]+3DGS 3130  0.9546 0.3107 0.0378 3259 09724 0.2415 0.0616
AdvPaint [16]+3DGS 30.77  0.9046  0.3011 0.0314 30.89 | 0.9257 0.2464 0.0576
DEGauss (ours) 3220 0.8949  0.2940 0.0256 32.84  0.9358 0.2336 0.0535

clearly illustrate that our DEGauss is able to effectively suppress malicious editing while maintaining
a higher degree of visual consistency with the original 3D scene.

4.3 Generalization

To further evaluate the generalization of our DEGauss, we conduct experiments on SOTA different 3D
editing methods, including GaussianEditor [7], DGE [4], DreamCatalyst [18] and EditSplat [19]. As
shown in Fig. 4, our DEGauss preserves the original 3D appearance against GaussianEditor without
introducing visible artifacts. In addition, for DGE and EditSplat, although subtle color modifications
are observed, our DEGauss effectively prevents structural editing and maintains overall geometric
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Figure 4: Visualization of generalization experiments. The editing methods include GaussianEd-
itor [7], DGE [4], DreamCatalyst [18], and EditSplat [19]. Our DEGauss significantly resist 3D
editing from different existing schemes.

Table 2: Quantitative analysis of generalization experiments. Our DEGauss is outstanding against
different editing schemes. “Ori” and “Ours” refer to the non-protected and our protection results, and
“Diff” refers to the difference between “Ori” and “Ours”. 1: higher is better, |: lower is better.

face
CLIP CLIP-T CLIP-D
Method Ori Our] Difff Ori Our] Difff Ori Our] Difff
GaussianEditor [7] | 1.000 0.886 0.114 | 0.284 0.219 0.065 | 0.084 0.033 0.051
DGE [4] 1.000 0.890 0.110 | 0.253 0.230 0.023 | 0.089 0.050 0.039

DreamCatalyst [18] | 1.000 0.896 0.104 | 0.277 0.248 0.029 | 0.089 0.044 0.045
EditSplat [19] 1.000 0.933 0.067 | 0.248 0.236 0.012 | 0.083 0.053 0.030

girl
CLIP CLIP-T CLIP-D
Method Ori  Our| Difff | Ori Our] Difff | Ori  Our] Difft
GaussianEditor [7] | 1.000 0.869 0.131 | 0.260 0.238 0.022 | 0.120 0.045 0.075
DGE [4] 1.000  0.919 0.081 | 0.259 0.250 0.009 | 0.119 0.067 0.052

DreamCatalyst [18] | 1.000 0.821 0.179 | 0.265 0.244 0.021 | 0.096 0.064 0.032
EditSplat [19] 1.000 0942 0.058 | 0.276 0.265 0.011 | 0.124 0.085 0.039

bear
CLIP CLIP-T CLIP-D
Method Ori Our] Difff Ori Our| Difft Ori Our] Difff
GaussianEditor [7] | 1.000 0.895 0.105 | 0.313 0.294 0.019 | 0.062 0.026 0.036
DGE [4] 1.000 0.890 0.110 | 0.310 0.298 0.012 | 0.071 0.023 0.048

DreamCatalyst [18] | 1.000 0.917 0.083 | 0.333 0.305 0.028 | 0.074 0.035 0.039
EditSplat [19] 1.000 0935 0.065 | 0.312 0.309 0.003 | 0.051 0.028 0.023

bicycle
CLIP CLIP-T CLIP-D
Method Ori  Our| Difff | Ori Our] Difff | Ori  Our] Difft
GaussianEditor [7] | 1.000  0.939 0.061 | 0.270 0.234 0.036 | 0.076 0.054 0.022
DGE [4] 1.000 0.956 0.044 | 0.293 0.261 0.032 | 0.098 0.088 0.010

DreamCatalyst [18] | 1.000 0.955 0.045 | 0.269 0.243 0.026 | 0.092 0.057 0.035
EditSplat [19] 1.000 0.951 0.049 | 0.280 0.272 0.008 | 0.116 0.093 0.023

and semantic integrity. As for DreamCatalyst, our perturbations lead to the generation of noisy and
chaotic outputs, significantly disrupting the intended editing direction. These results collectively
demonstrate that our DEGauss robustly resists unauthorized 3D editing in the state-of-the-art editing
pipelines, highlighting its strong generalization to diverse editing paradigms.
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Figure 5: Visualization of the ablation on key components. The editing model is GaussianEditor and
the text prompt is “Make him wear a Venetian mask”.

Table 2 reports the CLIP-based similarity scores between our DEGauss results and the original
samples under different 3D editing methods. The samples protected by DEGauss consistently achieve
significantly lower similarity under all evaluated editors, indicating that the introduced perturbations
effectively disrupt the expected editing trajectories regardless of the editing scheme applied.

4.4 Ablation Studies

Ablation on Key Components. We perform an ablation study on the key components of our
framework, the visual results are shown Fig. 5. When the feature discrepancy loss is removed, the
edited images exhibit noticeable degradation in quality. While without the guidance discrepancy loss,
the outputs retain the intended semantic edits, leading to the weakest defense performance. In the
absence of wide-view sampling or view-focus weighting, the results inconsistent in multi-view, i.e.,
some views are effectively defended while others are poorly. In contrast, when all components are
integrated, our method achieves the strongest overall protection against malicious editing.

Ablatlon on Hyperparameters. We ver- Table 3: Noise Stealthiness vs. Defense Strength. |Red
ify the effect of noise strength on stealth- . . . L .

. . o indicates optimal and orange indicates suboptimal.
iness by uniformly adjusting the perturba-

tion hyperparameter A (jointly App and PSNRT CLIP| CLIP-T| CLIP-D|
)\GD), as shown in Table 3. It can be le-4 27.47 0.8147 0.2018 0.0171
observed that reducing A\ improves noise le-5 | 3392 0.8860  0.2193 0.0325
stealthiness (higher PSNR score), while le-6 | 34.80  0.9617 0.2692 0.0555
decreasing defense performance (higher

CLIP scores). When A = le-5, noise invisibility and defense ability reach a trade-off.

We conduct an ablation study on the Table 4: Ablation experiments on hyperparameters. The
hyperparameters of loss function, as

shown in Table 4. When the weight editing model is GaussianEditor. |Red indicates optimal and

of the feature discrepancy loss is re- 0range indicates suboptimal.

duced, the PSNR score drops to low- AMp Agp | PSNRT CLIP| CLIP-T| CLIP-DJ
est, indicating poor visual quality in *0.1 - 31.56 | 0.8825  0.2297 0.0594
the generated samples. Alternatively, - *0.1 | 36.17 0.9244  0.2295 0.1020
decreasing the weight of the guidance - - 3392 0.8860  0.2193 0.0325

discrepancy loss leads to the highest

PSNR, but the defense becomes ineffective and the edited result will retain more of the expected
semantics. In contrast, our chose hyperparameter setting achieves a balanced trade-off between visual
fidelity and editing resistance.

5 Conclusions

In this paper, we propose DEGauss, a novel defense framework dedicated to protecting 3DGS from
malicious editing. Unlike 2D defense approaches that focus only on image space, our DEGauss
optimizes perturbations in 3D space to maintain consistent protection across multiple views. Specifi-
cally, we elaborate the view-focal gradient fusion mechanism and the dual-discrepancy optimization
strategy that jointly disturb the direction of multi-view editing during iterative editing, thus preventing
the expected semantic editing. Experimental results indicate that our DEGauss can effectively defend
unauthorized 3D editing in different scenes while maintaining high fidelity visual quality.
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contributions and scope?
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Justification: The abstract and introduction clearly state the claims made, and the claims made are
consistent with theoretical and experimental results.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims made in the
paper.
e The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

e Itis fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide a limitations section in the Supplementary Material.
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e The answer NA means that the paper has no limitation while the answer No means that the paper
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e The authors are encouraged to create a separate "Limitations" section in their paper.

e The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
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they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.
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honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: All theorems, formulas and proofs in the paper are numbered and cross-referenced, and
the theorems and reasoning relied upon have been attributed.
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e The answer NA means that the paper does not include theoretical results.
e All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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e All assumptions should be clearly stated or referenced in the statement of any theorems.

e The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

o Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give a description of all the parameters in the main paper and the algorithm in the
Supplementary Material, which will be sufficient to support our algorithmic reproductions.
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e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be perceived well by the
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are provided or not.

o If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

e While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer:
Justification: We will open access to the code after the paper is accepted.
Guidelines:

e The answer NA means that paper does not include experiments requiring code.

e Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

e The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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e The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
e Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have provided the experimental setup in Section 4.1 of the paper and a more detailed
addition is given in the Supplementary Material.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

e The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer:

Justification: Instead of including error bars, we selected the average of multiple runs as the experi-
mental results.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

e The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

e The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

e The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

e For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
Justification: We have provide sufficient information on the computer resources.
Guidelines:

e The answer NA means that the paper does not include experiments.

e The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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10.
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e The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

e The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this thesis is in all respects consistent with the NeurIPS Code
of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

e The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss the social impacts in the Supplementary Material.
Guidelines:

e The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

e Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

e The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of high-risk models or datasets (e.g., large
pretrained language models, generative models, or scraped data). All datasets used are publicly
available and licensed for research use.

Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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e Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification: Our assets used in the paper have been noted or cited.
Guidelines:
e The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.
The authors should state which version of the asset is used and, if possible, include a URL.
The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

e If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

e For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

o If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification: We did not introduce new assets.
Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

e The paper should discuss whether and how consent was obtained from people whose asset is
used.

e At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.

e Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

e Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

e We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

e For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

e The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

o Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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