
Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Lennart Schneider 1 Martin Wistuba 2 Aaron Klein 3 Jacek Golebiowski 4 Giovanni Zappella 2

Felice Antonio Merra 5

Abstract
Optimal prompt selection is crucial for maximiz-
ing large language model (LLM) performance on
downstream tasks, especially in black-box set-
tings where models are only accessible via APIs.
Black-box prompt selection is challenging due
to potentially large, combinatorial search spaces,
absence of gradient information, and high eval-
uation cost of prompts on a validation set. We
propose HbBoPs, a novel method that combines
a structural-aware deep kernel Gaussian Process
with Hyperband as a multi-fidelity scheduler to
efficiently select prompts. HbBoPs uses em-
beddings of instructions and few-shot exemplars,
treating them as modular components within
prompts. This enhances the surrogate model’s
ability to predict which prompt to evaluate next
in a sample-efficient manner. Hyperband im-
proves query-efficiency by adaptively allocating
resources across different fidelity levels, reducing
the number of validation instances required for
evaluating prompts. Extensive experiments across
ten diverse benchmarks and three LLMs demon-
strate that HbBoPs outperforms state-of-the-art
methods in both performance and efficiency.

1. Introduction
In recent years, pre-trained auto-regressive large language
models (LLMs) have demonstrated remarkable capabilities
in addressing a wide range of machine learning tasks in-
volving natural language (Brown et al., 2020; Liu et al.,
2023), such as Q&A (Joshi et al., 2017; Clark et al., 2018),
text summarization (Koupaee & Wang, 2018), text genera-

1Work done during an internship at Amazon Web Services,
Berlin, Germany. 2Amazon Web Services, Berlin, Germany.
3ScaDS.AI, University of Leipzig, Germany; work done while
at Amazon. 4distil labs, Berlin, Germany; work done while at
Amazon. 5Cognism, Remote, Italy; work done while at Amazon.
Correspondence to: Lennart Schneider <lennart.sch@web.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

tion (Hendrycks et al., 2021), and mathematical problem-
solving (Hendrycks et al., 2021; Cobbe et al., 2021). As
LLMs are highly sensitive to their input (Zhou et al., 2023;
Honovich et al., 2023; Lu et al., 2022; Liu et al., 2023; Ye
et al., 2023; Wu et al., 2024), performance on these tasks
relies on prompt engineering, where the input is formatted
within a carefully designed prompt that may include an in-
struction, a few-shot exemplar, and additional information.

The goal of static black-box prompt optimization and se-
lection (Sun et al., 2022b; Chen et al., 2024; Lin et al.,
2024; Wu et al., 2024; Shi et al., 2024) is to construct or
identify a single prompt for a black-box LLM that, in expec-
tation, performs well across all instances of a downstream
task. This process involves evaluating different prompts
on a validation set and using derivative-free techniques to
guide optimization or selection. The static black-box setting
allows for offline optimization, with the resulting optimal
prompt being used for the downstream task.

While much research has focused on automatically generat-
ing new prompts (Sun et al., 2022b; Xu et al., 2022; Zhou
et al., 2023; Chen et al., 2024; Fernando et al., 2024; Lin
et al., 2024), there is growing interest in efficiently selecting
prompts from a predefined pool of candidates (Shi et al.,
2024). This is because many prompt optimization tech-
niques involve generating a large candidate pool a priori
before identifying the best prompt (Xu et al., 2022; Zhou
et al., 2023; Fernando et al., 2024; Prasad et al., 2023).
Moreover, recent empirical findings indicate that few-shot
exemplars often contribute more strongly to prompt perfor-
mance than the instruction of a prompt itself, with the best
results typically achieved through the optimal selection of
both components (Wan et al., 2024).

The task of black-box prompt selection is challenging. First,
the search space can be extensive, as instructions and few-
shot exemplars form a combinatorial set of candidates. Sec-
ond, black-box LLMs make it impossible to directly opti-
mize based on gradient information. Third, evaluating a
prompt is time-consuming and costly, as each evaluation in-
volves querying the LLM on multiple validation instances of
a task. This calls for the development of selection methods
that can efficiently explore the space of candidate prompts
while keeping the total number of LLM calls low.

1

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Existing methods for prompt selection in this setting in-
clude MIPROv2 (Opsahl-Ong et al., 2024), EASE (Wu
et al., 2024), TRIPLE-SH, and TRIPLE-GSE (Shi et al.,
2024). We identify the following limitations among these
approaches: (1) Except for MIPROv2, these methods are
not explicitly designed to address the problem of jointly
selecting instructions and few-shot exemplars. Specifi-
cally, EASE primarily focuses on exemplar selection, while
TRIPLE-SH and TRIPLE-GSE focus on instruction se-
lection. Although EASE can be applied to joint selection by
treating the entire prompt as an unstructured block of text, it
does not exploit the compositional structure of prompts. (2)
No method is both sample-efficient (allowing for evaluating
fewer prompts by relying on a surrogate model) and query-
efficient (reducing the total number of LLM calls by not
evaluating prompts on all available validation instances).

In this work, we propose HbBoPs (Hyperband-based
Bayesian optimization for black-box Prompt selection) ad-
dressing these limitations. Our main contributions are the
following: (1) We introduce a structural-aware deep ker-
nel Gaussian Process (GP) that learns a low-dimensional
prompt representation from separate embeddings of instruc-
tions and few-shot exemplars in an end-to-end fashion to
predict prompt performance. (2) We adopt Hyperband (Li
et al., 2018) as a multi-fidelity scheduler for prompt selection
that governs the number of validation instances prompts are
evaluated on. (3) We introduce a novel method, HbBoPs,
that relies on our structural-aware deep kernel GP to make
a Bayesian Optimization (BO) proposal within Hyperband
and as a result is both sample- and query-efficient. (4) We
compare HbBoPs against four baselines and four state-of-
the-art methods across ten benchmarks and three LLMs,
demonstrating that HbBoPs performs best in identifying a
well-performing prompt after a given budget of total LLM
calls but also exhibits strongest anytime performance during
the selection process. (5) We perform an ablation study
of the components of HbBoPs gaining insight into their
inner workings and further demonstrate its robustness to the
choice of the encoder model used to obtain embeddings.

2. Problem Statement
Let I = {i1, . . . , il} denote a finite set of instructions (task
descriptions) and E = {e1, . . . , em} a finite set of few-shot
exemplars. Note that by exemplar we refer to an ordered
tuple of a given number of input-output examples of a task.
Let P = I × E be the set of prompts that are generated by
combining each i ∈ I with each e ∈ E .

Instructions can be generated either manually by experts
or automatically by LLM-based methods, e.g., Automatic
Prompt Engineering (APE; Zhou et al. 2023). Few-shot
exemplars can be generated by selecting different input-
output instances from a training set of the task.

A prompt p ∈ P is instantiated by combining it with a
given task input or query x ∈ X for which the LLM, h :
(P × X) → Y, h([p, x]) 7→ ŷ, produces an output ŷ ∈ Y .
We will use hp(x) to denote h([p, x]) as a shorthand.

We make no assumptions regarding the nature of the LLM
and treat it as a black-box. The LLM returns output given
input without any additional information, i.e., no access to
model parameters, gradients, or token probabilities.

Having access to a validation set {(xi, yi)}nvalid
i=1 , evaluating

a prompt is performed by comparing the ground truth output
yi to the output ŷi = hp(xi) generated by the LLM based on
a pointwise loss function l : Y × Y → R, (y, ŷ) 7→ l(y, ŷ).
This loss function quantifies how close the output generated
by the LLM is to the ground truth. For example, a loss
function based on the widely used exact match (Chang et al.,
2024) scoring function is given by:

l(y, ŷ) =

{
0 if y = ŷ

1 otherwise.
(1)

Our task is to identify a single prompt p ∈ P that is optimal
with respect to the loss in expectation:

argmin
p∈P

E(x,y)∼Pxy
[l(y, hp(x))] . (2)

Here, the expectation is taken over all input-output instances
(x, y). In practice, however, Equation (2) can only be ap-
proximated based on the validation instances available:

f(p) :=
1

nvalid

nvalid∑
i=1

l(yi, hp(xi)). (3)

We refer to this setting as the static setting, as we are search-
ing offline for a single optimal prompt on the target down-
stream task. Note that due to the non-deterministic nature of
LLMs (depending on temperature), f itself can in general
only be observed with noise.

We will denote by

v = f(p) + ϵ, ϵ ∼ N (0, σ2) (4)

the observed validation error of the LLM configured to use
prompt p 1. f is a black-box as the LLM is a black-box and
no analytic description or gradient information is available.

The core challenge of static black-box prompt selection is
balancing exploration (searching the prompt space P) and
efficiency (minimizing costly LLM evaluations). Our goal
is to identify the best prompt using as few LLM calls for
evaluation as possible.

1We model the observation noise as homoscedastic Gaussian
for analytical convenience.

2

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

3. Method
We want to learn a surrogate model of the black-box func-
tion f in Equation (3) that predicts the validation error of
prompts on a downstream task based on observed data col-
lected during optimization. This surrogate is used to predict
the validation error of the unevaluated prompts during the
optimization process. We first describe how GPs can serve
as surrogate models in black-box prompt selection (Sec-
tion 3.1), but highlight the limitations of vanilla GPs on raw,
high-dimensional prompt embeddings. To address this, we
introduce a structural-aware deep kernel GP (Section 3.2)
that relies on structural information of prompts via separate
embeddings of their building blocks. We then adopt Hy-
perband (Li et al., 2018) for query-efficient multi-fidelity
prompt selection (Section 3.3) and integrate our structural-
aware deep kernel GP via a BO proposal, which results in
our final HbBoPs algorithm (Section 3.4).

3.1. Gaussian Process as Surrogate Model

To learn a surrogate model, we collect, at each optimization
step t, a set of design data Dt := {(pj , vj)}tj=1, where each
tuple consists of a prompt pj ∈ P and its corresponding val-
idation error vj , as defined in Equation (4), recorded at the
j-th previous step. This design data captures the history of
prompts evaluated and their observed performance through-
out the sequential optimization process. To learn a model
that maps prompts to their validation errors, we embed each
prompt into a d-dimensional numeric space, making use of
pre-trained language encoders. Let enc : P → Rd, p 7→ z
be the encoding function. We then augment the design
data, Dt = {(pj , zj , vj)}tj=1, where zj is the embedding of
prompt pj . Since we are concerned with black-box prompt
selection, it is natural to use embeddings as feature repre-
sentations of prompts. Notably, recent work (Tang et al.,
2024) has shown that (LLM) embeddings can in general
serve as effective features for high-dimensional regression
tasks, even in domains where the input data is not textual.

We want to use a GP as a surrogate model since it allows for
flexible probabilistic modeling of black-box functions by re-
turning a point estimate and well-calibrated uncertainty esti-
mates in the form of a Gaussian posterior predictive distribu-
tion (Williams & Rasmussen, 2006). In the following, we as-
sume a GP prior over f in the d-dimensional space of embed-
ded prompts, f(z) ∼ GP(m, k); f ∼ N (m(Z), k(Z,Z|θ)),
where m is the prior mean function, usually set to zero, k is
the covariance function depending on kernel parameters θ,
and Z is a matrix of prompt embeddings.

Given the design data Dt and new prompts p⋆ with their
embeddings Z⋆, the function f⋆ is modeled as a random vari-
able that is jointly Gaussian distributed with all previously
observed validation errors v = (v1, . . . , vt).

In short, this can be written as[
v
f⋆

]
∼ N

([
m(Z)m(Z⋆)

]
,

[
Kt K⋆

K⊺
⋆ K⋆⋆,

])
,

where Kt = k(Z,Z|θ) + σ2It, K⋆ = k(Z,Z⋆|θ), and
K⋆⋆ = k(Z⋆,Z⋆|θ) are the kernel matrices.

The posterior predictive distribution under the (zero mean)
GP is obtained as

E[f⋆|Z,v,Z⋆] = K⊺
⋆(Kt)

−1v,

cov[f⋆|Z,Z⋆] = K⋆⋆ −K⊺
⋆(Kt)

−1K⋆,
(5)

where common choices for the kernel function k are given
by the squared exponential kernel or variations of the Matérn
kernel (see, e.g., Williams & Rasmussen, 2006, Chapter 4).

At this point, we could proceed and train a vanilla GP as
outlined above on the d-dimensional space of embedded
prompts. However, as stated in many previous works on
BO (Kandasamy et al., 2015; Wang et al., 2016; Gardner
et al., 2017; Eriksson et al., 2019; Eriksson & Jankowiak,
2021), GPs struggle with high-dimensional input such as
that found in our design data Dt, e.g., the dimensionality of
BERT’s (Devlin et al., 2019) [CLS] token embedding is al-
ready 768. In general, dimensionality reduction techniques
such as principal component analysis (PCA) or random
projections could be used. However, such techniques are
unsupervised and will not yield a lower-dimensional repre-
sentation that is aligned with the downstream performance
of prompts (see also Figure 3 in Appendix A for an illustra-
tion). Additionally, using a single embedding of the whole
prompt treated as a block of text ignores that the prompt is
composed of different building blocks with distinct struc-
tural information. Below, we present our solution.

3.2. Structural-aware Deep Kernel

To learn a lower-dimensional representation of the embed-
ded prompts aligned with the downstream task, we pro-
pose to use a deep kernel (Wilson et al., 2016) within
the GP. We design a feature extractor, ϕ : Rd → Rp,
p ≪ d to learn a flexible kernel transformation function
k(ϕ(z,w), ϕ(z′,w)|θ), where θ and w are the parameters
of the kernel and respectively the extractor.

Given that prompts consist of two distinct components (in-
structions and few-shot exemplars), we hypothesize that
embedding these components separately can improve the
deep kernel GP’s (DK-GP) ability to use both structural and
semantic differences effectively. Instructions typically ex-
hibit consistent patterns across prompts, whereas few-shot
exemplars are more variable due to diverse input-output
pairs and flexible ordering. To address this, we propose
learning a structural-aware latent representation of prompts.
Our approach involves embedding the instructions i ∈ I

3

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

and few-shot exemplars e ∈ E separately. Each component
embedding is processed through distinct feed-forward neu-
ral networks, each consisting of two fully connected layers
with ReLU activations, as defined below:

ϕenc(·) :

Lin(d, 64)→ ReLU()→ Lin(64, 32)→ ReLU()

After processing the instructions and exemplars indepen-
dently, we concatenate their outputs and input the combined
representation into another feed-forward neural network to
learn a joint latent representation:

ϕ(ϕenc(i),ϕenc(e))
:

Lin(32 · 2, 32)→ ReLU()→ Lin(32, 10)

During training the GP, we obtain both the optimal kernel
parameters and the parameters of the neural network fea-
ture extractor ϕ by optimizing the log marginal likelihood
criterion (up to constants):

θ̂, ŵ = argmax
θ,w

−v⊺Kt(θ,w)−1v − log |Kt(θ,w)| (6)

An additional advantage of using a deep kernel GP is its
ability to model non-stationary functions, as the feature ex-
tractor learns input-dependent transformations that allow
the surrogate to capture varying levels of smoothness across
the input space, which standard stationary kernels in vanilla
GPs cannot accomplish (Li et al., 2024). Before illustrating
how we use our structural-aware DK-GP during optimiza-
tion to achieve sample-efficiency via a BO proposal, we
explain how we ensure query-efficiency via Hyperband.

3.3. Hyperband for Multi-Fidelity Scheduling

To improve query-efficiency identified as one of the key
limitations of existing works, we want to terminate the eval-
uation of poor-performing prompts early, saving cost during
the evaluation process. Similarly to TRIPLE (Shi et al.,
2024), we model the number of validation instances prompts
are evaluated on as a fidelity parameter. Full-fidelity meth-
ods evaluate prompts on all validation instances, while multi-
fidelity methods adaptively schedule evaluations on varying
numbers of instances. TRIPLE implements Successive
Halving (SH; Karnin et al. 2013) as a multi-fidelity sched-
uler. In contrast, we use Hyperband (HB; Li et al. 2018) as
it will generally evaluate fewer prompts and hedges against
a poorly configured SH as explained below.

Given a total budget of B LLM calls to evaluate prompts
on validation instances, SH allocates a budget of b =
B/(|P| log2 (|P|)) to each prompt (see details in Ap-
pendix C). After having evaluated the prompts on b vali-
dation instances, the lower half of bad performing prompts
is discarded, and the process repeats, doubling the number

of calls for the remaining prompts in the next stage, until a
single prompt remains.

This strategy is affected by the “budget vs. number of config-
urations” dilemma (Li et al., 2018), since, at the beginning
of the algorithm, it is not clear if we should evaluate many
(by default all) prompts on few instances (good exploration
but noisy performance estimates) or few prompts on many
instances (less exploration but accurate performance esti-
mates). When many prompts need to be evaluated with a
limited total budget, SH’s initial budget is low, which risks
discarding a prompt based on noisy performance estimation.
HB in contrast hedges against a poor choice of the number
of starting prompts and their budget by repeatedly running
SH in different brackets with different numbers of starting
prompts and starting budgets. This results in HB being ro-
bust under various scenarios without knowing the optimal
resource allocation, making it ideal for prompt selection.

To tailor HB to prompt selection, we make the following
design decisions (for an ablation study, see Appendix E):
(1) We extend previous evaluations when advancing stages
within a bracket, ensuring validation instances of higher
stages subsume those of lower stages, and (2) return the
prompt with the lowest validation error among those evalu-
ated on the entire validation set.

Finally, we combine HB with our structural-aware DK-GP
by employing a sequential BO proposal mechanism for
candidate prompts in each bracket, which we outline next.

3.4. HbBoPs

HbBoPs combines HB with our structural-aware DK-GP.
While the vanilla HB algorithm for prompt selection sam-
ples prompts uniformly at random, HbBoPs replaces the
random proposal mechanism of HB with a sequential BO
proposal (highlighted in gray in Algorithm 1). This is sim-
ilar to the approach proposed by Falkner et al. (2018) for
hyperparameter optimization. During the execution of HB,
HbBoPs trains the GP on a subset of the design data Dt|b
for a given fidelity-level b. We use the highest fidelity b
for which “enough” observations are available. This design
decision stems from the observation that validation errors
are estimated more accurately with more instances (see Ap-
pendices B and C). Importantly, we train the GP entirely
online during the selection process and are not relying on a
pre-trained surrogate model.

After training the GP on Dt|b, we select the next candidate
prompt pt+1 by maximizing the Expected Improvement
(EI; Kushner 1964; Mockus et al. 1978; Jones et al. 1998)
acquisition function:

αEI(p|Dt|b) := E[max{vmin,b − f(zp), 0}]
pt+1 = argmax

p∈P
αEI(p|Dt|b),

(7)

4

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Algorithm 1 HbBoPs
input nvalid, bmin (lower limit to #validation instances), η (halving parameter)

r = nvalid/bmin

smax = ⌊logη(r)⌋
B = (smax + 1)nvalid

for s ∈ {smax, smax − 1, . . . , 0} do
n =

⌈
B

nvalid

ηs

(s+1)

⌉
b = nvalidη

−s

P = {}, V = {}
for j ∈ {0, . . . , n− 1} do

p = get_prompt()
v = get_validation_error(p, b)
P ← P ∪ {p}, V ← V ∪ {v}

end for
P = top_k(P, V, ⌊n/η⌋)
for i ∈ {1, . . . , s} do
ni = ⌊nη−i⌋
bi = bηi

V = {get_validation_error(p, bi) : p ∈ P}
P = top_k(P, V, ⌊ni/η⌋)

end for
end for

output Prompt with the lowest validation error evaluated
on the whole validation set

In words, given the incumbent (the best-performing prompt
evaluated at the highest fidelity level so far) and its vali-
dation error vmin,b at fidelity level b, the EI quantifies the
expected improvement of a candidate prompt over the in-
cumbent (considering only actual improvement due to the
max operator), based on the GP’s posterior predictive dis-
tribution (Equation (5)). Since our search space is given
by a finite set of candidate prompts, we can evaluate the EI
exhaustively for all candidate prompts.

4. Experimental Setup
4.1. Benchmark Tasks

We benchmark HbBoPs on ten tasks commonly used for
LLM evaluation (Zhou et al., 2023; Lin et al., 2024; Chen
et al., 2024; Wu et al., 2024; Shi et al., 2024). AI2’s Reason-
ing Challenge (ARC) (Clark et al., 2018): multiple-choice
Q&A problems; Grade School Math 8K (Cobbe et al., 2021):
math problems taking between two and eight steps to solve;
Eight Tasks from the BBII subset of the BIG-bench and
instruction induction benchmarks (Srivastava et al., 2023;
Honovich et al., 2023) used in Zhou et al. (2023); Wu et al.
(2024); Shi et al. (2024): antonyms, larger animal, negation,
second word letter, sentiment, object counting, orthogra-
phy starts with, and word unscrambling. Task statistics are
reported in Table 5 in Appendix D.

4.2. Methods

We compare HbBoPs against full-fidelity and multi-fidelity
methods described in Table 1. Additional details on the
methods are reported in Section 6 and Appendix D. RS is a
simple random search. All methods that rely on embeddings
of prompts use BERT’s [CLS] token embedding to ensure
fair comparison. All full-fidelity BO methods (vanilla BO,
HDBO, BOPCA) use an ARD Matérn 5/2 kernel and Expected
Improvement as acquisition function and normalize inputs
to the unit cube and standardize outputs to have zero mean
and unit variance. HDBO is a simple but well-performing
high-dimensional BO algorithm using adjusted priors on GP
kernel and likelihood parameters, as described in Hvarfner
et al. (2024). BOPCA uses a ten component PCA inspired
by Zhang et al. (2024). We run MIPROv2, NUCB (Zhou
et al., 2020) as used by EASE (ν = 0.1), TRIPLE-SH and
TRIPLE-GSE as implemented in their publicly available
code bases. All full-fidelity methods use the same initial de-
sign of ten prompts sampled uniformly at random. HbBoPs
uses an ARD Matérn 5/2 kernel, normalizes inputs to the
unit cube and standardizes outputs. We always train the
DK-GP on the highest fidelity level for which at least four
observations are available. To optimize the log marginal
likelihood in Equation (6), we use AdamW (Loshchilov &
Hutter, 2019) with learning rate = 0.01, maximum number
of epochs = 3000, and early termination with a patience
= 10. Within the HB schedule, we use a lower limit on
the number of validation instances bmin = 10 and a halving
parameter η = 2.0.

4.3. Experimental Protocol

For each task, we generate a search space P of candidate
prompts by combining five task-specific instructions with 50
few-shot exemplars. Instructions are generated using APE’s
forward mode (Zhou et al., 2023), where Claude 3 Sonnet
(Anthropic, 2024) generates instructions based on ten input-
output samples from each task’s training set. For exemplars,
we sample 25 sets of five input-output instances from the
training set of each task, then permute each set twice to
create 50 exemplar tuples, allowing assessment of example
ordering effects. We fix the five-shot setting throughout
our experiments to ensure consistency with prior work (Wu
et al., 2024). The final |P| = 250 prompts are formed by
the Cartesian product of instructions and exemplars.

For LLMs, we use Claude 3 Haiku (Anthropic, 2024),
LLAMA3 8B Instruct (Llama Team, AI @ Meta, 2024),
and Mistral 7B Instruct (Jiang et al., 2023).

For each benchmark scenario (a given task and LLM), we
run each method for a total budget of 25 full-fidelity evalua-
tions (i.e., being allowed as many LLM calls as 25 prompts
evaluated on all validation instances require for a given task)
to mimic a budget-constrained scenario. We use the number

5

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Table 1. Overview of baselines, competitors and our HbBoPs in the static black-box prompt selection setting.
Method Fidelity

Level
Efficiency Surrogate

Model
Bandit

Algorithm
Prompt

Representationsample query

RS Full - - - - p
Vanilla BO Full ✓ - vanilla GP - enc(p)
HDBO Full ✓ - GP (Hvarfner et al., 2024) - enc(p)
BOPCA Full ✓ - vanilla GP - PCA(enc(p)) (Zhang et al., 2024)

EASE (Wu et al., 2024) Full ✓ - NN NUCB enc(p)
MIPROv2 (Opsahl-Ong et al., 2024) Full ✓ - TPE - IDi IDe

TRIPLE-SH (Shi et al., 2024) Multi - ✓ - SH p
TRIPLE-GSE (Shi et al., 2024) Multi - ✓ LM/GLM GSE enc(p)

HbBoPs (ours) Multi ✓ ✓ structural-aware DK-GP HB enc(i), enc(e)

of LLM calls as our cost metric, rather than actual monetary
cost, since LLM calls are a directly interpretable and model-
agnostic measure of cost that allows for aggregating over
different benchmark scenarios. We repeat each method run
30 times on each benchmark scenario. We evaluate prompts
using the loss function described in Equation (1) which is
based on the exact match scoring function.

5. Results
We report the validation and test errors computed for the best
prompt identified by each method given a specific budget.
For instance, given GSM8k with a validation set of 1319
instances, a budget of 0.25 means that we report the results
of the methods after performing ⌈0.25 · 25 · 1319⌉ = 8244
LLM calls. Therefore, full-fidelity methods always start
after having executed a fraction of 1/25 total LLM calls.

5.1. Analysis of Overall Performance

We start by analyzing the overall performance of the meth-
ods averaged across all benchmark tasks and LLMs. To
allow for averaging results, we normalize validation and
test errors for each benchmark scenario by the performance
of the worst and best prompt. Figure 1 visualizes the re-
sults. We observe that HbBoPs outperforms all full-fidelity
and multi-fidelity methods, particularly in terms of anytime
performance on both the validation and test set.

Beginning with an analysis of test error at full budget (i.e.,
a fraction of LLM calls equal to 1.0), we can see that
our HbBoPs on average outperforms all full-fidelity and
multi-fidelity approaches with an average normalized test
error of 0.150. In detail, we observe that all full-fidelity
methods surpass the RS baseline (0.214) with the follow-
ing errors: Vanilla BO (0.211), MIPROv2 (0.198), EASE
(0.195), BOPCA (0.192), and HDBO (0.185). However, they
all have higher error values than HbBoPs (0.150). Addition-
ally, HbBoPs also outperforms all multi-fidelity methods.
Although both TRIPLE-GSE (0.158) and TRIPLE-SH
(0.159) exhibit superior performance compared to their best-

Table 2. Median relative validation and test improvement of
HbBoPs over TRIPLE-SH across ten benchmarks per LLM at
different fractions of total LLM calls. IQR in parentheses.

Fraction of Total LLM Calls
0.25 0.50 1.00

Claude 3 Haiku Valid 0.121 (0.145) 0.059 (0.093) 0.018 (0.066)
Test 0.066 (0.105) 0.027 (0.045) -0.006 (0.035)

LLAMA3 8B Instruct Valid 0.120 (0.140) 0.042 (0.086) 0.001 (0.010)
Test 0.036 (0.088) 0.010 (0.036) 0.000 (0.024)

Mistral7B Instruct Valid 0.068 (0.079) 0.036 (0.036) 0.003 (0.044)
Test 0.039 (0.022) 0.016 (0.033) -0.001 (0.047)

in-class full-fidelity counterpart, i.e., HDBO (0.185), they
on average have identified prompts that yield error values
higher than the ones obtained for HbBoPs’s prompts.

Looking at the anytime performance with a more lim-
ited budget, e.g., a fraction of 0.25 LLM calls, we can
confirm HbBoPs’s improvements over the baselines. In-
deed, HbBoPs on average outperforms HDBO, the best full-
fidelity method, by approximately 35% and TRIPLE-SH,
the best multi-fidelity method, by 24%. For additional sta-
tistical analyses, we refer to Appendix E.

5.2. Analysis of the Performance for each LLM

As shown in Section 5.1, TRIPLE-SH emerges as the
strongest competitor. To assess whether HbBoPs’s im-
provements over TRIPLE-SH are consistent across dif-
ferent LLMs, we present in Table 2 the median relative
improvement over the ten benchmark tasks for each LLM.

The table reveals that HbBoPs consistently outperforms
TRIPLE-SH in terms of both anytime validation and test
error. For instance, when using Claude 3 Haiku, the average
test error is reduced by a median factor of 0.066 and 0.027
at 0.25 and 0.50 of the total budget, respectively. While we
further observe positive improvements over TRIPLE-SH
on the validation set with a full budget, these gains are less
pronounced on the test set. One possible reason for this
discrepancy is that both methods, when given a sufficient
budget, successfully identify prompts that have low or opti-
mal validation error. However, optimal validation error does

6

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total LLM Calls (1.0 = 25 full-fidelity Prompt Evaluations)

10 1

M
ea

n
No

rm
al

ize
d

Va
lid

at
io

n
Er

ro
r o

f B
es

t P
ro

m
pt Averaged over Benchmark Scenarios (Tasks and Models)

Method
HbBoPs (ours)
TRIPLE-GSE (Shi et al. 2024)
TRIPLE-SH (Shi et al. 2014)
MIPROv2 (Opsahl-Ong et al. 2024)
EASE - NUCB (Wu et al. 2024)

BOPCA
HDBO
Vanilla BO
RS

(a) Validation

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total LLM Calls (1.0 = 25 full-fidelity Prompt Evaluations)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
ea

n
No

rm
al

ize
d

Te
st

 E
rro

r o
f V

al
id

at
io

n
Be

st
 P

ro
m

pt Averaged over Benchmark Scenarios (Tasks and Models)
Method

HbBoPs (ours)
TRIPLE-GSE (Shi et al. 2024)
TRIPLE-SH (Shi et al. 2014)
MIPROv2 (Opsahl-Ong et al. 2024)
EASE - NUCB (Wu et al. 2024)

BOPCA
HDBO
Vanilla BO
RS

(b) Test

Figure 1. Normalized error (log scale) of the best prompt per method, averaged over benchmarks. Lower is better. Ribbons represent SE.

Table 3. Normalized validation and test error of HbBoPs with
different encoders at different fractions of total LLM calls averaged
over all 30 benchmarks. SE in parentheses.

Fraction of Total LLM Calls
0.25 0.50 1.00

BERT Valid 0.081 (0.004) 0.048 (0.003) 0.029 (0.002)
Test 0.190 (0.006) 0.170 (0.006) 0.150 (0.005)

MPNet Valid 0.083 (0.004) 0.049 (0.003) 0.031 (0.002)
Test 0.193 (0.006) 0.173 (0.006) 0.158 (0.006)

DistillRoBERTa Valid 0.071 (0.003) 0.045 (0.002) 0.026 (0.002)
Test 0.185 (0.006) 0.166 (0.006) 0.150 (0.005)

not necessarily guarantee optimal test error. We provide fur-
ther analysis of the generalization gap between validation
and test performance that is influenced by the size of the
validation set in Appendix B.

5.3. Ablation Study

To better understand the contributions of the individual com-
ponents of HbBoPs, we conduct a comprehensive ablation
study. Our ablation focuses on four key aspects: the use
of a GP with a deep kernel (DK-GP), the incorporation of
a structural-aware DK-GP, the integration of HB for multi-
fidelity scheduling, and the final HbBoPs. We aim to an-
swer the following main research questions: (RQ1) Does
a structural-aware DK-GP improve over a non-structural-
aware DK-GP and a vanilla GP? (RQ2) Does multi-fidelity
scheduling with HB improve over full-fidelity methods?
(RQ3) Does combining our structural-aware DK-GP with
HB improve over HB with a random proposal?

Figure 2 presents the average anytime normalized validation
and test errors of the best prompt found by systematically
removing specific components of our HbBoPs such that we
can quantify their importance and answer above research
questions. We focus on the validation error as shown in Fig-
ure 2a to describe results, as improvement of the validation
error is a direct consequence of the change of components.

First, we observe that using a DK-GP on prompts embedded
as a block of text (BoPs (non structural-aware

DK-GP)) in a full-fidelity setting improves over vanilla
BO by 11% and 38% at 0.5 and 1.0 budget with respect to
the average normalized validation error. This highlights
the importance of handling the high-dimensional embedded
space properly. The structural-aware deep kernel (BoPs
(structural-aware DK-GP)) further enhances per-
formance by 9% and 13% at 0.5 and 1.0 budget, demonstrat-
ing the value of directly incorporating structural information
into the GP which answers (RQ1). Note that the structural-
aware DK-GP improves over HDBO by 19% and 8% with
respect to final average normalized validation and test error.

The integration of HB for multi-fidelity scheduling (HB
using a random proposal mechanism) provides orthogonal
boosts to both anytime and final performance. We observe
improvements of 47% and 11% at 0.5 and 1.0 budget over
the full-fidelity BoPs (structural-aware DK-GP)
answering (RQ2).

Our complete HbBoPs further increases performance,
achieving a 21% improvement over HB at 0.5 budget and
31% at 1.0 budget, answering (RQ3). Compared to our start-
ing point of vanilla BO, HbBoPs demonstrates a substantial
66% improvement at 0.5 budget and 67% at 1.0 budget. For
additional statistical analyses, we refer to Appendix E.

5.4. Analysis of Varying the Encoder

As HbBoPs relies on embeddings of prompts, we conduct a
sensitivity analysis to evaluate the effect of different encoder
models on the performance of HbBoPs. While our primary
results were obtained using BERT’s (Devlin et al., 2019)
[CLS] token embedding, we extend our analysis to include
two more encoder models that are MPNet (Song et al., 2020)
and DistillRoBERTa (Liu et al., 2019). For each encoder
model, we rerun the entire set of benchmarks.

We report in Table 3 the average normalized validation and
test error for each encoder when used within HbBoPs for
different fractions of total LLM calls over all 30 benchmark
scenarios. Results show that HbBoPs maintains consistent
validation and test error across all encoder models, indicat-

7

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total LLM Calls (1.0 = 25 full-fidelity Prompt Evaluations)

10 1

M
ea

n
No

rm
al

ize
d

Va
lid

at
io

n
Er

ro
r o

f B
es

t P
ro

m
pt Averaged over Benchmark Scenarios (Tasks and Models)

Method
HbBoPs
HB
BoPs (structural-aware DK-GP)

BoPs (non structural-aware DK-GP)
Vanilla BO
RS

(a) Validation

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total LLM Calls (1.0 = 25 full-fidelity Prompt Evaluations)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
ea

n
No

rm
al

ize
d

Te
st

 E
rro

r o
f V

al
id

at
io

n
Be

st
 P

ro
m

pt Averaged over Benchmark Scenarios (Tasks and Models)
Method

HbBoPs
HB
BoPs (structural-aware DK-GP)

BoPs (non structural-aware DK-GP)
Vanilla BO
RS

(b) Test

Figure 2. Normalized error (log scale) of the best prompt per HbBoPs ablation variant, RS, and vanilla BO, averaged over benchmarks.
Lower is better. Ribbons represent SE.

ing robustness to the choice of encoder. This is expected, as
none were specifically fine-tuned for predicting prompt per-
formance. HbBoPs’s effectiveness stems from its ability to
learn a mapping from prompts to performance through the
structural-aware DK-GP, provided the embeddings capture
meaningful distinctions between prompts.

6. Related Work
Automating Prompt Engineering. Recent work has been
concerned with the general topic of automating prompt en-
gineering. This work can be classified into prompt optimiza-
tion, i.e., automating the creation of prompts (Prasad et al.,
2023; Sun et al., 2022a; Zhou et al., 2023; Xu et al., 2022;
Diao et al., 2023; Chen et al., 2024; Lin et al., 2024; Fer-
nando et al., 2024; Pryzant et al., 2023; Guo et al., 2024; Pan
et al., 2024; Schnabel & Neville, 2024; Shen et al., 2023;
Hu et al., 2024), and prompt selection, i.e., finding the best
prompt within a finite candidate set (Wu et al., 2024; Shi
et al., 2024; Opsahl-Ong et al., 2024; Do et al., 2024).

Another dimension to categorize the related literature is
given by the white-box vs. black-box setting. The white-box
setting assumes access to the LLM, so that gradient-based
methods for prompt optimization or selection are applicable
(Shin et al., 2020). The black-box setting assumes no access
to the LLM which only returns output given input (Sun et al.,
2022b; Diao et al., 2023).

Finally, another differentiation is given by the static vs.
dynamic setting. The goal of the static setting (Wu et al.,
2024; Shi et al., 2024; Khattab et al., 2024) is to obtain
a single prompt offline that in expectation performs well
for all instances during test time. In contrast, the goal of
the dynamic setting (Zhang et al., 2023; Do et al., 2024;
Luo et al., 2024) is to select a prompt for each test instance
(Rubin et al., 2022) in an online fashion.

Static Black-box Prompt Selection. Our work falls into
the category of static black-box prompt selection. We sum-
marize existing works below.

MIPROv2 (Opsahl-Ong et al., 2024) is DSPy’s (Khattab
et al., 2024) state-of-the-art teleprompter for joint instruc-
tion and few-shot exemplar selection. It searches over a fi-
nite set of candidate prompts by combining instructions with
few-shot exemplars (which DSPy first constructs automati-
cally). The method is a variant of BO using a Tree-structured
Parzen Estimator (TPE; Bergstra et al. 2011) based on the
categorical indices of instructions and exemplars (IDi and
IDe) that compose a prompt. A downside is that learning a
surrogate model based on indices does not use any semantic
information of prompts, which may result in suboptimal pre-
dictive performance. Moreover, MIPROv2 does not directly
address query-efficiency. While DSPy can be configured
to use a smaller random subset of the validation set to eval-
uate prompts, this risks suboptimal selection due to noisy
performance estimates (see also Appendix B).

EASE proposed by Wu et al. (2024) mainly focuses on few-
shot exemplar selection. It uses NeuralUCB (NUCB; Zhou
et al. 2020) with embeddings of prompts as blocks of text
as features, allowing for sequential evaluation of promising
prompts based on the UCB criteria. EASE’s main contri-
bution is to make the combinatorial problem of selecting
examples to build the few-shot exemplar from an extensive
training set computationally feasible. It prunes the candidate
space using an optimal transport inspired heuristic before
applying UCB. EASE is affected by query-inefficiency since
it evaluates prompts on all validation instances (or a random
subset, again risking suboptimal selection).

TRIPLE proposed by Shi et al. (2024) is a class of query-
efficient algorithms for static black-box prompt selection us-
ing a multi-armed bandit approach. It makes use of Succes-
sive Halving (Karnin et al., 2013) or Generalized Successive
Elimination (Azizi et al., 2022) to accelerate prompt evalua-
tion by discarding poor-performing prompts early, reducing
the need to evaluate all prompts on all validation instances.
However, TRIPLE-SH is sensitive to the initial evaluation
budget and may prematurely discard promising prompts
due to noisy performance estimates. TRIPLE-GSE tries to
mitigate this by (non-linear) modeling of expected prompt

8

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

performance using embeddings of prompts as blocks of text
projected to a lower-dimensional space. While this approach
introduces flexibility, the Generalized Successive Elimina-
tion algorithm has been formally analyzed only in the gen-
eralized linear setting (Azizi et al., 2022). Moreover, both
TRIPLE-SH and TRIPLE-GSE begin by evaluating all
prompts, whereas our HbBoPs employs a sample-efficient
BO proposal to select candidate prompts for evaluation.

7. Conclusion
We introduced HbBoPs, a method for static black-box
prompt selection in which prompts are composed of in-
structions and few-shot exemplars. HbBoPs employs a
structural-aware deep kernel Gaussian Process to model
the downstream performance of prompts based on separate
embeddings of instructions and exemplars. This enables
the identification of promising, unevaluated prompts dur-
ing the selection process, making HbBoPs highly sample-
efficient. Furthermore, HbBoPs integrates Hyperband as a
multi-fidelity scheduler that governs the number of valida-
tion instances used for prompt evaluation, ensuring query-
efficiency. In extensive experiments, we have demonstrated
that HbBoPs improves upon baselines and state-of-the-art
competitors in the limited budget regime while showing
strong performance at any stage of the selection process.

While HbBoPs demonstrates strong performance, some
limitations remain. Our method depends on embeddings
from pre-trained encoders. Although we have demonstrated
that HbBoPs is largely robust to the concrete choice of en-
coder model, obtaining embeddings induces some minor
computational overhead. Additionally, our analysis focused
on prompts composed of instructions and few-shot exem-
plars. While these components are highly relevant in prac-
tice, prompts may also include additional elements such as
output guidance, formatting constraints, or other structural
cues, which remain unexplored in this work. Nevertheless,
the use of a deep kernel Gaussian Process as a surrogate
model makes our framework, in principle, flexible enough
to incorporate such additional prompt parameters by, for ex-
ample, including categorical variables for formatting styles
(e.g., JSON, Markdown).

In our experiments, we evaluated HbBoPs in a static setting
with a fixed set of candidate prompts generated a priori.
This enabled fair comparisons across baselines and methods
operating in the static black-box prompt selection setting.
However, we emphasize that HbBoPs can also be applied
in more flexible prompt optimization settings where the
candidate pool evolves over time. For example, it could be
integrated with mutation-based prompt generation strategies
(Fernando et al., 2024), where new prompts are generated
iteratively, or with similar end-to-end prompt optimization
pipelines (Pryzant et al., 2023; Yang et al., 2024).

Future work could extend HbBoPs to multiple objectives.
Selecting more examples to include in a prompt may en-
hance performance but also increases response latency. Bal-
ancing the number and composition of examples in a few-
shot exemplar introduces a trade-off between performance
and efficiency, giving rise to a multi-objective optimization
problem.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Anthropic. Claude 3 model card, 2024. URL https:
//www-cdn.anthropic.com/de8ba9b01c9ab
7cbabf5c33b80b7bbc618857627/Model_Ca
rd_Claude_3.pdf.

Azizi, M. J., Kveton, B., and Ghavamzadeh, M. Fixed-
budget best-arm identification in structured bandits. In
de Raedt, L. (ed.), Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence, pp.
2798–2804, 2022.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham,
B., Wilson, A. G., and Bakshy, E. BoTorch: A frame-
work for efficient monte-carlo Bayesian optimization. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,
and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 21524–21538, 2020.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Al-
gorithms for hyper-parameter optimization. In Shawe-
Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Wein-
berger, K. Q. (eds.), Advances in Neural Information
Processing Systems, volume 24, pp. 2546–2554, 2011.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 33, pp. 1877–1901, 2020.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K.,
Chen, H., Yi, X., Wang, C., Wang, Y., Ye, W., Zhang, Y.,
Chang, Y., Yu, P. S., Yang, Q., and Xie, X. A survey on

9

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1–45, 2024.

Chen, L., Chen, J., Goldstein, T., Huang, H., and Zhou,
T. InstructZero: Efficient instruction optimization for
black-box large language models. In Salakhutdinov, R.,
Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett,
J., and Berkenkamp, F. (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume
235, pp. 6503–6518, 2024.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? Try ARC, the AI2 Reasoning Chal-
lenge, 2018. URL https://arxiv.org/abs/18
03.05457.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Diao, S., Huang, Z., Xu, R., Li, X., Lin, Y., Zhou, X., and
Zhang, T. Black-box prompt learning for pre-trained
language models. Transactions on Machine Learning
Research, 2023.

Do, V.-T., Hoang, V.-K., Nguyen, D.-H., Sabahi, S., Yang,
J., Hotta, H., Nguyen, M.-T., and Le, H. Automatic
prompt selection for large language models, 2024. URL
https://arxiv.org/abs/2404.02717.

Eriksson, D. and Jankowiak, M. High-dimensional Bayesian
optimization with sparse axis-aligned subspaces. In
de Campos, C. and Maathuis, M. H. (eds.), Proceed-
ings of the Thirty-Seventh Conference on Uncertainty in
Artificial Intelligence, volume 161, pp. 493–503, 2021.

Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and
Poloczek, M. Scalable global optimization via local
Bayesian optimization. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, volume 32, 2019.

Falkner, S., Klein, A., and Hutter, F. BOHB: Robust and
efficient hyperparameter optimization at scale. In Dy, J.

and Krause, A. (eds.), Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80, pp.
1437–1446, 2018.

Fernando, C., Banarse, D., Michalewski, H., Osindero, S.,
and Rocktäschel, T. Promptbreeder: Self-referential self-
improvement via prompt evolution. In Salakhutdinov,
R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett,
J., and Berkenkamp, F. (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume
235, pp. 13481–13544, 2024.

Gardner, J., Guo, C., Weinberger, K., Garnett, R., and
Grosse, R. Discovering and exploiting additive struc-
ture for Bayesian optimization. In Singh, A. and Zhu, J.
(eds.), Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, volume 54, pp.
1311–1319, 2017.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and
Wilson, A. G. GPyTorch: Blackbox matrix-matrix Gaus-
sian Process inference with GPU acceleration. In Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31, pp. 7576–
7586, 2018.

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu,
G., Bian, J., and Yang, Y. Connecting large language mod-
els with evolutionary algorithms yields powerful prompt
optimizers. In The Twelfth International Conference on
Learning Representations, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multi-
task language understanding. In The Ninth International
Conference on Learning Representations, 2021.

Honovich, O., Shaham, U., Bowman, S. R., and Levy, O.
Instruction induction: From few examples to natural lan-
guage task descriptions. In 61st Annual Meeting of the
Association for Computational Linguistics, ACL 2023, pp.
1935–1952, 2023.

Hu, W., Shu, Y., Yu, Z., Wu, Z., Lin, X., Dai, Z., Ng, S.-K.,
and Low, B. K. H. Localized zeroth-order prompt opti-
mization. In Globerson, A., Mackey, L., Belgrave, D.,
Fan, A., Paquet, U., Tomczak, J., and Zhang, C. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 37, pp. 86309–86345, 2024.

Hvarfner, C., Hellsten, E. O., and Nardi, L. Vanilla Bayesian
optimization performs great in high dimensions. In
Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Machine
Learning, volume 235, pp. 20793–20817, 2024.

10

https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2404.02717

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Jamieson, K. and Talwalkar, A. Non-stochastic best arm
identification and hyperparameter optimization. In Gret-
ton, A. and Robert, C. C. (eds.), Proceedings of the 19th
International Conference on Artificial Intelligence and
Statistics, volume 51, pp. 240–248, 2016.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Le Scao, T., Lavril, T., Wang, T., Lacroix,
T., and El Sayed, W. Mistral 7B, 2023. URL https:
//arxiv.org/abs/2310.06825.

Jones, D. R., Schonlau, M., and Welch, W. J. Efficient global
optimization of expensive black-box functions. Journal
of Global Optimization, 13:455–492, 1998.

Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. TriviaQA:
A large scale distantly supervised challenge dataset for
reading comprehension. In Barzilay, R. and Kan, M.-Y.
(eds.), Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1601–1611, 2017.

Kandasamy, K., Schneider, J., and Poczos, B. High di-
mensional Bayesian optimisation and bandits via additive
models. In Bach, F. and Blei, D. (eds.), Proceedings of
the 32nd International Conference on Machine Learning,
volume 37, pp. 295–304, 2015.

Karnin, Z., Koren, T., and Somekh, O. Almost optimal
exploration in multi-armed bandits. In Dasgupta, S. and
McAllester, D. (eds.), Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28, pp.
1238–1246, 2013.

Khattab, O., Singhvi, A., Maheshwari, P., Zhang, Z., San-
thanam, K., Vardhamanan, S., Haq, S., Sharma, A., Joshi,
T. T., Moazam, H., Miller, H., Zaharia, M., and Potts, C.
DSPy: Compiling declarative language model calls into
self-improving pipelines. In The Twelfth International
Conference on Learning Representations, 2024.

Koupaee, M. and Wang, W. Y. WikiHow: A large scale text
summarization dataset, 2018. URL https://arxiv.
org/abs/1810.09305.

Kushner, H. J. A new method of locating the maximum
point of an arbitrary multipeak curve in the presence of
noise. Journal of Basic Engineering, 86(1):97–106, 1964.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based approach
to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-
tzur, J., Hardt, M., Recht, B., and Talwalkar, A. A system
for massively parallel hyperparameter tuning. In Dhillon,
I., Papailiopoulos, D., and Sze, V. (eds.), Proceedings of
Machine Learning and Systems, volume 2, pp. 230–246,
2020.

Li, Y. L., Rudner, T. G. J., and Wilson, A. G. A study of
Bayesian neural network surrogates for Bayesian opti-
mization. In The Twelfth International Conference on
Learning Representations, 2024.

Lin, X., Wu, Z., Dai, Z., Hu, W., Shu, Y., Ng, S.-K., Jaillet,
P., and Low, B. K. H. Use your INSTINCT: INSTruction
optimization usIng Neural bandits Coupled with Trans-
formers. In Salakhutdinov, R., Kolter, Z., Heller, K.,
Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, pp. 6503–6518, 2024.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach, 2019. URL https://arxiv.org/abs/19
07.11692.

Llama Team, AI @ Meta. The Llama 3 Herd of Models,
2024. URL https://arxiv.org/abs/2407.2
1783.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In The Seventh International Conference on
Learning Representations, 2019.

Lu, Y., Bartolo, M., Moore, A., Riedel, S., and Stenetorp,
P. Fantastically ordered prompts and where to find them:
Overcoming few-shot prompt order sensitivity. In Mure-
san, S., Nakov, P., and Villavicencio, A. (eds.), Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
8086–8098, 2022.

Luo, M., Xu, X., Liu, Y., Pasupat, P., and Kazemi, M. In-
context learning with retrieved demonstrations for lan-
guage models: A survey. Transactions on Machine Learn-
ing Research, 2024.

Mockus, J., Tiesis, V., and Zilinskas, A. The application of
Bayesian methods for seeking the extremum. Towards
Global Optimization, 2(2):117–129, 1978.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/1810.09305
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Opsahl-Ong, K., Ryan, M. J., Purtell, J., Broman, D., Potts,
C., Zaharia, M., and Khattab, O. Optimizing instruc-
tions and demonstrations for multi-stage language model
programs. In Al-Onaizan, Y., Bansal, M., and Chen,
Y.-N. (eds.), Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing, pp.
9340–9366, 2024.

Pan, R., Xing, S., Diao, S., Sun, W., Liu, X., Shum, K.,
Zhang, J., Pi, R., and Zhang, T. Plum: Prompt learn-
ing using metaheuristics. In Ku, L.-W.and Martins, A.
and Srikumar, V. (eds.), Findings of the Association for
Computational Linguistics: ACL 2024, pp. 2177–2197,
2024.

Prasad, A., Hase, P., Zhou, X., and Bansal, M. GrIPS:
Gradient-free, edit-based instruction search for prompt-
ing large language models. In Vlachos, A. and Augen-
stein, I. (eds.), Proceedings of the 17th Conference of the
European Chapter of the Association for Computational
Linguistics (EACL), pp. 3845–3864, 2023.

Pryzant, R., Iter, D., Li, J., Lee, Y., Zhu, C., and Zeng,
M. Automatic prompt optimization with “gradient de-
scent” and beam search. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp.
7957–7968, 2023.

Rubin, O., Herzig, J., and Berant, J. Learning to retrieve
prompts for in-context learning. In Carpuat, M., de Marn-
effe, M.-C., and Meza Ruiz, I. V. (eds.), Proceedings of
the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pp. 2655–2671,
2022.

Schnabel, T. and Neville, J. Symbolic prompt program
search: A structure-aware approach to efficient compile-
time prompt optimization. In Al-Onaizan, Y., Bansal, M.,
and Chen, Y.-N. (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 670–686,
2024.

Shen, M., Ghosh, S., Sattigeri, P., Das, S., Bu, Y., and Wor-
nell, G. Reliable gradient-free and likelihood-free prompt
tuning. In Vlachos, A. and Augenstein, I. (eds.), Findings
of the Association for Computational Linguistics: EACL
2023, pp. 2416–2429, 2023.

Shi, C., Yang, K., Chen, Z., Li, J., Yang, J., and Shen,
C. Efficient prompt optimization through the lens of
best arm identification. In Globerson, A., Mackey, L.,
Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang,
C. (eds.), Advances in Neural Information Processing
Systems, volume 37, pp. 99646–99685, 2024.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. AutoPrompt: Eliciting knowledge from lan-
guage models with automatically generated prompts. In
Webber, B., Cohn, T., He, Y., and Liu, Y. (eds.), Proceed-
ings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 4222–4235,
2020.

Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. MPNet:
Masked and permuted pre-training for language under-
standing. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M. F., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 16857–
16867, 2020.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., Kluska, A., Lewkowycz, A., Agar-
wal, A., Power, A., Ray, A., Warstadt, A., Kocurek, A. W.,
Safaya, A., Tazarv, A., Xiang, A., Parrish, A., Nie, A.,
Hussain, A., Askell, A., Dsouza, A., Slone, A., Rahane,
A., Iyer, A. S., Andreassen, A. J., Madotto, A., Santilli,
A., Stuhlmüller, A., Dai, A. M., La, A., Lampinen, A. K.,
Zou, A., Jiang, A., Chen, A., Vuong, A., Gupta, A., Got-
tardi, A., Norelli, A., Venkatesh, A., Gholamidavoodi, A.,
Tabassum, A., Menezes, A., Kirubarajan, A., Mullokan-
dov, A., Sabharwal, A., Herrick, A., Efrat, A., Erdem,
A., Karakaş, A., Roberts, B. R., Loe, B. S., Zoph, B.,
Bojanowski, B., Özyurt, B., Hedayatnia, B., Neyshabur,
B., Inden, B., Stein, B., Ekmekci, B., Lin, B. Y., Howald,
B., Orinion, B., Diao, C., Dour, C., Stinson, C., Argueta,
C., Ferri, C., Singh, C., Rathkopf, C., Meng, C., Baral, C.,
Wu, C., Callison-Burch, C., Waites, C., Voigt, C., Man-
ning, C. D., Potts, C., Ramirez, C., Rivera, C. E., Siro,
C., Raffel, C., Ashcraft, C., Garbacea, C., Sileo, D., Gar-
rette, D., Hendrycks, D., Kilman, D., Roth, D., Freeman,
C. D., Khashabi, D., Levy, D., González, D. M., Per-
szyk, D., Hernandez, D., Chen, D., Ippolito, D., Gilboa,
D., Dohan, D., Drakard, D., Jurgens, D., Datta, D., Gan-
guli, D., Emelin, D., Kleyko, D., Yuret, D., Chen, D.,
Tam, D., Hupkes, D., Misra, D., Buzan, D., Mollo, D. C.,
Yang, D., Lee, D.-H., Schrader, D., Shutova, E., Cubuk,
E. D., Segal, E., Hagerman, E., Barnes, E., Donoway,
E., Pavlick, E., Rodolà, E., Lam, E., Chu, E., Tang, E.,
Erdem, E., Chang, E., Chi, E. A., Dyer, E., Jerzak, E.,
Kim, E., Manyasi, E. E., Zheltonozhskii, E., Xia, F., Siar,
F., Martínez-Plumed, F., Happé, F., Chollet, F., Rong, F.,
Mishra, G., Winata, G. I., de Melo, G., Kruszewski, G.,
Parascandolo, G., Mariani, G., Wang, G. X., Jaimovitch-
Lopez, G., Betz, G., Gur-Ari, G., Galijasevic, H., Kim,
H., Rashkin, H., Hajishirzi, H., Mehta, H., Bogar, H.,
Shevlin, H. F. A., Schuetze, H., Yakura, H., Zhang, H.,
Wong, H. M., Ng, I., Noble, I., Jumelet, J., Geissinger, J.,
Kernion, J., Hilton, J., Lee, J., Fisac, J. F., Simon, J. B.,
Koppel, J., Zheng, J., Zou, J., Kocon, J., Thompson, J.,

12

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Wingfield, J., Kaplan, J., Radom, J., Sohl-Dickstein, J.,
Phang, J., Wei, J., Yosinski, J., Novikova, J., Bosscher,
J., Marsh, J., Kim, J., Taal, J., Engel, J., Alabi, J., Xu,
J., Song, J., Tang, J., Waweru, J., Burden, J., Miller, J.,
Balis, J. U., Batchelder, J., Berant, J., Frohberg, J., Rozen,
J., Hernandez-Orallo, J., Boudeman, J., Guerr, J., Jones,
J., Tenenbaum, J. B., Rule, J. S., Chua, J., Kanclerz, K.,
Livescu, K., Krauth, K., Gopalakrishnan, K., Ignatyeva,
K., Markert, K., Dhole, K., Gimpel, K., Omondi, K.,
Mathewson, K. W., Chiafullo, K., Shkaruta, K., Shridhar,
K., McDonell, K., Richardson, K., Reynolds, L., Gao,
L., Zhang, L., Dugan, L., Qin, L., Contreras-Ochando,
L., Morency, L.-P., Moschella, L., Lam, L., Noble, L.,
Schmidt, L., He, L., Oliveros-Colón, L., Metz, L., Senel,
L. K., Bosma, M., Sap, M., Hoeve, M. T., Farooqi, M.,
Faruqui, M., Mazeika, M., Baturan, M., Marelli, M.,
Maru, M., Ramirez-Quintana, M. J., Tolkiehn, M., Giu-
lianelli, M., Lewis, M., Potthast, M., Leavitt, M. L., Ha-
gen, M., Schubert, M., Baitemirova, M. O., Arnaud, M.,
McElrath, M., Yee, M. A., Cohen, M., Gu, M., Ivanitskiy,
M., Starritt, M., Strube, M., Swędrowski, M., Bevilac-
qua, M., Yasunaga, M., Kale, M., Cain, M., Xu, M.,
Suzgun, M., Walker, M., Tiwari, M., Bansal, M., Amin-
naseri, M., Geva, M., Gheini, M., T, M. V., Peng, N., Chi,
N. A., Lee, N., Krakover, N. G.-A., Cameron, N., Roberts,
N., Doiron, N., Martinez, N., Nangia, N., Deckers, N.,
Muennighoff, N., Keskar, N. S., Iyer, N. S., Constant,
N., Fiedel, N., Wen, N., Zhang, O., Agha, O., Elbagh-
dadi, O., Levy, O., Evans, O., Casares, P. A. M., Doshi,
P., Fung, P., Liang, P. P., Vicol, P., Alipoormolabashi,
P., Liao, P., Liang, P., Chang, P. W., Eckersley, P., Htut,
P. M., Hwang, P., Miłkowski, P., Patil, P., Pezeshkpour, P.,
Oli, P., Mei, Q., Lyu, Q., Chen, Q., Banjade, R., Rudolph,
R. E., Gabriel, R., Habacker, R., Risco, R., Millière, R.,
Garg, R., Barnes, R., Saurous, R. A., Arakawa, R., Ray-
maekers, R., Frank, R., Sikand, R., Novak, R., Sitelew,
R., Bras, R. L., Liu, R., Jacobs, R., Zhang, R., Salakhut-
dinov, R., Chi, R. A., Lee, S. R., Stovall, R., Teehan,
R., Yang, R., Singh, S., Mohammad, S. M., Anand, S.,
Dillavou, S., Shleifer, S., Wiseman, S., Gruetter, S., Bow-
man, S. R., Schoenholz, S. S., Han, S., Kwatra, S., Rous,
S. A., Ghazarian, S., Ghosh, S., Casey, S., Bischoff, S.,
Gehrmann, S., Schuster, S., Sadeghi, S., Hamdan, S.,
Zhou, S., Srivastava, S., Shi, S., Singh, S., Asaadi, S.,
Gu, S. S., Pachchigar, S., Toshniwal, S., Upadhyay, S.,
Debnath, S. S., Shakeri, S., Thormeyer, S., Melzi, S.,
Reddy, S., Makini, S. P., Lee, S.-H., Torene, S., Hatwar,
S., Dehaene, S., Divic, S., Ermon, S., Biderman, S., Lin,
S., Prasad, S., Piantadosi, S., Shieber, S., Misherghi, S.,
Kiritchenko, S., Mishra, S., Linzen, T., Schuster, T., Li,
T., Yu, T., Ali, T., Hashimoto, T., Wu, T.-L., Desbordes,
T., Rothschild, T., Phan, T., Wang, T., Nkinyili, T., Schick,
T., Kornev, T., Tunduny, T., Gerstenberg, T., Chang, T.,
Neeraj, T., Khot, T., Shultz, T., Shaham, U., Misra, V.,

Demberg, V., Nyamai, V., Raunak, V., Ramasesh, V. V.,
vinay uday prabhu, Padmakumar, V., Srikumar, V., Fe-
dus, W., Saunders, W., Zhang, W., Vossen, W., Ren, X.,
Tong, X., Zhao, X., Wu, X., Shen, X., Yaghoobzadeh, Y.,
Lakretz, Y., Song, Y., Bahri, Y., Choi, Y., Yang, Y., Hao,
S., Chen, Y., Belinkov, Y., Hou, Y., Hou, Y., Bai, Y., Seid,
Z., Zhao, Z., Wang, Z., Wang, Z. J., Wang, Z., and Wu, Z.
Beyond the imitation game: Quantifying and extrapolat-
ing the capabilities of language models. Transactions on
Machine Learning Research, 2023.

Sun, T., He, Z., Qian, H., Zhou, Y., Huang, X., and Qiu,
X. BBTv2: Towards a gradient-free future with large
language models. In Goldberg, Y., Kozareva, Z., and
Zhang, Y. (eds.), Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp.
3916–3930, 2022a.

Sun, T., Shao, Y., Qian, H., Huang, X., and Qiu, X. Black-
box tuning for language-model-as-a-service. In Chaud-
huri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G.,
and Sabato, S. (eds.), Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162, pp.
20841–20855, 2022b.

Tang, E., Yang, B., and Song, X. Understanding LLM
embeddings for regression. Transactions on Machine
Learning Research, 2024.

van der Maaten, L. and Hinton, G. Visualizing data using
t-SNE. Journal of Machine Learning Research, 9(86):
2579–2605, 2008.

Wan, X., Sun, R., Nakhost, H., and Arı k, S. O. Teach
better or show smarter? On instructions and exemplars
in automatic prompt optimization. In Globerson, A.,
Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak,
J., and Zhang, C. (eds.), Advances in Neural Information
Processing Systems, volume 37, pp. 58174–58244, 2024.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and de Fre-
itas, N. Bayesian optimization in a billion dimensions via
random embeddings. Journal of Artificial Intelligence
Research, 55(1):361–387, 2016.

Williams, C. K. I. and Rasmussen, C. E. Gaussian Processes
for Machine Learning. MIT press Cambridge, MA, 2
edition, 2006.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P.
Deep kernel learning. In Gretton, A. and Robert, C. C.
(eds.), Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, volume 51, pp.
370–378, 2016.

Wu, Z., Lin, X., Dai, Z., Hu, W., Shu, Y., Ng, S.-K., Jaillet,
P., and Low, B. K. H. Prompt optimization with EASE? ef-
ficient ordering-aware automated selection of exemplars.

13

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

In Globerson, A., Mackey, L., Belgrave, D., Fan, A., Pa-
quet, U., Tomczak, J., and Zhang, C. (eds.), Advances in
Neural Information Processing Systems, volume 37, pp.
122706–122740, 2024.

Xu, H., Chen, Y., Du, Y., Shao, N., Yanggang, W., Li, H.,
and Yang, Z. GPS: Genetic prompt search for efficient
few-shot learning. In Goldberg, Y., Kozareva, Z., and
Zhang, Y. (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pp. 8162–8171, 2022.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D.,
and Chen, X. Large language models as optimizers. In
The Twelfth International Conference on Learning Repre-
sentations, 2024.

Ye, J., Wu, Z., Feng, J., Yu, T., and Kong, L. Compo-
sitional exemplars for in-context learning. In Krause,
A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S.,
and Scarlett, J. (eds.), Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202, pp.
39818–39833, 2023.

Zhang, H., He, J., Righter, R., and Zheng, Z. Language
model prompt selection via simulation optimization, 2024.
URL https://arxiv.org/abs/2404.08164.

Zhang, T., Wang, X., Zhou, D., Schuurmans, D., and Gon-
zalez, J. E. TEMPERA: Test-time prompt editing via
reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023.

Zhou, D., Li, L., and Gu, Q. Neural contextual bandits
with UCB-based exploration. In III, H. D. and Singh, A.
(eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119, pp. 11492–11502,
2020.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Large language models are human-
level prompt engineers. In The Eleventh International
Conference on Learning Representations, 2023.

14

https://arxiv.org/abs/2404.08164

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

A. On the Latent Space of the Structural-Aware Deep Kernel Gaussian Process
As described in Section 3.1, unsupervised dimensionality reduction techniques such as PCA or random projections will not
result in a lower-dimensional latent representation of prompt embeddings that is aligned with the downstream performance
of prompts. To illustrate this, we perform the following experiment: We collect the validation error of 250 prompts on
GSM8K (according to the splits described in Table 5) using LLAMA3 8B Instruct as LLM. We embed each prompt using
the [CLS] token embedding of BERT (d = 768). We then split the prompts p1, . . . , p250 and their corresponding validation
errors v1, . . . , v250 in a train (80%) and test set (20%). Using the train split, we perform a PCA and retain 10 principal
components as features. Moreover, we train our structural-aware DK-GP introduced in Section 3.2 on the training split and
extract the 10 latent features from the output of the feature extractor ϕ(ϕenc(i),ϕenc(e)). We visualize the raw 768 dimensional
embedding features of prompts, the 10 dimensional PCA features and the 10 dimensional deep kernel features for the
training split using a two component t-SNE (van der Maaten & Hinton, 2008) in the top row of Figure 3. The x- and y-axis
represent the two t-SNE components, whereas color indicates the validation error of prompts (lighter color indicates better
performance). We can see that for both the raw embedding features and the PCA features, it is difficult to visually discern
any meaningful clusters or structure how closeness in feature space relates to closeness in performance space. For the deep
kernel features, however, we can see that the feature space is well aligned with the performance space (well-performing
prompts being closer together with a continuous transition into poorer performing prompts) - of course, this is on the training
split on which the GP has been trained on, and therefore these results are not surprising. However, when looking at the test
split (that was neither used to perform the PCA nor to train the GP) in the bottom row of Figure 3, we can see that similar
conclusions as for the train split hold: The latent representation the feature extractor of the deep kernel has learned during
training does generalize to the test split, and it has effectively learned a low-dimensional embedding of prompts aligned with
the downstream task.

15 10 5 0 5 10 15
t-SNE 1

15

10

5

0

5

10

15

20

t-S
NE

 2

Raw Embedding Features - Train Split

10 5 0 5 10
t-SNE 1

20

15

10

5

0

5

10

15

t-S
NE

 2

PCA Features - Train Split

20 10 0 10 20
t-SNE 1

6

4

2

0

2

4

t-S
NE

 2

Deep Kernel Latent Features - Train Split

15 10 5 0 5 10 15
t-SNE 1

15

10

5

0

5

10

15

t-S
NE

 2

Raw Embedding Features - Test Split

10 5 0 5 10
t-SNE 1

15

10

5

0

5

10

15

t-S
NE

 2

PCA Features - Test Split

20 10 0 10 20
t-SNE 1

4

2

0

2

4

t-S
NE

 2

Deep Kernel Latent Features - Test Split

Figure 3. Visualization of the 768 dimensional BERT [CLS] token embeddings of prompts via a two component t-SNE. Left: Raw,
unprocessed features. Middle: Features of a 10 component PCA solution. Right: Latent features (10 dimensional) from the feature
extractor of our structural-aware DK-GP. Top row: Train split. Bottom row: Test split. Color indicates the performance of prompts for
LLAMA3 8B Instruct on GSM8K.

15

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

B. On the Generalization from Validation to Test
When performing black-box prompt selection, we evaluate prompts on a validation set and iteratively improve over the
current best prompt (the incumbent), trying to identify a better one. While progress on the validation set is expected (i.e.,
if we perform full-fidelity evaluations using the same validation instances for each prompt, the validation error of the
incumbent will be monotonically decreasing as optimization progresses), it must not necessarily be the case that we also
improve performance on a held-out test set of instances, i.e., the prompt identified as being validation optimal might not
necessarily be optimal on the test set.

In this section, we provide additional insights regarding generalization gaps from validation to test performance. Recall that
existing methods for black-box prompt selection (e.g., EASE and MIPROv2) are by design not query-efficient but evaluate
all prompts on all validation instances or a random subset (e.g., Wu et al. 2024 used sub-sampled validation sets with as few
as 20 instances). We now empirically demonstrate that using small random subsets during optimization is not a sensible
choice, because this will result in increased variance of the estimate of the validation error, which prevents us from making
correct decisions on the validation set. This can result in generalization issues when moving from the validation set to the
test set.

We perform the following experiment: We collect the validation and test error (according to the splits described in
Table 5) of 250 prompts on the GSM8K task using LLAMA3 8B Instruct as LLM. We vary the number of validation
instances used to evaluate the performance of prompts via bootstrapping, using k = 10, 50, 100, 500 instead of the original
nvalid = 1319 validation instances. Note that to compute the test error, we always use the full test set. In Figure 4, we
provide scatter plots of the validation and test errors of the prompts with mean validation errors obtained via bootstrapping
using k = 10, 50, 100, 500 validation instances vs. validation errors obtained on the full validation set of 1319 instances.
We perform 1000 bootstrap replicates.

0.0 0.2 0.4 0.6 0.8
Boostrapped Validation Error

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r

(a) k = 10.

0.2 0.4 0.6 0.8
Boostrapped Validation Error

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r

(b) k = 50.

0.2 0.4 0.6 0.8
Boostrapped Validation Error

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r

(c) k = 100.

0.4 0.6 0.8
Boostrapped Validation Error

0.3

0.4

0.5

0.6

0.7

0.8
Te

st
 E

rro
r

(d) k = 500.

0.2 0.4 0.6 0.8
Validation Error

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r
(e) Full validation set.

Figure 4. Scatter plots of the validation and test errors of 250 prompts evaluated with LLAMA3 8B Instruct on GSM8K using differently
sized (k = 10, 50, 100, 500) bootstrap samples of validation instances (a) to (d) or the full validation set (e).

We can observe that if we use too few validation instances (k = 10 but also k = 50 and k = 100 to some extent) even if
we select the validation optimal prompt, its test error can be far from optimal, because noise dominates the estimate of the
validation error.

In Figure 5, we provide box plots of the bootstrapped variance estimates of the mean validation error over prompts when
using smaller validation sets. As expected, the variance of the mean validation error can be substantial when using few
validation instances. Note that the bootstrap results align with theoretical expectations under the assumption that the point-
wise loss (based on exact match) is a binary random variable following a Bernoulli distribution with success probability p
(corresponding to a loss of 0). In this case, the average validation error over nvalid instances follows a Binomial distribution,
and the variance of the estimated validation error is given by p(1−p)/nvalid. For example, if a prompt has a true “success
probability” of p = 0.5, then using nvalid = 10 validation instances yields an expected variance of 0.52/10 = 0.025.

This has serious practical implications, depending on the variation in the performance of prompts on a downstream task. If
the true performance of many prompts is similar, we cannot tell them apart based on their estimated validation error, as noise
dominates the signal when using too few validation instances. Moreover, for benchmarking methods for black-box prompt
selection this is highly relevant as when using too few validation instances, we cannot determine whether a generalization gap
from the validation set to the test set results solely from noisy performance estimates or from internal method mechanisms
(such as the optimal transport inspired heuristic employed by EASE to only consider examples that are similar to the
validation set) which may further result in overfitting to the validation set.

16

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

10 50 100 500
No. Validation Instances

0.000

0.005

0.010

0.015

0.020

0.025

Bo
os

tra
pe

d
Va

ria
nc

e
of

 M
ea

n
Va

lid
at

io
n

Er
ro

r

Figure 5. Box plots of the bootstrapped variance estimates of the mean validation error of 250 prompts evaluated with LLAMA3 8B
Instruct on GSM8K varying the number of validation instances used to estimate the mean validation error.

The empirical results we have presented here further provide justification for using a multi-fidelity scheduler over the
validation instances during prompt selection, such as Hyperband. Poor-performing prompts can be differentiated using few
validation instances, however, well-performing prompts need to be evaluated on larger sets so that one can effectively tell
their validation errors apart.

C. Multi-Fidelity over Validation Instances
In this section, we discuss how one can define a multi-fidelity schedule for prompt selection, in which the fidelity parameter
is the number of validation instances. Let Dvalid = {(xi, yi)}nvalid

i=1 denote the validation set containing nvalid input-output
instances in natural language on which the LLM hp configured to use a given prompt p ∈ P is evaluated. Recall our goal of
identifying the optimal prompt: argminp∈P E(x,y)∼Pxy

[l(y, hp(x))]. Here, the expectation is taken over all input output
instances from a data-generating distribution Pxy and l is the pointwise loss function used to compare the LLM’s output
hp(x) to the ground truth y. We want to identify the best performing prompt while minimizing the number of LLM calls for
evaluation, given the significant costs in both time, but especially query expenses associated with LLM black-box APIs.

In practice, we can only approximate this expectation by the full-fidelity evaluation on the whole validation set given by
1

nvalid

∑nvalid

i=1 l(yi, hp(xi)).

The idea of multi-fidelity techniques is to speed up and reduce the cost of the evaluation of prompts by using fewer
validation instances during evaluation. Let V = {1, . . . , nvalid} denote the index set corresponding to the indices of
validation instances. A simple way to reduce cost of evaluation is to use a random subset, S ⊂ V of validation instances:
1
|S|

∑
i∈S l(yi, hp(xi)). This was for example done in the evaluation protocol of the benchmark study in Wu et al. (2024).

However, it comes with the following downsides: (1) It is a priori not clear how many instances are needed to obtain an
accurate estimate of the validation error of prompts as this depends on the concrete LLM, downstream task, and variation of
the true performance over prompts. (2) Using a fixed (sub-)sample is inefficient because all prompts are evaluated on the
same number of validation instances. However, poor-performing prompts can be identified using few validation instances,
whereas well-performing prompts should be evaluated on many validation instances to differentiate between them and not
risk suboptimal selection.

Shi et al. (2024) made the connection between multi-fidelity prompt selection and best arm identification from the multi-
armed bandit literature. In this setting, “pulling an arm” refers to evaluating a prompt on a validation instance. The goal is to
identify the best arm within a limited budget of evaluations. A well-known algorithm from the bandit literature is given by
Successive Halving (SH, Karnin et al. 2013; Jamieson & Talwalkar 2016). In our setting of prompt selection, the idea of SH
is to efficiently identify the best performing prompt (arm) under a given budget constraint of total LLM calls (pulls). Given
a total budget B of LLM calls and n := |P| prompts, SH starts by allocating a budget of b := B/(n log2(n)) LLM calls to
each prompt. After having evaluated each prompt on b instances, the lower half of bad performing prompts are discarded and
the process repeats, doubling the number of LLM calls for the remaining prompts in the next stage. This process in general
repeats until a single prompt remains. SH can be employed in both a stochastic and non-stochastic setting. The stochastic
setting (Karnin et al., 2013) is formally characterized by the following: (1) Losses are i.i.d. samples from a probability
distribution. (2) Each arm has a fixed expected loss µp. (3) The goal is to identify the arm with the lowest expected loss.

17

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Jamieson & Talwalkar (2016) introduced SH in the non-stochastic setting when applying it to the problem of hyperparameter
optimization, where the budget can, for example, be the size of the training set used to train an algorithm or the number of
epochs used to train a neural network. This non-stochastic setting formally is characterized by the following: (1) Losses are
real numbers chosen by an oblivious adversary. (2) Each arm has a limit νp of its loss sequence as the number of evaluations
go to infinity. (3) The goal is to identify the arm with the lowest loss limit.

Within the non-stochastic setting, Li et al. (2018) introduced Hyperband (HB) although it is in general also applicable
to the stochastic setting. Recall that SH requires the overall budget B and the number of prompts n as input parameters.
These determine the starting budget b (number of validation instances) prompts are evaluated on. However, for a given
overall budget B it is a priori not clear whether one should evaluate many prompts using on average few validation instances
(resulting in better exploration of the search space at the risk of noisy validation error estimates) or whether one should
consider a smaller number of prompts using on average more validation instances (focusing on fewer prompts but obtaining
more accurate validation error estimates).

Our proposal to use HB as a multi-fidelity scheduler for prompt selection improves over SH by addressing this trade-off
between the number of prompts to explore and the amount of resources to allocate to each configuration. It does so by
running multiple SH brackets, each with a different initial number of prompts and initial per-prompt budget. This allows HB
to efficiently explore the search space, quickly discarding poor prompts while allocating more resources to promising ones,
therefore hedging against a poor choice of the number of prompts and per-prompt budget.

We present pseudocode for HB adapted to the problem of black-box prompt selection in Algorithm 1 (as explained in
Section 3.4, HbBoPs replaces the random proposal mechanism of HB by a BO proposal) and in Table 4, we present an
exemplary schedule describing how the number of prompts used in each stage of each bracket of the algorithm relates to
the number of validation instances used to evaluate the prompts. Regarding the output of the algorithm, we note that there
is a critical design decision: The vanilla HB (Li et al., 2018) algorithm would output the configuration with the smallest
validation error observed so far. However, in the context of prompt selection, validation errors are determined based on
different numbers of validation instances varying between stages of brackets ({smax, smax − 1, . . . , 0}). To allow for a
robust selection of the optimal prompt, we always return the prompt with the lowest validation error among all prompts that
were evaluated on the full validation set2. This is crucial for robust performance of HB in the context of prompt selection,
which we demonstrate in Appendix E.4.

Table 4. Exemplary HB schedule for black-box prompt selection assuming a minimum budget of bmin = 10 validation instances, a
maximum number of nvalid = 80 validation instances being available in total, and a halving parameter of η = 2.0.

Bracket (s) Stage (i) #Instances (b) #Prompts (n)
3 0 10 8
3 1 20 4
3 2 40 2
3 3 80 1

2 0 20 6
2 1 40 3
2 2 80 1

1 0 40 4
1 1 80 2

0 0 80 4

Our HB adapted to black-box prompt selection has three inputs: nvalid the total number of validation instances available
(depending on the task), bmin a lower bound on the number of validation instances used for prompt evaluation, and η the
halving parameter of the SH subroutine. HB makes use of three functions:
(1) get_prompt() returns a candidate prompt from the search space P . In vanilla HB, we would sample uniformly at random.
In our HbBoPs we obtain the next candidate prompt via a BO proposal (Section 3.4).
(2) get_validation_error(p, bi) evaluates a prompt p using bi validation instances. We further discuss this below.
(3) top_k(P, V, ⌊ni/η⌋) reduces the ni prompts in the active set P by only keeping the ⌊ni/η⌋ best performing ones.

2Or evaluated on the largest subset used so far when assessing the anytime performance of the algorithm.

18

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

As mentioned above, there is another critical detail when adapting HB to the problem of prompt selection, which is concerned
with the selection of validation instances for a given stage of a bracket but also when moving from a given stage to the
next stage within a bracket. In principle, the validation instances in get_validation_error(p, bi) could be different for each
prompt (sampled uniformly at random from the set of validation instances). However, to allow for a fairer comparison of the
performance of prompts, we decided to use the same, fixed subset of validation instances for each prompt evaluated at a
given stage of a bracket. This ensures that we perform a paired comparison of the performance of prompts when discarding
the worst performing half. We ablate this design decision in Appendix E.4.

Moreover, when moving from one stage to another stage, there are two possibilities how to construct the subset of validation
instances used in the next stage: (1) Simply draw a sample. (2) Keep the already used validation instances of the previous
stage and only sample the remaining number of additional validation instances needed to fill the current stage from the
remaining yet not used validation instances. The second option is highly desirable to reduce the total number of LLM calls
if we cache the evaluation of prompts. The validity of this modeling choice naturally depends on the degree of stochasticity
in the LLM’s output for a given prompt-instance pair, which in turn is influenced by the sampling temperature. However, if
we assume reasonably deterministic outcomes, we can reduce the total number of LLM calls used in HB drastically (i.e.,
roughly by a factor of η), In HbBoPs we cache the output for a given prompt and validation instance and reuse the already
used validation instances of the previous stage and only sample the remaining needed validation instances. We ablate this
design decision in Appendix E.4.

We want to note that HbBoPs employs a fully sequential HB schedule, i.e., prompts are proposed sequentially, and we
evaluate brackets and their stages in their given order (e.g., as described in Table 4). While plenty possibilities exist to
parallelize SH or HB in the context of hyperparameter optimization where evaluating a configuration involves a training step,
we argue that in the context of prompt selection, there is little gain made by performing a batch proposal of prompts and
evaluating batch-parallel (as in vanilla HB for hyperparameter optimization) or using asynchronous multi-fidelity schedulers
(Li et al., 2020). This is because parallelization can be directly performed on the lowest level of evaluating a prompt on the
validation set, i.e., in get_validation_error(p, bi) by parallelizing LLM calls when evaluating a prompt p on the bi validation
instances. As a final comment on overhead, note that it may initially seem that training the structural-aware DK-GP in
each iteration of a BO proposal within HbBoPs leads to computational costs that increase proportionally as optimization
progresses. However, the GP is trained only on the subset of the highest fidelity design data for which enough observations
are available. This approach not only ensures that the design data used to train the GP has accurately estimated validation
errors but also keeps the subset size manageable, mitigating scaling issues of the GP even when HbBoPs is executed
repeatedly.

D. Details on the Experimental Setup
D.1. Tasks

Table 5 reports characteristics on the benchmark tasks used in our experiments. For AI2 ARC, we use the official train,
validation and test splits from AI2’s Reasoning Challenge. However, during inspection we noticed that for some reason,
AI2’s Reasoning Challenge includes a few instances with choices named “1”, “2”, “3”, “4” instead of “A”, “B”, “C”, “D”
and a few instances with five choices instead of four which we excluded from the splits for consistency. GSM8K officially
only contains a train and test split. We sampled 1319 instances from the train split uniformly at random to create a validation
set of comparable size to the test set. For all other tasks from the BBII subset of the BIG-bench and instruction induction
benchmarks, we use the splits as proposed by Wu et al. (2024). Unlike Wu et al. (2024), who used only 20 validation
instances by further sub-sampling the validation splits, we retain larger validation splits to reduce noise and improve the
reliability of performance estimates. For each task, the training split was used to generate instructions for the prompts via
APE’s (Zhou et al., 2023) forward mode and to select instances for few-shot exemplars. Instructions are generated using
APE’s forward mode, where Claude 3 Sonnet (Anthropic, 2024), configured with a temperature of 1.0 and default settings
otherwise (as in the main paper for Claude 3 Haiku), produces 100 candidate instructions from ten input-output examples
per task; these are then embedded using BERT’s [CLS] token representation, and five representative instructions are selected
via 5-medoid clustering. The validation split was used during optimization and the test split was used to assess unbiased
performance. We perform standard sanitization of LLM outputs to be able to employ the loss function in Equation (1) based
on the exact match as a scoring function. For GSM8K, we determine the prediction for the exact match loss function by
selecting the last number contained in the LLM’s output. This approach aligns with the Chain-of-Thought prompting and
the typical output behavior of LLMs for this task.

19

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Table 5. Characteristics of tasks used in the experiments.

Task Setting ntrain nvalid ntest

AI2 ARC multiple choice question answering 1094 291 1144
GSM8K grade school math questions 6154 1319 1319
antonyms find antonym of word 2073 519 100
larger animal select larger of two animals 2422 606 100
negation negate a sentence 723 181 100
object counting count number of objects 560 140 100
orthography starts with output all words starting with a given letter 2400 600 100
second word letter output the second letter of a word 2644 662 100
sentiment sentiment analysis of movie rating 933 234 100
word unscrambling build a word from scrambled letters 5627 1407 100

D.2. LLMs

We use Claude 3 Haiku (Anthropic, 2024), LLAMA3 8B Instruct (Llama Team, AI @ Meta, 2024), and Mistral 7B Instruct
(Jiang et al., 2023) with default hyperparameters (Claude 3 Haiku: max tokens = 200, temperature = 0.5, top p = 1.0,
top k = 250; LLAMA3 8B Instruct: max tokens = 512, temperature = 0.5, top p = 0.9; Mistral 7B Instruct: max tokens
= 512, temperature = 0.5, top p = 0.9, top k = 50). For GSM8K we increase max tokens for all LLMs to 1024.

D.3. Methods

We run all methods as described in Section 4. All full-fidelity BO methods are implemented within BoTorch (Balandat et al.,
2020). We include HDBO (Hvarfner et al., 2024) to have a simple yet well-performing “high-dimensional” BO baseline.
Hvarfner et al. (2024) recently challenged the general belief that vanilla BO does not perform well for high-dimensional
functions by training a GP via MAP with priors over kernel and likelihood parameters adjusted to reflect the dimensionality
of the problem which resulted in strong BO performance on high-dimensional functions. We run EASE as implemented
in the official code base3, MIPROv2 as implemented in DSPy4 and TRIPLE-SH and TRIPLE-GSE as implemented in
the official code base5. Regarding TRIPLE-GSE we noticed that Shi et al. (2024) did not provide detailed descriptions of
the model used to predict expected prompt performance (in the main paper, they state that one can use a linear model or
MLP). In their implementation, however, they use an ensemble of a Bayesian ridge regression model, a gradient boosting
regression model, and an MLP where weights for the ensemble are determined based on each model’s R2 performance
on a separate validation set. We did not change this modeling approach when running TRIPLE-GSE. We implement
our HbBoPs in GPyTorch (Gardner et al., 2018) and run it as described in Section 4. Moreover, to hedge against poor
model-based proposals, we perform random interleaving as described in Falkner et al. (2018) for each proposal with a
probability of ρ = 0.1. Since a single SH or HB schedule may require less budget than the total pre-defined LLM call
budget per task, we repeatedly run all methods that use SH or HB as multi-fidelity schedulers until their total LLM call
usage reaches this pre-defined budget.

E. Additional Results
E.1. Main Results

Here, we provide additional analyses of the main results reported in Section 5.1. To test whether HbBoPs outperforms all
other methods with respect to validation and test error for different fractions of budget, we conduct a linear mixed effects
model analysis. We model the unaggregated performance as a function involving random intercepts for each benchmark
scenario (benchmark task and LLM combination). This approach is sensible as each method has been run repeatedly on the

3https://github.com/ZhaoxuanWu/EASE-Prompt-Optimization/blob/e3514de58bd682ebc5ea46fe890
481f2b92e5589/experiments/LlamaForMLPRegression.py

4https://github.com/stanfordnlp/dspy/blob/425b6f07d5cf0530f5a5566ad4f247b15aecb522/dspy
/teleprompt/mipro_optimizer_v2.py

5https://github.com/ShenGroup/TRIPLE/blob/06264a97b4dd766c9a88afc24058627fac0f223d/src/
bandit/contextual/gse.py

20

https://github.com/ZhaoxuanWu/EASE-Prompt-Optimization/blob/e3514de58bd682ebc5ea46fe890481f2b92e5589/experiments/LlamaForMLPRegression.py
https://github.com/ZhaoxuanWu/EASE-Prompt-Optimization/blob/e3514de58bd682ebc5ea46fe890481f2b92e5589/experiments/LlamaForMLPRegression.py
https://github.com/stanfordnlp/dspy/blob/425b6f07d5cf0530f5a5566ad4f247b15aecb522/dspy/teleprompt/mipro_optimizer_v2.py
https://github.com/stanfordnlp/dspy/blob/425b6f07d5cf0530f5a5566ad4f247b15aecb522/dspy/teleprompt/mipro_optimizer_v2.py
 https://github.com/ShenGroup/TRIPLE/blob/06264a97b4dd766c9a88afc24058627fac0f223d/src/bandit/contextual/gse.py
 https://github.com/ShenGroup/TRIPLE/blob/06264a97b4dd766c9a88afc24058627fac0f223d/src/bandit/contextual/gse.py

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

same benchmark scenario with different random seeds that affect, for example, initial designs. To test the global hypothesis
that there is an effect of the method on performance, we test an intercept model against a model including an effect of the
factor method. If we reject the null hypothesis, we proceed with a Tukey post hoc test (corrected for multiple testing) to test
each method against HbBoPs. We test at the conservative α = 0.01 level.

For the validation error at a fraction of 1.00, we reject the global null hypothesis of no effect of methods (χ2(8) =
672.95, p < 1e−4). The pairwise results are:

• RS vs. HbBoPs, z = 18.52, p < 1e−4

• vanilla BO vs. HbBoPs, z = 15.40, p < 1e−4

• HDBO vs. HbBoPs, z = 7.65, p < 1e−4

• BOPCA vs. HbBoPs, z = 9.95, p < 1e−4

• EASE vs. HbBoPs, z = 17.29, p < 1e−4

• MIPROv2 vs. HbBoPs, z = 13.18, p < 1e−4

• TRIPLE-SH vs. HbBoPs, z = 1.87, p = 0.236

• TRIPLE-GSE vs. HbBoPs, z = 6.26, p = 1e−4

We conclude that HbBoPs outperforms all methods significantly with respect to final performance, except for TRIPLE-SH.
While the effect is positive, i.e., HbBoPs improves over TRIPLE-SH, it is not strong enough to be considered statistically
significant at the α = 0.01 level. For brevity, we do not include results for fractions of 0.25 or 0.50 here, where we observed
similar results but HbBoPs more strongly outperforming the other methods.

Table 6. Normalized validation error of each method on each benchmark for Claude 3 Haiku. Averaged over repetitions. Standard errors
in parentheses. For visual analysis, we highlight all methods that have a mean error that is less or equal to the mean error of the best
method plus two times its standard error.

Benchmark
AI2 ARC GSM8K antonyms larger animal negation object counting orthography starts with second word letter sentiment word unscrambling

RS 0.053 (0.007) 0.087 (0.010) 0.018 (0.002) 0.011 (0.002) 0.000 (0.000) 0.093 (0.011) 0.033 (0.005) 0.076 (0.011) 0.021 (0.003) 0.085 (0.007)
vanilla BO 0.046 (0.007) 0.084 (0.010) 0.020 (0.002) 0.012 (0.002) 0.000 (0.000) 0.075 (0.010) 0.033 (0.005) 0.097 (0.011) 0.021 (0.004) 0.084 (0.009)
HDBO 0.039 (0.007) 0.050 (0.007) 0.014 (0.002) 0.004 (0.001) 0.000 (0.000) 0.040 (0.009) 0.028 (0.004) 0.029 (0.008) 0.014 (0.003) 0.039 (0.008)
BOPCA 0.047 (0.008) 0.041 (0.007) 0.014 (0.002) 0.005 (0.001) 0.000 (0.000) 0.062 (0.011) 0.035 (0.005) 0.044 (0.010) 0.015 (0.003) 0.081 (0.009)
EASE 0.080 (0.010) 0.063 (0.003) 0.024 (0.002) 0.017 (0.002) 0.000 (0.000) 0.099 (0.010) 0.039 (0.005) 0.070 (0.010) 0.027 (0.003) 0.103 (0.007)
MIPROv2 0.048 (0.008) 0.052 (0.004) 0.016 (0.001) 0.011 (0.002) 0.000 (0.000) 0.050 (0.009) 0.019 (0.003) 0.043 (0.009) 0.025 (0.003) 0.059 (0.007)
TRIPLE-SH 0.109 (0.014) 0.043 (0.008) 0.029 (0.003) 0.005 (0.002) 0.003 (0.002) 0.043 (0.010) 0.035 (0.006) 0.006 (0.002) 0.051 (0.007) 0.025 (0.006)
TRIPLE-GSE 0.178 (0.014) 0.072 (0.010) 0.031 (0.005) 0.021 (0.003) 0.000 (0.000) 0.087 (0.014) 0.049 (0.008) 0.007 (0.002) 0.060 (0.009) 0.016 (0.006)
HbBoPs 0.040 (0.008) 0.035 (0.005) 0.011 (0.002) 0.005 (0.001) 0.000 (0.000) 0.055 (0.011) 0.013 (0.002) 0.008 (0.002) 0.023 (0.003) 0.026 (0.005)

Table 7. Normalized validation error of each method on each benchmark for LLAMA3 8B Instruct. Averaged over repetitions. Standard
errors in parentheses. For visual analysis, we highlight all methods that have a mean error that is less or equal to the mean error of the best
method plus two times its standard error.

Benchmark
AI2 ARC GSM8K antonyms larger animal negation object counting orthography starts with second word letter sentiment word unscrambling

RS 0.078 (0.010) 0.067 (0.006) 0.093 (0.010) 0.023 (0.004) 0.011 (0.001) 0.156 (0.015) 0.230 (0.031) 0.275 (0.021) 0.022 (0.003) 0.271 (0.037)
vanilla BO 0.051 (0.005) 0.061 (0.007) 0.079 (0.009) 0.016 (0.003) 0.010 (0.001) 0.115 (0.017) 0.184 (0.024) 0.226 (0.023) 0.024 (0.005) 0.248 (0.036)
HDBO 0.042 (0.006) 0.019 (0.006) 0.073 (0.009) 0.015 (0.002) 0.008 (0.001) 0.066 (0.008) 0.148 (0.023) 0.186 (0.020) 0.010 (0.003) 0.163 (0.027)
BOPCA 0.049 (0.006) 0.026 (0.007) 0.074 (0.010) 0.014 (0.002) 0.010 (0.001) 0.074 (0.015) 0.225 (0.028) 0.160 (0.023) 0.013 (0.004) 0.149 (0.023)
EASE 0.059 (0.006) 0.060 (0.005) 0.115 (0.012) 0.032 (0.005) 0.010 (0.001) 0.076 (0.005) 0.129 (0.022) 0.271 (0.015) 0.023 (0.004) 0.357 (0.033)
MIPROv2 0.063 (0.007) 0.056 (0.007) 0.062 (0.008) 0.017 (0.002) 0.008 (0.001) 0.092 (0.011) 0.183 (0.026) 0.218 (0.022) 0.023 (0.004) 0.265 (0.033)
TRIPLE-SH 0.023 (0.005) 0.007 (0.002) 0.024 (0.005) 0.008 (0.002) 0.012 (0.002) 0.068 (0.008) 0.034 (0.008) 0.047 (0.014) 0.025 (0.005) 0.095 (0.019)
TRIPLE-GSE 0.022 (0.006) 0.002 (0.001) 0.026 (0.006) 0.020 (0.003) 0.015 (0.001) 0.080 (0.008) 0.074 (0.011) 0.071 (0.016) 0.035 (0.004) 0.184 (0.033)
HbBoPs 0.019 (0.005) 0.006 (0.002) 0.024 (0.004) 0.008 (0.002) 0.008 (0.001) 0.092 (0.018) 0.041 (0.009) 0.043 (0.014) 0.020 (0.004) 0.048 (0.014)

In Tables 6, 7 and 8 we report the average normalized validation error of the best prompt found by each method after having
used a fraction of 1.00 LLM calls, separately for each benchmark task, separately for each LLM.

We perform the same analysis for the test error at a fraction of 1.00 and reject the global null hypothesis of no effect of
methods (χ2(8) = 288.36, p < 1e−4). The pairwise results are:

• RS vs. HbBoPs, z = 11.51, p < 1e−4

• vanilla BO vs. HbBoPs, z = 11.03, p < 1e−4

21

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Table 8. Normalized validation error of each method on each benchmark for Mistral 7B Instruct. Averaged over repetitions. Standard
errors in parentheses. For visual analysis, we highlight all methods that have a mean error that is less or equal to the mean error of the best
method plus two times its standard error.

Benchmark
AI2 ARC GSM8K antonyms larger animal negation object counting orthography starts with second word letter sentiment word unscrambling

RS 0.329 (0.035) 0.160 (0.021) 0.020 (0.002) 0.043 (0.006) 0.006 (0.003) 0.040 (0.004) 0.164 (0.018) 0.171 (0.016) 0.098 (0.013) 0.224 (0.017)
vanilla BO 0.359 (0.038) 0.166 (0.021) 0.017 (0.002) 0.040 (0.008) 0.008 (0.003) 0.033 (0.005) 0.117 (0.020) 0.136 (0.013) 0.085 (0.016) 0.161 (0.019)
HDBO 0.217 (0.045) 0.105 (0.019) 0.013 (0.002) 0.021 (0.005) 0.009 (0.003) 0.028 (0.005) 0.120 (0.018) 0.085 (0.017) 0.042 (0.013) 0.108 (0.016)
BOPCA 0.246 (0.044) 0.108 (0.019) 0.015 (0.002) 0.021 (0.006) 0.011 (0.004) 0.032 (0.006) 0.112 (0.021) 0.125 (0.019) 0.048 (0.013) 0.136 (0.021)
EASE 0.384 (0.033) 0.133 (0.014) 0.022 (0.002) 0.053 (0.008) 0.000 (0.000) 0.035 (0.005) 0.147 (0.023) 0.183 (0.014) 0.110 (0.014) 0.095 (0.021)
MIPROv2 0.323 (0.041) 0.122 (0.017) 0.013 (0.002) 0.032 (0.005) 0.011 (0.004) 0.032 (0.005) 0.125 (0.014) 0.158 (0.016) 0.068 (0.014) 0.163 (0.017)
TRIPLE-SH 0.024 (0.011) 0.008 (0.003) 0.041 (0.005) 0.012 (0.003) 0.044 (0.008) 0.057 (0.006) 0.005 (0.004) 0.044 (0.012) 0.055 (0.010) 0.103 (0.018)
TRIPLE-GSE 0.038 (0.016) 0.001 (0.000) 0.042 (0.005) 0.022 (0.006) 0.055 (0.010) 0.067 (0.010) 0.002 (0.000) 0.072 (0.015) 0.084 (0.017) 0.145 (0.022)
HbBoPs 0.107 (0.036) 0.000 (0.000) 0.011 (0.001) 0.012 (0.003) 0.012 (0.005) 0.025 (0.005) 0.024 (0.010) 0.067 (0.013) 0.030 (0.011) 0.061 (0.014)

• HDBO vs. HbBoPs, z = 6.19, p < 1e−4

• BOPCA vs. HbBoPs, z = 7.58, p < 1e−4

• EASE vs. HbBoPs, z = 7.98, p < 1e−4

• MIPROv2 vs. HbBoPs, z = 8.61, p < 1e−4

• TRIPLE-SH vs. HbBoPs, z = 1.49, p = 1.000

• TRIPLE-GSE vs. HbBoPs, z = 1.34, p = 1.000

Conclusions are largely consistent with the analysis with respect to validation error, however, while HbBoPs improves
over TRIPLE-SH and TRIPLE-GSE also with respect to test error, the effects are not strong enough to be considered
statistically significant at the α = 0.01 level. For brevity, we do not include results for fractions of 0.25 or 0.50 here, where
we observed similar results but HbBoPs again more strongly outperforming the other methods.

Table 9. Normalized test error of each method on each benchmark for Claude 3 Haiku. Averaged over repetitions. Standard errors in
parentheses. For visual analysis, we highlight all methods that have a mean error that is less or equal to the mean error of the best method
plus two times its standard error.

Benchmark
AI2 ARC GSM8K antonyms larger animal negation object counting orthography starts with second word letter sentiment word unscrambling

RS 0.224 (0.023) 0.092 (0.012) 0.074 (0.003) 0.096 (0.008) 0.124 (0.007) 0.140 (0.014) 0.277 (0.011) 0.058 (0.010) 0.244 (0.019) 0.163 (0.011)
vanilla BO 0.213 (0.020) 0.092 (0.011) 0.084 (0.004) 0.113 (0.010) 0.124 (0.007) 0.147 (0.019) 0.296 (0.011) 0.063 (0.008) 0.207 (0.016) 0.156 (0.012)
HDBO 0.203 (0.020) 0.087 (0.010) 0.078 (0.003) 0.105 (0.008) 0.124 (0.007) 0.083 (0.015) 0.294 (0.011) 0.030 (0.008) 0.237 (0.014) 0.133 (0.009)
BOPCA 0.209 (0.018) 0.095 (0.009) 0.078 (0.003) 0.105 (0.009) 0.124 (0.007) 0.129 (0.019) 0.302 (0.012) 0.039 (0.009) 0.230 (0.014) 0.150 (0.011)
EASE 0.243 (0.023) 0.036 (0.006) 0.070 (0.004) 0.108 (0.007) 0.124 (0.007) 0.135 (0.015) 0.282 (0.018) 0.058 (0.009) 0.263 (0.016) 0.135 (0.010)
MIPROv2 0.200 (0.020) 0.068 (0.006) 0.077 (0.003) 0.099 (0.008) 0.124 (0.007) 0.100 (0.017) 0.271 (0.011) 0.039 (0.008) 0.219 (0.016) 0.125 (0.008)
TRIPLE-SH 0.256 (0.024) 0.099 (0.009) 0.078 (0.006) 0.076 (0.006) 0.114 (0.011) 0.084 (0.012) 0.272 (0.015) 0.008 (0.005) 0.248 (0.019) 0.116 (0.005)
TRIPLE-GSE 0.307 (0.024) 0.080 (0.010) 0.082 (0.005) 0.115 (0.010) 0.106 (0.009) 0.130 (0.019) 0.299 (0.014) 0.009 (0.005) 0.322 (0.022) 0.122 (0.005)
HbBoPs 0.182 (0.026) 0.093 (0.008) 0.080 (0.003) 0.089 (0.007) 0.118 (0.008) 0.117 (0.021) 0.262 (0.010) 0.018 (0.007) 0.219 (0.016) 0.125 (0.004)

Table 10. Normalized test error of each method on each benchmark for LLAMA3 8B Instruct. Averaged over repetitions. Standard errors
in parentheses. For visual analysis, we highlight all methods that have a mean error that is less or equal to the mean error of the best
method plus two times its standard error.

Benchmark
AI2 ARC GSM8K antonyms larger animal negation object counting orthography starts with second word letter sentiment word unscrambling

RS 0.066 (0.010) 0.112 (0.011) 0.147 (0.012) 0.085 (0.011) 0.104 (0.010) 0.238 (0.021) 0.296 (0.041) 0.270 (0.029) 0.356 (0.013) 0.633 (0.054)
vanilla BO 0.038 (0.009) 0.099 (0.012) 0.145 (0.013) 0.075 (0.007) 0.129 (0.008) 0.236 (0.023) 0.218 (0.034) 0.292 (0.031) 0.356 (0.015) 0.700 (0.054)
HDBO 0.030 (0.008) 0.028 (0.009) 0.133 (0.014) 0.086 (0.007) 0.138 (0.007) 0.165 (0.019) 0.184 (0.035) 0.248 (0.027) 0.321 (0.010) 0.767 (0.056)
BOPCA 0.033 (0.004) 0.038 (0.011) 0.124 (0.014) 0.075 (0.007) 0.126 (0.009) 0.216 (0.014) 0.283 (0.038) 0.227 (0.025) 0.344 (0.010) 0.667 (0.048)
EASE 0.047 (0.007) 0.094 (0.009) 0.181 (0.015) 0.076 (0.009) 0.112 (0.008) 0.014 (0.009) 0.171 (0.037) 0.248 (0.027) 0.274 (0.013) 0.622 (0.055)
MIPROv2 0.041 (0.008) 0.088 (0.012) 0.114 (0.013) 0.076 (0.006) 0.135 (0.009) 0.160 (0.019) 0.239 (0.040) 0.248 (0.024) 0.356 (0.014) 0.700 (0.051)
TRIPLE-SH 0.016 (0.003) 0.008 (0.003) 0.070 (0.015) 0.075 (0.008) 0.125 (0.011) 0.177 (0.017) 0.037 (0.009) 0.152 (0.011) 0.362 (0.014) 0.678 (0.059)
TRIPLE-GSE 0.017 (0.004) 0.003 (0.002) 0.052 (0.012) 0.059 (0.008) 0.110 (0.009) 0.167 (0.019) 0.078 (0.019) 0.140 (0.016) 0.369 (0.014) 0.544 (0.059)
HbBoPs 0.016 (0.006) 0.009 (0.003) 0.093 (0.015) 0.064 (0.007) 0.152 (0.010) 0.207 (0.027) 0.078 (0.019) 0.120 (0.011) 0.341 (0.012) 0.489 (0.044)

In Tables 9, 10 and 11 we report the average normalized test error of the best prompt found by each method after having
used a fraction of 1.00 LLM calls, separately for each benchmark task, separately for each LLM.

22

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Table 11. Normalized test error of each method on each benchmark for Mistral 7B Instruct. Averaged over repetitions. Standard errors in
parentheses. For visual analysis, we highlight all methods that have a mean error that is less or equal to the mean error of the best method
plus two times its standard error.

Benchmark
AI2 ARC GSM8K antonyms larger animal negation object counting orthography starts with second word letter sentiment word unscrambling

RS 0.277 (0.037) 0.198 (0.021) 0.099 (0.006) 0.239 (0.033) 0.502 (0.025) 0.188 (0.015) 0.293 (0.026) 0.194 (0.015) 0.156 (0.019) 0.476 (0.039)
vanilla BO 0.366 (0.042) 0.200 (0.022) 0.092 (0.006) 0.201 (0.025) 0.531 (0.025) 0.199 (0.013) 0.229 (0.026) 0.172 (0.018) 0.125 (0.017) 0.448 (0.031)
HDBO 0.215 (0.045) 0.112 (0.020) 0.098 (0.005) 0.140 (0.009) 0.481 (0.027) 0.226 (0.013) 0.237 (0.031) 0.112 (0.021) 0.059 (0.018) 0.386 (0.028)
BOPCA 0.266 (0.047) 0.125 (0.019) 0.088 (0.007) 0.182 (0.019) 0.500 (0.028) 0.232 (0.013) 0.226 (0.031) 0.140 (0.022) 0.063 (0.016) 0.357 (0.034)
EASE 0.356 (0.036) 0.174 (0.014) 0.076 (0.008) 0.181 (0.021) 0.631 (0.022) 0.209 (0.013) 0.257 (0.029) 0.211 (0.018) 0.158 (0.019) 0.290 (0.025)
MIPROv2 0.327 (0.043) 0.165 (0.016) 0.094 (0.004) 0.178 (0.020) 0.519 (0.026) 0.195 (0.013) 0.248 (0.025) 0.193 (0.018) 0.115 (0.022) 0.429 (0.029)
TRIPLE-SH 0.016 (0.008) 0.078 (0.010) 0.104 (0.007) 0.140 (0.009) 0.526 (0.026) 0.230 (0.014) 0.044 (0.014) 0.061 (0.016) 0.116 (0.019) 0.395 (0.033)
TRIPLE-GSE 0.028 (0.012) 0.050 (0.011) 0.095 (0.006) 0.169 (0.011) 0.421 (0.038) 0.226 (0.013) 0.061 (0.011) 0.071 (0.015) 0.104 (0.022) 0.400 (0.029)
HbBoPs 0.096 (0.032) 0.011 (0.006) 0.083 (0.005) 0.162 (0.013) 0.462 (0.028) 0.238 (0.011) 0.053 (0.023) 0.083 (0.017) 0.088 (0.021) 0.367 (0.030)

E.2. Ablation Study

Here, we provide additional analyses of the ablation results reported in Section 5.3. To test the significance of each
component on the validation and test error of HbBoPs, we again conduct a linear mixed effects model analysis. We model
the unaggregated performance as a function of the fraction of LLM calls (i.e., over time; starting after the initial design of
full-fidelity methods, i.e., after a fraction of 0.40) and include random intercepts for each benchmark scenario (benchmark
task and LLM combination). To test the global hypothesis that there is an effect of the components on performance, we
test an intercept model against a model including an effect of the factor method (corresponding to an ablation variant). If
we reject the null hypothesis, we proceed with a Tukey post hoc test (corrected for multiple testing) to perform pairwise
comparisons. We test at the conservative α = 0.01 level.

Examining the validation error, we reject the global null hypothesis of no effect of the method on the anytime performance
(χ2(5) = 35184.28, p < 1e−4). The relevant pairwise comparison results state as follows:

• vanilla BO vs. BoPs (non structural-aware DK-GP), z = 48.80, p < 1e−4

• BoPs (non structural-aware DK-GP) vs. BoPs (structural-aware DK-GP), z = 16.67, p < 1e−4

• BoPs (structural-aware DK-GP) vs. HB, z = 52.92, p < 1e−4

• HB vs. HbBoPs, z = 24.00, p < 1e−4

We can conclude that using a DK-GP significantly improves over vanilla BO, that a structural-aware DK-GP improves over
the non structural-aware DK-GP, that HB improves over the structural-aware DK-GP and that HbBoPs further improves
over HB.

We perform the same analysis for the test error and reject the global hypothesis of no effect (χ2(5) = 14578.73, p < 1e−4).
The relevant pairwise comparison results state as follows:

• vanilla BO vs. BoPs (non structural-aware DK-GP), z = 39.35, p < 1e−4

• BoPs (non structural-aware DK-GP) vs. BoPs (structural-aware DK-GP), z = 6.51, p < 1e−4

• BoPs (structural-aware DK-GP) vs. HB, z = 31.59, p < 1e−4

• HB vs. HbBoPs, z = 18.85, p < 1e−4

Conclusions are the same as for the validation error.

E.3. Encoder Sensitivity

Here, we provide additional analyses of the encoder sensitivity results reported in Section 5.4. To test whether the choice of
encoder model affects the final performance of HbBoPs, we again conduct a linear mixed effects model analysis. We model
the unaggregated performance at a fraction of 1.00 total LLM calls involving random intercepts for each benchmark scenario
(benchmark task and LLM combination). To test the global hypothesis that there is an effect of the encoder on performance,
we test an intercept model against a model including an effect of the factor encoder. We test at the conservative α = 0.01
level. For both the validation and test error, we cannot reject the null hypothesis of the encoder making no difference,
χ2(2) = 4.69, p = 0.096 and χ2(2) = 3.85, p = 0.146 respectively. We therefore conclude that HbBoPs is robust to the
choice of encoder model.

23

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

E.4. Hyperband Design Choices

As mentioned in Section 3 and Appendix C, adapting HB to prompt selection involves several design decisions. Here, we
provide an ablation of these decisions. While vanilla HB for hyperparameter optimization would return the configuration
with the lowest validation error as the (anytime) incumbent, this is not sensible for prompt selection as the fidelity directly
influences the noise of the validation error. We therefore always return the prompt with the lowest validation error among all
prompts that have been evaluated on the (current) highest fidelity level. To analyze the effect of this design decision, we run
HB for prompt selection with this incumbent selection mechanism and compare to the incumbent selection mechanism that
simply selects the prompt with the lowest validation error. The experimental setup is exactly the same as for the results
reported in the main paper. We visualize the (oracle) normalized validation and test error of the best prompt found by
HB under each incumbent selection scheme in Figure 6. As before, for visualization purposes the validation error of the
incumbent is computed here in an oracle setting (i.e., using all validation instances), whereas during the selection process
the anytime incumbent itself was selected based on its validation error computed on fewer validation instances. Examining
the validation error (Figure 6a) of HB as used by us (selecting the incumbent as the prompt with the lowest validation error
among all prompts evaluated on the highest fidelity level), we observe that the validation error of the incumbent keeps
decreasing as optimization progresses. In contrast, if we would perform the incumbent selection simply by choosing the
prompt with the lowest validation error (ignoring the fidelity level), as in HB (incumbent lowest validation
error), we observe that optimization progress stagnates quickly. This occurs because the incumbent is no longer updated,
since, at lower fidelity levels, noisy performance estimates can result in artificially low validation errors. Similar conclusions
hold for the test error (Figure 6b).

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total LLM Calls (1.0 = 25 full-fidelity Prompt Evaluations)

10 1

M
ea

n
No

rm
al

ize
d

Va
lid

at
io

n
Er

ro
r o

f B
es

t P
ro

m
pt Averaged over Benchmark Scenarios (Tasks and Models)

Method
HB HB (incumbent lowest validation error)

(a) Validation

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total LLM Calls (1.0 = 25 full-fidelity Prompt Evaluations)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
ea

n
No

rm
al

ize
d

Te
st

 E
rro

r o
f V

al
id

at
io

n
Be

st
 P

ro
m

pt Averaged over Benchmark Scenarios (Tasks and Models)
Method

HB HB (incumbent lowest validation error)

(b) Test

Figure 6. Normalized error (log scale) of the best prompt found by each HB incumbent selection mechanism, averaged over benchmarks.
Lower is better. Ribbons represent SE.

To test whether the choice of selection mechanism does make a difference for the final performance of HB, we again
conduct a linear mixed effects model analysis. We model the unaggregated performance at a fraction of 1.00 total LLM
calls involving random intercepts for each benchmark scenario (benchmark task and LLM combination). To test the global
hypothesis that there is an effect of the incumbent selection mechanism on performance, we test an intercept model against
a model including an effect of the factor selection mechanism. We test at the conservative α = 0.01 level. For both
validation and test error we reject the null hypothesis of no effect of the selection mechanism χ2(1) = 448.05, p < 1e−4
and χ2(1) = 164.17, p < 1e−4 respectively. We therefore conclude that our incumbent selection mechanism is superior.

Another design decision for adapting HB to prompt selection is concerned with whether prompts should be evaluated on the
same random validation instances within a stage or on their own random samples. The final related design decision involves
whether validation instances of higher stages for a given bracket are constructed to be supersets of the validation instances
used in lower stages (as described in Appendix C) which allows for further speed-ups due to caching.

To investigate the effect of using the same random vs. truly random instances for each prompt and the effect of validation
instances used in higher stages of a bracket being supersets of the validation instances used in lower stages, we run
HB for prompt selection varying these two components. The experimental setup is exactly the same as for the results
reported in the main paper. We visualize the (oracle) normalized validation and test error of the best prompt found by
HB under each incumbent selection scheme in Figure 7. As before, for visualization purposes the validation error of the
incumbent is computed here in an oracle setting (i.e., using all validation instances), whereas during the selection process the
anytime incumbent itself was selected based on its validation error computed on fewer validation instances. Examining the

24

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

validation error (Figure 7a) of our proposed HB (same random instances and supersets), we can see that this variant performs
best. If we use truly random instances (but keep the superset structure) as in HB (random instances for each
prompt), performance is slightly worse. Giving up the superset structure (HB (no supersets, same instances
for each prompt) and HB (no supersets, random instances for each prompt) we can see that
performance is substantially worse, even more so when using truly random instances for each prompt. In general, we can
conclude that the effect of using supersets for higher stages within a given bracket boosts the performance of HB. Moreover,
using truly random validation instances for each prompt instead of using the same random validation instances for all prompt
evaluations in a stage (i.e., the paired setting) generally worsens performance. Examining the test performance, we observe
that these conclusions generalize (Figure 7b).

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total LLM Calls (1.0 = 25 full-fidelity Prompt Evaluations)

10 1

M
ea

n
No

rm
al

ize
d

Va
lid

at
io

n
Er

ro
r o

f B
es

t P
ro

m
pt Averaged over Benchmark Scenarios (Tasks and Models)

Method
HB
HB (random instances for each prompt)

HB (no supersets, same instances for each prompt)
HB (no supersets, random instances for each prompt)

(a) Validation

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total LLM Calls (1.0 = 25 full-fidelity Prompt Evaluations)

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

M
ea

n
No

rm
al

ize
d

Te
st

 E
rro

r o
f V

al
id

at
io

n
Be

st
 P

ro
m

pt Averaged over Benchmark Scenarios (Tasks and Models)
Method

HB
HB (random instances for each prompt)

HB (no supersets, same instances for each prompt)
HB (no supersets, random instances for each prompt)

(b) Test

Figure 7. Normalized error (log scale) of the best prompt found by each HB validation instances sampling variant, averaged over
benchmarks. Lower is better. Ribbons represent SE.

To test whether the design decisions of using supersets and using the same random validation instances for each prompt
evaluation within a stage make a difference for the final performance of HB, we again conduct a linear mixed effects model
analysis. We model the unaggregated performance at a fraction of 1.00 total LLM calls involving random intercepts for
each benchmark scenario (benchmark task and LLM combination). To test the global hypothesis that there is an effect of
the design choices on performance, we test an intercept model against a model including an effect of the factor method
(corresponding to an ablation variant). We test at the conservative α = 0.01 level.

For the validation error at a fraction of 1.00, we reject the global null hypothesis of no effect of methods (χ2(3) =
730.85, p < 1e−4). The pairwise results are:

• HB (random instances for each prompt) vs. HB, z = 1.13, p = 0.259

• HB (no supersets, same instances for each prompt) vs. HB, z = 19.12, p < 1e−4

• HB (no supersets, random instances for each prompt) vs. HB, z = 22.03, p < 1e−4

• HB (no supersets, same instances for each prompt) vs. HB (random instances for each prompt), z = 17.99, p < 1e−4

• HB (no supersets, random instances for each prompt) vs. HB (random instances for each prompt), z = 20.90, p < 1e−4

• HB (no supersets, random instances for each prompt) vs. HB (no supersets, same instances for each prompt), z = 2.91, p = 0.007

Examining test error at a fraction of 1.00 we also reject the global null hypothesis of no effect of methods (χ2(3) =
207.12, p < 1e−4). The pairwise results are:

• HB (random instances for each prompt) vs. HB, z = 1.39, p = 0.328

• HB (no supersets, same instances for each prompt) vs. HB, z = 10.92, p < 1e−4

• HB (no supersets, random instances for each prompt) vs. HB, z = 11.02, p < 1e−4

• HB (no supersets, same instances for each prompt) vs. HB (random instances for each prompt), z = 9.53, p < 1e−4

• HB (no supersets, random instances for each prompt) vs. HB (random instances for each prompt), z = 9.63, p < 1e−4

• HB (no supersets, random instances for each prompt) vs. HB (no supersets, same instances for each prompt), z = 0.11, p = 0.916

25

Hyperband-based Bayesian Optimization for Black-box Prompt Selection

Summarizing, our results confirm that the design decisions made to adapt HB to prompt selection are effective: (1) The
incumbent should be selected as the prompt with the lowest validation error among all prompts evaluated on the highest
fidelity level. (2) Validation instances used to evaluate prompts in higher stages of a given bracket should be supersets of the
validation instances used in lower stages. (3) Using the same (random) validation instances to evaluate prompts in each stage
in general is beneficial compared to using truly random validation instances for each prompt, albeit this effect is comparably
small.

26

