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Abstract— Task and Motion Planning (TAMP) algorithms
solve long-horizon robotics tasks by integrating task planning
with motion planning; the task planner proposes a sequence
of actions towards a goal state and the motion planner verifies
whether this action sequence is geometrically feasible for the
robot. However, state-of-the-art TAMP algorithms do not scale
well with the difficulty of the task and require an impractical
amount of time to solve relatively small problems. We propose
Constraints and Streams for Task and Motion Planning
(COAST), a probabilistically-complete, sampling-based TAMP
algorithm that combines stream-based motion planning with
an efficient, constrained task planning strategy. We validate
COAST on three challenging TAMP domains and demonstrate
that our method outperforms baselines in terms of cumulative
task planning time by an order of magnitude. You can find
more supplementary materials on our project website.

I. INTRODUCTION

We aim to equip a robot with the ability to solve complex
long-horizon tasks that require a combination of symbolic
and geometric reasoning. Task and Motion Planning (TAMP)
is an approach for solving such tasks. TAMP methods often
use task planning to produce a sequence of symbolic
actions, i.e. a task plan, in addition to using sampling-based
motion planning to ensure the task plan is geometrically
feasible. If the task plan is geometrically infeasible, then
this result needs to be communicated to the task planner for
replanning. Two main paradigms of communication exist:
sample-first and plan-first [1]. Sample-first methods perform
motion sampling first (without any task plan) and then query
task planning to sequence only the geometrically feasible
samples [2, 3]. Plan-first methods perform task planning
first and then refine the task plans with motion sampling,
where sampling failures due to geometric infeasibility are
translated into task planning constraints for the next iteration
of task planning [4–6].

Two sampling-based TAMP algorithms closely related
to our work are PDDLStream [3] and Iteratively Deepened
Task and Motion Planning (IDTMP) [4]. PDDLStream is
an optimistic sample-first method that breaks down motion
planning into black-box sampling functions called streams
and integrates them into the task-planning problem as objects
and action preconditions in the Planning Domain Definition
Language (PDDL) [7]. A limitation of PDDLStream is that
it must generate the symbolic objects to be used for task
planning without knowing which ones may be necessary.
But generating too many objects results in exponential task
planning times. IDTMP is a plan-first method that treats task
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Fig. 1: We propose COAST, a sampling-based TAMP algorithm that is
able to solve complex, geometrically constrained, long-horizon planning
problems faster than prior state-of-the-art. We demonstrate the ability of our
algorithm to solve problems from three domains: a 3× 3 grid rearranging
task (Blocks [4], left), a constrained pick-and-place kitchen task (Kitchen
[3], middle), a rover surveillance task with obstacles (Rover [3], right).

planning as Constraint Satisfaction Problems (CSPs) and
uses constraints to communicate motion planning failures. A
limitation of IDTMP is that it requires a discretization of the
workspace which prevents IDTMP from applying to domains
with large workspaces like our Kitchen and Rover domains.

We propose a probabilistically-complete, plan-first TAMP
algorithm that is significantly faster than PDDLStream
and IDTMP. This speedup occurs by using a direct stream
planning algorithm to create stream objects after task
planning rather than before to avoid the computational cost
of task planning with many unnecessary stream objects. We
validate our method on three TAMP domains (Fig. 1), each
one challenging in different ways, and demonstrate that our
method outperforms both PDDLStream and IDTMP by an
order of magnitude in task planning time.

II. RELATED WORKS

TAMP problems are challenging due to the need to search
over both discrete and continuous spaces. Thus, many works
propose different techniques to reduce the search complexity
of TAMP. Hierarchical Task Networks (HTN) [8] are a class
of TAMP algorithms that use expert-designed hierarchies to
reduce the dimension of the search problem [9]. Other works
[10–12] extend this approach for manipulation. Instead of us-
ing hierarchies, Srivastava et al. [13] is a plan-first framework
that uses constraints defined in PDDL to prune infeasible
plans. We also use constraints and a plan-first approach, but
unlike this prior work, our method is applicable outside of
manipulation and does not assume the absence of reachable
dead-end states. We accomplish this by using streams
as an abstraction for motion planning while also using
queue-based algorithms that revisit previous states, relaxing
the dead-end state assumption. Our focus lies in increasing
the speed of universally applicable TAMP algorithms,
agnostic to the motion planning implementation. To achieve
this, we advance the integration of classical task planning
[14] in PDDL [7] and stream-based motion planning [3].

The motion planning component of TAMP commonly
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consists of finding valid robot trajectories for manipulating
objects while avoiding collisions in addition to finding
satisfiable geometric assignments such as grasps and poses
[15]. Optimization-based approaches [16, 17] attempt to find
optimal motion plans with nonlinear optimization, which
can be sensitive to initial conditions and prone to failure.
Thomason et al. propose TMIT* [5] which plans in a hybrid
symbolic and continuous state space, using CSP constraints
and asymmetric forward and reverse motion planning. Our
framework provides a connection from constraint-based
planning to streams, which could be extended to an approach
like TMIT*.

In contrast to refining each symbolic action sequentially,
recent works propose to break down each motion planning
sub-problem into even smaller, reusable functions that
enable more efficient motion planning across actions.
PDDLStream [3] proposes a general TAMP framework
that formalizes these as streams. Decomposing the motion
planning problem into these lightweight samplers gives
rise to efficient sampling algorithms that can intelligently
resample streams until a task plan is refined. However,
incorporating streams directly into task planning causes
the PDDL problem to exponentially grow in the number
of objects, which slows down task planning. We propose a
stream-based TAMP algorithm that benefits from efficient
motion planning while keeping task planning light.

There has been a rise in learning-based methods that
seek to overcome the disadvantages of classical TAMP.
Driess et al. [18] trains a policy to solve TAMP tasks from
images and demonstrations produced by classical TAMP
solvers. Other works augment classical TAMP solvers by
accelerating planning with learned heuristics [19–21] or
giving them the ability to handle uncertainty [22, 23]. Our
work can benefit these methods by speeding up solving
times and increasing the scale of possible tasks.

PDDLStream [3] and IDTMP [4] are the two works most
closely related to ours. We build off of PDDLStream’s
stream framework for motion planning and propose a
constrained task-planning method similar to that of IDTMP.

III. BACKGROUND

A. Planning Domain Description Language

Our framework uses the Planning Domain Definition
Language (PDDL) [7] for task planning. A PDDL domain,
typically defined as a domain.pddl file, can be described
as a tuple (Φ,A), where Φ is the set of predicates (binary-
valued properties of objects) and A is the set of actions. A
PDDL problem, typically defined as a problem.pddl file,
is a tuple (O, s0, g), where O is the set of environment
objects, s0 is the initial state, and g is the goal formula to
be satisfied. The task planner’s role is to find a sequence of
actions, or a task plan π, that will turn the initial state s0
into a new state that satisfies the goal formula g.

Actions are defined by their preconditions—a logic
formula that must be satisfied by the current state in order
to execute the action—and effects—a formula that describes
how the state changes upon executing the action. The

following are PDDL definitions of Pick and Place actions
for a simple pick-and-place domain that we will use as a
running example in this paper.
(:action Pick

:parameters (?o - obj ?r - region)
:precondition (and

(on ?o ?r)
(handempty ))

:effect (and
(not (on ?o ?r))
(holding ?o)
(not (handempty ))))

(:action Place
:parameters (?o - obj ?r - region)
:precondition (holding ?o)
:effect (and

(on ?o ?r)
(not (holding ?o))
(handempty )))

B. Streams

Our framework uses streams from PDDLStream [3]
to perform sampling-based motion planning. Streams
decompose the long-horizon motion planning problem into
unit sampling functions that each address a small component
of the motion planning problem.

A stream is defined as a generator function
σ(x1, . . . , xn)→ (y1, . . . ym) which takes a tuple x1, . . . , xn
as input and generates a tuple of outputs (y1, . . . , ym). For
example, the sample-pose stream may take in an object o
and region r and output a placement pose p for o in r:
(:stream sample-pose

:inputs (?o - obj ?r - region)
:outputs (?p - pose))

Streams are typically defined in a streams.pddl file and
are accompanied by user-provided Python functions which
implement the actual sampling procedure. In this paper, we
refer to the set of streams in the PDDLStream domain as Σ.
We extend streams by adding a cache and a probability to
return a cached result with a probability from [0, 1). We only
use this feature for the Rover domain and ablate it in Sec. V.

A stream instance is a stream instantiated with concrete
inputs and outputs, such as sample-pose(apple, shelf)→p1.
Outputs of stream instances are called stream objects, and
the inputs to stream instances can either be stream objects
or PDDL objects. In this case, apple and shelf are both
PDDL objects, while p1 is a stream object. PDDL objects
are defined in the PDDL problem as object set O, but
stream objects do not exist at the beginning of task planning
and need to be created during planning.

Every time a stream instance is called, it may generate
new values for the output stream objects. For example,
sample-pose might generate poses for p1 where the positions
are sampled randomly from the support area of shelf. A
stream instance also returns a “certified fact”, or a symbolic
proposition, along with the sampled values to certify the
success of sampling. For example, if sample-pose succeeds,
it would output the certified fact (sample-pose apple

shelf p1), which indicates that p1 is a valid pose for
apple on shelf. However, if sampling fails—for example,
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because shelf is too small to support a placement pose for
apple—then the certified fact is not returned.

Note that our definition of certified facts is slightly
different from that of PDDLStream; while stream instances
in PDDLStream may output multiple certified facts, we
require that stream instances output a single certified fact
containing all of the input and output objects so that there is
a bijective mapping between stream instances and certified
facts. This is not a restriction because non-bijective certified
facts are instead added to the geometric postconditions of
our action. The bijective mapping allows our stream planner
to directly determine the required stream instances from a
set of desired certified facts. PDDLStream, on the other
hand, must blindly create stream instances until all desired
certified facts are covered, which is an expensive iterative
process and often results in the creation of many unused
certified facts in the task state.

A stream plan ψ is a sequence of stream instances
that each must be sampled successfully to complete the
motion planning problem for a candidate task plan π. After
computing a stream plan for a candidate action skeleton, the
last step is to sample the streams to generate a motion plan.
If a stream fails, we resample the streams until the entire
stream plan is successful. We also need to decide when
to give up motion planning for a candidate action skeleton
and mark it as infeasible. In our experiments, we use the
semi-complete Adaptive PDDLStream algorithm to handle
stream plan sampling and termination. We refer readers to
[3] for an in-depth description of this algorithm.

The key difference between PDDLStream and our
method is how stream objects and certified facts are treated.
PDDLStream treats stream objects as PDDL objects and
allows certified facts to be used in the preconditions of
PDDL actions. The main disadvantage of this approach is
that the task planner is now required to decide what stream
objects to use for a task plan. It is not known a priori what
stream objects are required to satisfy the task planning goal.
Therefore, stream generation in PDDLStream is an iterative
process where stream objects are incrementally introduced
by level to the PDDL problem until the task planner
succeeds. At first, when no stream objects are available, the
task planner will certainly fail. As the number of stream
objects grows, task planning quickly becomes intractable due
to its PSPACE-hard complexity. Task planning is therefore
a significant bottleneck in PDDLStream when many stream
objects are required, which may happen for problems that
have many movable objects and require long task plans. Our
key insight is that deciding what stream objects to use for a
task plan can be done with a simple stream planning proce-
dure (Sec. IV-A) that does not require a PDDL solver. The
integration between task and motion planning is achieved
with PDDL constraints (Sec. IV-B) rather than deferring the
stream instance to a later level like in PDDLStream.

IV. COAST ALGORITHM

The PDDL domain (Φ,A) and problem (O, s0, g) given
to COAST are defined with vanilla PDDL (i.e. no stream

Algorithm 1 COAST TAMP Algorithm Overview

1: function COAST(Φ,A,Ageom,Σ,O, s0, s0geom , g)
2: Q ← []
3: PUSH(Q,Φ,A,O, s0, g)
4: while not TIMEOUT do
5: POP(Q,Φ,A,O, s0, g)
6: π ← TASKPLAN(Φ,A,O, s0, g)
7: if π = None and Q = [] then
8: return None
9: πgeom, ψ ← STREAMPLAN(Ageom,Σ, s0geom , π)

10: Y, sψ ← ADAPTIVEBINDING(ψ)
11: if ISSUCCESSFUL(ψ, sψ) then return πgeom, Y

12: PUSH(Q,Φ,A,O, s0, g)
13: s0,A ← CONSTRAINPDDL(A, ψ, sψ, s0)
14: PUSH(Q,Φ,A,O, s0, g)

objects), with actions resembling the example definitions
of Pick and Place in Sec. III-A. To connect the PDDL
domain with streams Σ, we introduce a stream planning
layer that plans using geometric actions Ageom and the initial
geometric state s0geom , explained in more detail in Sec. IV-A.
Then, COAST enters a loop that alternates between task and
motion planning. An overview of our algorithm is provided
in Alg. 1. We use an off-the-shelf PDDL solver to propose
a candidate task plan π that satisfies the symbolic goal but
is not necessarily valid from a motion planning standpoint
(Line 6). We then run a novel stream planning method to
ground the task plan π with stream objects to produce a
geometric task plan πgeom (Line 9). For example, if π is the
task plan [Pick(apple, table), Place(apple, rack)], then
πgeom might look like [Pick(apple, table; g1), Place(apple
, rack; g1, p1)], where Pick and Place are grounded with
stream objects necessary for motion planning, such as grasp
g1 and pose p1. Stream planning also produces a stream
plan ψ, which is a sequence of stream instances that need
to be sampled to produce values for the stream objects in
πgeom. We then use PDDLStream’s Adaptive algorithm to
sample the stream plan and return a binding map Y from the
stream outputs y to their sampled values along with the set of
certified facts sψ (Line 10). If there is one certified fact per
stream instance in ψ, then the entire stream plan was sampled
successfully and we can terminate planning. Otherwise, we
constrain the PDDL problem by modifying the initial state
s0 and action definitions in A to force the PDDL solver to
find an alternative plan (Line 13). Then the planning cycle
continues until we successfully complete motion planning for
a task plan or time out. We maintain a queue of all previous
planning states, and we sort the queue by the frequency
of the set of constraints and the number of constraints to
prioritize more unique and less constrained task states. We
prove our algorithm is probabilistically complete in Sec.
VII. The following subsections describe our stream planning
procedure and task planning constraints in more detail.

A. COAST Stream Planning

For every candidate task plan produced by the task
planner, we need to perform motion planning to produce
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Algorithm 2 COAST Stream Planning

1: function STREAMPLAN(Ageom,Σ, s0geom , π)
2: ψ ← ∅
3: for t = 1 . . . H do
4: at ← π[t]
5: atgeom ← GETGEOMACTION(Ageom, at)
6: atgeom ← GROUNDGEOMACTION(atgeom , st−1geom)
7: ψ ← ψ∪GETPRECONDITIONSTREAMS(atgeom)
8: stgeom ← APPLYGEOMACTION(st−1geom , atgeom)

9: return ψ

a trajectory for the robot to execute the task plan, or if
motion planning fails, mark the task plan as infeasible. We
define the motion planning problem as finding satisfiable
assignments to stream objects in a given stream plan. Our
method uses a novel stream planning subroutine to generate
a stream plan from a candidate task plan. The pseudocode
for this subroutine is provided in Alg. 2.

Each action is associated with a set of streams that need
to be executed during motion planning. We specify how
these streams are executed for each action in a separate
geometric.pddl file. For example, we may define the
geometric Place action as:

(:geom-action Place
:parameters (?o - obj ?r - region)
:inputs (?g - grasp)
:outputs (?p - pose)
:geom-precondition (and

(in-grasp ?o ?g)
(sample-pose ?o ?r ?p))

:geom-effect (and
(not (in-grasp ?o ?g))
(at-pose ?o ?p)))

The :parameters field defines the PDDL object parameters
for this action; it should be equivalent to :parameters defined
for the corresponding PDDL action in domain.pddl. The
:inputs and :outputs fields define the input and output
stream objects for this action. This Place action, for
example, takes as input a grasp ?g and outputs a pose
?p. While the :parameters will be determined by the task
planner (e.g. Pick(apple, table)), the stream objects need
to be determined during the stream planning phase.

During stream planning, we maintain a geometric
state, which, similarly to the symbolic state in PDDL, is
represented with a set of geometric propositions. While
symbolic propositions like (on apple table) are defined
with symbolic objects, geometric propositions can also be
defined with stream objects, such as (at-pose apple p1).
The :geom-precondition field defines the requirements for
applying a geometric action to a geometric state, and the
:geom-effect field specifies how the geometric state changes
upon executing each action—just like the preconditions and
effects of symbolic actions in PDDL.

The job of stream planning is two-fold: 1) grounding
each action in a given task plan with stream objects, and 2)
computing a stream plan, or an ordered sequence of stream
instances from the grounded actions.

1) Grounding geometric actions with stream objects: The
:inputs are determined by using the :geom-precondition

field to find matching stream objects in a geometric state at
a specific step in the plan. For example, a precondition for
Place(apple, rack) is (in-grasp apple ?g), where ?g is
an undetermined stream object defined in the :inputs field.
The geometric state is a set of geometric propositions. If
the geometric state at the beginning of Place(apple, rack)

is {(at-pose orange p1), (in-grasp apple g1)}, then from
the precondition (in-grasp apple ?g), we can infer that g1

is a valid argument for the input parameter ?g. The :outputs

are generated by the actions, so the stream planner will
simply define new stream objects for each action call. For
example, the stream planner may define a stream object
p1 as the output of Place(apple, rack). The action call
Place(apple, rack) is now grounded with concrete stream
objects g1 and p1 (these stream objects will not be assigned
values until the stream sampling stage). We will represent
this grounded action call as Place(apple, rack; g1, p1).

2) Computing a stream plan from grounded actions:
Another geometric precondition of Place(apple, rack) is
the certified fact (sample-pose apple rack ?p). When the
geometric action is fully grounded with stream objects (e.g.
Place(apple, rack; g1, p1)), then the certified facts in its
preconditions can be mapped to stream instances. For ex-
ample, the sample-pose precondition becomes (sample-pose

apple rack p1), which corresponds to the stream instance
sample-pose(apple, rack)→p1. This precondition indicates
that the successful sampling of the stream instance
sample-pose(apple, rack)→p1 is required for the execution
of the geometric action Place(apple, rack; g1, p1), and
thus this stream instance is added to the stream plan ψ.

Note that during the stream planning phase, the planned
stream instances are not actually sampled. The evaluation of
stream instances are deferred to the stream sampling phase
(e.g. PDDLStream’s Adaptive algorithm). During stream
sampling, if the stream instance sample-pose(apple, rack)

→p1 produces a successful sample, then the certified fact
(sample-pose apple rack p1) gets returned, and the corre-
sponding precondition for the geometric action Place(apple,

rack; g1, p1) is satisfied. Otherwise, stream sampling con-
tinues until timeout, and the task planning domain will be up-
dated with a constraint from the most recent sampling failure.

B. COAST Constraints

Our approach relies on a constraint-based feedback model
where motion planning failures during plan refinement are
converted to logical constraints embedded in the task planner.
We observed little to no slowdown in the task-planning time
from adding these constraints to the planner. We provide
generalized sequence, action, and collision constraints.

1) Sequence Constraint: If the task plan [Pick(apple,
table), Place(apple, rack] fails because Place(apple, rack

) is infeasible, then we need the task planner to produce
an alternative task plan where Place(apple, rack) is not
attempted directly after the same preceding sequence of ac-
tions [Pick(apple, table)]. This is a general constraint that
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requires automatically augmenting domain.pddl with times-
tamps in order to be compatible with off-the-shelf PDDL
solvers. The implementation of this constraint is described
in detail in the supplementary material on our webpage.

2) Action Constraint: It may be appropriate to prevent an
action being executed with the same arguments, regardless of
the sequence of actions preceding it. We can accomplish this
by automatically augmenting every action in domain.pddl
with the precondition that it has not failed before. Below, we
show the augmented definitions of Pick and Place, where
the original preconditions from the definitions in Sec. III-A
are replaced with ; ...same as original for brevity.
(:action Pick

:parameters (?o - obj ?r - region)
:precondition (and

; ... same as original
(not (fail-pick ?o ?r))))

(:action Place
:parameters (?o - obj ?r - region)
:precondition (and

; ... same as original
(not (fail-place ?o ?r))))

Suppose we have the task plan [Pick(apple, table),
Place(apple, rack)]. If motion planning for this task plan
fails on the first action Pick(apple, table), then we can
prevent the task planner from proposing this action again by
adding the (fail-pick apple table) proposition to the initial
state s0 in the PDDL problem. Since we maintain a queue
of all previous planning states and their constraints, we will
eventually revisit previous plans and maintain probabilistic
completeness (Sec. VII). Note that this constraint is analo-
gous to the failure-generalization constraint in IDTMP [4].

3) Collision Constraint: Sequence and action constraints
can be applied to any domain, but for manipulation
domains, we may often want a stronger constraint for
handling movable obstructions. IDTMP [4] proposes a
location-based constraint for the Blocks domain, where if
picking or placing a particular block at a particular location
is identified to cause a collision, then all blocks will be
prohibited from being picked or placed at the same location.
Similar to IDTMP, this constraint relies on a discrete set
of pre-defined locations. We show an abbreviated action
definition below for the Block domain.
(:action Pick

:parameters (?b - block ?l - loc)
:precondition (and

; ...
(clear ?b))

:effect (and
; ...
(not (clear ?b)) (clear ?l)))

(:action Place
:parameters (?b - block ?l - loc)
:precondition (and

; ...
(clear ?l))

:effect (and
; ...
(clear ?b) (not (clear ?l)))

)

We formulate this constraint as a logical implication and
append the implication to the effect of the action that occurs
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for the Blocks domain with increasing number of obstacles. On the
most complex configuration (6 obstacles), our algorithm achieves 100%
success while IDTMP achieves 20% and PDDLStream achieves 60%. The
reported planning times include the failed trials that time out at 1200s.
Our algorithm solves the largest problem two orders of magnitude faster
than PDDLStream and IDTMP.
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PDDLStream’s planning process times out after 1200 seconds for 46% of the
most challenging tasks (8 cook/clean goals), whereas our method achieves
100% success at magnitudes faster. PDDLStream’s slow task planning
times come from the explosive growth of its task state with stream objects,
which our method avoids by introducing stream objects after task planning.
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PDDLStream has exponential growth in task planning time, whereas our
task planning time remains nearly constant.

before the failure.
Let a be the action that failed and l be the location of a

collision. Our collision constraint is then the following:

¬clear(l) =⇒ fail-a ∧ clear(l) =⇒ ¬fail-a

This means that when an action fails, we will prune out any
plan that has the same collision.

V. EXPERIMENTS

a) Experimental Domains, Metrics and Baselines:
We evaluate our approach in the three domains (Blocks [4],
Kitchen [3] and Rover [3]) visualized in Fig. 1. For an
in-depth explanation of these domains, we refer the reader
to the supplementary material on the webpage. We compare
the cumulative median task and motion planning times of
our algorithm with a 50% confidence interval to that of
PDDLStream’s Adaptive Algorithm and IDTMP. For the
Blocks domain, we compare PDDLStream, IDTMP, and
our method on problems with 0–6 obstructing blocks, with
5 seeded trials for each. We run IDTMP and our method
with collision constraints. We further compare our method
to PDDLStream in the Kitchen and Rover domains. For
Kitchen, we increase the difficulty by incrementing the
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number of cook and clean goals from 1 to 8, each involving a
variable number of the 4 items. We use our general timestep
constraint and 50 seeded trials for each number of goals. For
Rover, we scale the number of objectives and rocks (goal
objects) N from 1 to 4, using our action constraint with 10
seeded trials. We institute a total planning timeout of 1200s
on all domains and trials and report the percentage solved
on each trial. Since Kitchen and Rover have large state
spaces, we only compare them against PDDLStream because
IDTMP requires a discretization of the object state space,
which is not a scalable approach for these two domains.

b) Results: The results for Blocks are shown in Fig. 2.
Overall, IDTMP’s cumulative task planning time with the
CSP solver is comparable in magnitude to our PDDL
planning with some differences attributed to FastDownward
[24] IO overhead. This demonstrates that our PDDL
constraint framework is comparable in performance to
IDTMP’s CSP constraint framework.

PDDLStream, which also uses Fast Downward,
significantly slows down with the number of blocks.
The Blocks domain has many infeasible actions due to
obstructing blocks, which is difficult for PDDLStream to
handle. PDDLStream requires many stream objects and
iterations of planning to support long and geometrically
feasible actions. For the five obstacle case, PDDLStream
and IDTMP have a median time of 600s, whereas our
method takes 6s to plan. For IDTMP, motion planning is
the bottleneck. To find the goal configuration for an action,
IDTMP samples various collision-free goal configurations
around a target object or location until a timeout or collision-
free configuration is found. In contrast, in PDDLStream and
our method, we calculate the inverse kinematics solution for
the grasp and approach pose and perform collision-checking
for the trajectory between them. This streamlines the motion
planning process significantly. We express this motion
planning grounding with actions, streams, and stream objects
in PDDLStream’s stream.pddl and our geometric.pddl.

The results for Kitchen are shown in Fig. 3. The Kitchen
task involves repetitive transfer of objects between surfaces,
which requires long, chained stream plans where stream
instance outputs are frequently inputs to future stream
instances. For PDDLStream, This requires many iterations
of stream generation to produce high-level stream instances.
This slows down task planning because many symbolic
stream objects are added to the task state. When there are
8 goals, PDDLStream takes a total planning time of 1000s,
whereas our method takes 10s. For the Rover domain in Fig.
4, PDDLStream spends the least amount of time on task
planning compared to Block and Kitchen. This is specifically
because in this domain PDDLStream’s incremental stream
generation algorithm can recycle rover positions across
actions and iterations of planning. This requires fewer
iterations of stream generation and therefore fewer stream
objects in the task state, resulting in faster planning. Since
we directly ground an action plan into a stream plan, every
stream object will be unique, which prevents the recycling
of stream objects. We circumvent this issue by introducing

a caching extension to streams. As shown in the ablation
in Fig 4, without caching, our method is less efficient than
PDDLStream during motion planning because it cannot
recycle stream results across a plan. However, with caching
stream instances that have PDDL objects as inputs, we
achieve similar performance. With four goal objects, our task
planning time with caching is 1s compared to PDDLStream’s
10s; however, our total time is only marginally better since
motion planning time dominates in this domain. Overall,
we show superior performance compared to PDDLStream
and IDTMP on total planning time for Blocks and Kitchen
and superior task planning time to PDDLStream on Rover.

c) Discussion: Our method requires a new formulation
of writing how streams and PDDL actions are combined,
but we believe this formulation is more straightforward
and as expressive as PDDLStream from the results on
three different domains. With this new formulation, we
can remove the optimistic stream generation process and
directly map action plans to stream plans. This comes at a
cost of not being able to rely on task planning to recycle
stream outputs across different actions of a task plan,
making refinement more inefficient per plan. However, this
motion planning inefficiency is insignificant compared to the
performance boost gained by our task planning approach.
A limitation of constraints are that they require manual
engineering for each task; however, this can be a benefit
since it gives a way for the user to directly embed domain
knowledge to reduce the search space of TAMP.

VI. CONCLUSION

We present COAST, a sampling-based TAMP algorithm
that significantly outperforms previous state-of-the-art
algorithms in terms of task planning time for a variety
of domains. The key to faster planning is our novel
stream planning subroutine, which bridges vanilla PDDL
constraint-based task planning with stream-based motion
planning and allows us to benefit from both.

VII. PROBABILISTIC COMPLETENESS

Theorem 7.1: For feasible problems, as the number of
samples approach infinity, the probability of success of
COAST will approach 1.

Proof: Given a TAMP task formulated as described
in Sec. IV, where the given task planner is complete
and streams are probabilistically-complete, let a feasible
task plan be πf and a feasible refinement for πf be Yf .
Our algorithm queries the task planner and then calls the
semi-complete Adaptive sampling algorithm [3]. Adaptive
will eventually find a feasible refinement if it exists. If
no refinement is found, we backtrack to a previous state,
and attempt refinement again, continuing to attempt all
unsuccessfully refined task plans. Since task planning is
complete, we are guaranteed to produce πf and since
we eventually reattempt all unsuccessful refinements, our
algorithm will eventually find the feasible refinement Yf to
πf and our algorithm is probabilistically-complete.
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