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Abstract

Deep reinforcement learning is a powerful approach to complex decision-making.
However, one issue that limits its practical application is its brittleness, sometimes
failing to train in the presence of small changes in the environment. This work is
motivated by the empirical observation that directly applying an already trained
model to a related task often works remarkably well, also called zero-shot transfer.
We take this practical trick one step further to consider how to systematically select
good tasks to train, maximizing overall performance across a range of tasks. Given
the high cost of training, it is critical to choose a small set of training tasks. The key
idea behind our approach is to explicitly model the performance loss (generalization
gap) incurred by transferring a trained model. We hence introduce Model-Based
Transfer Learning (MBTL) for solving contextual RL problems. In this work, we
model the performance loss as a simple linear function of task context similarity.
Furthermore, we leverage Bayesian optimization techniques to efficiently model
and estimate the unknown training performance of the task space. We theoretically
show that the method exhibits sublinear regret in the number of training tasks and
discuss conditions to further tighten regret bounds. We experimentally validate
our methods using urban traffic and standard control benchmarks. Despite the
conceptual simplicity, the experimental results suggest that MBTL can achieve
greater performance than strong baselines, including exhaustive training on all
tasks, multi-task training, and random selection of training tasks. This work lays the
foundations for investigating explicit modeling of generalization, thereby enabling
principled yet effective methods for contextual RL.

1 Introduction

Deep reinforcement learning (DRL) has made remarkable strides in addressing complex problems
across various domains [24, 31, 1, 4, 10, 12, 23]. Despite these successes, DRL models often
exhibit brittleness when exposed to small variations in task settings, significantly limiting their
scalability and generalizability [28, 40]. Such variations in Markov Decision Processes (MDPs) can
be conceptualized as contextual Markov Decision Processes (CMDP), where slight differences in
MDP definitions lead to multiple, closely related but different environments [14, 27]. Traditional
DRL approaches typically require independent training for each new task variant, a process that is
both resource-intensive and impractical for real-time applications. Multi-task training is a relatively
inexpensive way to train but still has limited model capacity issues. In light of this, there is a pressing
need for more robust approaches that enhance generalization across different tasks. It is crucial to
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Figure 2: Model-Based Transfer Learning (MBTL) for solving contextual MDPs. MBTL
framework strategically selects optimal tasks to train by modeling the generalization gap that arises
when transferring a model to different tasks. For each target task, we deploy the most effective trained
model, indicated by solid arrows. We evaluate our framework on a suite of continuous and discrete
tasks, including standard control benchmarks [6] and urban traffic benchmarks [34, 19].

differentiate between training robustness, which seeks resilience of training across a variety of tasks,
and model robustness, which focuses on the resistance of a model to environmental perturbations.
Contextual reinforcement learning (CRL) offers a framework for modeling changes in tasks [6]. In
our exploration of applying DRL to solve multiple related tasks, we identify computational challenges,
particularly the high costs and complexities associated with training separate models for each task.
While techniques like CARL [6] or multitask RL [36, 2] address these challenges, they still remain
computationally expensive and inefficient when applied across a broad context range.

Figure 1: Generalization gap in Cartpole
CMDPs. The solid lines illustrate the ac-
tual generalized performance after zero-
shot transfer across contexts, with the
source context indicated by a dotted line.

We build upon zero-shot transfer, which has shown po-
tential in directly applying a policy trained in one MDP
(source task) to another (target task) without adaptation.
This often leads to a performance degradation known as
the ‘generalization gap’ [16, 20]. For instance, Figure 1
exemplifies the concept of the generalization gap within
a Cartpole CMDP, a range of scenarios in which the agent
must balance a pole on a moving cart with a different
mass of pole. The performance degrades as the target task
diverges from the source task, illustrating an increasing
generalization gap. Given that training is expensive yet
zero-shot transfer is cheap, we are interested in optimally
selecting a set of source (training) tasks, such that perfor-
mance on the target range of tasks is maximized. In this
article, we devise strategies to incorporate the structure
of the generalization gap to better estimate the value of
training. Specifically, we investigate how explicit modeling of the generalization gap structure lends
itself to principled and effective algorithms for the selection of training tasks within CMDP.

Hence, this article introduces Model-Based Transfer Learning (MBTL), a novel framework for
studying generalization in reinforcement learning (Figure 2). We model the explicit form of the
generalization gap in zero-shot transfer and use it in estimating how valuable selecting the source
task is. Given a small number of samples in earlier steps, we leverage Bayesian optimization methods
to estimate training performance with limited information, thus significantly reducing the necessity
for exhaustive training [35, 37].

This paper contributes to the field of reinforcement learning by introducing MBTL framework for
efficient source task selection, aiming to solve multiple related tasks with enhanced transferability and
fewer required models. Theoretical analyses detail the sublinear cumulative regret of these methods
and provide conditions for achieving tighter regret bounds. We validate our methods in simulated
traffic management scenarios and standard control benchmarks. Our findings provide foundations
for investigating explicit modeling of generalization, enabling efficient and practical model-based
solutions for solving multiple related tasks for robust training in DRL.
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2 Preliminaries and notation

We leverage the framework of CMDPs [14, 27, 6] to formulate the problem of solving multiple
related tasks using reinforcement learning.

Contextual MDP (CMDP). A standard MDP is defined by the tuple M = (S,A, P,R, ρ) where
S represents the state space, A is the action space, P denotes the transition dynamics, R is the
reward function, and ρ is the distribution over initial states. In a CMDP, denoted by cM(x) =
(S,A, Px, Rx, ρx), these components are parameterized by a context variable x ∈ X , which can
influence both dynamics and rewards [14, 27]. Consider zero-shot transfer from a source task (MDP)
to solve another target task (MDP) in the CMDP. The notation x is used to represent a context for the
source task, with each task x belonging to the finite set of CMDPs denoted as X . The context of the
target task is similarly denoted by x′ and is also an element of X . In our framework, the expected
return of a MDP cM(x) with context x is denoted by J(x). We differentiate between estimated
values Ĵ(x) and observed outcomes J(x), with the latter measured after training and evaluation.

Generalization gap via zero-shot transfer. Zero-shot transfer involves applying a model trained
on a source task cM(x) to a different target task cM(x′), with x′ also belonging to the set X . We
observe the generalized performance, denoted by U(x′;x), by evaluating the target task x′ based on
the model trained using source task x via zero-shot generalization. As the concept of “transferability”
has been discussed in literature [32, 3], we define the generalization gap as the absolute performance
difference in average reward when transferring from source task x to target task x′:

∆J(x, x′)︸ ︷︷ ︸
Generalization gap

= U(x′;x)︸ ︷︷ ︸
Generalized performance

− J(x)︸︷︷︸
Source task performance

. (1)

3 Problem formulation

Sequential source task selection problem. The selection of source tasks in CMDPs is key to
solving the overall CMDP [3]. Specifically, we consider the sequential source task selection (SSTS)
problem, which seeks to maximize the expected performance across a dynamically selected set of
tasks. This problem is framed as a sequential decision problem, in which the selection of tasks is
informed through feedback from the observed task performance of the tasks selected and trained thus
far. The notation xk indicates the selected source task at the k-th transfer step, where k ranges from 1
to K.
Definition 1 (Sequential Source Task Selection Problem). The sequential source task selection (SSTS)
problem seeks to optimize the overall expected performance across a CMDP cM(·) by selecting one
task x ∈ X at each stage. Formally, at each selection step k, we aim to choose a task xk such that
the cumulative estimated performance is maximized:

max
xk

V (xk;x1, ..., xk−1) s.t. xk ∈ X \ {x1, ..., xk−1}. (2)

where V (·) is defined in the following. Intuitively, we can keep track of the highest performance
achievable by any model trained thus far. Formally, after we train the kth model at source task xk,
we update the generalized performance, denoted by U(x′;x(1:k)), by comparing the generalized
performance from the model trained using task xk. We recursively define U based on the previous
observations, as follows:

U(x′;x(1:k)) = max
(
U(x′;xk), U(x′;x(1:k−1))

)
∀x′ ∈ X if k > 1. (3)

For simplicity, we denote the sequence x1, x2, ..., xk by x(1:k). We can calculate the observed
expected generalized performance, denoted as V (x(1:k)) = Ex′∈X

[
U(x′;x(1:k))

]
.

The state at each step k is defined by the best performance for each task, achieved by models trained
in earlier stages, represented as U(x′;x(1:k−1)) for each target task x′. The action at each step
involves choosing a new task xk, aimed at optimizing generalized performance based on current
knowledge. The cumulative reward is quantified by the observed performance of the combined task
sequence, V (x(1:k)), providing a direct measure of the strategic value of each decision. In general,
SSTS exhibits stochastic transitions, for example due to randomness in RL training. For simplicity,
in this work, we assume deterministic transitions; that is, training MDP x will always yield the same
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Algorithm 1 Model-based Transfer
Learning (MBTL)
Input: CMDPs cM(x), Task x ∈ X , Transfer

budget K
Output: π and V

Initialize : J, V = 0 ∀x ∈ X , π = {},
k = 1

1: while k ≤ K do
2: xk ← NextTask(Jk−1, Vk−1)
3: πk ← Train(M(xk))
4: π ← π ∪ {πk}
5: Update J(x), V (x)
6: k ← k + 1
7: end while
8: return π and V

(a) Pseudo-greedy strategy (b) Equidistant strategy

Figure 3: Naive methods for solving SSTS. Note that the
normalized performance of the trained tasks is assumed to
always be 1 (known and constant).

performance J(x) and generalization gap ∆J(x, x′),∀x′ ∈ X . The problem’s horizon is defined by
|X|, indicating that all models will be trained unless a specific termination condition is met. This
termination condition is determined by reaching a predefined level of suboptimality.

Model-based transfer learning (MBTL). All methods that solve SSTS are transfer learning methods,
by definition. We additionally designate a method that solves SSTS to be model-based if an explicit
structure is imposed upon ∆J(·, ·). To the best of the authors’ knowledge, this is the first work to
study such methods in the context of reinforcement learning.

4 Methods for Model-Based Transfer Learning

4.1 Modeling assumptions

We make key assumptions about the task space, performance functions, and the generalization gap.
Assumption 1 (Continuity of the task space). The task set X is continuous, meaning that for any two
tasks x, x′ ∈ X and any ϵ > 0, there exists a δ > 0 such that ∥x−x′∥ < δ implies the corresponding
tasks x and x′ are indistinguishably close. Formally,

∀x, x′ ∈ X,∀ϵ > 0,∃δ > 0 such that ∥x− x′∥ < δ =⇒ ∥J(x)− J(x′)∥ < ϵ.

Assumption 2 (Smoothness of the performance function). The performance function J(x), U(x), or
V (x) is smooth. This implies that these functions are continuously differentiable over x. Formally,
J(x), U(x), V (x) ∈ C1(X), where C1(X) denotes the space of continuously differentiable functions
on X .

Assumption 3 (Linear generalization gap). A linear model is used to model the generalization gap
function, formally ∆Ĵ(x, x′) ≃ θ|x− x′|, where θ is the slope of the linear function and x and x′

are the context of the source task and target task, respectively.

Assumption 1 and 2 are for implementing MBTL, which relies on the continuous task space and
smooth performance function. Moreover, we simplify the generalization gap function as a linear
function inspired by empirical observations such as shown in Figure 1. Such structure (Assumption 3)
enables the development of provable algorithms for solving SSTS. Algorithm 1 provides a generic
psuedocode for a MBTL algorithm. The generalization gap structure is leveraged within Line 2
(function NextTask).

4.2 Naive strategies

To understand what is desirable in a method for solving SSTS, it is instructive to consider some
naive strategies. An Equidistant Strategy (ES) samples source tasks so that the tasks are equidistant
along the full range of tasks we aim to solve. In this method, source tasks are selected to be
equidistant within the context space based on the transfer budget K. Mathematically, the selected
source tasks are chosen such that the distances between consecutive tasks are approximately equal,
i.e., xk = 2k−1

2K |X| for k = 1, 2, . . . ,K. Note that this strategy requires advanced knowledge
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of the total number of training tasks (e.g., training budget). A Greedy Strategy (GS) greedily
selects the source task that is predicted to have the highest generalized performance in each round,
assuming known and constant training performance. Figure 3 depicts the difference between ES and
GS; observe that the normalized performance of the trained tasks is assumed to be 1. However, a
critical question emerges concerning scenarios where training performance is unknown or stochastic.
Furthermore, ES and GS are open-loop strategies; that is, they do not incorporate feedback from
actual training outcomes.

4.3 Bayesian optimization

Bayesian optimization (BO) is a powerful strategy for finding the global optimum of an objective
function when obtaining the function is costly or the function itself lacks a simple analytical form
[26, 7]. BO integrates prior knowledge with observations to efficiently decide the next task to train,
aiming to optimize the predicted value.

Gaussian Process. Within the framework of BO, we model the source training performance Jpred(x)
using Gaussian Process (GP) regression. Specifically, the function Jpred(x) is assumed to follow a
GP (Jpred(x) ∼ GP(m(x), k(x, x′))), where m(x) represents the mean function, E[Jpred(x)], and
k(x, x′) is the covariance function, representing the expected product of deviations of Jpred(x) and
Jpred(x

′) from their respective means. Let Dk−1 denote the data observed up to iteration k − 1,
consisting of the pairs {(xi, Vobs(xi))}i=1,...,k−1, where Vobs(x(1:i)) are the observed outcomes. The
posterior prediction of Jpred at a new point x, given the data Dk−1 and previous inputs x(1:k−1),
is normally distributed as P (Jpred,k | Dk−1) = N (µk(x), σ

2
k(x)). µk(x) and σ2

k(x) are defined as
µk(x) = m(x)+k⊤(K+σ2I)−1y and σ2

k(x) = k(x, x)−k⊤(K+σ2I)−1k, with k being the vector
of covariances between x and each xi in the observed data, i.e., k = [k(x, x1), . . . , k(x, xk−1)],
and K is the covariance matrix for the observed inputs, defined as K = [k(xi, xj)]1≤i,j≤k−1. This
formulation enables the GP to update its beliefs about the posterior prediction with every new
observation, progressively improving the estimation.

Acquisition function. The acquisition function plays a critical role in BO by guiding the selection
of the next source training task. At each decision step k, the task xk is chosen by maximizing
the acquisition function, as denoted by xk = argmaxx a(x;x(1:k−1)). Especially in our case,
the acquisition function can be designed as the expected marginal improvement of generalized
performance across all tasks. One effective strategy employed in the acquisition function is the
upper confidence bound (UCB) acquisition function, which considers the trade-off between the
expected performance of a task based on current models (exploitation) and the measure of uncertainty
associated with the task’s outcome (exploration). It is defined as follows:

a(x;x(1:k−1)) = Ex′∈X [[µk−1(x) + β
1/2
k σk−1(x)−∆J(x, x′)− U(x′;x(1:k−1))]+] (4)

where [·]+ represents max(·, 0) and we can use various forms of βk.

Generalized performance. We focus on the generalized performance evaluated across all target
tasks, defined as g(x) = Ex′∈X [Jpred(x)−∆J(x, x′)] = Jpred(x)− Ex′∈X [∆J(x, x′)].

4.4 Regret analysis

We use regret to quantify the effectiveness of our source task selection based on BO. Specifically, we
define regret at iteration k as rk = g(x∗k)− g(xk), where g(x∗k) represents the maximum generalized
performance achievable across all tasks, and g(xk) is the generalized performance at the current task
selection xk. Consequently, the cumulative regret after K iterations is given by RK =

∑K
k=1 rk,

summing the individual regrets over all iterations. Following the framework presented by Srinivas
et al. [35], our goal is to establish that this cumulative regret grows sublinearly with respect to the
number of iterations. Mathematically, we aim to prove that limK→∞

RK

K = 0, indicating that, on
average, the performance of our strategy approaches the optimal performance as the number of
iterations increases.

Regret of MBTL-GP. Having established the general framework for regret analysis, we now turn our
attention to the specific regret properties of our MBTL-GP algorithm. To analyze the regret of MBTL-
GP, consider the scaling factor for the UCB acquisition function given by βk = 2 log(|X|π2k2/6δ)
in Equation (4). It is designed to achieve sublinear regret with high probability, aligning with the
theoretical guarantees outlined in Theorem 1 and 5 from [35].
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Theorem 1 (Sublinear Regret). Given δ ∈ (0, 1), and with the scaling factor βk as defined, the
cumulative regret RK is bounded by

√
KC1βKγK with a probability of at least 1− δ. The formal

expression of this probability is Pr
[
RK ≤

√
KC1βKγK

]
≥ 1− δ, where C1 := 8

log(1+σ−2) ≥ 8σ2

and γK = O(logK) for the squared exponential kernel.

Impact of search space elimination. In this section, we demonstrate that strategic reduction of the
possible sets, guided by insights from previous task selections or source task training performance,
leads to significantly tighter regret bounds than Theorem 1. By focusing on the most promising
regions of the task space, our approach enhances learning efficiency and maximizes the model’s
performance and applicability. Given the generalization gap observed in Figure 1, we observe that
performance loss decreases as the context similarity increases. We model the degradation from the
source task using a simple linear function in Assumption 3. Training on the source task can solve
a significant portion of the remaining tasks. Our method progressively eliminates partitions of the
task space at a certain rate with each iteration. If the source task selected in the previous steps could
solve the remaining target task sufficiently, we can eliminate the search space at a desirable rate.
Consequently, at each step, we effectively reduce the search space.

Given the generalization gap observed in Figure 1, we model the degradation from the source task
using a simple linear function in Assumption 3. While the figure might not strictly appear linear,
the linear approximation simplifies analysis and is supported by empirical observations. Training
on the source task can solve a significant portion of the remaining tasks. Our method progressively
eliminates partitions of the task space at a certain rate with each iteration. If the source task selection
in the previous step sufficiently addresses the remaining target tasks, we can reduce the search space
at a desirable rate. Consequently, at each step, we effectively focus on a reduced search space.

Definition 2 (Reduced search space). We define the reduced search space Xk as a subset of X , with
each element x′ ∈ Xk, such that U(x′;x(1:k−1)) ≤ Ĵ(xk) + ∆J(x′, xk).

We leverage the reduced uncertainty in well-sampled regions to tighten the regret bound while slightly
lowering the probability δ in Theorem 1. For the regret analysis, we propose the following theorem
based on the generalization of Lemma 5.2 and 5.4 in [35] to the eliminated search space.

Theorem 2. For a given δ′ ∈ (0, 1) and scaling factor βk = 2 log(|X|π2k2/6δ), the cumulative

regret RK is bounded by

√
C1βKγK

∑K
k=1

(
|Xk|
|X|

)2

with probability at least 1− δ′.

Here, |X| denotes the cardinality of the set X , the number of elements in X . Theorem 2 matches the
Theorem 1 when Xk = X for all k. This theorem implies that regret has a tighter or equivalent bound
if we can design the smaller search space instead of searching the whole space. The comprehensive
proof is provided in Appendix A.1.2.

Here are some examples of restricted search space: If we consider an example where |Xk| = 1√
k
|X|,

the regret can be bounded tighter than that of Theorem 1.

Corollary 2.1. Consider |Xk| = 1√
k
|X|. The regret bound would be RK ≤

√
C1βKγK logK with

a probability of at least 1− δ′.

Figure 4: Empirical results of the re-
striction of search space by MBTL-
GP compared to two examples from
Corollaries 2.1 and 2.2.

In cases where the search space is defined using MBTL-
GS, the largest segment’s length would reduce geometrically,
described by |Xk| ≤ 2−⌊log2 k⌋|X|.

Corollary 2.2. The regret bound for the |Xk| ≤
2−⌊log2 k⌋|X| would be RK ≤

√
C1βKγKπ2/6 with a prob-

ability of at least 1− δ′.

Proofs for Corollaries 2.1 and 2.2 are provided in Ap-
pendix A.1.3 and A.1.4, respectively. Based on our experi-
ments presented in Section 5, the rate of elimination of the
largest segment for MBTL-GP is shown in Figure 4.

6



Table 1: Comparative performance of different methods on traffic CMDP tasks
Benchmark Baselines MBTL (Ours) Oracle

Task Context Variation Random Exhaustive Multitask MBTL-GS MBTL-ES MBTL-GP Oracle Transfer
Number of Trained Models k N 1 k K k N

Traffic Signal Road Length 0.9249 0.9409 0.8242 0.9278 0.9213 0.9371 0.9409
Traffic Signal Inflow 0.8457 0.8646 0.8319 0.8496 0.8700 0.8673 0.8768
Traffic Signal Speed Limit 0.8821 0.8857 0.6083 0.8862 0.8858 0.8854 0.8876
Eco-Driving Penetration Rate 0.5959 0.5260 0.1945 0.5827 0.5934 0.6323 0.6660
Eco-Driving Inflow 0.4774 0.4061 0.2229 0.4673 0.4705 0.5108 0.5528
Eco-Driving Green Phase 0.4406 0.3850 0.4228 0.4431 0.4557 0.4700 0.5027

AA-Ring-Acc Hold Duration 0.8924 0.8362 0.9209 0.8776 0.9057 0.9242 0.9552
AA-Ring-Vel Hold Duration 0.9785 0.9589 0.9720 0.9807 0.9772 0.9816 0.9822

AA-Ramp-Acc Hold Duration 0.6050 0.4276 0.5158 0.6143 0.5956 0.6318 0.7111
AA-Ramp-Vel Hold Duration 0.6690 0.5473 0.5034 0.5907 0.6787 0.7182 0.7686

Average 0.7312 0.6778 0.6017 0.7220 0.7354 0.7559 0.7844
†Higher the better. The bold indicates the best for each benchmark, excluding the Oracle transfer. Detailed results with variance for each method
are provided in Appendix A.2.2.
‡AA: Advisory autonomy tasks, Ring: Single lane ring, Ramp: Highway ramp, Acc: Acceleration guidance, Vel: Speed guidance.

5 Experiments and analysis

5.1 Setup

Our experiments span a variety of CMDP settings, focusing on transportation tasks as well as classic
control benchmarks. We introduce three intelligent transportation tasks that utilize DRL but suffer
from brittleness issues, as well as the classic control tasks.

Baselines. Our proposed methods are compared against a range of baselines including (1) Random
selection, where each training task is chosen randomly; (2) Exhaustive training, which involves
independent training separate models on all tasks exhaustively but is computationally expensive;
(3) Multi-task RL, where a single context-conditioned model is trained for all tasks; (4) Oracle
transfer, which assumes full knowledge of generalized performance for all policies and selects the
best source task for each target task.

Proposed methods. Our proposed methods are: (1) MBTL-ES, selecting source tasks for the
context to be equidistance based on the transfer budget; (2) MBTL-GS, selecting the next source
task greedily to maximize the marginal improvement of expected generalized performance based on
linear generalization gap (Assumption 3); (3) MBTL-GP, selecting source task based on the BO
using GP and UCB with scaling factor βk = 2 log(|X|π2k2/6δ).

DRL algorithms and performance measure. We utilize Deep Q-Networks (DQN) for discrete
actions [24] and Proximal Policy Optimization (PPO) for continuous actions [30]. We evaluate our
methods by the average performance across all target tasks after training 15 source tasks and the
number of trained models needed to achieve a certain level of suboptimality. We employ min-max
normalization of the rewards for each task.

5.2 Traffic tasks

We validate our methods on diverse simulated traffic scenarios, focusing on to what extent Our
proposed methods can optimize the global objective only with a small number of trained models.First,
while most traffic lights operate on fixed schedules, we can design learning-based adaptive (1) Traffic
signal control to optimize the traffic [8, 21]. However, considering that every intersection looks
different, challenges persist in generalizing across various intersection configurations [18]. Given the
significant portion of greenhouse gas emissions in the United States coming from the transportation
sector [11], the second traffic task is (2) Eco-driving Lagrangian control, which is critical for
climate change mitigation. DRL-based eco-driving strategies have been developed [13, 38, 17] but
still have some issues of difficulties in generalization. The last traffic task is (3) Advisory autonomy,
which is a real-time speed advisory system that enables human drivers to emulate the system-level
performance of autonomous vehicles in mixed autonomy systems [34, 15]. Instead of direct and
instantaneous control, human drivers receive periodic guidance, which varies based on the traffic
states. In Appendix A.2, we provide comprehensive details about our experiments.
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Figure 5: Comparison of normalized generalized performance of all target tasks.

Table 2: Comparative performance of different methods on standard control CMDP tasks
Benchmark Baselines MBTL (Ours) Oracle

Task Context Variation Random Exhaustive Multitask MBTL-GS MBTL-ES MBTL-GP Oracle Transfer
Number of Trained Models k N 1 k K k N

Pendulum Length 0.7270 0.7383 0.6830 0.7327 0.7092 0.7697 0.7969
Pendulum Mass 0.6329 0.6237 0.5793 0.6408 0.6092 0.6827 0.7132
Pendulum Timestep 0.7989 0.8135 0.7247 0.8177 0.7541 0.8141 0.8801
Cartpole Mass of Cart 0.7221 0.9466 0.7153 0.6501 0.7516 0.8212 0.9838
Cartpole Length of Pole 0.8121 0.9110 0.5441 0.8217 0.8428 0.9124 0.9875
Cartpole Mass of Pole 0.8858 0.9560 0.6073 0.8744 0.7909 0.9351 1.0000

BipedalWalker Gravity 0.9330 0.9281 0.7898 0.9359 0.9494 0.9393 0.9674
BipedalWalker Friction 0.9650 0.9317 0.9051 0.9645 0.9664 0.9713 0.9778
BipedalWalker Scale 0.8605 0.8694 0.7452 0.8792 0.8496 0.8886 0.9107
HalfCheetah Gravity 0.8542 0.6679 0.6292 0.8663 0.8634 0.9073 0.9544
HalfCheetah Friction 0.8567 0.6693 0.7242 0.8591 0.8703 0.9274 0.9663
HalfCheetah Stiffness 0.8533 0.6561 0.7007 0.8785 0.7817 0.9146 0.9674

Average 0.8251 0.8093 0.6957 0.8267 0.8116 0.8736 0.9255
†Higher the better. The bold indicates the best for each benchmark, excluding the Oracle transfer. Detailed results with variance for each method
are provided in Appendix A.2.2.

Discussion. Table 1 compares the min-max normalized generalized performance across the full
target task range. While exhaustive training is computationally expensive and exhibits suboptimal
performance, the Oracle transfer, which assumes perfect knowledge of transferability, demonstrates
the potential benefits of zero-shot transfer for solving the complete range of multiple tasks. Our
proposed MBTL methods leverage this transferability by intelligently selecting the next source task
to learn from. Notably, MBTL-GP shows superior performance, closely aligning with the Oracle
transfer, which suggests the Gaussian Process effectively models the underlying task dynamics,
facilitating better generalization from learned experiences. For example, MBTL-GP significantly
improves generalized performance with a few source tasks for traffic signal control problems varying
green phase durations (Figure 5). More results are provided in Appendix A.2.

5.3 Standard control benchmarks

Building on the evaluation of a suite of traffic-related tasks, we extend our investigation to classic
control tasks to assess the applicability of our methods across a broader spectrum of environments.
We utilize context-extended versions of standard RL environments from CARL benchmark library [6]
to rigorously test the robustness and adaptability of our methods under varied contexts. For Cartpole
tasks, we explored contextual Markov decision processes (CMDPs) with varying cart masses, pole
lengths, and pole masses. We vary the timestep duration, pendulum length, and pendulum mass in
Pendulum. The BipedalWalker was tested under varying friction, gravity, and scale. In HalfCheetah
tasks, we manipulated friction, gravity, and stiffness parameters. These variations critically influence
the dynamics and physics of the environments. The range of context variations was selected by
scaling the default values specified in CARL from 0.1 to 10 times, enabling a comprehensive analysis
of transfer learning under drastically different conditions. We provide more details in Appendix A.2.

Discussion. Table 2 compares the performance across the full target task range. Our experiments
demonstrate that MBTL significantly improves performance and sample efficiency in dynamic urban
transportation systems compared to the baselines. In control tasks such as Cartpole, Pendulum,
BipedalWalker, and HalfCheetah, where physical parameters like mass directly influence the dynam-
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Figure 6: Sensitivity analysis on different DRL algorithms
(Cartpole, length of pole).

Figure 7: Sensitivity analysis on the differ-
ent acquisition functions.

ics, MBTL methods, particularly MBTL-GP, excel by effectively transferring knowledge between
similar task variations. For example, in Figure 5, MBTL-GP outperforms other baselines, including
multitask training. The results underscore the potential of MBTL in solving multiple related tasks.

5.3.1 Sensitivity analysis

DRL algorithms. Figure 6 shows an ablation study comparing different DRL algorithms—DQN,
PPO, and Advantage Actor-Critic (A2C) [25]. The heatmap results show differences in transferability,
and the results underscore the robustness of MBTL to different algorithms.

Acquisition functions. Figure 7 assesses the role of acquisition functions in Bayesian optimization.
While expected improvement (EI) focuses on promising marginal gains beyond the current best, UCB
utilizes both mean and variance for balancing exploration and exploitation. For Cartpole and advisory
autonomy tasks, UCB with decreasing βk as k increases shows the best performance. However, for
eco-driving control, the βk formulation in Section 4.4 exhibits the highest performance, though the
difference is not statistically significant.

6 Related work

Robustness and generalization challenges in DRL are generally addressed by a few common tech-
niques in the literature. The broader umbrella of such methods falls under CRL [6]. CRL utilizes
side information about the problem variations to improve the generalization and robustness. In
particular, CRL formalizes generalization in DRL using CMDPs [14, 27, 6], which incorporate
context-dependent dynamics, rewards, and initial state distributions into the formalism of MDPs.
This provides a structured framework to study generalization in DRL [14, 27].

The contexts of CMDPs are not always visible during training [20]. When they are visible, they can
be directly used as side information by conditioning the policy on them [33]. A common approach is
multi-task learning, which aims to leverage a common structure between tasks. The structure between
tasks has been exploited using policy sketches for task structuring [2] and by sharing a distilled
policy that captures common behavior across tasks [36]. However, when the context features are not
visible, the resulting CMDP becomes a partially observable CMDP [20, 9] and can be challenging for
multi-task learning. In this work, we use multi-task learning as a baseline in evaluating our methods.

Zero-shot transfer is another commonly used technique that focuses on adapting models trained
in one environment to perform effectively in unseen settings without further training [20]. Rezaei-
Shoshtari et al. [29] utilize hypernetworks to approximate an RL algorithm as a mapping from
parameterized CMDP to a family of near-optimal solutions to achieve zero-shot transfer across
varying task conditions. Sinapov et al. [32] uses meta-data to learn inter-task transferability to learn
the expected benefit of transfer given a source-target task pair.

Another popular class of techniques for robust and generalizable DRL is domain adaptation strategies.
It is often used in making learned policies adapt to new domains with varying dynamics, observations,
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or rewards [5]. For instance, Xing et al. [39] first learn a latent unified state representation for different
domains and subsequently train DRL agents in the source domain based on that. However, our focus
in this work centered around in-distribution generalization, whereas domain adaptation techniques
are commonly used for out-of-distribution generalization.

7 Conclusion

Our study refines the robustness of DRL by developing MBTL using zero-shot transfer. MBTL
strategically selects a set of source tasks to maximize overall performance and minimize training
costs. It models the generalization gap and uses BO to predict task performance efficiently. We
theoretically show that the method exhibits regret that is sublinear in the number of training tasks. We
validate MBTL with urban traffic and control benchmarks. Limitation is that MBTL relies highly on
assumptions that may not hold in highly dynamic or complex environments, potentially limiting its
applicability and leading to suboptimal policy convergence. Future work will focus on improving the
modeling of the generalization gap and exploring scenarios with multiple context variations where
simple strategies like MBTL-ES or MBTL-GS may not be applicable.
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A.1 Theoretical analysis

A.1.1 Notation

Table 3 describes the notation used in this paper.

Table 3: Notation used in the problem formulation
Symbol Description

x Source task (x ∈ X)
x′ Target task (x′ ∈ X)
xk Selected source task at transfer step k (k = 1, ...,K)
x Vector of source tasks (x = [x1, ..., xk] where xi ∈ X for 1 ≤ i ≤ k)

cM(x) Contextual MDP parameterized by x
J(x) Performance of task cM(x)

∆Ĵ(x, x′) Generalization gap (source: x, target: x′)
U(x′;x) Transferred performance (source: x (or x), target: x′)
V (x) Expected generalized performance of source model x evaluated on all x′ ∈ X

Figure 8 helps understand the discrepancy between the observed generalized performance and the
predicted one. Figure 9 illustrates how to calculate the marginal improvement of expected generalized
performance (V̂ (x;x1, ..., xk−1)− V (x1, ..., xk−1)).

A.1.2 Proof of Theorem 2

Theorem 2. For a given δ′ ∈ (0, 1) and scaling factor βk = 2 log(|X|π2k2/6δ), the cumulative

regret RK is bounded by

√
C1βKγK

∑K
k=1

(
|Xk|
|X|

)2

with probability at least 1− δ′.
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Target task x′

U

J(x1)

x1

U(x′;x1)

Û(x′;x1)

Figure 8: Illustration of the discrepancy between observed (U ) and predicted (Û ) generalized
performance after training on source task x1 and attempting zero-shot transfer to x′.

Target task x′

U

J(x1)

x1

Ĵ(x)

x

U(x′;x1)

Û(x′;x)

max
(
Û(x′;x), U(x′;x1)

)
V̂ (x;x1)− V (x1)

Figure 9: Step for choosing x2 that maximizes the estimated marginal improvement (V̂ (x;x1) −
V (x1)). V̂ (x;x1) corresponds to the red area under the red line and V (x1) as the area under
U(x′;x1).

Proof. The following Lemma 3 and 4 is basically considering the cardinality of restricted search
space of Xk instead of X upon the lemmas in literature [35].

Lemma 3. For t ≥ 1, if |f(x)−µk−1(x)| ≤ β
1/2
k σk−1(x) ∀x ∈ Xk, then the regret rt is bounded

by 2|Xk|β1/2
k σk−1(x)/|X|.

Lemma 4. Setting δ ∈ (0, 1), βk = 2 log(|X|π2k2/6δ), and C1 := 8
log(1+σ−2) ≥ 8σ2, we have

Pr

[∑K
k=1 rk

(
|X|
|Xk|

)2

≤ C1βKγK ∀K ≥ 1

]
≥ 1− δ.

Using Lemma 3, Lemma 5.3 in [35], Lemma 4, and Cauchy–Schwarz inequality, we can bound the
cumulative regret as:

RK =

K∑
k=1

rk ≤

√√√√ K∑
k=1

rk

(
|X|
|Xk|

)2 K∑
k=1

(
|Xk|
|X|

)2

≤

√√√√C1βKγK

K∑
k=1

(
|Xk|
|X|

)2

. (5)
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A.1.3 Proof of Corollary 2.1

Corollary 2.1. Consider |Xk| = 1√
k
|X|. The regret bound would be RK ≤

√
C1βKγK logK with

a probability of at least 1− δ′.

Proof. Recall that
∑K

k=1
1
k ≤ logK.

Calculating the sum of squares for the reduced segments, we have:

K∑
k=1

|Xk|2 =

K∑
k=1

1

k
|X|2 ≤ |X|2 logK (6)

The cumulative regret can be bounded as below:

RK =

K∑
k=1

rk ≤

√√√√C1βKγK

K∑
k=1

(
|Xk|
|X|

)2

≤
√
C1βKγK logK. (7)

A.1.4 Proof of Corollary 2.2

Corollary 2.2. The regret bound for the |Xk| ≤ 2−⌊log2 k⌋|X| would be RK ≤
√
C1βKγKπ2/6

with a probability of at least 1− δ′.

Proof. Calculating the sum of squares for the reduced segments, we have:

K∑
k=1

|Xk|2 =

K∑
k=1

2−2⌊log2 k⌋|X|2 ≤ 1

k2
|X|2 ≤ π2

6
|X|2 (8)

The cumulative regret can be bounded as below:

RK =

K∑
k=1

rk ≤

√√√√C1βKγK

K∑
k=1

(
|Xk|
|X|

)2

≤
√

C1βKγKπ2

6
. (9)
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A.2 Experiment details

A.2.1 Details about Gaussian process (GP)

In our study, we conducted hyperparameter tuning experiments for Gaussian Process (GP) regression
to optimize its performance. Specifically, we varied the noise standard deviation over the set
{0.001, 0.01, 0.1, 1} and the number of restarts for the optimizer over the set {5, 10, 15}. We
explored several kernel configurations, including the combination of a constant kernel (C) and a radial
basis function kernel (RBF) with a length scale ranging from 0.01 to 100, as well as more complex
kernels incorporating a white noise kernel and an exponential sine squared kernel with varying length
scales and periodicities. Each GP model was instantiated with the specified kernel, and the noise level
was set to the square of the noise standard deviation. This systematic exploration aimed to identify
the optimal set of hyperparameters that could enhance the model’s predictive accuracy.

A.2.2 Results of table with standard deviation

Table 4: Comparative performance of different methods on context-variant traffic and benchmark
tasks

Benchmark Baselines Model-Based Transfer Learning Oracle

Task Context Variation Random Exhaustive Multitask MBTL-PS MBTL-ES MBTL-GP Oracle Transfer
Number of Trained Models k N 1 k K k N

Traffic Signal Road Length 0.9249
(0.0007)

0.9409
(0.0002)

0.8242
(0.0538)

0.9278
(0.0071)

0.9213
(0.0001)

0.9371
(0.0023)

0.9409
(0.0006)

Traffic Signal Inflow 0.8457
(0.0028)

0.8646
(0.0009)

0.8319
(0.004)

0.8496
(0.0039)

0.8700
(0.0051)

0.8673
(0.0016)

0.8768
(0.0012)

Traffic Signal Speed Limit 0.8821
(0.0003)

0.8857
(0.0005)

0.6083
(0.0403)

0.8862
(0.001)

0.8858
(0.0004)

0.8854
(0.0008)

0.8876
(0.0002)

Eco-Driving Penetration Rate 0.5959
(0.0058)

0.5260
(0.0087)

0.1945
(0.0057)

0.5827
(0.0151)

0.5934
(0.0052)

0.6323
(0.0235)

0.6660
(0.0049)

Eco-Driving Inflow 0.4774
(0.0097)

0.4061
(0.0094)

0.2229
(0.001)

0.4673
(0.0124)

0.4705
(0.0051)

0.5108
(0.0175)

0.5528
(0.0096)

Eco-Driving Green Phase 0.4406
(0.0045)

0.3850
(0.0063)

0.4228
(0.0184)

0.4431
(0.0109)

0.4557
(0.0334)

0.4700
(0.0144)

0.5027
(0.0058)

AA-Ring-Acc Hold Duration 0.8924
(0.0097)

0.8362
(0.0048)

0.9209
(0.0235)

0.8776
(0.0103)

0.9057
(0.0338)

0.9242
(0.021)

0.9552
(0.0132)

AA-Ring-Vel Hold Duration 0.9785
(0.0012)

0.9589
(0.0096)

0.9720
(0.0035)

0.9807
(0.0007)

0.9772
(0.0072)

0.9816
(0.0004)

0.9822
(0)

AA-Ramp-Acc Hold Duration 0.6050
(0.0192)

0.4276
(0.0066)

0.5158
(0.045)

0.6143
(0.0793)

0.5956
(0.1052)

0.6318
(0.0272)

0.7111
(0.0479)

AA-Ramp-Vel Hold Duration 0.6690
(0.0476)

0.5473
(0.0222)

0.5034
(0.014)

0.5907
(0.0407)

0.6787
(0.0544)

0.7182
(0.0461)

0.7686
(0.0581)

Pendulum Length 0.7270
(0.0008)

0.7383
(0.0034)

0.6830
(0.0008)

0.7327
(0.005)

0.7092
(0.0027)

0.7697
(0.013)

0.7969
(0.0123)

Pendulum Mass 0.6329
(0.0077)

0.6237
(0.0023)

0.5793
(0.0041)

0.6408
(0.0073)

0.6092
(0.0013)

0.6827
(0.0239)

0.7132
(0.0129)

Pendulum Timestep 0.7989
(0.0073)

0.8135
(0.0103)

0.7247
(0.0488)

0.8177
(0.0024)

0.7541
(0.0231)

0.8141
(0.0032)

0.8801
(0.0198)

Cartpole Mass of Cart 0.7221
(0.0188)

0.9466
(0.0065)

0.7153
(0.2195)

0.6501
(0.0268)

0.7516
(0.0877)

0.8212
(0.0164)

0.9838
(0.0131)

Cartpole Length of Pole 0.8121
(0.0156)

0.9110
(0.0065)

0.5441
(0.1614)

0.8217
(0.098)

0.8428
(0.1167)

0.9124
(0.0266)

0.9875
(0.0047)

Cartpole Mass of Pole 0.8858
(0.0052)

0.9560
(0.0128)

0.6073
(0.0948)

0.8744
(0.0804)

0.7909
(0.0548)

0.9351
(0.0403)

1.0000
(0.0000)

BipedalWalker Gravity 0.9330
(0.0025)

0.9281
(0.0034)

0.7898
(0.0928)

0.9359
(0.0172)

0.9494
(0.0119)

0.9393
(0.0123)

0.9674
(0.0014)

BipedalWalker Friction 0.9650
(0.0021)

0.9317
(0.0074)

0.9051
(0.0734)

0.9645
(0.0098)

0.9664
(0.004)

0.9713
(0.0008)

0.9778
(0.0013)

BipedalWalker Scale 0.8605
(0.0081)

0.8694
(0.0087)

0.7452
(0.0938)

0.8792
(0.0186)

0.8496
(0.0141)

0.8886
(0.0183)

0.9107
(0.004)

HalfCheetah Gravity 0.8542
(0.015)

0.6679
(0.0162)

0.6292
(0.0258)

0.8663
(0.0563)

0.8634
(0.0493)

0.9073
(0.0133)

0.9544
(0.0221)

HalfCheetah Friction 0.8567
(0.036)

0.6693
(0.0203)

0.7242
(0.1056)

0.8591
(0.0397)

0.8703
(0.033)

0.9274
(0.0392)

0.9663
(0.0276)

HalfCheetah Stiffness 0.8533
(0.0163)

0.6561
(0.0101)

0.7007
(0.1126)

0.8785
(0.0138)

0.7817
(0.0419)

0.9146
(0.0189)

0.9674
(0.0286)

Average 0.8068
(0.1551)

0.7775
(0.197)

0.6337
(0.2395)

0.8037
(0.1629)

0.7996
(0.1548)

0.8435
(0.1501)

0.8833
(0.1467)

* Note: The bold values indicate the maximum value for each task excluding the oracle. Standard deviation across multiple runs in the parenthesis.
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A.2.3 Details about traffic signal control

Most traffic lights operate on fixed schedules, but adaptive traffic signal control using DRL can
optimize the traffic flow using real-time information on the traffic [8, 21], though challenges persist
in generalizing across various intersection configurations [18].

Figure 10 showcases the layout of traffic networks used in a traffic signal control task with several
lanes and a signalized intersection in the middle. The state space represents the presence of vehicles
in discretized lane cells along the incoming roads. Actions determine which lane gets the green
phase of the traffic signal, and rewards are based on changes in cumulative stopped time, the period
when speed is zero. The global objective is to minimize the average waiting times at the intersection.
Different configurations of intersections (e.g., road length, inflow, speed limits) are modeled to
represent varying real-world conditions.

Training configuration We used the microscopic traffic simulation called Simulation of Urban
MObility (SUMO) [22] v.1.16.0 and PPO for RL algorithm [30]. All experiments are done on a
distributed computing cluster equipped with 48 Intel Xeon Platinum 8260 CPUs.

Figure 10: Illustration of the traffic networks in traffic signal control task.

Transferability heatmap Figure 11 presents heatmaps of transferability for different traffic signal
control tasks, each varying a specific aspect: inflow, speed limit, and road length. The heatmaps
display the effectiveness of strategy transfer from each source task (vertical axis) to each target task
(horizontal axis). In terms of inflow variation, transferability drops when transferring from tasks with
lower vehicle inflow to those with higher inflow. In speed limit variation, the transferability shows
uniform effectiveness, suggesting less sensitivity to these changes. In road length variation, distinct
blocks of high transferability indicate that different road lengths may require significantly tailored
strategies.
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(a) Inflow variation (b) Speed limit variation (c) Road length variation

Figure 11: Examples of transferability heatmap for traffic signal control.

Results Figure 12 illustrates the normalized generalized performance across various traffic control
tasks: inflow, speed limit, and road length. The plots display how different strategies adapt with
increasing transfer steps:

• Inflow: Performance improves as the number of transfer steps increases, with MBTL-GP
strategy consistently achieving the highest scores, demonstrating their effectiveness in
adapting to changes in inflow conditions.

• Speed Limit: Here, performance levels are relatively stable across all strategies except for
the multitask training.

• Road Length: There is a general upward trend in performance for all strategies, particularly
for MBTL-GP, indicating robustness in adapting to different road lengths.

This data suggests that MBTL-GP and Oracle are particularly effective across varying conditions,
maintaining higher levels of performance adaptability.

Figure 12: Comparison of normalized generalized performance of all target tasks: Traffic signal
control.
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A.2.4 Details about eco-driving Lagrangian control

Given the significant portion of greenhouse gas emissions in the United States coming from the
transportation sector [11], eco-driving behaviors are critical for climate change mitigation. Deep
reinforcement learning-based eco-driving strategies have been developed [13, 38, 17] but still have
some issues of difficulties in generalization. We also extend to various intersection configurations
with different traffic inflow rates, penetration rates of eco-driving systems, and durations of green
phases at static traffic signals to optimize vehicle behaviors for reduced emissions.

Figure 13 illustrates the traffic road network used in eco-driving Lagrangian control task. The road
network is depicted with traffic flowing vertically and horizontally crossing the static phase traffic
signal. There are both guided and default vehicles in the system. The state space includes the speed
and position of the ego vehicle, the leading vehicle, and the following vehicles, supplemented by
the current traffic signal phase and relevant context features, including lane length and green phase
durations. The action space specifically focuses on the ego vehicle’s acceleration control. The reward
mechanism is designed to optimize the driving strategy by balancing the average speed of the vehicles
against penalties for emissions, thereby promoting eco-friendly driving behaviors within the traffic
system.

Training configuration We also used the microscopic traffic simulation called Simulation of Urban
MObility (SUMO) [22] v.1.16.0 and PPO for RL algorithm [30].

Figure 13: Illustration of the traffic networks in eco-driving control task.

Transferability heatmap Figure 14 displays heatmaps for the eco-driving control task, with each
heatmap varying an aspect such as green phase, inflow, and penetration rate. These visuals illustrate
the transferability of strategies from source tasks (vertical axis) to target tasks (horizontal axis),
highlighting the impact of traffic light phases, vehicle inflow, and the proportion of guided vehicles
on strategy effectiveness. Notably, longer green phases correlate with improved performance and
transferability. For inflow variations, reduced inflow typically yields better outcomes. However,
variations in the penetration rate of guided vehicles show minimal impact on performance differences.

Results Figure 15 illustrates the normalized generalized performance across variants of eco-driving
control tasks, specifically looking at variations in green phase time, inflow, and penetration rate.
The graphs depict performance enhancement over transfer steps for different strategies. Notably,
MBTL-GP consistently demonstrates superior performance across all variations, indicating robust
adaptability to changing task parameters.
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(a) Green phase variation (b) Inflow variation (c) Penetration rate variation

Figure 14: Examples of transferability heatmap for eco-driving Lagrangian control.

Figure 15: Comparison of normalized generalized performance of all target tasks: Eco-driving
Lagrangian control.
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A.2.5 Details about advisory autonomy task

Advisory autonomy involves a real-time speed advisory system that enables human drivers to emulate
the system-level performance of autonomous vehicles in mixed autonomy systems [34, 15]. Instead
of direct and instantaneous control, human drivers receive periodic guidance, which varies based on
road type and guidance strategy. Here, we consider the different frequencies of this periodic guidance
as contextual MDPs since the zero-order hold action affects the transition function.

Figure 16 illustrates two distinct traffic network configurations used in the advisory autonomy task: a
single-lane ring and a highway ramp. The single-lane ring features 22 vehicles circulating the ring,
with only one being actively controlled, presenting a relatively controlled environment for testing
vehicle guidance systems. The highway ramp scenario introduces a more complex dynamic, where
vehicles not only travel along the highway but also merge from ramps, creating potential stop-and-go
traffic patterns that challenge the adaptability of autonomous guidance systems.

Problem Definition: In a single-lane scenario, the state space includes the speeds of the ego and
leading vehicles, along with the headway. For highway ramp scenarios, additional states cover the
relative positions and speeds of adjacent vehicles. Actions vary by guidance type: for acceleration
guidance, the action space is continuous, ranging from −1 to 1; for speed guidance, it has ten discrete
actions compared to the speed limit. Rewards are based on system throughput or average speed of all
vehicles in the system.

Context Variations: We explore different durations of coarse-grained guidance holds to test various
levels of human compatibility, adjusting the model based on observed driver behaviors and system
performance.

Figure 16: Illustration of the traffic networks in advisory autonomy task.

Transferability heatmap Figure 17 showcases heatmaps of transferability for advisory autonomy
tasks, each varying in specific aspects: acceleration guidance and speed guidance across a single
lane ring and a highway ramp. These heatmaps demonstrate the effectiveness of strategy transfer
from each source task (vertical axis) to each target task (horizontal axis), capturing how variations in
task conditions influence adaptability. For acceleration guidance in a ring setup (a), transferability
is generally higher among tasks with similar acceleration demands. In contrast, speed guidance
on a ramp (d) reveals more variability in transferability, potentially due to the complexity of speed
adjustments in ramp scenarios.

(a) Ring with acceleration
guide

(b) Ring with speed guide (c) Ramp with acceleration
guide

(d) Ramp with speed guide

Figure 17: Examples of transferability heatmap for advisory autonomy.
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Results Figure 18 illustrates the comparison of normalized generalized performance for advisory
autonomy tasks, specifically acceleration and speed guidance in a ring and acceleration guidance on
a ramp. The graphs demonstrate that MBTL-GP consistently exhibits higher performance across
all tasks. Particularly, acceleration guidance in both ring and ramp scenarios shows significant
performance improvements over transfer steps, with MBTL-GP closely matching in some instances.

Figure 18: Comparison of normalized generalized performance of all target tasks: Advisory autonomy.
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A.2.6 Details of control tasks

For this experimental phase, we selected context-extended versions of standard RL environments
from the CARL benchmark library, including Cartpole, Pendulum, BipedalWalker, and Halfcheetah.
These environments were chosen to rigorously test the robustness and adaptability of our MBTL
algorithm under varied conditions that mirror the complexity encountered in real-world scenarios.

Context Variations: In the Cartpole tasks, we explored CMDPs with varying cart masses, pole
lengths, and pole masses. For the Pendulum, the experiments involved adjusting the timestep duration,
pendulum length, and pendulum mass. The BipedalWalker was tested under different settings of
friction, gravity, and scale. Similarly, in the Halfcheetah tasks, we manipulated parameters such as
friction, gravity, and stiffness to simulate different physical conditions. These variations critically
influence the dynamics and physics of the environments, thereby presenting unique challenges that
test the algorithm’s capacity to generalize from previous learning experiences without the need for
extensive retraining. The range of context variations was established by scaling the default values
specified in the CARL framework from 0.1 to 10 times, enabling a comprehensive examination of
each model’s performance under drastically different conditions.

License: CARL falls under the Apache License 2.0 as is permitted by all work that we use [6].

A.2.7 Results of control tasks

Figure 19 compares our proposed methods with baselines and oracle method in different variations of
context in classic control tasks.

Figure 19: Comparison on control benchmarks: Cartpole, Pendulum, BipedalWalker, and Halfchee-
tah.
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A.2.8 Details about Cartpole

Transferability heatmap Figure 20 presents transferability heatmaps for the Cartpole task with
variations in three physical properties: mass of the cart, length of the pole, and mass of the pole.
Each heatmap illustrates how well strategies transfer from source tasks (vertical axis) to target tasks
(horizontal axis), depicting the influence of each parameter on control strategy effectiveness. For the
mass of the cart variation (a), transferability decreases as the mass difference increases. In the length
of the pole variation (b), strategies are less transferable between significantly different pole lengths.
Similarly, for the mass of the pole variation (c), variations show divergent transferability depending
on the extent of mass change.

(a) Mass of cart variation (b) Length of the pole variation (c) Mass of pole variation

Figure 20: Examples of transferability heatmap for Cartpole.

Results Figure 21 presents a comparison of normalized generalized performance for the Cartpole
task across different strategies when varying the mass of the cart, length of the pole, and mass of the
pole.

In the mass of cart variation, the performance generally increases with transfer steps, with MBTL-GP
strategies achieving the highest scores, indicating robust adaptability to changes in cart mass. Similar
trends are observed with length variation and mass of pole variation. MBTL-GP shows close to oracle
performance.

Figure 21: Comparison of normalized generalized performance of all target tasks: Cartpole.
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A.2.9 Details about Pendulum

Transferability heatmap Figure 22 presents transferability heatmaps for the Pendulum task with
variations in three physical properties: timestep, length of the pendulum, and mass of the pendulum.
Each heatmap illustrates how effectively strategies transfer from source tasks (vertical axis) to target
tasks (horizontal axis), highlighting the impact of each parameter on control strategy effectiveness.
For the timestep variation (a), there appears to be high consistency in transferability across different
timesteps, especially around the diagonal axis. In the length of the pendulum variation (b), transfer-
ability decreases with greater length differences. Similarly, for the mass of the pendulum variation
(c), transferability shows variability dependent on the extent of mass changes.

(a) Timestep variation (b) Length of the pendulum varia-
tion

(c) Mass of pendulum variation

Figure 22: Examples of transferability heatmap for Pendulum.

Results Figure 23 shows a comparison of normalized generalized performance for the Pendulum
task across different strategies when varying the timestep, length of the pendulum, and mass of the
pendulum. For the length of the pendulum variation and mass of the pendulum one, MBTL-GP
strategies demonstrate the highest scores, suggesting robust adaptability to changes in pendulum
dynamics. MBTL-GP shows performance close to that of the Oracle across all variations, indicating
its effectiveness in handling dynamic changes in system parameters.

Figure 23: Comparison of normalized generalized performance of all target tasks: Pendulum.

25



A.2.10 Details about BipedalWalker

Transferability heatmap Figure 24 presents transferability heatmaps for the BipedalWalker task,
focusing on three variations: friction, gravity, and scale. Each heatmap illustrates the effectiveness
of strategy transfer from source tasks (vertical axis) to target tasks (horizontal axis), highlighting
how each parameter influences control strategy adaptability. For friction variation (a), strategies
show uniform transferability across different friction levels. In gravity variation (b), transferability
is highly variable, suggesting that strategies need specific tuning for different gravity levels. For
scale variation (c), the heatmap indicates variable transferability, reflecting the challenges of scaling
control strategies.

(a) Friction variation (b) Gravity variation (c) Scale variation

Figure 24: Examples of transferability heatmap for BipedalWalker.

Results Figure 25 shows the comparison of normalized generalized performance for all variations
within the BipedalWalker task. There is no huge difference in performance for all three cases, but if
we look into the tabualr results in Table 2, MBTL-GP shows the highest performance across varying
conditions, indicating their robustness in adapting to changes in physical parameters of the model.
This suggests that these strategies are more effective in handling the complexities introduced by
different frictions, gravities, and scales compared to other baselines.

Figure 25: Comparison of normalized generalized performance of all target tasks: BipedalWalker.
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A.2.11 Details about HalfCheetah

Transferability heatmap Figure 26 displays transferability heatmaps for the HalfCheetah task,
focusing on three physical properties: friction, gravity, and stiffness. Each heatmap demonstrates
the transferability of strategies from source tasks (vertical axis) to target tasks (horizontal axis). For
friction variation (a), there is uniform high transferability across different friction levels, indicating that
strategies are robust to changes in friction. Gravity variation (b) shows less consistent transferability,
suggesting a sensitivity to gravity changes that might require adaptation of strategies. Stiffness
variation (c) similarly demonstrates variable transferability, highlighting the challenges of adapting to
different stiffness levels in control strategies.

(a) Friction variation (b) Gravity variation (c) Stiffness variation

Figure 26: Examples of transferability heatmap for HalfCheetah.

Results Figure 27 presents a comparison of normalized generalized performance across various
strategies for the HalfCheetah task with respect to the varied physical properties. The results indicate
that the MBTL-GP generally outperforms others, particularly in managing variations in gravity
and stiffness, suggesting the superior adaptability of these models to physical changes in the task
environment. The trends across different parameters confirm the critical impact of task-specific
dynamics on the effectiveness of the tested strategies.

Figure 27: Comparison of normalized generalized performance of all target tasks: HalfCheetah.
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A.3 Potential impacts

Our work has the potential to reduce the computational effort needed to solve complex real-world
problems, offering scalable solutions for implementing deep reinforcement learning in dynamic
environments. While there are no immediate negative societal impacts identified, ongoing research
will continue to assess the broader implications of deploying these technologies in urban settings.
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