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ABSTRACT

It is often informative to decompose key quantities of interest into smaller com-
ponents, in order to develop a better understanding of the key quantity. In this
paper, we focus on causality and fairness, where bias attribution can be particu-
larly useful. We show how quantities can be broken down based on independence,
or conditional independence criteria, and show how such a decomposition can be
used as a diagnosis tool.

1 INTRODUCTION

Both causality (Pearl, 2009; Peters et al., 2017; Neal, 2015; Schölkopf, 2022) and fairness (Choulde-
chova, 2017; Dwork et al., 2012; Donini et al., 2018) are large research topics in themselves, and
are closely connected1. In both cases, there are key quantities that are of interest to compute. We
show how we can decompose key quantities from each area into similar structures. This gives us a
simpler way to calculate the quantity, and allows us to understand how close a model is to respecting
certain requirements, as well as diagnosing why the model isn’t respecting these requirements.

2 CAUSALITY DECOMPOSITION

Closed-form adjustments We want to estimate the causal impact of a variable X on an outcome
Y , in the presence of confounders S. The quantity P(Y |do(X = x)) − P(Y |X = x) tells us
how close the interventional distribution and the conditional distribution are. We obtain two de-
compositions for this quantity based on the backdoor and frontdoor criteria (see section A.1 of the
Appendix), allowing us to consider a causal relationship using purely statistical tools.
Proposition 1. a) Under the same conditions as the backdoor criteria, we have

P(Y |do(X = x))− P(Y |X = x) =
∑

s P(Y |X = x, S = s)P(S = s)

[
1− P(X = x, S = s)

P(X = x)P(S = s)︸ ︷︷ ︸
χx,s

]
(1)

b) Under the same conditions as the frontdoor criterion, we have

P(Y |do(X = x))− P(Y |X = x) =∑
s

P(S = s|X = x)

(∑
x′

[P(Y |X = x′, S = s)− P(Y |X = x, S = s)]P(X = x′)

)
. (2)

Remark 1. Proposition 1 identifies closed-form expressions for the difference between the interven-
tional distribution of X on Y and the conditional distribution based on the underlying DAG. This
allows us to decompose this quantity into sub-components. There is a connection between the back-
door criterion and independence of X and S, through χx,s: the closer X and S to independence, the
closer χx,s is to 0. Thus the closer P(Y |do(X = x)) and P(Y |X = x) are. Similarly, the frontdoor
criterion is directly connected to the conditional independence of Y and X , given S.

Control Variates These decompositions naturally lead to the idea of control variates (Glasserman
& Xu, 2014), where we can make use of an accurate existing estimate, or known value, of P(Y |X =
x), to help model P(Y |do(X = x)), by instead modeling the error from the decomposition.

1Further details, proofs, and experiments on causality and fairness are provided in the Appendix.
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Figure 1: A heatmap showing a decomposition of the EOd-DP formula (Proposition 2) based on
the Adult Income dataset. We compare frDP with frEOd and fract for ŷ = 0. One observes that
are close to satisfying the equalised odds criterion (as these values are close to 1), but do not satisfy
demographic parity.

3 FAIRNESS DECOMPOSITION

We consider S ∈ S to be a binary protected attribute, X ∈ X to be a set of features (excluding
S), Y ∈ Y to be a binary outcome variable, and Ŷ ∈ Y to be a predictor for Y . Narayanan
(2018); Verma & Rubin (2018); Berk et al. (2018); Kim et al. (2020) have reviewed many of the
different definitions of fairness that exist. These different definitions cannot all co-exist, as per the
impossibility theorems (Kleinberg et al., 2017; Chouldechova, 2017).

Fairness metric Equality requirement Reference
Demographic parity P(Ŷ = ŷ|S = s) = P(Ŷ = ŷ), for all s ∈ S, ŷ ∈ Y (Calders & Verwer, 2010)

Equalized odds P(Ŷ = ŷ|, Y = y, S = s) = P(Ŷ = ŷ|Y = y), for all s ∈ S, ŷ, y ∈ Y (Hardt et al., 2016)

Table 1: Fairness metrics used in this article

Fairness ratios We introduce “fairness ratios” as measures of the deviation of a model from the
“fair” situation in terms of ratios, according to a specified fairness metric, Table 1. For example,
for Demographic parity, we consider frDP (ŷ, s) = P(ŷ|s)

P(ŷ) , whilst for Equalised odds, we consider

frEOd(ŷ, s, y) =
P(ŷ|s,y)
P(ŷ|y) . We can also consider the actual outcome bias, fract(s, y) =

P(s|y)
P(s) for all

y ∈ Y, s ∈ S . One of the interesting properties of fairness ratios is that they can be decomposed
into finer fairness ratios and help diagnose where bias in a model may be coming from.
Proposition 2. EOd-DP Formula Let y, ŷ ∈ Y and s ∈ S, then the following equality holds:

frDP (ŷ, s) =
∑
y∈Y

frEOd(ŷ, s, y) · fract(s, y) · P(y|ŷ). (3)

Thus, we can decompose demographic parity in terms of equalized odds and actual bias.

Experimentation We consider the Adult Income dataset (Dua & Graff, 2017), and have demon-
strated the usefulness of this decomposition. We consider the protected attribute, S, of gender, and
use a simple logistic regression model, without using S, to make predictions ŷ on if an individual
has an income of > 50K. We focus on the EOd-DP formula, Proposition 2, and are able to diagnose
where DP unfairness is coming from (see Figure 1). To obtain a fair model with respect to DP, one
must either tweak the model to be fair w.r.t EO, a form of in-processing, or reweigh the underlying
distribution, a form of pre-processing, to avoid outcome disparity.

4 CONCLUSION

In this paper, we create decompositions of key interest quantities in causality and fairness and pro-
vide closed-form expressions for these decompositions. There are clear similarities that can be
drawn between the format of the decompositions and what they allow us to diagnose the source of
the impact in each case, providing us with control variate approaches.
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A APPENDIX

In this Appendix, we consider the following:

• Additional details on causality (Section A.1

• Additional details on fairness (Section A.3)

A.1 ADDITIONAL DETAILS ON CAUSALITY

In this section, we provide additional details, proofs and experimental results in relation to causality.

A.1.1 INTRODUCTORY DETAILS

We typically want to estimate the causal impact of a variable X on an outcome Y . For example, this
could be the causal impact of a treatment on a patient, or a marketing campaign on a KPI. Thorough
introductions to the topic of causality can be found in Pearl (2009); Peters et al. (2017); Neal (2015);
Schölkopf (2022).

We are able to condition of variable X , and deduce the conditional probability P(Y |X = x). How-
ever, this is not equivalent to understanding the causal effect of X on Y . Association is not the same
as causation. This is due to the fact that there could be confounding variables, S, which could be
common causes of both X and Y .

For example, in the case of a binary outcome Y , and binary treatment X , we are really interested in
understanding the difference between the potential outcome of Y under X being 0 or 1. However,
since only one of these outcomes can occur (either the treatment can be given or not), we cannot
observe both outcomes. This is the Fundamental Problem of Causal Inference.

In order to remove the effect of the confounders, we must instead intervene on X , which we write as
do(X = x). Intervening allows us set the value of X , thus removing the effect of any confounding
variables on X . We are then interested in P(Y |do(X = x)), which is a causal estimand. For
example, in the case of a binary variable X ∈ 0, 1 (such as being given a treatment or not), in order
to establish the causal effect of X on Y , we must consider E[Y |do(X = 1)]− E[Y |do(X = 0)].

In order to understand the causal impact, we must first introduce the idea of a Directed Acyclic
Graph (DAG), which assumes the causal structure of the problem. For example, we could consider
the causal structures outlined in Figures 2 or 3a. Key structures of causal graphs are chains, forks,
and colliders, which are outlined in Figure 2. In these cases, we refer to S as the middle node.

Figure 2: Forks, Chains and Colliders

Key results in causal inference theory allow us to relate these interventional distributions, which we
are most interested in, to conditional distributions. This allows us to consider a causal relationship
using purely statistical tools. We consider these results, in particular the backdoor and frontdoor
criteria discussed in the following.

Definition 1. A backdoor path from X to Y is a non-causal path from X to Y .

Definition 2. A path between X and Y is blocked by a node S if either

• There is a fork, or a chain, on the path, with S as the middle node, where S is conditioned
on.
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• There is a collider on the path, with S as the middle node, where neither S, nor any descen-
dants of S are conditioned on.

Theorem 1 (Backdoor Criterion). Suppose that a set S blocks all backdoor paths (non-causal paths)
from X to Y , and does not contain any descendants of X , then

P(Y |do(X = x)) =
∑
s∈S

P(Y |X = x, S = s)P (S = s) (4)

Theorem 2 (Frontdoor Criterion). Suppose that a set S completely mediates the effect of X on Y ,
that there is no unblocked backdoor path from X to S, and that all backdoor paths from S to Y are
blocked by X , then

P(Y |do(X = x)) =
∑
s

P(S = s|X = x)
∑
x′

P(Y |X = x′, S = s)P (X = x′). (5)

A.1.2 PROOFS

Proposition 1. a) Under the same conditions as the backdoor criteria, we have

P(Y |do(X = x))− P(Y |X = x) =
∑

s P(Y |X = x, S = s)P(S = s)

[
1− P(X = x, S = s)

P(X = x)P(S = s)︸ ︷︷ ︸
χx,s

]
(1)

b) Under the same conditions as the frontdoor criterion, we have

P(Y |do(X = x))− P(Y |X = x) =∑
s

P(S = s|X = x)

(∑
x′

[P(Y |X = x′, S = s)− P(Y |X = x, S = s)]P(X = x′)

)
. (2)

Proof of a). Firstly, we recall that using the backdoor criteria, we have

P(Y |do(X = x)) =
∑
s∈S

P(Y |X = x, S = s)P (S = s). (6)

Also, we note that

P(Y |X = x) =
∑
s∈S

P(Y |X = x, S = s)P(S = s|X = x). (7)

Combining these together, we get that

P(Y |do(X = x))− P(Y |X = x)

=
∑
s

(
P(Y |X = x, S = s)P(S = s)− P(Y |X = x, S = s)P(S = s|X = x)

)
=
∑
s

P(Y |X = x, S = s)

(
P(S = s)− P(S = s|X = x)

)
=
∑
s

P(Y |X = x, S = s)P(S = s)χx,s (8)

where the final line comes from the fact that

P(S = s|X = x) =
P(S = s,X = x)

P(X = x)
(9)

Proof of b). From the frontdoor criterion, we note that

P(Y |do(X = x)) =
∑
s

P(S = s|X = x)
∑
x′

P(Y |X = x′, S = s)P (X = x′). (10)
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Also, we note that

P(Y |X = x) =
∑
s

P(Y |X = x, S = s)P(S = s|X = x). (11)

Combining these together we see that

P(Y |do(X = x))− P(Y |X = x)

=
∑
s

(
P(S = s|X = x)

(∑
x′

P(Y |X = x′, S = s)P (X = x′)

)
−P(Y |X = x, S = s)P(S = s|X = x)

)

=
∑
s

P(S = s|X = x)

((∑
x′

P(Y |X = x′, S = s)P (X = x′)

)
− P(Y |X = x, S = s)

)
(12)

Further, note that

P(Y |X = x, S = s) = P(Y |X = x, S = s)
∑
x′

P(X = x′) (13)

=
∑
x′

P(Y |X = x, S = s)P(X = x′) (14)

Combining the above, we see that

P(Y |do(X = x))− P(Y |X = x) =∑
s

P(S = s|X = x)

(∑
x′

P(Y |X = x′, S = s)P (X = x′)−
∑
x′

P(Y |X = x, S = s)P(X = x′)

)

=
∑
s

P(S = s|X = x)

(∑
x′

[P(Y |X = x′, S = s)− P(Y |X = x, S = s)]P(X = x′)

)
(15)

A.2 FURTHER RESULTS

We can further derive results based on causality ratios, allowing us to draw further similarities to the
fairness setting.
Proposition 3. Under the same conditions as the backdoor criteria, we have

P(Y |do(X = x))

P(Y |X = x)
=
∑
s

P(S = s|Y,X = x)

P(S = s|X = x)
P(S = s) (16)

Proof. Using the backdoor criterion, we have that
P(Y |do(X = x))

P(Y |X = x)
=
∑
s

P(Y |X = x, S = s)P(S = s). (17)

Bayes Rule gives that

P(Y |X = x, S = s) =
P(S = s|Y,X = x)P(Y |X = x)

P(S = s|X = x)
. (18)

Substituting Equation 18 into Equation 17, and cancelling the P(Y |X = x) term, we get the result.

A.2.1 CONTROL VARIATES

If we wish to model P(Y |do(X = x)), these decompositions naturally lead to the idea of control
variates. The aim is to make use of existing solutions to similar problems, to solve a more difficult
problem. Supposing that the conditional probability P(Y |X = x) was known, a control variates
approach would be to model the differences from Proposition 1, and add it on to P(Y |X = x),
rather than modeling P(Y |do(X = x)) directly.
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Figure 3: a) DAG used in the synthetic dataset. b) Absolute value of quantity from Proposition 1 a)
for synthetic data, for different values of p′. A darker colour gives a value closer to 0, thus indicating
less dependence between X and S. For each x as we decrease p′ from 1 to 0, we introduce more
dependency between X and S, and thus our quantity increases in absolute value, and the conditional
distribution is further away from the interventional distribution.

A.2.2 EXPERIMENTATION

We run experiments in relation to the causality decompositions. We consider a synthetic dataset
under the DAG represented in Figure 3a. Here, we are interested in understanding the causal re-
lationship of X on Y . However, there is also a confounder, S. In order to generate the data, we
randomly sample si ∈ [1, · · · , 10], and latent ui ∈ [1, · · · , 10] for i = 1, · · · , 100000. Then we
consider xi = p′ui + (1− p′)si, for some p′ ∈ (0, 1), which controls the covariance between S and
X . We model Yi ∼ Bernoulli(pi), where pi =

xi+si
maxi xi+maxi si

. Note that S satisfies the backdoor
criterion conditions, so we can use Proposition 1 a).

Figure 3b shows the value of the quantity P(Y |do(X = x))−P(Y |X = x), for each x and different
values of p′. Varying p′ from between 0 and 1 allows us to vary the covariance between X and S.
For smaller p, we have higher covariance, which means that the quantity χx,s is larger, and thus the
quantity P(Y |do(X = x))− P(Y |X = x) is also larger.
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Figure 4: An example of the synthetic data used, with p′ = 0.5. The colour indicates the value of p.
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Figure 5: The values of χx,s for different values of p′ using the synthetic data. We see that the closer
p′ is to 1, the closer to independence we are, and thus the closer χx,s is to 0.

A.3 ADDITIONAL DETAILS ON FAIRNESS

In this section, we provide additional details, proofs and experimental results in relation to fairness.

A.3.1 PROOFS

Proposition 2. EOd-DP Formula Let y, ŷ ∈ Y and s ∈ S, then the following equality holds:

frDP (ŷ, s) =
∑
y∈Y

frEOd(ŷ, s, y) · fract(s, y) · P(y|ŷ). (3)

Thus, we can decompose demographic parity in terms of equalized odds and actual bias.

Proof. Firstly, we note that this is equivalent to proving the following:

P(ŷ|s)
P(ŷ)

=
∑
y∈Y

P(ŷ|s, y)
P(ŷ|y)

· P(s|y)
P(s)

· P(y|ŷ). (19)

We note that

P(ŷ|s)
P(ŷ)

=
∑
y∈Y

P(ŷ, y|s)
P(ŷ)

(20)

=
∑
y∈Y

P(ŷ, |y, s)P(y|s)
P(ŷ)

(21)

=
∑
y∈Y

P(ŷ, |y, s)P(s|y)P(y)
P(ŷ)P(s)

, (22)

where the second line comes from the definition of conditional probability, and the third line comes
from Bayes Theorem. Also, note that

P(ŷ|y) = P(y, ŷ)
P(y)

(23)

and

P(y|ŷ) = P(y, ŷ)
P(ŷ)

. (24)
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Combining, we obtain,
P(y)
P(ŷ)

=
P(y|ŷ)
P(ŷ|y)

. (25)

Replacing this ratio in Equation 22, we obtain the result.

Using this result, we can decompose demographic parity in terms of equalized odds and actual bias.
In particular, if the assumption of equalized odds is verified, then frEOd(ŷ, s, y) = 1 for all y ∈ Y ,
then frDP (ŷ, s) =

∑
y∈Y fract(s, y) · model probability(y, ŷ). If, in addition, fract(s, y) = 1, then

frDP (ŷ, s) = 1, but if fract(s, y) ̸= 1, we recover the well-known result that demographic parity
does not hold in general (see (Kleinberg et al., 2017)).

A.3.2 EXPERIMENTATION

Figure 6 demonstrates the decomposition of the EOd-DP Formula for the Adult Income dataset,
with the set-up outlined in the main text. The top row corresponds to ŷ = 0, whilst the bottom row
corresponds to ŷ = 1.

Figure 7 demonstrates the decomposition of the EOd-DP Formula (Proposition 2) when we fix
frEOd = 1. It shows us that even if we have a completely fair model with respect to Equalised
odds, this does not guarantee that our model will be fair under Demographic parity.
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Figure 6: A heatmap showing a decomposition of the EOd-DP formula (Proposition 2) based on the
Adult Income dataset. Comparing frDP with frEOd and fract. We see that for ŷ = 0 (the top row),
we are close to satisfying the equalised odds criterion, but do not satisfy demographic parity, whilst
in the case ŷ = 1 (the bottom row), we do not generally satisfy either condition.
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Figure 7: A heatmap showing a decomposition of the EOd-DP formula (Proposition 2) based on the
Adult Income dataset, when we fix frEOd = 1, thus assuming a fair model with respect to Equalised
Odds. We see that we aren’t guaranteed to obtain fairness with respect to Demographic Parity.
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