
HATA: Trainable and Hardware-Efficient Hash-Aware Top-k Attention for
Scalable Large Model Inference

Anonymous ACL submission

Abstract001

Large Language Models (LLMs) have emerged002
as a pivotal research area, yet the attention mod-003
ule remains a critical bottleneck in LLM infer-004
ence, even with techniques like KVCache to005
mitigate redundant computations. While vari-006
ous top-k attention mechanisms have been pro-007
posed to accelerate LLM inference by exploit-008
ing the inherent sparsity of attention, they of-009
ten struggled to strike a balance between effi-010
ciency and accuracy. In this paper, we intro-011
duce HATA (Hash-Aware Top-k Attention),012
a novel approach that systematically integrates013
low-overhead learning-to-hash techniques into014
the Top-k attention process. Different from015
the existing top-k attention methods which are016
devoted to seeking an absolute estimation of017
qk score, typically with a great cost, HATA018
maps queries and keys into binary hash codes,019
and acquires the relative qk score order with a020
quite low cost, which is sufficient for realizing021
top-k attention. Extensive experiments demon-022
strate that HATA achieves up to 7.2× speedup023
compared to vanilla full attention while main-024
taining model accuracy. In addition, HATA025
outperforms the state-of-the-art top-k attention026
methods in both accuracy and efficiency across027
multiple mainstream LLM models and diverse028
tasks. To foster academic collaboration, we will029
open-source the HATA implementation soon.030

1 Introduction031

Recently, KVCache has become a paradigm for the032

inference of large language model (LLM) (Kwon033

et al., 2023; Zheng et al., 2023), due to its benefit of034

mitigating redundant computation in the decoding035

stage. In this situation, massive KV states load-036

ing becomes the bottleneck, especially for long037

sequences and large batch sizes (Ribar et al., 2023;038

Tang et al., 2024).039

Top-k Attention (Gupta et al., 2021) has040

emerged as a promising approach to accelerate041

LLM inference by leveraging the inherent spar-042

sity in attention. By selectively retaining only the043

0.2 0.4 0.6 0.8 1.0
Relative Token Generation Speed

72.5

75.0

77.5

80.0

82.5

M
od

el
 A

cc
ur

ac
y Dense (vLLM)

Loki (channels=32)

Quest (pagesize=16)

HATA (ours, rbit=128)

Figure 1: Comparison of accuracy and token generation
speed. For detailed analysis, refer to Sec 5.

top-k most relevant tokens in the KVCache, top-k 044

attention significantly reduces the KVCache load- 045

ing overhead. However, existing top-k attention 046

algorithms face notable challenges in achieving 047

an optimal trade-off between efficiency and accu- 048

racy. Low-rank methods, such as Loki (Singhania 049

et al., 2024) and InfiniGen (Lee et al., 2024), re- 050

duce overhead by computing dot-products over a 051

subset of projected dimensions, but they introduce 052

significant computational costs due to the exten- 053

sive requirements for channel extraction. On the 054

other hand, block-wise methods like Quest (Tang 055

et al., 2024) and InfLLM (Xiao et al., 2024) im- 056

prove efficiency by grouping contiguous key-value 057

pairs into blocks, but they often compromise ac- 058

curacy as critical keys may be excluded based on 059

their coarse-grained estimation of query-key (qk) 060

scores. 061

In this paper, we introduce Hash-Aware Top-k 062

Attention (HATA), a novel approach that system- 063

atically integrates low-overhead learning-to-hash 064

techniques into the top-k attention process. Unlike 065

existing methods that focus on precise numerical 066

estimation of qk scores, HATA maps queries and 067

keys into binary hash codes, acquiring the rela- 068

tive qk score order with minimal computational 069

cost. This approach eliminates costly high-fidelity 070

score approximations, enabling significant speedup 071

while preserving the quality of top-k selection. As 072

illustrated in Figure 1, HATA shows superiority in 073

balancing the accuracy and efficiency, compared to 074

1



state-of-the-art methods.075

HATA leverages the success of learning-to-076

hash (Wang et al., 2012; Weiss et al., 2008), which077

has been widely used in similarity-based retrieval078

tasks such as image search and machine learning.079

By training hash functions based on the query-key080

pairs of LLM attention, HATA is able to encode any081

query and key vector into a binary code, which fur-082

ther enable HATA to achieve low-overhead but pre-083

cise token selection, making it a hardware-efficient084

solution for accelerating LLM inference.085

Extensive experiments demonstrate that HATA086

achieves up to 7.2× speedup compared to vanilla087

full attention while maintaining model accuracy.088

Furthermore, HATA outperforms state-of-the-art089

top-k attention methods in both accuracy and ef-090

ficiency across multiple mainstream LLM models091

and diverse tasks.092

In summary, our contributions are as follows:093

• We frame key retrieval in top-k attention as094

a lightweight ordinal comparison task, elimi-095

nating the need for costly high-fidelity score096

approximation.097

• We introduce HATA, which systematically in-098

tegrates learning-to-hash techniques into top-099

k attention mechanisms to solve this ordinal100

comparison task.101

• We provide hardware-aware optimizations for102

HATA and validate its effectiveness on multi-103

ple models and datasets.104

2 Background and Motivation105

2.1 LLM Inference106

The LLM model consists of multiple transformer107

layers, each processing continuous token embed-108

dings to iteratively generate the next token embed-109

ding. At the core of each transformer layer is the110

attention module, which computes as follows:111

Q,K, V = Proj (X) ,

AttnOut = Softmax
(
QKT

√
d

)
V.

(1)112

LLM inference is autoregressive. When gen-113

erating text, the model produces one token at a114

time, and each new token depends on the ones115

already generated. This process continues until116

some stopping condition is met, like reaching an117

end-of-sequence token or a maximum length. How-118

ever, the autoregressive nature leads to significant119

computational redundancy, making attention the120

primary bottleneck in LLM inference (Dao et al., 121

2022; Dao, 2024; You et al., 2024). 122

2.2 KVCache 123

To accelerate the attention module, the KVCache 124

approach has been proposed to cache and reuse in- 125

termediate results to eliminate computational over- 126

head. In more detail, it decouples the inference 127

process into prefill and decode stages. During the 128

prefill stage, the input prompt is processed in paral- 129

lel, computing and caching the K and V vectors for 130

all tokens across the transformer-attention layers, 131

which initializes the KVCache. In the subsequent 132

decode stage, tokens are generated sequentially: 133

at each step, the model computes only the Q/K/V 134

vector of the current token, retrieves cached K/V 135

vectors, and computes attention scores to predict 136

the next token, while appending the new token’s 137

K/V vectors to the cache. 138

Despite the KVCache’s computational efficiency, 139

the attention mechanism remains a critical bottle- 140

neck for modern LLMs in complex scenarios in- 141

volving long-context sequences or large batch sizes. 142

Recent studies (Ribar et al., 2023; Tang et al., 2024) 143

reveal that even with KVCache, the attention mod- 144

ule dominates inference latency—for instance, con- 145

suming over 70% of total runtime when processing 146

32K-token sequences with Llama2-7B. This ineffi- 147

ciency is contributed not only by the computation 148

complexity but also by memory bandwidth con- 149

straints. At each decoding step, the model must 150

load the entire cached Key and Value vectors, in- 151

curring massive data movement costs that scale 152

with context length and batch size. Consequently, 153

with KVCache, optimizing attention’s memory ac- 154

cess patterns has emerged as a pivotal challenge for 155

enabling scalable LLM deployment. 156

2.3 Top-k Attention 157

The top-k attention mechanism (Gupta et al., 2021) 158

reduces memory bandwidth overhead under the KV- 159

Cache framework by exploiting the sparsity of at- 160

tention distributions. As formalized in Equation (2), 161

it computes attention scores only for the top-k keys 162

with the highest query-key (qk) scores, bypass- 163

ing computation for low-scoring tokens. While 164

this sparsity preserves model accuracy and reduces 165

FLOPs, it does not fully eliminate the memory 166

bottleneck: as shown in (Ribar et al., 2023), the 167

mechanism still requires loading all keys from the 168

KVCache to evaluate qk scores, incurring at least 169

half of the original memory traffic. 170

2



To improve the efficiency of top-k attention,171

recent work has focused on approximating qk172

scores with low-cost estimators. Methods like173

SparQ (Ribar et al., 2023), Loki (Singhania et al.,174

2024), and InfiniGen (Lee et al., 2024) reduce com-175

putational overhead by computing dot-products176

over a subset of projected dimensions rather than177

the full embedding space. While these approxima-178

tions retain theoretical error bounds, they face a179

dimensionality-accuracy trade-off: preserving esti-180

mation fidelity requires retaining a critical mass of181

dimensions, leading to limited performance gains.182

qkScore = Softmax(qKT )

Index = TopK(qkScore, k)

AttnOut = Attn(q,K[Index], V [Index])

(2)183

On the other side, block-based approximations,184

such as Quest (Tang et al., 2024) and InfLLM (Xiao185

et al., 2024), partition keys into contiguous blocks186

and estimate upper bounds for aggregate qk scores187

per block. Tokens within blocks exceeding a score188

threshold are retained for attention computation.189

While this reduces the search space, two issues190

arise. Critical tokens are often dispersed across191

blocks, and selecting entire blocks forces loading192

irrelevant intra-block keys, wasting memory band-193

width. Moreover, the coarse-grained estimation194

may not well distinguish important and irrelevant195

tokens, hindering the final accuracy.196

2.4 Motivation197

Prior top-k attention methods operate under the198

strong assumption that precise numerical estima-199

tion of qk scores is essential to replicate the effec-200

tiveness of full attention. Thus, they incur signif-201

icant computational or memory overhead to mini-202

mize approximation errors in absolute qk scores.203

However, in this paper, we challenge this204

assumption by demonstrating that only rela-205

tive qk score ordering—not absolute numerical206

magnitude—is required to identify the most rel-207

evant keys. By reformulating the problem as a208

lightweight ordinal comparison task (e.g., deter-209

mining whether sqki > sqkj ) rather than a numeri-210

cal regression task, we eliminate the need for costly211

high-fidelity score approximations. This relaxation212

enables remarkable reduction in computation and213

memory access while preserving top-k selection214

quality, as precise score magnitudes are irrelevant215

to the ranking outcome.216

Learning-to-hash (Wang et al., 2012) offers a 217

principled framework to achieve our goal, as it 218

maps high-dimensional continuous vectors (e.g. 219

queries and keys) into compact binary hash codes 220

while preserving their relative similarity relation- 221

ships, i.e., similar vectors are assigned adjacent 222

binary hash codes with small Hamming distances. 223

Nevertheless, integrating learning-to-hash into top- 224

k attention introduces critical challenges: 225

• Modeling. Learning-to-hash was widely used 226

for retrieval tasks, such as image retrieval and 227

information search. To apply learning-to-hash 228

to top-k attention computing, designing an ef- 229

fective hashing model for learning hash codes 230

of query and keys is of great importance. 231

• Implementation. A high-performance imple- 232

mentation is also indispensable to achieve a 233

practical improvement of LLM inference. 234

3 HATA’s Design 235

To address the aforementioned three challenges, we 236

propose Hash-Aware Top-k Attention (HATA), a 237

trainable and hardware-efficient approach based on 238

learning-to-hash. 239

In Sec 3.1, we formally define the query-key- 240

based learning-to-hash problem and design a train- 241

ing loss function to learn hash codes while preserv- 242

ing similarity. We also incorporate bits balance 243

and uncorrelation constraints (Wang et al., 2012; 244

Weiss et al., 2008) to enhance hash bit quality. In 245

Sec 3.2, we introduce HATA’s workflow, leveraging 246

the learned hash function to significantly accelerate 247

LLM inference. 248

3.1 Learning-to-Hash for Top-k Attention 249

Building on learning-to-hash, we design a hash 250

function to map query/key vectors to binary codes 251

while preserving their relative similarity. The learn- 252

ing process is detailed below. 253

3.1.1 Hash Modeling 254

Inspired by the learning-to-hash model defined 255

in (Wang et al., 2012), given a query q and multiple 256

keys K := {ki}ni=1, we learn the hash codes of q 257

3



and K by solving the following problem:258

min
∑
i

sim(q, ki)||h(q)− h(ki)||2 (3)259

s.t. h(q), h(ki) ∈ {−1, 1}r (4)260
n∑

i=1

h(ki) = 0 (5)261

1

n

n∑
i=1

h(ki)h(ki)
T = Ir (6)262

where h(·) is the hash function to be learned and263

sim(q, ki) defines the similarity of original query q264

and key ki. Note that the objective function Equa-265

tion (3) tends to assign adjacent binary codes for266

qk pairs exhibiting high similarity, which matches267

the goal of similarity-preserving hashing. The con-268

straint (4) ensures that the query and keys are en-269

coded into r binary codes. The constraints (5) and270

(6) are called bits balance and uncorrelation con-271

straints, respectively.272

The hash function h(·) is commonly defined as273

h(x) = sign(xWH), where WH is the trainable274

hash weights. Due to the non-differentiability of275

the sign function, we relax h(x) as:276

h(x) = 2 · Sigmoid(σ · xWH)− 1, (7)277

where σ ∈ (0, 1) is a hyper-parameter to prevent278

gradient vanishing.279

For tractability, the balance constraint (5) is280

further relaxed by minimizing ||
∑

i h(ki)||2, and281

according to (Wang et al., 2012) the uncorrela-282

tion constraint (6) can be relaxed by minimizing283

||W T
HWH − Ir||. Then the query-key hashing prob-284

lem is reformulated as:285

min ϵ
∑
i

si||h(q)− h(ki)||2+286

η||
∑
i

h(ki)||2 + λ||W T
HWH − Ir|| (8)287

s.t. h(x) = 2 · Sigmoid(σ · xWH)− 1288

where si is sim(q, ki) for short, and ϵ, λ, η control289

the impact of each objective. Detailed training290

settings are provided in the Appendix B.2.291

Equation (8) formulates hash function learning292

for a single query and its corresponding keys. To293

generalize to real-world cases, we extend it to multi-294

Algorithm 1 HATA Prefill Stage

1: Input: Q ∈ Rs×d, K ∈ Rs×d, V ∈ Rs×d, key
cache Kcache ∈ R0×d, value cache V cache∈
R0×d, key code cache Kcache

H ∈ R0×rbit/32

2: ▷ Call HashEncode to encode key
3: KH ← HashEncode(K)
4: ▷ Fill hashcode cache
5: Kcache

H ←KH

6: ▷ Fill KVCache
7: Kcache← K, V cache← V
8: ▷ Calculate attention output
9: O← Attention(Q, K, V)

ple queries and their corresponding keys, as below: 295

min ϵ
∑
j

∑
i

sj,i||h(qj)− h(kj,i)||2+ 296

η||
∑
j,i

h(kj,i)||2 + λ||W T
HWH − Ir|| (9) 297

s.t. h(x) = 2 · Sigmoid(σ · xWH)− 1 298

where sj,i = sim(qj , ki). Problem (9) is the final 299

hashing model for learning effective hash function 300

h(·), which plays a key role in designing efficient 301

top-k attention algorithm later. 302

Note that the attention module typically involves 303

multiple independent heads which usually have 304

different characteristics, so we also train a separate 305

hash weight WH for each attention head. 306

3.1.2 Training Data Construction 307

The training samples are constructed based on real 308

datasets. Specifically, given a sequence, during 309

the prefill stage, we collect Q := [q1, q2, . . . , qn] 310

and K := [k1, . . . , kn] of each attention head. For 311

each head, we sample a qj from Q and compute 312

the qkScore between qj and K. Based on the 313

qkScore, the top 10% of (qjki) pairs are desig- 314

nated as positive samples with linearly decayed 315

labels sj,i ∈ [1, 20], while the remaining 90% re- 316

ceive fixed negative labels sj,i = −1. The label 317

sj,i measures the similarity between qj and ki. The 318

training data are organized as triplets (qj , ki, sj,i) 319

for storage. Since the sequence can be very long, 320

it is easy to generate thousands or even millions of 321

qk pairs for training. To enhance data diversity, we 322

generate training data from dozens of sequences. 323

The details of this process are presented in Ap- 324

pendix B.1. 325

3.2 HATA Top-k Attention Algorithm 326

HATA integrates learning-to-hash to top-k atten- 327

tion via two algorithmic innovations: (1) HATA 328

4



Full KV

Step 1: Encode & Cache update Step 2: Hamming score Step 3: Top-K & Sparse attn

Token 
score

gather & attn

Softmax

rbit=128

bitwise-xor
1 1 0 0 1 1 0 … 0 1 1 0 0 0 0

1 0 1 0 0 1 0 … 1 1 0 0 0 1 0

0 1 1 0 1 0 0 … 1 0 1 0 0 1 0

bitcount

score=17

Query

Key

HashEncode

Code 
Cache

HashEncode

Figure 2: Workflow of HATA in the decode stage.

Algorithm 2 HashEncode

1: Input: vector V ∈ Rs×d

2: Parameter: hash weight WH∈ Rd×rbit

3: Output: hash code VH ∈ Ns×rbit/32

4: ▷ Project input vector into hash code
5: VH ← Sign(MatMul(V, WH ))
6: ▷ Pack hash code bits into integer format
7: VH ← BitPack(VH )

Prefill: caching hash codes of K; (2) HATA De-329

coding: efficient top-k key-value detection through330

hash space.331

HATA prefill stage. As shown in Algorithm 1,332

HATA modifies the original prefill workflow by333

additionlly computing and caching the hash codes334

of the keys (lines 2–5), which is critical for ac-335

celerating subsequent LLM decoding stages. The336

hash codes are generated by HashEncode, as shown337

in Algorithm 2, which leverages Matmul, Sign,338

and BitPack operators to produce rbit binary code.339

The hash weight WH in the HashEncode is ob-340

tained through hash training as described in Sec341

3.1. Note that the time complexity of HashEncode342

is O(s× d× rbit), where s is the sequence length343

and d is the vector dimension, while Attention’s344

complexity is O(s2d + s2). Given rbit ≪ s, the345

extra prefill overhead from HATA is negligible, ac-346

counting for less than 1% of total computation in347

real tasks.348

HATA decode stage. As illustrated in Algorithm 3349

and Figure 2, HATA enhances the decode workflow350

with the following three steps. First, in the Encode351

& Cache update step (lines 3–9), HATA first ap-352

plies HashEncode to the newly generated query Q353

and key K, producing query code (QH ) and key354

code (KH ), and then updates the key code cache355

Kcache
H . Second, it computes the qk hash scores356

S measured by the Hamming distances between357

QH and all cached key codes in Kcache
H (including358

Algorithm 3 HATA Decode Stage

1: Input: Q ∈ R1×d, K ∈ R1×d, V ∈ R1×d, key
cache Kcache ∈ Rs×d, value cache V cache

∈ Rs×d, key code cache Kcache
H ∈ Rs×rbit/32,

top-k number N
2: ▷ Update KVCache
3: Kcache← [Kcache;K]
4: V cache← [V cache;V]
5: ▷ Call HashEncode to encode query and key
6: QH ← HashEncode(Q)
7: KH ← HashEncode(K)
8: ▷ Update code cache with KH

9: Kcache
H ← [Kcache

H ;KH ]
10: ▷ Calculate distance in Hamming space
11: S← bitcount(bitwise_xor(QH ,Kcache

H ))
12: ▷ Select top-k key-value pairs
13: Idx← TopK(S, N )
14: Ksparse← Gather(Kcache, Idx)
15: V sparse← Gather(V cache, Idx)
16: ▷ Calculate sparse attention output
17: O← Attention(Q, Ksparse, V sparse)

the current KH ) using hardware-efficient opera- 359

tions: bitwise_xor and bitcount (lines 10–11). 360

In situations where multiple queries target the same 361

KVCache, such as GQA, we additionally aggregate 362

the scores S for shared KVCache. Third, based on 363

the hash scores, HATA selects and gathers the most 364

relevant keys and values (lines 13–15), which are 365

then fed into sparse attention (line 17). 366

4 Hardware-Efficient Optimizations 367

HATA is implemented in PyTorch (Ansel et al., 368

2024) and FlashInfer (Ye et al., 2025), comprising 369

1,470 lines of C++/CUDA code (for custom GPU 370

kernels) and 940 lines of Python code (for high- 371

level orchestration). To bridge the gap between the- 372

oretical efficiency and practical performance, we 373

5



TopK

bitwise-xor GatherTopK

Score
Op

Timeline

Encode & Cache update

Attnbitcount

Hamming Score Sparse Attn

Simple

HATA Reduced Latency
Gather
&Attn

Figure 3: HATA’s optimizations, compared to the con-
ventional implementation (denoted as ‘Simple’).

introduce three hardware-efficient optimizations,374

as illustrated in Figure 3, targeting compute and375

memory bottlenecks in attention with long contexts376

and large batches.377

Kernel fusion for hash encoding. The Encode &378

Cache update phase involves a chain of operations379

such as linear projection, sign function, BitPack,380

and cache updates. Although each operation takes381

only a few microseconds on the GPU, the CPU382

requires tens of microseconds to dispatch them,383

starving GPU compute units. By fusing these into a384

single CUDA kernel, we significantly reduce CPU-385

GPU synchronization, consequently cutting end-to-386

end inference latency.387

High-performance hamming score operator.388

The Hamming score is computed by matching bits389

between query and key codes. However, PyTorch390

lacks high-performance operator support for this391

computation. To address this, we design an effi-392

cient GPU operator with the following hardware-393

optimized steps: First, both the query and key are394

loaded as multiple integers, and XOR is applied to395

produce intermediate integers, where ‘1’ indicates a396

mismatch and ‘0’ a match. Next, the popc/popcll397

instructions count the number of ‘1’s in each inte-398

ger. Finally, a high-performance reduction oper-399

ator aggregates these counts to compute the final400

score. To further boost GPU efficiency, we opti-401

mize memory bandwidth by employing coalesced402

memory access when transferring data from HBM403

to SRAM.404

Fuse gather with FlashAttention. For Sparse405

Attn, the separate gather operations for selected406

keys and values result in redundant data transfers407

between HBM and SRAM, diminishing the benefits408

of hashing. To address this, we integrate the gather409

operation with the widely-used FlashAttention ker-410

nel (Dao et al., 2022; Dao, 2024), streamlining data411

flow and reducing memory access overhead.412

5 Empirical Evaluation413

In this section, we evaluate HATA’s performance414

in terms of both accuracy and efficiency.415

5.1 Experimental Setup 416

Experiment platform. We conduct experiments 417

on a machine equipped with a 48GB HBM GPU 418

delivering up to 149.7 TFLOPS (FP16) and 96 419

cores. The system runs Ubuntu 24.04, utilizing 420

CUDA 12.1, PyTorch 2.4 (Ansel et al., 2024), 421

FlashInfer (Ye et al., 2025). 422

Baselines and configurations. We compare HATA 423

with the state-of-the-art baselines: Loki (Singha- 424

nia et al., 2024) (low-rank) and Quest (Tang et al., 425

2024) (block-level), both of which are variants of 426

top-k attention. In addition, we further compare 427

HATA with MagicPIG (Chen et al., 2024), which 428

accelerates top-k attention through locality sensi- 429

tive hashing (LSH) (Gionis et al., 1999). LSH is 430

another kind of hashing method, which mainly uti- 431

lizes random projections to generate hash codes. 432

Different from learning-to-hash, LSH typically re- 433

quires massive hash bits to ensure accuracy. More 434

details about LSH can be seen in (Gionis et al., 435

1999). We adopt the recommended configurations 436

(e.g., channels, block size) from the original papers 437

for all baselines. For HATA, we set rbit=128, a ver- 438

satile configuration that maintains quality across 439

most tasks. Following (Tang et al., 2024), we use 440

vanilla attention for the first two layers, which are 441

typically outlier layers in top-k attention methods. 442

We additionally add the vanilla transformer with 443

full attention mechanism (denoted by dense) as a 444

reference baseline to demonstrate the effectiveness 445

and efficiency of HATA. 446

Models and datasets. We mainly evaluate 447

HATA on two mainstream large language models: 448

Llama2 (Together, 2023) and Llama3.1 (MetaAI, 449

2024). The test datasets include two widely used 450

benchmarks: Longbench-e (Bai et al., 2023) and 451

RULER (Hsieh et al., 2024). LongBench-e is a mul- 452

titask benchmark involving QA, document summa- 453

rization, and code understanding. RULER focuses 454

on retrieval tasks over extremely long contexts. 455

Due to space constraints, we only report selected 456

results here. Full results including more models 457

and tasks are provided in Appendix A. 458

5.2 Accuracy Evaluation 459

Evaluation on LongBench-e. From Table 1 we 460

can see that for both Llama2 and Llama3.1, HATA 461

can achieve similar results compared with the 462

vanilla full attention mechanism, and outperforms 463

all the other baselines in most cases. Consistent re- 464

sults are obtained on the other Longbench-e tasks, 465

6



Methods Llama-2-7B-32K-Instruct Llama-3.1-8B-Instruct AVG.LCC Repo Trec Gov LCC Repo Trec Gov

Dense 67.53 55.03 69.00 32.01 67.24 52.36 71.66 35.03 56.23

Loki (32 channels) 58.68 44.41 69.00 30.51 61.29 48.47 72.33 34.74 52.43
Quest (BlockSize=16) 65.14 52.57 67.57 24.83 58.81 46.72 71.33 33.64 52.58
MagicPIG (K=10, L=150) 66.43 55.81 69.00 31.29 53.39 42.35 63.67 32.58 51.82
HATA (rbit=128) 68.42 54.92 69.34 31.90 67.25 51.72 71.66 35.02 56.28

Table 1: Partial accuracy results on LongBench-e (Bai et al., 2023) with a sparse token budget of 512. For MagicPIG,
the token budget is approximately 2-3% of the sequence length. Full results are in Appendix A.2.

Methods Llama-2-7B-32K-Instruct Llama-3.1-8B-Instruct AVG.NS3 NMK2 NMV QA2 NS3 NMK2 NMV QA2

Dense 91.67 81.25 66.67 36.46 100.00 77.08 94.27 40.62 73.50

Loki (32 channels) 0.00 0.00 0.00 16.67 96.88 59.38 91.67 35.29 37.49
Quest (BlockSize=16) 52.08 54.17 52.34 34.38 47.92 53.12 78.91 38.54 51.43
MagicPIG (K=10, L=150) 54.17 71.88 59.38 35.42 51.04 20.83 44.79 38.54 47.01
HATA (rbit=128) 83.33 78.12 65.62 37.50 100.00 69.79 89.06 40.62 70.51

Table 2: Partial accuracy results on RULER (Bai et al., 2023). For Llama-2-7B-32K-Instruct, the context length is
32K and sparse token budget is 1024 (3.13%). For Llama-3.1-8B-Instruct, the context length is 128K and sparse
token budget is 2048 (1.56%). For MagicPIG, the token budget is approximately 2-3% of the sequence length. Full
results are in Appendix A.2.

as shown in Appendix A.2.466

Evaluation on RULER. Next, we test all the meth-467

ods on the long-context tasks. RULER can be used468

to construct retrieval, tracing, aggregation and QA469

tasks with any length. Note that the input sequence470

length should not surpass the maximum context471

window size of model. Hence, we test Llama2 and472

Llama3.1 on 32k-long and 128k-long sequences,473

respectively. We set the sparse budget as 1024474

for Llama2 and 2048 for Llama3.1 (only 3.12%475

and 1.56% of total sequence length). The results476

shown in Table 2 is in line with results test on477

Longbench-e. For long-context inference, HATA478

can still maintain the accuracy of the vanilla full at-479

tention mechanism, while all the other competitors480

has obvious accuracy degradation, which shows481

the superiority of HATA.482

5.3 Efficiency Evaluation483

In this subsection, we compare the efficiency of484

HATA with other baselines. We first evaluate the485

end-to-end model inference efficiency, followed by486

an in-depth analysis of decoding efficiency across487

varying input scales. For Quest, we directly use488

their open-source high-performance implementa-489

tion. For the full attention baseline (dense), we490

Prefill=36K Decode=3.6K
LlaMa2-7B

Prefill=72K Decode=7.2K
LlaMa3.1-8B

0

100

200

300

Ti
m

e 
Co

st
 (

se
c)

N/A

Dense Prefill
Loki Prefill
Quest Prefill
HATA Prefill

Dense Decode
Loki Decode
Quest Decode
HATA Decode

Figure 4: End-to-end performance comparison of LLM
inference under 1.56% token selection.

adopt the recently widely-used vLLM (Kwon et al., 491

2023) implementation. For Loki, since it did not 492

provide a high-performance implementation, here 493

we give an efficient realization based on triton, 494

which is detailed in Appendix C. Note that Mag- 495

icPIG adopts the offloading technology to save the 496

HMB memory, which will introduce additional 497

latency, so directly comparing time efficiency is 498

not fair. In Appendix A.4, we give an offloading 499

version of HATA, named HATA-off, and compare 500

HATA-off with MagicPIG. 501

End-to-end inference efficiency. Both HATA and 502

the above-mentioned compared methods are de- 503

signed for speeding up the LLM decoding. In Fig- 504

ure 4, we compare the decoding time cost of all 505

the methods with the same sequence length. In 506

7



1 2 3 4 5 6 7 8
Batch Size

2

4

6

8

La
te

nc
y 

(m
s)

Llama2 MHA (SEQ=32K)

4k 8k 16k 32k 64k 128k 256k
Seq Length

2

4

6

La
te

nc
y 

(m
s)

Llama2 MHA (BSZ=1)

1 2 3 4 5 6 7 8
Batch Size

1.0

1.5

2.0

La
te

nc
y 

(m
s)

Llama3.1 GQA=4 (SEQ=32K)

4k 8k 16k 32k 64k 128k 256k
Seq Length

1.0

1.5

2.0

La
te

nc
y 

(m
s)

Llama3.1 GQA=4 (BSZ=1)

Dense Loki Quest HATA

Figure 5: Performance comparison of a single trans-
former layer under 1.56% token selection.

addition, we also show the prefill time cost to mea-507

sure the end-to-end efficiency performance of these508

methods comprehensively. Here we only report the509

time efficiency of Quest on Llama2, since its open-510

source high-performance implementation does not511

support GQA so far. From Figure 4, we see that512

HATA, Loki, and Quest all have significant speedup513

in decoding compared with the vanilla attention514

mechanism, and among them, HATA achieves the515

highest decoding efficiency. On the other hand, we516

can see that for LoKi, Quest, and HATA, the prefill517

time is similar to the vanilla attention mechanism,518

so all of them can improve the end-to-end inference519

efficiency. Though it is expected that Quest can520

achieve similar time efficiency to HATA, HATA521

can achieve better accuracy under the same budget.522

Decoding efficiency across varying input scales.523

We further evaluate HATA across varying batch524

sizes and input sequence lengths. Due to GPU525

memory constraints, we evaluate only a single526

transformer layer of Llama2 and Llama3.1. Since527

prefill costs are similar across baselines, we fo-528

cus on decoding step latency. Furthermore, since529

the high-performance implementation of the open-530

source Quest is limited to a batch size of 1 and531

MHA models, we evaluate it solely across vary-532

ing sequence lengths on Llama2. As shown in533

Figure 5, HATA outperforms all the baselines. No-534

tably, with longer sequences and larger batches,535

HATA achieves greater speedups. With batch size536

= 8 and sequence length = 32K, HATA reaches up537

to 7.20× speedup over Dense and 1.99× over Loki.538

At batch size = 1 and sequence length = 256K,539

HATA achieves up to 6.51× speedup over Dense,540

2.21× over Loki and 1.19× over Quest. These re-541

sults demonstrate HATA’s high inference efficiency542

across tasks of varying scales.543

6 Related Works 544

Our work HATA advances top-k attention for ac- 545

celerating KVCache-enabled LLM inference, but 546

significantly differs from existing top-k attention 547

methods. Prior top-k attention methods (Singhania 548

et al., 2024; Ribar et al., 2023; Lee et al., 2024; 549

Tang et al., 2024; Xiao et al., 2024) assume precise 550

qk score estimation is essential to replicate full at- 551

tention, incurring high computational or memory 552

overhead to minimize errors. Other hashing-based 553

methods for LLMs fail to achieve practical infer- 554

ence acceleration. MagicPIG (Chen et al., 2024) 555

employs locality-sensitive hashing but relies on 556

high-bit representations, limiting speed and sacri- 557

ficing accuracy. HashAttention (Desai et al., 2024), 558

a concurrent work, also uses learning-to-hash but 559

adopts a custom training approach, lacks extensive 560

testing across datasets and models, and overlooks 561

system challenges in applying hashing to top-k at- 562

tention. Some works (Sun et al., 2021) attempt 563

hashing in LLM training but fail to transfer it to 564

inference due to fundamental differences between 565

the two phases. 566

Other orthogonal approaches focus on compress- 567

ing KVCache content. Eviction methods (Zhang 568

et al., 2024b; Adnan et al., 2024) remove less im- 569

portant tokens but risk information loss and dy- 570

namic token importance shifts, potentially degrad- 571

ing output quality. Quantization methods (Liu 572

et al., 2024b; Hooper et al., 2024) compress the 573

KVCache, though their speedup gains are limited 574

by low compression ratios. 575

Finally, the offloading methods (Lee et al., 2024; 576

Sheng et al., 2023; Sun et al., 2024) transfer KV- 577

Cache to CPU memory to reduce HBM memory 578

usage. HATA is orthogonal to these methods and 579

can be combined with them. Appendix A.4 demon- 580

strates that HATA can be easily and efficiently com- 581

bined with KVCache offloading. 582

7 Conclusion 583

We introduced Hash-Aware Top-k Attention 584

(HATA), a hardware-efficient method for faster 585

LLM inference. HATA offers a systematic explo- 586

ration and validation of the integration of learning- 587

to-hash techniques into top-k attention mecha- 588

nisms, achieving up to 7.2× speedup over dense 589

attention and outperforming SOTA methods in ac- 590

curacy and performance, establishing it as an effec- 591

tive solution for LLM inference acceleration. 592

8



8 Limitations593

With learning-to-hash, HATA has achieved notable594

success in top-k attention. However, it still has the595

following limitations:596

Larger-scale training. HATA ’s training data con-597

sists of millions of query-key pairs sampled from a598

limited number of sequences, which is sufficient to599

train effective hash weights. However, expanding600

the diversity and scale of the training data could601

further enhance the quality of the hash weights. We602

plan to explore this in the future to improve HATA603

’s performance across a wider range of tasks.604

Fields of application. HATA is designed to accel-605

erate LLM inference with long contexts or large606

batch sizes. For small batch sizes and short con-607

text sequences, HATA does not provide significant608

speedup, as the attention module is not the bottle-609

neck in these cases.610

MLA adaptor. Over the past month, Multi-Latent611

Head Attention (MLA) in DeepSeek (Liu et al.,612

2024a) has gained significant attention. While613

we’ve evaluated HATA on MHA and GQA tasks,614

it remains untested with MLA, which we leave as615

future work.616

References617

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain,618
Prashant Nair, Ilya Soloveychik, and Purushotham619
Kamath. 2024. Keyformer: Kv cache reduction620
through key tokens selection for efficient generative621
inference. Proceedings of Machine Learning and622
Systems, 6:114–127.623

Jason Ansel, Edward Yang, Horace He, Natalia624
Gimelshein, Animesh Jain, Michael Voznesensky,625
Bin Bao, Peter Bell, David Berard, Evgeni Burovski,626
Geeta Chauhan, Anjali Chourdia, Will Constable,627
Alban Desmaison, Zachary DeVito, Elias Ellison,628
Will Feng, Jiong Gong, Michael Gschwind, and 30629
others. 2024. PyTorch 2: Faster Machine Learning630
Through Dynamic Python Bytecode Transformation631
and Graph Compilation. In 29th ACM International632
Conference on Architectural Support for Program-633
ming Languages and Operating Systems, Volume 2634
(ASPLOS ’24). ACM.635

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,636
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao637
Liu, Aohan Zeng, Lei Hou, and 1 others. 2023.638
Longbench: A bilingual, multitask benchmark639
for long context understanding. arXiv preprint640
arXiv:2308.14508.641

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xi-642
aozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu, Lei643
Hou, Yuxiao Dong, and 1 others. 2024. Longbench644

v2: Towards deeper understanding and reasoning 645
on realistic long-context multitasks. arXiv preprint 646
arXiv:2412.15204. 647

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang 648
Zhou, Jianyu Zhang, Niklas Nolte, Yuandong Tian, 649
Matthijs Douze, Leon Bottou, Zhihao Jia, and 1 oth- 650
ers. 2024. Magicpig: Lsh sampling for efficient llm 651
generation. arXiv preprint arXiv:2410.16179. 652

Tri Dao. 2024. FlashAttention-2: Faster attention with 653
better parallelism and work partitioning. 654

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 655
Christopher Ré. 2022. Flashattention: Fast and 656
memory-efficient exact attention with io-awareness. 657
Advances in Neural Information Processing Systems, 658
35:16344–16359. 659

Aditya Desai, Shuo Yang, Alejandro Cuadron, Ana 660
Klimovic, Matei Zaharia, Joseph E Gonzalez, and Ion 661
Stoica. 2024. Hashattention: Semantic sparsity for 662
faster inference. arXiv preprint arXiv:2412.14468. 663

Aristides Gionis, Piotr Indyk, Rajeev Motwani, and 1 664
others. 1999. Similarity search in high dimensions 665
via hashing. In Vldb, volume 99, pages 518–529. 666

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, 667
and Jonathan Berant. 2021. Memory-efficient 668
transformers via top-k attention. arXiv preprint 669
arXiv:2106.06899. 670

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, 671
Michael W Mahoney, Yakun Sophia Shao, Kurt 672
Keutzer, and Amir Gholami. 2024. Kvquant: 673
Towards 10 million context length llm inference 674
with kv cache quantization. arXiv preprint 675
arXiv:2401.18079. 676

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan- 677
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, 678
and Boris Ginsburg. 2024. Ruler: What’s the real 679
context size of your long-context language models? 680
arXiv preprint arXiv:2404.06654. 681

Greg Kamradt. 2023. Needle in a haystack - pressure 682
testing llms. https://github.com/gkamradt/ 683
LLMTest_NeedleInAHaystack. Accessed, Feb. 684
2025. 685

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 686
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 687
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 688
memory management for large language model serv- 689
ing with pagedattention. In Proceedings of the 29th 690
Symposium on Operating Systems Principles, pages 691
611–626. 692

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong 693
Sim. 2024. Infinigen: Efficient generative inference 694
of large language models with dynamic kv cache 695
management. In 18th USENIX Symposium on Op- 696
erating Systems Design and Implementation (OSDI 697
24), pages 155–172. 698

9

https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack


Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,699
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi700
Deng, Chenyu Zhang, Chong Ruan, and 1 others.701
2024a. Deepseek-v3 technical report. arXiv preprint702
arXiv:2412.19437.703

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,704
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,705
and Xia Hu. 2024b. Kivi: A tuning-free asymmet-706
ric 2bit quantization for kv cache. arXiv preprint707
arXiv:2402.02750.708

MetaAI. 2024. Introducing llama 3.1: Our most capa-709
ble models to date. https://ai.meta.com/blog/710
meta-llama-3-1/. Accessed, Feb. 2025.711

QwenTeam. 2024. Qwen2.5: A party of founda-712
tion models. https://qwenlm.github.io/blog/713
qwen2.5/. Accessed, Feb. 2025.714

QwenTeam. 2025. Qwen2.5-1m: Deploy your own715
qwen with context length up to 1m tokens. https:716
//qwenlm.github.io/blog/qwen2.5-1m/. Ac-717
cessed, Feb. 2025.718

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley,719
Charlie Blake, Carlo Luschi, and Douglas Orr. 2023.720
Sparq attention: Bandwidth-efficient llm inference.721
arXiv preprint arXiv:2312.04985.722

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-723
han Li, Max Ryabinin, Beidi Chen, Percy Liang,724
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.725
Flexgen: High-throughput generative inference of726
large language models with a single gpu. In Inter-727
national Conference on Machine Learning, pages728
31094–31116. PMLR.729

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil730
Feizi, and Abhinav Bhatele. 2024. Loki: Low-rank731
keys for efficient sparse attention. arXiv preprint732
arXiv:2406.02542.733

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng,734
Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi,735
and Beidi Chen. 2024. Shadowkv: Kv cache in shad-736
ows for high-throughput long-context llm inference.737
arXiv preprint arXiv:2410.21465.738

Zhiqing Sun, Yiming Yang, and Shinjae Yoo. 2021.739
Sparse attention with learning to hash. In Interna-740
tional Conference on Learning Representations.741

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,742
Baris Kasikci, and Song Han. 2024. Quest: Query-743
aware sparsity for efficient long-context llm inference.744
arXiv preprint arXiv:2406.10774.745

Philippe Tillet, Hsiang-Tsung Kung, and David Cox.746
2019. Triton: an intermediate language and com-747
piler for tiled neural network computations. In Pro-748
ceedings of the 3rd ACM SIGPLAN International749
Workshop on Machine Learning and Programming750
Languages, pages 10–19.751

Together. 2023. Llama-2-7b-32k-instruct. 752
https://huggingface.co/togethercomputer/ 753
Llama-2-7B-32K-Instruct. Accessed, Feb. 2025. 754

Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. 2012. 755
Semi-supervised hashing for large-scale search. 756
IEEE transactions on pattern analysis and machine 757
intelligence, 34(12):2393–2406. 758

Yair Weiss, Antonio Torralba, and Rob Fergus. 2008. 759
Spectral hashing. Advances in neural information 760
processing systems, 21. 761

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan 762
Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, 763
and Maosong Sun. 2024. Infllm: Training-free long- 764
context extrapolation for llms with an efficient con- 765
text memory. In The Thirty-eighth Annual Confer- 766
ence on Neural Information Processing Systems. 767

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yi- 768
neng Zhang, Stephanie Wang, Tianqi Chen, Baris 769
Kasikci, Vinod Grover, Arvind Krishnamurthy, and 770
Luis Ceze. 2025. Flashinfer: Efficient and customiz- 771
able attention engine for llm inference serving. arXiv 772
preprint arXiv:2501.01005. 773

Haoran You, Yichao Fu, Zheng Wang, Amir Yazdan- 774
bakhsh, and Yingyan (Celine) Lin. 2024. When 775
linear attention meets autoregressive decoding: to- 776
wards more effective and efficient linearized large 777
language models. In Proceedings of the 41st Interna- 778
tional Conference on Machine Learning, ICML’24. 779
JMLR.org. 780

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang 781
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai, 782
Shuo Wang, Zhiyuan Liu, and 1 others. 2024a. In- 783
finitebench: Extending long context evaluation be- 784
yond 100k tokens. In Proceedings of the 62nd An- 785
nual Meeting of the Association for Computational 786
Linguistics (Volume 1: Long Papers), pages 15262– 787
15277. 788

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 789
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 790
dong Tian, Christopher Ré, Clark Barrett, and 1 oth- 791
ers. 2024b. H2o: Heavy-hitter oracle for efficient 792
generative inference of large language models. Ad- 793
vances in Neural Information Processing Systems, 794
36. 795

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff 796
Huang, Chuyue Sun, Cody_Hao Yu, Shiyi Cao, Chris- 797
tos Kozyrakis, Ion Stoica, Joseph E Gonzalez, and 798
1 others. 2023. Efficiently programming large lan- 799
guage models using sglang. 800

10

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5-1m/
https://qwenlm.github.io/blog/qwen2.5-1m/
https://qwenlm.github.io/blog/qwen2.5-1m/
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2501.01005


Model Abbr. Configs Values

Llama-2-7B-32K-Instruct (Together, 2023) Llama2

#Layer 32
#Attention Heads 32
#KV Heads 32
Hidden Size 4096
Max Context Length 32768

Llama-3.1-8B-Instruct (MetaAI, 2024) Llama3.1

#Layer 32
#Attention Heads 32
#KV Heads 8
Hidden Size 4096
Max Context Length 131072

Qwen2.5-14B-Instruct-1M (QwenTeam, 2025) Qwen2.5-14B

#Layer 48
#Attention Heads 40
#KV Heads 8
Hidden Size 5120
Max Context Length 1010000

Qwen2.5-32B-Instruct (QwenTeam, 2024) Qwen2.5-32B

#Layer 64
#Attention Heads 40
#KV Heads 8
Hidden Size 5120
Max Context Length 131072

Table 3: Configurations of the models we used for evaluation.

Methods Settings

Dense Inference with the full KVCache (dense attention)
top-k Exact top-k attention
Loki (Singhania et al., 2024) Number of channels = 32
Quest (Tang et al., 2024) Block size = 32
MagicPIG (Chen et al., 2024) K=10, L=150
HATA Trained hash weights, 128 bits

Table 4: Configurations for the evaluated methods.

A Additional Evaluation Results801

In this section, we present supplemental evaluation802

results.803

• In A.1, we provide detailed configurations of804

the models and top-k attention algorithm base-805

lines used for evaluation.806

• In A.2, we supplement Sec 5.2 by reporting807

the full results on RULER and LongBench.808

• In A.3, we additionally compare HATA with809

dense model in three commonly used bench-810

marks (InfiniBench, NIAH and LongBench-811

v2).812

• In A.4, we provide the inference performance 813

comparison between HATA-off and Mag- 814

icPIG. 815

• In A.5, we conduct ablation studies on HATA, 816

analyzing the effects of hash bits and token 817

budget on inference accuracy, as well as the ef- 818

ficiency gains achieved through the optimiza- 819

tions discussed in Sec 4. 820

• In A.6, we show that HATA can successfully 821

scale to larger models (Qwen2.5-14B and 822

Qwen2.5-32B) and handle longer contexts (up 823

to 256K tokens). 824

11



Task Llama-2-7B-32K-Instruct Llama-3.1-8B-Instruct
Dense Loki Quest MagicPIG HATA Dense Loki Quest MagicPIG HATA

LCC 67.53 58.68 65.14 66.43 68.42 67.24 61.29 58.81 53.39 67.25
PRetr 11.89 11.97 15.53 10.01 10.61 99.67 99.67 99.67 98.83 99.67
HQA 15.30 14.91 13.64 14.69 15.65 60.21 59.48 60.03 56.28 60.19
TQA 85.03 85.30 85.18 86.17 85.83 91.64 91.45 90.79 77.90 91.94
Repo 55.03 44.41 52.57 55.81 54.92 52.36 48.47 46.72 42.35 51.72
Sam 39.32 38.95 39.24 38.94 39.61 42.55 41.99 39.75 34.28 42.35
Trec 69.00 69.00 67.57 69.00 69.34 71.66 72.33 71.33 63.67 71.66
MQA 22.44 22.11 19.33 21.70 22.39 54.82 54.47 51.50 49.10 55.17
2Wiki 13.13 13.09 12.51 13.29 13.44 44.08 44.33 43.90 37.84 43.82
Gov 32.01 30.51 24.83 31.29 31.90 35.03 34.74 33.64 32.58 35.02
PCnt 1.17 0.52 1.20 1.08 0.34 13.19 12.74 13.16 9.96 12.44
MltN 24.51 23.82 16.61 23.74 25.06 26.19 25.85 25.69 24.57 26.07
Qaspr 11.76 12.82 10.93 11.06 12.31 44.68 45.15 43.52 38.20 43.95

AVG. 34.47 32.78 32.64 34.09 34.60 54.10 53.23 52.19 47.61 53.94

Table 5: Accuracy results on LongBench-e (Bai et al., 2023) for Llama2 and Llama3.1 with sparse token budget=512.
For MagicPIG, the token budget is approximately 2-3% of the sequence length.

A.1 Models and Baselines825

Table 3 summarizes key parameters of the eval-826

uated models. Llama2 uses multi-head attention827

(MHA), while the other three employ group-query828

attention (GQA). Table 4 lists configurations of all829

top-k attention methods used for comparison.830

A.2 Supplement Accuracy Results831

In this section, we supplement the accuracy com-832

parison with three other baselines as mentioned in833

Sec 5.2. Table 5 present the full results for Llama-834

2-7B-32K-Instruct and Llama-3.1-8B-Instruct on835

LongBench-e respectively, while Table 6 shows all836

accuracy comparison of the 11 tasks in RULER.837

A.3 Addtional Accuracy Results838

We additionally test HATA across three com-839

monly used benchmarks: InfiniBench (Zhang et al.,840

2024a), LongBench-v2 (Bai et al., 2024) and Need-841

in-a-Haystack (Kamradt, 2023). In all the three842

benchmarks, HATA achieves near-lossless accu-843

racy compared with dense model.844

InfiniteBench. InfiniteBench covers tasks of845

QA, coding, dialogue, summarization, and re-846

trieval, with an average length of 214K. We eval-847

uated HATA on this benchmark using Llama3.1848

to demonstrate its effectiveness in complex long-849

context scenarios. The results are shown in Table 7.850

LongBench-v2. LongBench-v2 is an update of851

the LongBench benchmark, which comprises 503852

multiple-choice questions with context lengths853

1K 5K 10K 14K 19K 23K 28K 32K
Context Length

0

22

44

67

89

D
ep

th
 P

er
ce

nt
 (

%
) Llama-2 (Dense)

1K 5K 10K 14K 19K 23K 28K 32K
Context Length

Llama-2 (HATA)

32K 46K 59K 73K 87K 101K 114K 128K
Context Length

0

22

44

67

89

D
ep

th
 P

er
ce

nt
 (

%
) Llama-3.1 (Dense)

32K 46K 59K 73K 87K 101K 114K 128K
Context Length

Llama-3.1 (HATA)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Needle-in-a-Haystack evaluation results. For
HATA, the sparse token budget is 512 for Llama2 and
2048 for Llama3.1.

spanning from 8K to an extensive 2M words. We 854

employed the Llama3.1 model on LongBench-v2. 855

The accuracy results are categorized based on two 856

key dimensions: task difficulty (Easy, Hard) and 857

context length (Short, Medium, Long). As shown 858

in Tabel 8, HATA consistently maintains model 859

accuracy across most tasks, and even outperforms 860

the exact top-k attention in certain scenarios. 861

Needle-in-a-Haystack. Needle-in-a-Haystack is 862

a retrieval task. By varying the haystack length 863

and the depth of the needle, we can comprehen- 864

sively evaluate the effectiveness of HATA in re- 865

trieval tasks. For Llama2, we set the haystack 866

length ranging from 1K to 32K to fit within the 867

model’s context window. While for Llama3.1, we 868

extended the range from 32K to 128K. As shown in 869

Figure 6, HATA achieves accuracy results similar 870

12



Task Llama-2-7B-32K-Instruct Llama-3.1-8B-Instruct
Dense Loki Quest MagicPIG HATA Dense Loki Quest MagicPIG HATA

NS1 93.75 25.00 100.00 97.92 100.00 100.00 98.96 100.00 94.79 98.96
NS2 100.00 2.08 95.83 93.75 98.96 98.96 97.92 93.75 69.79 98.96
NS3 91.67 0.00 52.08 54.17 83.33 100.00 96.88 47.92 51.04 100.00
NMK1 93.75 0.00 87.50 83.33 93.75 97.92 96.88 97.35 65.62 96.88
NMK2 81.25 0.00 54.17 71.88 78.12 77.08 59.38 53.12 20.83 69.79
NMV 66.67 0.00 52.34 59.38 65.62 94.27 91.67 78.91 44.79 89.06
NMQ 52.08 0.00 56.51 43.49 54.17 96.09 94.79 90.10 57.81 94.53
VT 21.04 1.04 26.87 16.04 20.00 51.04 50.00 61.25 41.67 50.21
FWE 48.61 19.44 36.36 51.39 43.40 75.35 57.99 63.19 57.99 71.18
QA1 30.21 14.58 23.96 30.21 28.12 78.12 76.04 73.96 67.71 76.04
QA2 36.46 16.67 34.38 35.42 37.50 40.62 35.29 38.54 38.54 40.62

AVG. 65.04 7.16 56.37 57.91 63.91 82.68 77.80 72.55 55.51 80.57

Table 6: Accuracy results on RULER(32K) (Bai et al., 2023) for Llama2 with sparse token budget=1024 (3.13%)
and RULER(128K) for Llama3.1 with sparse token budget=2048 (1.56%). For MagicPIG, the token budget is
approximately 2-3% of the sequence length.

Methods Sum Choice BookQA DialQA ZhQA NumStr Passkey Debug MathFind AVG.

Dense 20.36 57.64 38.33 18.50 27.57 97.80 100.00 22.59 23.71 45.17

HATA 19.27 57.64 37.52 18.50 27.27 96.44 100.00 22.59 23.71 44.77

Table 7: Accuracy results on InfiniteBench (Zhang et al., 2024a) for Llama3.1 model with sparse token bud-
get=2048. Samples exceeding the model’s maximum context window are truncated to fit within it.

Methods Easy.Short Easy.Medium Easy.Long Hard.Short Hard.Medium Hard.Long Total

Dense 44.07 28.41 31.11 32.23 25.98 25.40 30.42
top-k 40.68 25.00 33.33 29.75 25.20 23.81 28.63

HATA 38.98 27.27 35.56 29.75 26.77 25.40 29.62

Table 8: Accuracy results on LongBench-v2 (Bai et al., 2024) for Llama3.1 model with sparse token budget=1024.
Samples exceeding the model’s maximum context window are truncated to fit within it.

to the dense attention.871

A.4 HATA-off and Offloading Efficiency872

We also expand an offloading version of HATA,873

named HATA-off. This section first introduces874

HATA-off, followed by an performance compar-875

ison with MagicPIG (Chen et al., 2024).876

HATA-off. Inspired by InfiniGen (Lee et al.,877

2024), we implement HATA-off using KVCache878

offloading with approximate query-based prefetch-879

ing. This improvement helps us precompute the880

top-k indices for the next layer, creating an op-881

portunity to optimize prefetching key-value pairs.882

Specifically, we use the input embeddings from883

layer l to generate approximate queries for layer884

l + 1, which allows us to compute top-k indices.885

This enables prefetching keys/values for the next 886

layer, effectively hiding the CPU-GPU data transfer 887

overhead. 888

Efficiency evaluation. We compare the infer- 889

ence efficiency of HATA-off with MagicPIG us- 890

ing Llama2 and Llama3.1. Both systems were 891

equipped with PCIe 4.0 and configured with 48 892

threads in total. The results are presented in Table 9. 893

In the prefill phase, HATA-off achieves speedups 894

of 6.04× and 1.32× on the two models, respectively. 895

This performance difference arises because Mag- 896

icPIG relies on locality-sensitive hashing (LSH), 897

requiring excessively large hash bits (e.g., 1,500 898

bits per 2,048-dimensional vector) to preserve sim- 899

ilarity, which introduces significant computational 900

overhead, especially for MHA models like Llama2 901

13



Time
Cost

Llama2 Llama3.1
MPIG HATA-off MPIG HATA-off

Prefill 49.89 8.26 33.24 25.09
Decode 38.21 15.04 41.69 15.86
Total 88.10 23.30 74.93 40.95

Table 9: Offloading performance comparison between
HATA-off and MagicPIG (MPIG). We set the prefill
length as 36K and 72K for Llama2 and Llama3.1 re-
spectively, and the decode length is set as 500 for both
model. For MagicPIG, the token budget is approxi-
mately 2-3% of the sequence length, and for HATA-off
we set the token budgets as 1.56%.

128 256 512 1024 2048 4096
Token Budget

50

55

60

65

M
od

el
 A

cc
ur

ac
y

Llama2 on lcc

Loki
Quest
HATA
Dense

512 1024 2048 4096 8192
Token Budget

40

50

60

70

M
od

el
 A

cc
ur

ac
y

Llama3.1 on FWE

Figure 7: Token budget ablation.

with a large number of KV heads. In the decoding902

phase, HATA-off achieves speedups of 2.54× and903

2.63×, owing to two key advantages: (1) reduced904

hash bit count and an optimized score operator min-905

imize memory access and computation overhead,906

and (2) prefetching top-k KVs and computing at-907

tention on the GPU outperforms MagicPIG’s CPU-908

based attention implementation. These results high-909

light HATA-off’s effectiveness in offloading sce-910

narios, enabling efficient ultra-long-sequence infer-911

ence and scalable deployment of large models.912

A.5 Ablation Study913

In this subsection, we conduct ablation studies on914

HATA. For accuracy, we investigate the impact of915

sparse token budget and the number of hash bits on916

HATA’s performance. For inference efficiency, we917

examine the performance improvements brought918

by the optimization introduced in Sec 4.919

Token budget ablation. First, we examine the920

impact of token budgets on HATA’s performance.921

As shown in Figure 7, HATA consistently outper-922

forms Quest and Loki under the various budgets.923

Notably, as budgets decrease, HATA’s accuracy924

degrades minimally, maintaining acceptable perfor-925

mance even under 0.4% token ratio, highlighting926

the strong potential of learning-to-hash.927

Hash bits ablation. Next, we explore the effect928

of hash bit count (rbit) on inference accuracy. As929

32 64 96 128 160 192 256
rbit

45

50

55

60

65

70

M
od

el
 A

cc
ur

ac
y

lcc

Llama2
Llama3.1
Llama2 dense
Llama3.1 dense

32 64 96 128 160 192 256
rbit

36

40

44

48

52

56

M
od

el
 A

cc
ur

ac
y

repobench-p

Llama2
Llama3.1
Llama2 dense
Llama3.1 dense

32 64 96 128 160 192 256
rbit

66

68

70

72

74

76

78

M
od

el
 A

cc
ur

ac
y

trec

Llama2
Llama3.1
Llama2 dense
Llama3.1 dense

32 64 96 128 160 192 256
rbit

14

18

22

26

30

34

38

M
od

el
 A

cc
ur

ac
y

gov_report

Llama2
Llama3.1
Llama2 dense
Llama3.1 dense

Figure 8: Hash bits ablation.

depicted in Figure 8, increasing rbit from 32 to 128 930

leads to improved accuracy across four datasets 931

and two models. At rbit=128, accuracy approaches 932

near-lossless levels, comparable to dense attention, 933

with further increases causing only minor fluctua- 934

tions. Therefore, we adopt rbit=128 as an optimal 935

setting, balancing accuracy and computational effi- 936

ciency. 937

Optimizations ablation. Lastly, we evaluate the 938

impact of HATA’s optimizations on inference ef- 939

ficiency: high-performance hamming score op- 940

erator (Score), fused gather with FlashAttention 941

(FusedAttn), and kernel fusion for hash encoding 942

(Encode). Using Llama2’s attention module with 943

128K input, we apply these optimizations incre- 944

mentally. Figure 9 shows that Score reduces the 945

total latency of attention module by 53.2%, Fuse- 946

dAttn by 23.8%, and Encode by 7.6%. The fully- 947

optimized HATA achieves a 6.53× speedup over a 948

simple PyTorch implementation. 949

0 250 500 750 1000 1250 1500 1750 2000
Latency (us)

+Encode+FusedAttn
+Score
Simple

264.74

396.31

808.70

1729.30

Figure 9: Performance ablation study of HATA opti-
mizations under 1.56% token budget.

A.6 Scalability to Larger-Scale Tasks 950

We further scale HATA to larger models (14B and 951

32B) and longer context inputs (256K). 952

We assessed HATA’s accuracy on Qwen2.5- 953

14B and Qwen2.5-32B using LongBench-e, as de- 954

14



Methods LCC PRetr HQA TQA Repo Sam Trec MQA 2Wiki Gov PCnt MltN Qaspr AVG.

Dense 44.32 100.00 65.96 88.41 36.25 45.52 76.34 53.73 60.68 31.93 22.83 22.14 41.41 53.04

HATA 44.86 99.67 65.87 88.49 37.41 45.41 76.67 53.45 60.70 31.25 20.50 22.02 41.46 52.90

Table 10: Accuracy results on LongBench-e (Bai et al., 2023) for Qwen2.5-14B-Instruct-1M (QwenTeam, 2025)
model with sparse token budget=512.

Methods LCC PRetr HQA TQA Repo Sam Trec MQA 2Wiki Gov PCnt MltN Qaspr AVG.

Dense 54.04 99.83 69.27 86.26 36.03 43.60 75.67 52.28 60.69 30.14 22.00 21.91 44.08 53.52

HATA 53.90 100.00 68.58 87.55 36.22 42.75 75.67 52.29 60.51 30.17 22.00 21.79 43.70 53.47

Table 11: Accuracy results on LongBench-e (Bai et al., 2023) for Qwen2.5-32B-Instruct (QwenTeam, 2024)
model with sparse token budget=512.

Methods NS1 NS2 NS3 NMK1 NMK2 NMV NMQ VT FWE QA1 QA2 AVG.

Dense 100.00 100.00 100.00 100.00 90.00 85.00 97.50 100.00 95.00 60.00 40.00 87.95
top-k 100.00 100.00 100.00 100.00 90.00 81.25 98.75 100.00 88.33 60.00 40.00 87.12

HATA 100.00 100.00 100.00 100.00 95.00 85.00 97.50 96.00 85.00 60.00 45.00 88.05

Table 12: Accuracy results on RULER(256K) (Bai et al., 2023) for Qwen2.5-14B-Instruct-1M (QwenTeam, 2025)
model with sparse token budget=4096 (1.56%).

tailed in Table 10 and Table 11, respectively. For955

both 14B and 32B models, HATA maintains near-956

lossless accuracy, underscoring its efficacy with957

large-scale models.958

We further evaluated HATA’s performance on959

extreme-long contexts using RULER-256K on960

Qwen2.5-14B-Instruct-1M. The results, as shown961

in the table, demonstrate that HATA achieves com-962

parable accuracy to exact top-k attention, highlight-963

ing its capability to handle ultra-long context inputs964

effectively.965

B Configuration Details of HATA966

Training967

B.1 Data Sampling968

We trained hash weights based on query and key969

data sampled from real world datasets. Detailed970

sampling steps for a given sequence are as follows:971

1. For a given token sequence of length n, gener-972

ate its query Q := [q1, q2 . . . qn] ∈ Rn×d and973

key K := [k1, k2 . . . kn] ∈ Rn×d by prefill-974

ing.975

2. Randomly sample one query qm ∈976

R1×d,m ∈ [⌊n2 ⌋, n), and then accord-977

ingly sample all the keys that comply978

with the causal constraint: Km =979

[k1, k2 . . . km] ∈ Rm×d. Then we form 980

m qk pairs {(qm, k1), (qm, k2) . . . (qm, km)}. 981

3. Compute qk score Score = qmKT
m ∈ R1×m 982

and sort it in descending order. 983

4. Split the qk pairs into positive and negative 984

samples and assign similarity labels: 985

For the qk pairs whose score lies in top 10% 986

of sorted Score, we view them as positive 987

samples. They are assigned linearly decayed 988

labels in [1, 20]; 989

For the qk pairs whose score lies in bottom 990

90% of sorted Score, we view them as neg- 991

ative samples, and assign fixed −1 as their 992

similarity labels. 993

5. Finally, we get m triplets: 994

{(qm, k1, s1), (qm, k2, s2), . . . , (qm, km, sm)} 995

where si is the similarity label we assigned 996

in the previous step. A triplet is a basic unit 997

for training. These triplets are independent 998

of each other during training. They can be 999

arbitrarily combined or shuffled along with 1000

data sampled from other sequences, which 1001

will help improve the generalization of train- 1002

ing and avoid overfitting. 1003

15



After introducing how to collect samples from1004

a single sequence, we clarify from where the se-1005

quences are sampled:1006

• 5 samples from Qasper of LongBench (Bai1007

et al., 2023) for short sequences;1008

• 2 samples each from LSHT and RepoBench-P1009

of LongBench for medium-length sequences;1010

• 2 samples from LongBench-v2 (Bai et al.,1011

2024) for ultra-long sequences.1012

The sampled sequences cover diverse domains1013

including Chinese and English QA, code under-1014

standing, ensuring the diversity of training data.1015

To fit within the model’s context window, we1016

truncated some long sequences. The final training1017

set for each model comprises 150K–300K qk pairs.1018

B.2 Training Setup1019

In this section, we report the detailed settings of1020

hash training. Firstly, in Table 13, we detail the1021

hyperparameter values during training, which are1022

shared by all the models.1023

During training, in order to facilitate data IO1024

and shuffling, we organize the sampled data into1025

chunks of 32K size. In each epoch, several chunks1026

(2 for Llama2 and 3 for Llama3.1, Qwen2.5-14B,1027

Qwen2.5-32B) will be loaded for training. Each1028

training epoch will perform multiple iterations on1029

these data. For all the models, 15 epochs and 201030

iterations are required to train one layer’s hash1031

weights.1032

Class Hyper-
parameter Value

Custom
Hyperparamters

σ 0.1
ϵ 0.01
λ 1.0
η 2.0

SGD Optimizer
Hyperparamters

LR 0.1
Weight decay 10−6

Momentum 0.9

Table 13: Hyperparameter values during hash training.

C High-Performance Implementation for1033

Loki1034

As explained in Sec 5.3, Loki (Singhania et al.,1035

2024) lacks a high-performance implementation.1036

While Loki has provided a kernel fusion of gather 1037

and matrix multiplication, their implementation 1038

neither integrates with the widely-used FlashAt- 1039

tention2 kernels (Dao, 2024) nor provides efficient 1040

end-to-end inference, preventing fair performance 1041

comparisons. To address these limitations, we 1042

develop a high-performance Loki implementation 1043

with these optimizations: 1044

Fuse gather with FlashAttention. We em- 1045

ploy the identical high-performance fused gather- 1046

FlashAttention kernel for Loki as described in 1047

Sec 4, ensuring fair comparison. 1048

High-performance score operator. Similar to 1049

HATA’s high-performance hamming score oper- 1050

ator (see Sec 4), we implemented an optimized 1051

scoring operator for Loki. This triton-based (Tillet 1052

et al., 2019) kernel computes approximate scores 1053

for token selection using the first R channels of 1054

PCA-projected query and key vectors, eliminating 1055

the redundant memory access overhead of low-rank 1056

queries and keys. 1057

Static KVCache. Static KVCache refers to a 1058

pre-allocated GPU memory space for storing key- 1059

value pairs. During a decoding step, this approach 1060

only requires copying the newly generated key- 1061

value pair into the allocated space, eliminating the 1062

costly tensor concatenation operation, which in- 1063

volves heavy data copy. 1064

16


	Introduction
	Background and Motivation
	LLM Inference
	KVCache
	Top-k Attention
	Motivation

	HATA's Design
	Learning-to-Hash for Top-k Attention
	Hash Modeling
	Training Data Construction

	HATA Top-k Attention Algorithm

	Hardware-Efficient Optimizations
	Empirical Evaluation
	Experimental Setup
	Accuracy Evaluation
	Efficiency Evaluation

	Related Works
	Conclusion
	Limitations
	Additional Evaluation Results
	Models and Baselines
	Supplement Accuracy Results
	Addtional Accuracy Results
	HATA-off and Offloading Efficiency
	Ablation Study
	Scalability to Larger-Scale Tasks

	Configuration Details of HATA Training
	Data Sampling
	Training Setup

	High-Performance Implementation for Loki

