

000 SSFO: SELF-SUPERVISED FAITHFULNESS OPTIMI- 001 ZATION FOR RETRIEVAL-AUGMENTED GENERATION 002 003

004 **Anonymous authors**
 005 Paper under double-blind review
 006

007 ABSTRACT 008

009 Retrieval-Augmented Generation (RAG) systems require Large Language Models
 010 (LLMs) to generate responses that are faithful to the retrieved context. However,
 011 faithfulness hallucination remains a critical challenge, as existing methods often
 012 require costly supervision and post-training, or imposing significant inference
 013 burdens. To overcome these limitations, we introduce Self-Supervised Faithfulness
 014 Optimization (SSFO), a self-supervised alignment approach for enhancing faith-
 015 fulness. SSFO constructs preference data pairs by contrasting the model’s outputs
 016 generated with context versus without context. Leveraging Direct Preference Opti-
 017 mization (DPO), SSFO aligns model faithfulness without incurring labeling costs
 018 or additional inference burdens. We analyze this faithfulness alignment process and
 019 provide empirical evidence that it leverages a benign form of *likelihood displace-
 020 ment*, shifting probability mass from parametric-based tokens to context-aligned
 021 tokens. Based on this insight, we adapt the DPO loss using a weighting scheme
 022 that encourages likelihood displacement. Comprehensive evaluations show that
 023 SSFO significantly outperforms existing methods, achieving state-of-the-art results
 024 in faithfulness on multiple context-based question-answering datasets. Notably,
 025 SSFO exhibits strong generalization, improving cross-lingual faithfulness while
 026 preserving general instruction-following capabilities. The code is available at:
 027 <https://anonymous.4open.science/r/SSFO>

028 1 INTRODUCTION 029

030 With the widespread deployment of Retrieval Augmented Generation (RAG) (Lewis et al., 2020;
 031 Jokinen, 2024), Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023) are
 032 increasingly expected to generate responses that adhere closely to the provided context (Song et al.,
 033 2025; 2024; Niu et al., 2024). However, an LLM’s parametric knowledge from pre-training can
 034 interfere with the provided context and lead the model to generate unsupported information, known
 035 as *faithfulness hallucination* (Zhou et al., 2023; Huang et al.; Es et al., 2024). It has emerged as a
 036 critical challenge for current LLMs, especially in scenarios where their parametric knowledge is
 037 insufficient or outdated.

038 A growing body of work has emerged to address faithfulness hallucination. Current approaches can
 039 be broadly categorized as follows: (1) *post-training-based methods* (Song et al., 2025; 2024; Bi et al.,
 040 2025; Liu et al., 2025) employ supervised fine-tuning and direct preference optimization (Rafailov
 041 et al., 2023) to enhance faithfulness. However, these methods often necessitate costly human or
 042 stronger LLM supervision (e.g., GPT-4). Meticulously creating thousands to tens of thousands of
 043 training examples incurs significant annotation costs. (2) *decoding strategy-based methods* (Gema
 044 et al., 2024; Shi et al., 2024) alleviate faithfulness hallucinations through a plug-and-play approach
 045 that can be easily adapted to newly developed LLMs. However, they typically double the inference
 046 computation by requiring parallel processing with perturbed and natural inputs.

047 To overcome these limitations, we propose Self-Supervised Faithfulness Optimization (SSFO).
 048 SSFO offers two advantages: (1) a self-supervised faithfulness alignment framework with a minor
 049 post-training cost (hundreds of self-generated examples), which helps SSFO adapt easily to newly
 050 developed LLMs. (2) no additional inference burden, which is crucial for lightweight deployment
 051 on edge devices (Yu et al., 2024). To generate the training signal for faithfulness, we leverage the
 052 model’s own differential behavior when its knowledge access is altered. As shown in Fig. 1, we

leverage the model itself to generate pairs of preference data: the preferred response is generated from the query with retrieved context, while the dispreferred response is generated from the query alone, relying solely on the model’s parametric knowledge. We then apply DPO (Rafailov et al., 2023) training to align the model toward enhanced faithfulness. Our results show that SSFO attains contextual faithfulness comparable to both *post-training-based methods* (Song et al., 2025; Bi et al., 2025; Liu et al., 2025) and *decoding strategy-based methods* (Gema et al., 2024).

To understand the underlying mechanism of self-supervised faithfulness alignment, we show that it can be attributed to the likelihood displacement phenomenon (Razin et al., 2025). We provide both a gradient-based analysis and empirical results demonstrating that likelihood displacement transfers probability mass from parametric-based tokens to context-aligned tokens, making the alignment well-grounded. Building on this insight, we adapt the DPO loss with a weighting scheme (SSFO- λ) to enhance this beneficial displacement and strengthen faithfulness alignment.

Results show that SSFO- λ achieves state-of-the-art faithfulness, improving performance by an average of 12% on LLaMA-3 and 27% on Mistral across faithfulness metrics relative to the instruct baseline. SSFO and SSFO- λ also deliver superior generalization, improving cross-lingual contextual faithfulness across diverse LLMs. Moreover, since trained on only hundreds of self-generated examples, they preserve LLM’s general instruction following ability and avoid the catastrophic forgetting common in more extensive fine-tuning (Kirkpatrick et al., 2017; Dong et al., 2023; 2024).

Overall, our contributions can be summarized as follows:

- We introduce SSFO, a self-supervised method for LLM faithfulness alignment. SSFO leverages self-generated data during training, requiring no human annotations, superior LLM models, or ground-truth labels; the training signal derives entirely from contrasting the model’s own parametric knowledge (as dispreferred examples) against retrieved knowledge (as preferred examples). We show that faithfulness alignment can be achieved via self-supervision.
- We analyze the alignment process through the lens of likelihood displacement and provide empirical evidence that probability mass shifts from parametric to context-grounded tokens. Motivated by this finding, we investigate an easy-to-implement variant (SSFO- λ) that explicitly encourages likelihood displacement and further boosts faithfulness alignment.
- We conduct comprehensive evaluations across diverse LLMs and benchmarks. Results show that SSFO achieves state-of-the-art faithfulness and superior generalization, including robust cross-lingual contextual faithfulness. Moreover, since trained with only hundreds of self-generated examples, SSFO preserves LLM’s general instruction-following ability, avoiding the catastrophic forgetting common in more extensive fine-tuning.

2 PRELIMINARIES

Direct Preference Optimization (DPO) (Rafailov et al., 2023): RLHF is computationally expensive (Cheng et al., 2023; Yuan et al., 2023) and can suffer from instabilities (Song et al., 2023; Go et al., 2023). DPO bypasses both explicit reward estimation and performing reinforcement learning to learn the policy using a single maximum likelihood objective. The DPO loss is defined as:

$$\mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_\theta(y_l | x)}{\pi_{\text{ref}}(y_l | x)} \right) \right], \quad (1)$$

where (x, y_w, y_l) represents a data sample from dataset \mathcal{D} consisting of a prompt x , a preferred completion y_w , and an dispreferred completion y_l . π_θ is the policy model undergoing optimization, and reference model π_{ref} is the original state of the model before optimization. The hyperparameter β controls the difference between policy model π_θ and reference model π_{ref} .

Likelihood Displacement (Razin et al., 2025; Pal et al., 2024; Tajwar et al., 2024): Likelihood displacement is a counterintuitive phenomenon observed during direct preference optimization, where the probabilities for the preferred response $\pi_\theta(y_w | x)$ and the dispreferred response $\pi_\theta(y_l | x)$ both decrease, while the margin between them widens. Since y_w is typically the (almost) optimal response (e.g., human-written or from a superior model), this reduction is problematic. Recent work (Yang et al., 2025; Gupta et al., 2025) aims to alleviate this phenomenon.

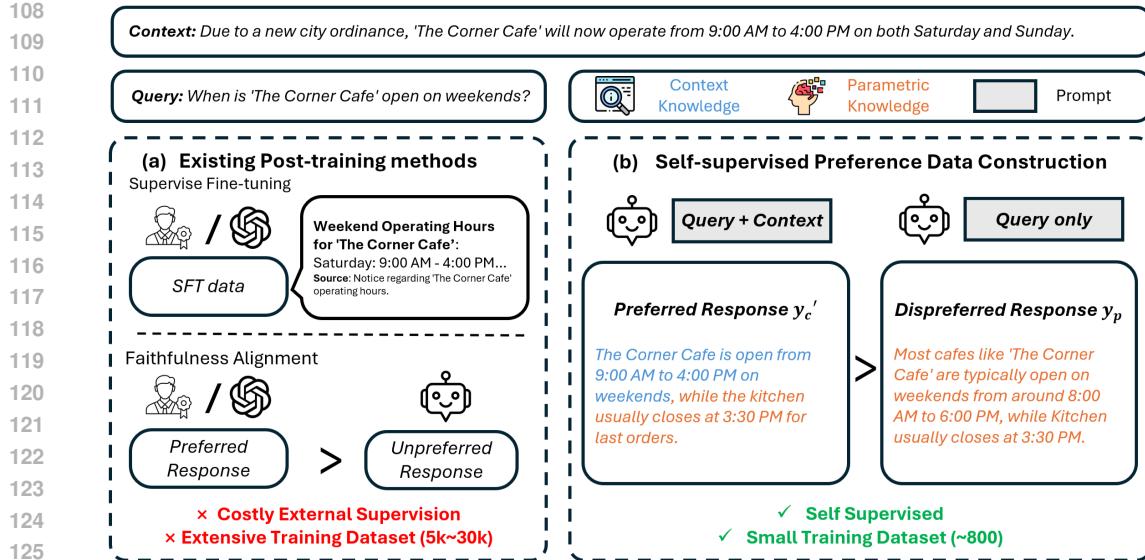


Figure 1: (a) Existing post-training methods rely on human annotators or superior LLM models to construct SFT or preference datasets, resulting in heavy labeling costs and lengthy post-training processes. (b) SSFO leverages the model itself to generate preference data: Given query x , it generates a context-grounded response y'_c (with external knowledge) and a parametric-based response y_p (query only). SSFO reduces faithfulness hallucination without external supervision and incurs negligible post-training costs.

3 METHODOLOGY

In this section, we describe the methodology of the proposed Self-Supervised Faithfulness Optimization (SSFO). SSFO leverages self-supervised data construction and preference alignment training to reduce faithfulness hallucination in language models. Our goal is to train models to prioritize faithfulness to the provided external context over their internal parametric knowledge. This prioritization is critical for robust RAG systems.

3.1 SELF-SUPERVISED PREFERENCE DATA CONSTRUCTION

Existing approaches (Song et al., 2025; 2024; Bi et al., 2025) employ DPO to mitigate faithfulness hallucinations and rely on curated preference data, often from human annotators or superior LLM models like GPT-4, as shown in Fig. 1 (a). Although effective, these approaches incur substantial data annotation costs and post-training overhead.

To address this challenge, we propose a self-supervised data construction method that avoids external labeling or supervision, as shown in Fig. 1 (b). Our key idea is to exploit the LLM’s own responses under different knowledge-access conditions to construct preference pairs. Specifically, we generate two types of outputs for preference optimization:

Construction of preferred response: We provide the model π_θ with the query x and the retrieved context c to construct preferred responses, i.e., $y \sim \pi_\theta(\cdot | x, c)$. Given the known faithfulness hallucination of LLMs (i.e., blend parametric knowledge and external context when generating responses) (Song et al., 2025; Niu et al., 2024; Bao et al., 2024), we denote this partially faithful response as y'_c .

Construction of dispreferred response: We provide the model with the query x only, omitting the external context c . The model generates a response based solely on its parametric knowledge: $y \sim \pi_\theta(\cdot | x)$. We denote this response as y_p , which reflects the model’s internal knowledge and is more susceptible to hallucinations due to the absence of grounding in retrieved information.

The preference data pairs (y'_c, y_p) thus establish the context-grounded response as the positive example, and the parametric knowledge-based response as the negative example.

162 3.2 SELF-SUPERVISED FAITHFULNESS OPTIMIZATION
163

164 We perform DPO on the generated preference dataset (y'_c, y_p) to achieve faithfulness alignment.
165 Specifically, given a language model π_θ , we minimize the following loss:

$$166 \mathcal{L}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, c, y'_c, y_p) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y'_c | x, c)}{\pi_{\text{ref}}(y'_c | x, c)} - \beta \log \frac{\pi_\theta(y_p | x, c)}{\pi_{\text{ref}}(y_p | x, c)} \right) \right]. \quad (2)$$

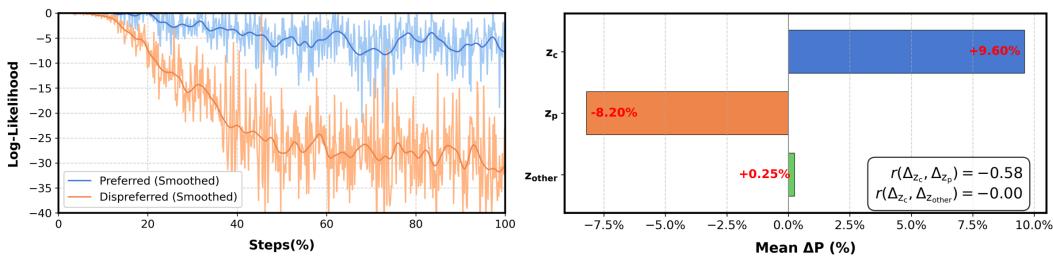
169 This objective encourages the model to increase the likelihood of the context-grounded response y'_c
170 while penalizing the parametric knowledge-based response y_p . The underlying principle is that y'_c ,
171 generated when conditioned on the external context, is generally more faithful than y_p , which relies
172 solely on the model's internal parametric knowledge. By widening this preference margin, the model
173 learns to prioritize contextual information over its internal knowledge, thereby mitigating faithfulness
174 hallucinations without costly external supervision.

175 In practice, training on a few hundred instances yields significant improvements in faithfulness,
176 outperforming methods that rely on human or superior LLM-generated training data (Section 4.3).
177

178 3.3 ANALYZING AND ENCOURAGING LIKELIHOOD DISPLACEMENT IN SELF-SUPERVISED
179 FAITHFULNESS OPTIMIZATION

180 Empirical studies (Section 4.1) show that although y'_c is an imperfect answer generated by π_{ref} ,
181 training with SSFO leads to a policy model π_θ^* that can significantly outperform π_{ref} . We attribute
182 these gains to a benign form of likelihood displacement (Razin et al., 2025; Pal et al., 2024; Tajwar
183 et al., 2024). Specifically, we demonstrate that in the context-based question-answering setting (i.e.,
184 RAG setting), SSFO shifts probability mass from tokens associated with parametric knowledge to
185 those grounded in external contextual information. This effect suppresses the parametric component
186 in both y'_c and y_p , favoring tokens grounded in the external context.

187 As shown in Fig. 2 (left), we observe a likelihood displacement phenomenon during optimization:
188 the optimized model π_θ^* satisfies $P_{\pi_\theta^*}(y'_c | x, c) < P_{\pi_\theta}(y'_c | x, c)$ and $P_{\pi_\theta^*}(y_p | x, c) < P_{\pi_\theta}(y_p | x, c)$, i.e.,
189 probability mass is driven away from both the composite response y'_c and the parametric response y_p .
190



200 Figure 2: **Left:** Log-likelihood of preferred response $\pi_\theta(y'_c | x, c)$ versus dispreferred responses $\pi_\theta(y_p | x, c)$
201 over the course of SSFO optimization. **Right:** We compare the base instruct model and optimized model on
202 MemoTrap (Liu & Liu, 2023) dataset and show the mean change for context-based tokens z_c and parametric-
203 based tokens z_p , revealing that optimization increases $\Delta P(z_c)$ while decreasing $\Delta P(z_p)$, r denotes the Pearson
204 correlation coefficient.

205 To understand where probability mass goes and ensure analytical tractability, we analyze the instant-
206 neous update to the next-token distribution under gradient flow. Building on Theorem 5 of (Razin
207 et al., 2025), the instantaneous change in the log-probability of an arbitrary token z from vocabulary,
208 conditioned on input context (x, c) , is given by:

$$209 210 \frac{d}{dt} \ln \pi_{\theta(t)}(z | x, c) \propto \langle W_z(t), W_{\text{token}(y'_c)}(t) - W_{\text{token}(y_p)}(t) \rangle, \quad (3)$$

212 Here, $W_z(t)$ denote the unembedding vector of token z at training time t , while $W_{\text{token}(y'_c)}(t)$ is
213 the unembedding vector of the token that the model is likely to generate given the context and
214 $W_{\text{token}(y_p)}(t)$ corresponds to the token likely generated from the parametric-knowledge. In other
215 words, **the larger the inner product** $\langle W_z(t), W_{\text{token}(y'_c)}(t) - W_{\text{token}(y_p)}(t) \rangle$, **the more positive the**
216 **change in** $\pi_{\theta(t)}(z | x, c)$.

Let $V(t) = W_{\text{token}(y'_c)}(t) - W_{\text{token}(y_p)}(t)$ denote the direction vector. We analyze how the probabilities of different types of output tokens z vary by examining the inner product $\langle W_z(t), V(t) \rangle$.

- **Faithful Token z_c (derived from context c):** With the LLM’s inherent ability to follow external context (Lewis et al., 2020; Zhou et al., 2023; Gao et al.), when generating the preferred response y'_c conditioned on c , the model is highly likely to produce tokens consistent with the context. Thus, $W_{\text{token}(y'_c)}$ is expected to be well aligned with W_{z_c} . In contrast, since y_p reflects ungrounded, parametric-based generation, W_{z_c} is likely unaligned with $W_{\text{token}(y_p)}$. Therefore, the inner product $\langle W_{z_c}(t), V(t) \rangle$ is expected to be large.
- **Parametric Token z_p (derived from internal knowledge, potentially hallucinated):** The token z_p is likely aligned with $W_{\text{token}(y_p)}$, reflecting the model’s internal parametric memory. However, its alignment with $W_{\text{token}(y'_c)}$ is expected to be weak or negative. Consequently, $\langle W_{z_p}(t), V(t) \rangle$ is expected to be small.
- **Irrelevant Token z_{other} (unrelated to context c or parametric response y_p):** $W_{z_{\text{other}}}$ is unlikely to exhibit strong alignment with either the context-dependent $W_{\text{token}(y'_c)}$ or the internal knowledge-based $W_{\text{token}(y_p)}$. As a result, $\langle W_{z_{\text{other}}}(t), V(t) \rangle$ is expected to be small.

Let $\Delta P(z)$ denote the increase in probability for token z due to likelihood displacement, proportional to $\frac{d}{dt} \ln \pi_{\theta(t)}(z|x, c)$. Based on the analysis of the alignment above, we have:

$$\langle W_{z_c}(t), V(t) \rangle \gg \langle W_{z_p}(t), V(t) \rangle \quad \text{and} \quad \langle W_{z_c}(t), V(t) \rangle \gg \langle W_{z_{\text{other}}}(t), V(t) \rangle.$$

Therefore, in the Eq. (2) setting, the likelihood displacement mechanism preferentially transfers probability mass towards tokens z_c that are consistent with the external context c . This constitutes a **benign likelihood displacement**, actively promoting faithfulness by reinforcing context-aligned generation while suppressing tokens derived from parametric knowledge or irrelevant content.

Prompt	z_c	z_p
Write a quote that ends in the word "right": If you want a thing done right, do it __	right	yourself
Write a quote that ends in the word "you": Fool me once, shame on you. Fool me twice, shame on __	you	me
Write a quote that ends in the word "own": A son is a son 'till he gets him a wife; a daughter's a daughter all her __	own	life

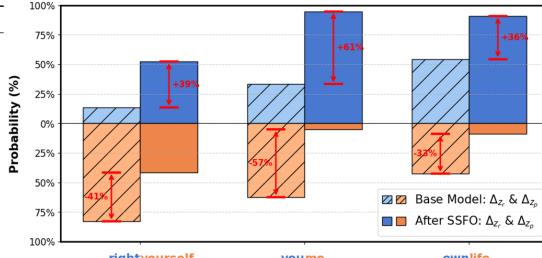


Figure 3: **Case study from the MemoTrap dataset illustrating benign likelihood displacement.** The probability mass shifts from the parametric knowledge based token z_p to the external knowledge based token z_c after SSFO optimization.

3.3.1 EMPIRICAL VALIDATION OF BENIGN LIKELIHOOD DISPLACEMENT

Setting. Our experiments utilize the MemoTrap dataset (Liu & Liu, 2023), designed to evaluate whether language models exhibit memorization traps. MemoTrap consists of instructions prompting the model to complete well-known proverbs with endings that deviate from the common completion. For instance, given the prompt "Write a quote that ends in the word 'right': If you want a thing done right, do it __", the instructed target completion is "right". In this context, the token "right" represents the external knowledge token z_c , while the commonly memorized completion token "yourself" is considered to be based on the parametric knowledge token z_p .

The SSFO optimization induces a benign form of likelihood displacement. As shown in Fig. 2 (Right), the probability of the faithful token z_c increases after SSFO training. Furthermore, this rise is mirrored by a complementary fall in the probability of the parametric token z_p , producing a pronounced negative Pearson correlation ($r = -0.58$). Probabilities for all remaining vocabulary tokens remain essentially unchanged and show no discernible correlation with z_c . A case study illustrating this displacement is presented in Fig. 3.

270 3.3.2 ENCOURAGING BENIGN PROBABILITY DISPLACEMENT WITH SSFO- λ
271

272 As established in the previous analysis, the SSFO framework induces a **benign form of likelihood**
273 **displacement**, in which probability mass shifts away from responses that rely on parametric knowl-
274 edge to those grounded in the external context. To further promote this desirable effect, we introduce
275 SSFO- λ , a variant that explicitly encourages this displacement through a single tuning parameter.
276 The method is easy to implement, requiring only a rescaling of the DPO objective.

277 Prior approaches have mainly treated likelihood displacement as a **drawback** (Pal et al., 2024; Yang
278 et al., 2025; Gupta et al., 2025; Xiao et al., 2024), since their “preferred” response y_w is typically a
279 high-quality, “golden” example (e.g., human-written), where reducing likelihood would indeed be
280 harmful. However, our work explores using an imperfect, “silver” preferred response y'_c generated
281 by the reference model itself. As analyzed in Section 3.3, in this context-based question answering
282 setting, encouraging the likelihood displacement proves to be an **advantage** for enhancing the model’s
283 faithfulness. Motivated by (Yang et al., 2025), we introduce a scaling factor $\lambda > 1$ to encourage the
284 likelihood displacement during optimization:

$$285 \mathcal{L}_{\text{SSFO}-\lambda}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, c, y'_c, y_p) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y'_c | x, c)}{\pi_{\text{ref}}(y'_c | x, c)} - \lambda \cdot \beta \log \frac{\pi_\theta(y_p | x, c)}{\pi_{\text{ref}}(y_p | x, c)} \right) \right]. \quad (4)$$

288 **Empirical Validation of λ ’s Effect.** As shown in Fig. 4, we investigate the impact of varying λ from 1.0 to 1.5
289 across multiple context-based question-answering benchmarks: NQ-Swap, NQ-Open, MemoTrap, and ELI5. As
290 λ increases, we observe a consistent improvement in performance across all evaluated tasks. Pearson correlation
291 coefficients r reveal a positive relationship between λ and performance on all datasets. For instance, span EM score on
292 MemoTrap rises by 2.1 points (from 76.2% to 78.3%); NQ-Swap gains 1.2 points (from 81.2% to 82.5%). These
293 results confirm that strategically amplifying the weight on the ungrounded (parametric) response via $\lambda > 1$ (to
294 encourage benign likelihood displacement) indeed yields a more faithful response.

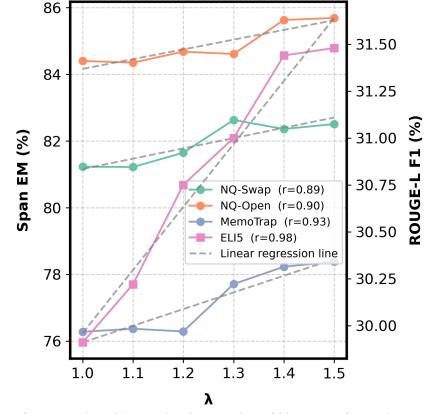
295 **Gradient Analysis.** To further understand how this
296 modification encourages the desired displacement, we analyze
297 the gradient of SSFO- λ loss in Eq. (4). The gradient with
298 respect to parameters θ is:

$$306 \nabla_\theta \mathcal{L}_{\text{SSFO}-\lambda} = -\mathbb{E} \left[c'_1 (\nabla_\theta \log \pi_\theta(y'_c | x, c) - \underbrace{\lambda \nabla_\theta \log \pi_\theta(y_p | x, c)}_{\text{decrease likelihood of } y_p}) \right], \quad (5)$$

309 where c'_1 is a positive coefficient. We present a detailed derivation of Eq. (5) in Section C.2. Compared
310 to the standard DPO update, Eq. (4) applies a stronger negative weight ($-\lambda$ where $\lambda > 1$) to the
311 gradient component associated with the parametric response y_p . Therefore, this parameter leads to a
312 more pronounced suppression of the likelihood of the parametric response during optimization.

314 4 EXPERIMENTS
315

316 **Datasets:** To comprehensively evaluate faithfulness, we assess model performance across several
317 dimensions. (1) For evaluating **Robustness** against conflicting parametric knowledge, we follow
318 prior work (Gema et al., 2024; Shi et al., 2024), using MemoTrap (Liu & Liu, 2023) and NQ-
319 Swap (Longpre et al., 2021). (2) For **Response Quality**, we evaluate on the context-based short-form
320 QA datasets NQ-Open (Lee et al., 2019) and SQuAD (Rajpurkar et al., 2016), as well as the long-form
321 generation datasets ELI5 (Fan et al., 2019) and WikiPassageQA (Cohen et al., 2018). (3) To assess the
322 generalization ability of the proposed methods, we benchmark **Cross-language Response Quality**
323 using DuReader (He et al., 2018) and XQuAD (Artetxe et al., 2020), and **Instruction Following**
324 Ability using FollowBench (Jiang et al., 2024).



325 Figure 4: Correlation plot illustrating Span
326 Exact Match scores for NQ-Swap, NQ-Open,
327 and MemoTrap (scaled to the left y-axis) and
328 ROUGE-L F1 scores for ELI5 (scaled to the
329 right y-axis). Grey lines depict the regression
330 trends. r denotes Pearson correlation.

324 **Metrics:** For short-form QA datasets (NQ-Open, NQ-Swap, MemoTrap, SQuAD), we adopt a
 325 standard zero-shot setting simulating a RAG scenario where the model answers queries based on the
 326 provided context. Performance is measured using the span Extraction Matching (span EM) score
 327 (a prediction is deemed correct if any segment of the generated output precisely matches one of the
 328 reference answers). For the long-form generation dataset ELI5, we report ROUGE scores (Lin, 2004)
 329 to quantify lexical overlap between the generated responses and the reference answers. We also
 330 report the LLM-Faithfulness Score (LFS). The LFS is calculated using GPT-4 (Achiam et al., 2023)
 331 to classify outputs as faithful, partially faithful, or unfaithful (see the prompt in Table 7), and the
 332 score is defined as the number of faithful generations divided by the total number of generations. For
 333 instruction following (FollowBench), we report Consistent Satisfaction Levels (CSL) (Jiang et al.,
 334 2024), which measures how many consecutive levels of instruction hardness a model can satisfy.
 335

336 **Models and Baselines:** To ensure the generality of our approach, we conduct experiments using
 337 three families of open-source large language models: LLaMA 3 Instruct (Touvron et al., 2023), Qwen
 338 2.5 Instruct (Yang et al., 2024), and Mistral Instruct. We compare the proposed method against
 339 the strong methods focused on improving faithfulness: CAD (Shi et al., 2024), DECORE (Gema
 340 et al., 2024), ChatQA (Liu et al., 2025), Trust-Align (Song et al., 2025), Context-DPO (Bi et al.,
 341 2025), and SCOPE (Duong et al., 2025). It is worth noting that SCOPE also claims to require no
 342 external supervision. However, SCOPE tunes task-specific models by using gold reference labels
 343 as positive examples and synthesizes unfaithful negatives from a mixture of a fine-tuned model
 344 and an unconditional pre-trained language model. This process needs to be repeated for each type
 345 of downstream task. In contrast, SSFO is entirely label-free and pursues a more direct alignment
 346 strategy, yielding broadly task-agnostic faithfulness gains.
 347

348 4.1 FAITHFULNESS EVALUATION RESULTS

349 Table 1: **Faithfulness evaluation.** Comparison of SSFO and SSFO- λ on **Robustness** under conflicting
 350 parametric knowledge (NQ-Swap, MemoTrap) and **Response Quality** on short-form (NQ-Open, SQuAD) and
 351 long-form (ELI5, WikiQA) datasets. Best results are shown in **bold**.

Model	Method	Implement	Supervision	Robustness				Response Quality			
				NQ-Swap Span EM \uparrow	Memo-Trap Span EM \uparrow	NQ-Open Span EM \uparrow	SQuAD Span EM \uparrow	ELI5 R-L F1 \uparrow	LFS \uparrow	WikiQA R-L F1 \uparrow	LFS \uparrow
	Instruct-Baseline	\	\	73.54%	73.60%	80.15%	88.20%	25.95%	59.80%	13.07%	75.31%
	Decoding-Strategy	CAD	\times	75.90%	74.67%	81.44%	86.30%	24.50%	57.20%	15.02%	76.87%
		DECORE	\times	80.53%	74.40%	82.03%	84.90%	27.87%	68.90%	14.57%	78.41%
Llama-3-8B	ChatQA	\checkmark		67.70%	30.60%	76.80%	88.50%	27.13%	69.70%	13.83%	56.79%
	Trust-Align	\checkmark		75.56%	70.95%	77.38%	50.90%	10.08%	55.10%	12.99%	76.19%
	Context-DPO	\checkmark		82.76%	72.90%	82.86%	89.90%	27.19%	66.40%	11.00%	76.13%
	SCOPE	\times		76.72%	74.26%	80.38%	68.80%	22.41%	60.20%	15.69%	76.46%
	SSFO	\times		81.23%	76.28%	84.40%	89.00%	29.91%	71.40%	13.98%	75.72%
	SSFO-λ	\times		82.81%	78.38%	85.69%	90.90%	31.48%	72.30%	15.53%	79.01%
Qwen2.5-7B	Instruct-Baseline	\	\	79.35%	54.19%	82.29%	90.30%	23.11%	41.30%	15.33%	68.72%
	Decoding-Strategy	CAD	\times	79.78%	63.10%	84.29%	85.90%	18.10%	49.80%	14.28%	26.75%
		DECORE	\times	81.93%	54.56%	83.76%	82.80%	26.83%	53.60%	14.49%	71.66%
	Trust-Align	\checkmark		79.69%	53.71%	77.93%	80.30%	15.67%	50.70%	16.30%	73.84%
	Context-DPO	\checkmark		82.13%	55.34%	83.13%	91.80%	23.81%	49.30%	15.23%	72.84%
	SCOPE	\times		79.75%	44.90%	87.98%	78.50%	36.26%	60.20%	16.18%	51.03%
Mistral-7B	SSFO	\times		84.18%	57.66%	83.88%	92.00%	24.49%	54.60%	15.96%	79.01%
	SSFO-λ	\times		84.88%	60.77%	84.48%	93.30%	23.96%	62.80%	15.60%	74.07%
	Instruct-Baseline	\	\	67.76%	34.34%	79.13%	84.80%	23.38%	52.10%	18.34%	59.67%
	Decoding-Strategy	CAD	\times	75.26%	22.57%	80.75%	89.00%	24.57%	48.30%	18.19%	32.92%
		DECORE	\times	78.17%	30.68%	86.52%	85.30%	25.24%	62.50%	22.07%	67.13%
	Context-DPO	\checkmark		79.62%	33.20%	80.68%	86.50%	24.55%	66.30%	15.29%	63.20%
	SCOPE	\times		49.58%	15.87%	64.71%	54.00%	27.06%	63.40%	15.47%	60.29%
	SSFO	\times		86.66%	37.22%	87.53%	89.00%	30.43%	80.60%	16.67%	63.79%
	SSFO-λ	\times		85.48%	46.91%	90.32%	88.50%	33.58%	88.10%	19.64%	69.96%

*We present the results for varying model sizes in Table 8.

370 **SSFO and SSFO- λ deliver strong faithfulness across multiple datasets and models**, as shown
 371 in Table 1: Both variants of Self-Supervised Direct Preference Optimization (SSFO and SSFO- λ)
 372 substantially improve contextual faithfulness over the instruct baseline. For example, SSFO markedly
 373 improves **Robustness**, raising NQ-Swap Span EM scores by 18.9% for Mistral, and boosts **Response**
 374 **Quality** on NQ-Open for Llama from 80.15% to 84.40%. SSFO- λ further increases scores on Llama
 375 and achieves top scores across all metrics for this model. Overall, SSFO- λ attains state-of-the-art
 376 performance compared to both post-training-based baselines and decoding strategy-based baselines.
 377 These results indicate that explicitly encouraging benign likelihood displacement not only enhances
 378 faithfulness but also improves overall response quality.

378 **Table 2: A case study on faithfulness improvement.** Comparing the instruct baseline, Context-DPO, and
 379 SSFO on equivalent English–Spanish (ES) query–answer pairs. This example from XQuAD (Artetxe et al.,
 380 2020) demonstrates that SSFO improves faithfulness over the instruct baseline and also preserves faithfulness
 381 cross-lingually. **Blue** texts highlight context-grounded information; **Red** texts mark unfaithful content.

Query	(EN) What is Cultural Imperialism often referred to as? (ES) ¿A qué se refiere a menudo el imperialismo cultural?
Context	(EN) ...Cultural imperialism is when a country’s influence is felt in social and cultural circles, i.e. its soft power, such that it changes the moral, cultural and societal worldview of another.. (ES) ...El imperialismo cultural es cuando la influencia de un país se siente en los círculos sociales y culturales, es decir, su poder blando, de tal manera que cambia la cosmovisión moral, cultural y social de otro...
Instruct Model	(EN) Cultural Imperialism is often referred to as cultural hegemony or cultural dominance . Hallucination
Context-DPO	(EN) Cultural Imperialism is often referred to as the spread of a dominant culture’s influence . This is also known as the use of soft power . Partially Context-Faithful (ES) El imperialismo cultural suele aludir a la influencia de la cultura de un país sobre la esfera sociocultural de otro, transformando su cosmovisión. Hallucination
SSFO	(EN) A country’s influence is felt in social and cultural circles, i.e. its soft power, such that it changes the moral, cultural, and societal worldview of another... Context-Faithful (ES) La influencia de un país se siente en los círculos sociales y culturales, es decir, su poder blando, de tal manera que cambia la cosmovisión moral, cultural y social de otro... Context-Faithful

398 **Table 3: Cross-language faithfulness and instruction-following evaluation.** Comparison of SSFO and
 399 SSFO- λ on cross-language context-based QA benchmarks (XQuAD—Spanish, DuReader—Chinese) and
 400 instruction-following (FollowBench).
 401

402	Model	Method	Implement	Training Data Required	Cross-language Response Quality		Instruction Following
					XQuAD(ES) Span EM \uparrow	DuReader(CN) Span EM \uparrow	
405	Llama-3-8B	Instruct-Baseline	\	\	78.60%	78.80%	2.54
406		Decoding-Stratagy	CAD	\	70.34%	76.57%	0.92
407			DECORE	\	81.87%	79.89%	2.46
408		Post-Training	ChatQA	~30k	77.98%	72.05%	1.04
409			Trust-Align	~15k	20.17%	8.12%	0.12
410			Context-DPO	~5k	83.03%	84.40%	2.46
411			SCOPE	~5k	69.70%	73.90%	0.16
412			SSFO	~800	83.10%	84.90%	2.70
413			SSFO-λ	~800	84.12%	83.56%	2.50
414		Instruct-Baseline	\	\	78.90%	81.50%	2.68
415		Decoding-Stratagy	CAD	\	71.85%	76.71%	1.22
416			DECORE	\	80.08%	76.57%	2.56
417		Post-Training	Trust-Align	~15k	75.21%	73.61%	0.58
418			Context-DPO	~5k	79.92%	82.78%	2.64
419			SCOPE	~5k	84.96%	89.27%	0.42
420			SSFO	~800	79.83%	83.27%	2.70
421			SSFO-λ	~800	81.76%	87.72%	2.62

4.2 GENERALIZATION ACROSS TASKS AND LANGUAGES

422 **SSFO enhances multi-language faithfulness.** We evaluate the generalization ability of SSFO in
 423 Table 3, and results show it can improve cross-lingual faithfulness using only an English-based
 424 training set. For instance, on Llama, SSFO increases Span EM scores by 6.10% on DuReader
 425 (Chinese) and 5.52% on XQuAD (Spanish) compared to the instruct baseline. In contrast, heavily
 426 supervised methods like ChatQA (Liu et al., 2025) and Trust-Align (Song et al., 2025) exhibit
 427 decreased performance on these non-English QA datasets. **This shows that by training the model**
 428 **to prioritize context knowledge over parametric knowledge, it learns a principle of contextual**
 429 **adherence that can transfer across languages.**

430 **SSFO minimally impacts instruction following capability.** Requiring only a few hundred self-
 431 supervised data examples, SSFO largely preserves, and even slightly enhances, the model’s instruction
 432 following capabilities. The CSL scores on FollowBench indicate that models fine-tuned with SSFO

432 retain comparable general instruction-following ability to the original base instruction models. We
 433 provide several cases that SSFO retains strong general instruction following ability under context-
 434 based scenarios in Table 4. In contrast, other post-training approaches, such as Trust-Align (Song
 435 et al., 2025), improve faithfulness at the cost of degrading general generative abilities (e.g., CSL
 436 score decreases from 2.54 to 0.12 on LLaMA-3-8B-Instruct).

437
 438 **Table 4: Case study from FollowBench (Jiang et al., 2024).** SSFO retains strong instruction-following
 439 capabilities under a context-based, composite NLP task. In contrast, the heavily post-trained Trust-Align
 440 model (Song et al., 2025) fails, demonstrating a loss of general capabilities.

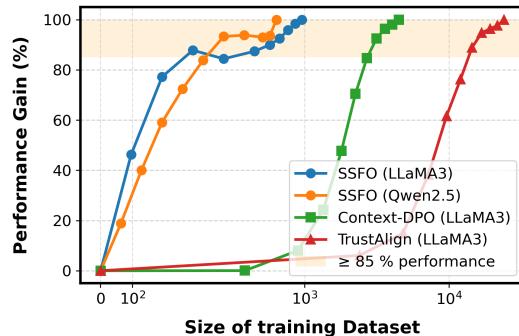
Query	Analyze the provided text to pinpoint a category and the sentiment (positive, neutral, or negative) it emanates. Additionally, perform named entity recognition to emphasize notable entities and also identify the core topic discussed. Select the category from this array: company, educational institution, artist, athlete, office holder, means of transportation, building, natural place, village, animal, plant, album, film, or written work.	
Context	Michael DenDekker - Michael G. DenDekker (born July 11, 1961) is an assemblyman for the state of New York's 34th district which includes the neighborhoods of Woodside, Jackson Heights, and East Elmhurst, all in the borough/county of Queens.	
Trust Align	I apologize, but I couldn't find an answer to your question in the search results.	
SSFO	Category: Office Holder; Sentiment: Neutral ; Notable entities: Michael DenDekker, State of New York, 34th district, Woodside... Core topic discussed: Michael DenDekker's role as an assemblyman for the state of New York's 34th district. Rationale: Note that the text does not contain any information about the office holder's achievements, opinions, or personal life, which is why the sentiment is neutral...	General Ability Lost

453 4.3 DATA EFFICIENCY ANALYSIS

454
 455 To measure how many self-supervised preference examples SSFO actually needs, we subsample the training dataset in 10% increments. As
 456 shown in Fig. 5, we evaluate the average performance gain (an average improvement over the
 457 base instructed model). SSFO models cross the
 458 85% performance threshold by approximately
 459 50–60 % of the data (400–500 examples). We
 460 attribute this efficiency stems from using self-
 461 generated data, which avoids the stylistic distribution
 462 mismatch often caused by external data from
 463 human annotators or superior LLM models.
 464 Since the training data inherently matches the
 465 model’s native response style, optimization can
 466 focus on improving faithfulness. We compare
 467 the training examples from SSFO with other
 468 post-training methods in Table 6.
 469
 470

472 5 CONCLUSION

473
 474 This work addressed the critical challenge of faithfulness hallucination in RAG systems, where
 475 existing methods often introduce significant computational overhead or rely on costly external
 476 supervision. We introduced SSFO, an efficient self-supervised alignment approach that leverages
 477 the model’s own outputs to build preference pairs by comparing responses generated with retrieved
 478 context to responses based only on parametric knowledge. Our analysis shows the alignment proceeds
 479 through a benign form of likelihood displacement, which shifts probability mass from parametric-
 480 based tokens to context-aligned ones. Motivated by this finding, we proposed SSFO- λ , a variant
 481 that amplifies this beneficial displacement and further enhances faithfulness. Our experiments
 482 across diverse benchmarks show that SSFO and SSFO- λ significantly enhance model faithfulness and
 483 robustness against parametric knowledge, achieving state-of-the-art performance compared to existing
 484 methods. Furthermore, SSFO exhibits strong generalization capabilities, improving faithfulness
 485 even in cross-lingual settings using only English training data, while preserving the model’s general
 486 instruction-following abilities.



477
 478 **Figure 5: Data efficiency study:** SSFO requires about
 479 60% of data (400–500 examples) to achieve 85% of the
 480 total performance gain over the instruct baseline.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
489 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
490 *arXiv preprint arXiv:2303.08774*, 2023.

491 Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. On the cross-lingual transferability of monolin-
492 gual representations. In *Proceedings of the 58th Annual Meeting of the Association for Compu-
493 tational Linguistics*, pp. 4623–4637, 2020.

494 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
495 Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
496 from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.

497 Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
498 jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
499 Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
500 dataset, 2018. URL <https://arxiv.org/abs/1611.09268>.

501 Forrest Sheng Bao, Miaoran Li, Renyi Qu, Ge Luo, Erana Wan, Yujia Tang, Weisi Fan, Manveer Singh
502 Tamber, Suleman Kazi, Vivek Sourabh, et al. Faithbench: A diverse hallucination benchmark for
503 summarization by modern llms. *arXiv preprint arXiv:2410.13210*, 2024.

504 Baolong Bi, Shaohan Huang, Yiwei Wang, Tianchi Yang, Zihan Zhang, Haizhen Huang, Lingrui
505 Mei, Junfeng Fang, Zehao Li, Furu Wei, Weiwei Deng, Feng Sun, Qi Zhang, and Shenghua
506 Liu. Context-DPO: Aligning language models for context-faithfulness. In Wanxiang Che, Joyce
507 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for
508 Computational Linguistics: ACL 2025*, pp. 10280–10300, Vienna, Austria, July 2025. Association
509 for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.536.
510 URL [https://aclanthology.org/2025.findings-acl.536/](https://aclanthology.org/2025.findings-acl.536).

511 Pengyu Cheng, Yifan Yang, Jian Li, Yong Dai, and Nan Du. Adversarial preference optimization.
512 *arXiv preprint arXiv:2311.08045*, 2023.

513 Daniel Cohen, Liu Yang, and W Bruce Croft. Wikipassageqa: A benchmark collection for research
514 on non-factoid answer passage retrieval. In *The 41st international ACM SIGIR conference on
515 research & development in information retrieval*, pp. 1165–1168, 2018.

516 Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
517 Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected
518 by supervised fine-tuning data composition. *arXiv preprint arXiv:2310.05492*, 2023.

519 Guanting Dong, Xiaoshuai Song, Yutao Zhu, Runqi Qiao, Zhicheng Dou, and Ji-Rong Wen. To-
520 ward general instruction-following alignment for retrieval-augmented generation. *arXiv preprint
521 arXiv:2410.09584*, 2024.

522 Song Duong, Florian Le Bronnec, Alexandre Allauzen, Vincent Guigue, Alberto Lumbrreras, Laure
523 Soulier, and Patrick Gallinari. Scope: A self-supervised framework for improving faithfulness in
524 conditional text generation. *arXiv preprint arXiv:2502.13674*, 2025.

525 Shahul Es, Jithin James, Luis Espinosa Anke, and Steven Schockaert. Ragas: Automated evaluation
526 of retrieval augmented generation. In *Proceedings of the 18th Conference of the European Chapter
527 of the Association for Computational Linguistics: System Demonstrations*, pp. 150–158, 2024.

528 Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. Eli5:
529 Long form question answering. *arXiv preprint arXiv:1907.09190*, 2019.

530 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
531 Haofen Wang. Retrieval-augmented generation for large language models: A survey.

532 Aryo Pradipta Gema, Chen Jin, Ahmed Abdulaal, Tom Diethe, Philip Teare, Beatrice Alex, Pasquale
533 Minervini, and Amrutha Saseendran. Decore: decoding by contrasting retrieval heads to mitigate
534 hallucinations. *arXiv preprint arXiv:2410.18860*, 2024.

540 Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-
 541 man. Aligning language models with preferences through f-divergence minimization. *arXiv*
 542 *preprint arXiv:2302.08215*, 2023.

543 Aman Gupta, Shao Tang, Qingquan Song, Sirou Zhu, Jiwoo Hong, Ankan Saha, Viral Gupta, Noah
 544 Lee, Eunki Kim, Siyu Zhu, et al. Alphapo—reward shape matters for llm alignment. *arXiv preprint*
 545 *arXiv:2501.03884*, 2025.

546 Wei He, Kai Liu, Jing Liu, Yajuan Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu,
 547 Qiaoqiao She, et al. Dureader: a chinese machine reading comprehension dataset from real-world
 548 applications. In *Proceedings of the Workshop on Machine Reading for Question Answering*, pp.
 549 37–46, 2018.

550 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 551 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

552 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 553 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 554 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information*
 555 *Systems*.

556 Yukun Huang, Sanxing Chen, Hongyi Cai, and Bhuwan Dhingra. To trust or not to trust? enhancing
 557 large language models’ situated faithfulness to external contexts, 2025. URL <https://arxiv.org/abs/2410.14675>.

558 Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang,
 559 Xin Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints follow-
 560 ing benchmark for large language models. In *Proceedings of the 62nd Annual Meeting of the*
 561 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 4667–4688, 2024.

562 Kristiina Jokinen. The need for grounding in llm-based dialogue systems. In *Proceedings of the*
 563 *Workshop: Bridging Neurons and Symbols for Natural Language Processing and Knowledge*
 564 *Graphs Reasoning (NeusymBridge)@ LREC-COLING-2024*, pp. 45–52, 2024.

565 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
 566 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 567 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
 568 (13):3521–3526, 2017.

569 Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised
 570 open domain question answering. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.),
 571 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 572 6086–6096, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
 573 v1/P19-1612. URL <https://aclanthology.org/P19-1612/>.

574 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 575 Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 576 tion for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33:
 577 9459–9474, 2020.

578 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization*
 579 *branches out*, pp. 74–81, 2004.

580 Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
 581 Wang, Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf. In *Proceedings of*
 582 *the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 580–606, 2024.

583 Alisa Liu and Jiacheng Liu. The memotrap dataset. <https://github.com/liujch1998/memo-trap>, 2023.

584 Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Chankyu Lee, Mohammad Shoeybi, and Bryan
 585 Catanzaro. Chatqa: Surpassing gpt-4 on conversational qa and rag. *Advances in Neural Information*
 586 *Processing Systems*, 37:15416–15459, 2025.

594 Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and Sameer Singh.
 595 Entity-based knowledge conflicts in question answering. *arXiv preprint arXiv:2109.05052*, 2021.
 596

597 Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Randy Zhong, Juntong Song, and
 598 Tong Zhang. Ragtruth: A hallucination corpus for developing trustworthy retrieval-augmented
 599 language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
 600 Linguistics (Volume 1: Long Papers)*, pp. 10862–10878, 2024.

601 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 602 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 603 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 604 27744, 2022.

605 Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
 606 Smaug: Fixing failure modes of preference optimisation with dpo-positive. *arXiv preprint
 607 arXiv:2402.13228*, 2024.

608 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 609 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 610 in Neural Information Processing Systems*, 36:53728–53741, 2023.

611 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
 612 machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016.

613 Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, and Boris Hanin. Unin-
 614 tentional unalignment: Likelihood displacement in direct preference optimization. In *International
 615 Conference on Learning Representations*, 2025.

616 Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih.
 617 Trusting your evidence: Hallucinate less with context-aware decoding. In *Proceedings of the
 618 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
 619 Human Language Technologies (Volume 2: Short Papers)*, pp. 783–791, 2024.

620 Juntong Song, Xingguang Wang, Juno Zhu, Yuanhao Wu, Xuxin Cheng, Randy Zhong, and Cheng
 621 Niu. Rag-hat: A hallucination-aware tuning pipeline for llm in retrieval-augmented generation.
 622 In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing:
 623 Industry Track*, pp. 1548–1558, 2024.

624 Maojia Song, Shang Hong Sim, Rishabh Bhardwaj, Hai Leong Chieu, Navonil Majumder, and
 625 Soujanya Poria. Measuring and enhancing trustworthiness of llms in rag through grounded
 626 attributions and learning to refuse. In *The Thirteenth International Conference on Learning
 627 Representations*, 2025.

628 Ziang Song, Tianle Cai, Jason D Lee, and Weijie J Su. Reward collapse in aligning large language
 629 models. *arXiv preprint arXiv:2305.17608*, 2023.

630 Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Raffailov, Jeff Schneider, Tengyang Xie, Stefano
 631 Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage suboptimal,
 632 on-policy data. In *International Conference on Machine Learning*, pp. 47441–47474. PMLR,
 633 2024.

634 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 635 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 636 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

637 Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen, and Sercan O Arik. Astute RAG: Overcoming
 638 imperfect retrieval augmentation and knowledge conflicts for large language models. In Wanxiang
 639 Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the
 640 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 641 pp. 30553–30571, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
 642 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1476. URL <https://aclanthology.org/2025.acl-long.1476/>.

648 Teng Xiao, Yige Yuan, Huaisheng Zhu, Mingxiao Li, and Vasant G Honavar. Cal-dpo: Calibrated
 649 direct preference optimization for language model alignment. In *The Thirty-eighth Annual Confer-
 650 ence on Neural Information Processing Systems*, 2024.

651
 652 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 653 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 654 arXiv:2412.15115*, 2024.

655 Xiliang Yang, Feng Jiang, Qianen Zhang, Lei Zhao, and Xiao Li. Dpo-shift: Shifting the distribution
 656 of direct preference optimization. *arXiv preprint arXiv:2502.07599*, 2025.

657
 658 Zhongzhi Yu, Zheng Wang, Yuhan Li, Ruijie Gao, Xiaoya Zhou, Sreenidhi Reddy Bommu, Yang
 659 Zhao, and Yingyan Lin. Edge-llm: Enabling efficient large language model adaptation on edge
 660 devices via unified compression and adaptive layer voting. In *Proceedings of the 61st ACM/IEEE
 661 Design Automation Conference*, pp. 1–6, 2024.

662
 663 Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
 664 Rank responses to align language models with human feedback without tears. *arXiv preprint
 665 arXiv:2304.05302*, 2023.

666 Wenxuan Zhou, Sheng Zhang, Hoifung Poon, and Muhan Chen. Context-faithful prompting for large
 667 language models. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp.
 668 14544–14556, 2023.

669 A APPENDIX

670 B RELATED WORK

671 B.1 FAITHFULNESS HALLUCINATION OF LARGE LANGUAGE MODELS

672 Hallucination in LLMs can be generally categorized into two types: factuality hallucination, where
 673 generated content deviates from established world knowledge (e.g., claiming “Mars has oceans”), and
 674 faithfulness hallucination, where the generated response is inconsistent with the provided context (e.g.,
 675 misrepresenting a source document’s information). (Huang et al.)

676 Current methods to address faithfulness hallucination primarily fall into two categories:

- 677 • *Post-training-based methods* rely on supervised fine tuning (Touvron et al., 2023; Hu et al., 2022)
 678 or preference alignment (Rafailov et al., 2023). Liu et al. (2025) propose a two-stage instruction
 679 tuning method and create a dataset (including human annotation) that aims at enhancing LLM’s
 680 capability of integrating external context. For alignment-based methods, one key factor lies in
 681 creating the preference dataset: Song et al. (2025) uses GPT-4 (Achiam et al., 2023) to generate a
 682 well cross-referenced response as the positive answer and uses Llama2 (Touvron et al., 2023) to
 683 generate negative response results in an alignment dataset of 15K samples. RAG-HAT (Song et al.,
 684 2024) prompts GPT-4 to correct hallucinations in the response, which uses as positive response and
 685 the original response as the negative one. Context-DPO creates preference data by perturbing a
 686 knowledge graph and employs GPT-4 to generate counterfactual context (Bi et al., 2025). While
 687 these methods can yield more customized responses, they often demand costly supervision from
 688 humans or advanced LLM models and can lead to extensive post-training processes that may cause
 689 catastrophic forgetting (Kirkpatrick et al., 2017; Lin et al., 2024), thereby undermining the model’s
 690 generalization capabilities
- 691 • *Decoding strategy-based methods*: In (Shi et al., 2024), the author presents context-aware decoding
 692 (CAD), which follows a contrastive output distribution that amplifies the difference between the
 693 output probabilities when a model is used with and without context. DECORE (Gema et al., 2024)
 694 extends this framework to masking retrieval heads to induce faithfulness hallucinations, followed
 695 by a dynamic entropy-controlled contrastive decoding to penalize uncertain outputs. While these
 696 methods are training-free and adaptable, they often significantly increase the inference burden,
 697 typically by requiring parallel processing

To overcome these challenges, this paper introduces Self-Supervised Faithfulness Optimization (SSFO), a self-supervised alignment method that enhances faithfulness without introducing external supervision or additional inference burden. To our knowledge, the most closely related work is SCOPE (Duong et al., 2025), which tunes task-specific models by using gold reference labels as positive examples and synthesizes unfaithful negatives via a noisy, token-level mixture of a fine-tuned model and an unconditional pre-trained LM. This process must be repeated for each new downstream task, limiting its generalizability across diverse RAG scenarios. In contrast, SSFO is entirely label-free and pursues a more direct alignment strategy. It generates its own preference data by contrasting the model’s output generated with retrieved context against the output generated without context. Moreover, we analyze this self-supervised alignment process, demonstrating that it leverages a benign form of likelihood displacement to enhance faithfulness. Overall, SSFO learns a broadly task-agnostic principle of contextual adherence, yielding significant faithfulness gains without requiring ground-truth labels or being rebuilt for each new task.

B.2 DIRECT PREFERENCE OPTIMIZATION AND LIKELIHOOD DISPLACEMENT

RLHF (Ouyang et al., 2022; Bai et al., 2022) requires fitting a reward model to a dataset of human (or AI) preferences, and then training the language model to maximize the reward, which is computationally expensive and can suffer from instabilities. This has led to the rise of direct preference optimization (DPO) (Rafailov et al., 2023). DPO implicitly optimizes the same objective as RLHF algorithms but is easy to implement and straightforward to train.

Likelihood displacement (Razin et al., 2025) refers to the counterintuitive phenomenon where, during direct preference alignment, while the gap between preferred responses and dispreferred responses increases, they both decrease. Such a phenomenon is unwanted since the preferred response is derived from a human annotator or a strong AI model. To alleviate this problem, DPO (Pal et al., 2024) design a modified DPO loss function to penalizes reducing the probability of the positive completion; AlphaPO (Gupta et al., 2025) introduce a parameter to adjust the shape of the reward function beyond standard log rewards, providing fine control over the likelihood displacement; DPO-Shift (Yang et al., 2025) adds a real-valued function to controllably shift the distribution of the preferred probability.

Existing approaches typically assume the preferred response is a "golden" label and aim to alleviate likelihood displacement. In contrast, SSFO optimizes the model using self-supervised preference data, which can be considered "silver" labels, yet still provides a clear supervisory signal towards faithfulness. This work demonstrates that, in the RAG setting, likelihood displacement can be a benign phenomenon and can even be encouraged to benefit the faithfulness alignment process.

C MATHEMATICAL DERIVATIONS

C.1 LIKELIHOOD DISPLACEMENT ANALYSIS FOR $\mathcal{L}_{\text{SSFO}-\lambda}$

Let σ denote the logistic function. Define the chosen-likelihood target and the (smoothed) reward-margin target:

$$\omega_1(\theta) = \mathbb{E}[\log \pi_\theta(y'_c | x, c)], \quad \omega_2(\theta) = \mathbb{E}\left[\sigma\left(\gamma \log \frac{\pi_\theta(y'_c | x, c)}{\pi_{\text{ref}}(y'_c | x, c)} - \gamma \log \frac{\pi_\theta(y_p | x, c)}{\pi_{\text{ref}}(y_p | x, c)}\right)\right].$$

Consider the SSFO- λ loss:

$$\mathcal{L}_{\text{SSFO}-\lambda}(\theta) = -\mathbb{E}\left[\log \sigma\left(\beta \log \frac{\pi_\theta(y'_c | x, c)}{\pi_{\text{ref}}(y'_c | x, c)} - \lambda \beta \log \frac{\pi_\theta(y_p | x, c)}{\pi_{\text{ref}}(y_p | x, c)}\right)\right],$$

Let $\theta_{t+1} = \theta_t - \eta \nabla \mathcal{L}(\theta_t)$, and define the one-step gaps between SSFO- λ and vanilla SSFO (i.e., $\lambda = 1$):

$$g_i(t+1) = \omega_i(\theta_{t+1})|_{\text{SSFO}-\lambda} - \omega_i(\theta_{t+1})|_{\text{SSFO}}, \quad i \in \{1, 2\}.$$

Following Theorem 2.1 of (Yang et al., 2025), for a single gradient step and to first order,

$$g_1(t+1) = (1 - \lambda) u_1, \quad g_2(t+1) = (1 - \lambda) u_2,$$

where $u_1 > 0$ and $u_2 < 0$.

756 If $\lambda > 1$, then $1 - \lambda < 0$, hence
 757

$$758 \quad g_1(t+1) < 0 \quad \text{and} \quad g_2(t+1) > 0.$$

759 Thus, the chosen likelihood ω_1 decreases while the margin ω_2 increases, i.e., choosing $\lambda > 1$
 760 encourages likelihood displacement.
 761

762 C.2 GRADIENT DERIVATION FOR $\mathcal{L}_{\text{SSFO}-\lambda}$
 763

764 The loss function for SSFO- λ is given by:
 765

$$766 \quad \mathcal{L}_{\text{SSFO}-\lambda}(\pi_\theta, \pi_{\text{ref}}) = -\mathbb{E}_{(x, c, y'_c, y_p) \sim \mathcal{D}_{\text{pref}}} [\log \sigma(u)]$$

767 where

$$768 \quad u := \beta \log \frac{\pi_\theta(y'_c|x, c)}{\pi_{\text{ref}}(y'_c|x, c)} - \lambda \cdot \beta \log \frac{\pi_\theta(y_p|x, c)}{\pi_{\text{ref}}(y_p|x, c)}$$

769 The gradient with respect to θ is:
 770

$$772 \quad \nabla_\theta \mathcal{L}_{\text{SSFO}-\lambda} = -\mathbb{E} \left[\frac{\sigma'(u)}{\sigma(u)} \nabla_\theta u \right]$$

773 Using the properties of the sigmoid function $\sigma'(x) = \sigma(x)(1 - \sigma(x))$ and substituting $-u$, the
 774 gradient simplifies to:
 775

$$776 \quad \nabla_\theta \mathcal{L}_{\text{SSFO}-\lambda} = -\mathbb{E} \left[\sigma \left(\lambda \cdot \beta \log \frac{\pi_\theta(y_p|x, c)}{\pi_{\text{ref}}(y_p|x, c)} - \beta \log \frac{\pi_\theta(y'_c|x, c)}{\pi_{\text{ref}}(y'_c|x, c)} \right) \right. \\ 777 \quad \left. \times (\beta \nabla_\theta \log \pi_\theta(y'_c|x, c) - \lambda \cdot \beta \nabla_\theta \log \pi_\theta(y_p|x, c)) \right] \quad (6)$$

778 Let c'_1 be defined as:
 779

$$780 \quad c'_1 := \beta \sigma \left(\lambda \cdot \beta \log \frac{\pi_\theta(y_p|x, c)}{\pi_{\text{ref}}(y_p|x, c)} - \beta \log \frac{\pi_\theta(y'_c|x, c)}{\pi_{\text{ref}}(y'_c|x, c)} \right)$$

781 Then the final gradient form is:
 782

$$783 \quad \nabla_\theta \mathcal{L}_{\text{SSFO}-\lambda} = -\mathbb{E} [c'_1 (\nabla_\theta \log \pi_\theta(y'_c|x, c) - \lambda \nabla_\theta \log \pi_\theta(y_p|x, c))]$$

784 This matches the target formula.
 785

786 D IMPLEMENTATION DETAILS
 787

788 D.1 DATASETS
 789

790 We utilize a variety of datasets to comprehensively evaluate the proposed SSFO method across
 791 different aspects of faithfulness, response quality, and generalization to ensure consistently strong
 792 performance in a retrieval-augmented generation (RAG) setting.

- 793 • **MemoTrap** (Liu & Liu, 2023) is designed to reveal “memorisation traps” by pitting a well-known
 794 proverb against a context-correct but counter-habitual ending. *Example (prompt): “Write a quote
 795 that ends in the word ‘right’: If you want a thing done right, do it ___”* – the context expects the
 796 completion *right*, not the cached continuation *yourself*.
- 797 • **NQ-Open** (Lee et al., 2019) is an open-domain QA benchmark provide with supporting passages.
 798 *Example: Passage: Vatican City.... is the smallest country in Europe by both area and population;
 799 Question: Which country has the smallest population in Europe?”* → *Vatican City*.
- 800 • **NQ-Swap** (Longpre et al., 2021) extends Natural-Questions with entity swaps to create conflicts
 801 between retrieved context and parametric memory. *Example: Context states “Ferraro is known
 802 for her portrayal of Grace Bowman in The Secret Life of the American Teenager”, the query asks
 803 “Who plays Grace in ...?”* – the correct answer is *Ferraro*, although parametric knowledge often
 804 yields *Molly Ringwald*.

- **SQuAD v1.1** (Rajpurkar et al., 2016) provides short passages with span-based questions. *Example: Passage: “Google was founded in 1998 by Larry Page and Sergey Brin”; “Question: Who founded Google?” → Larry Page; Sergey Brin.*
- **ELI5** (Fan et al., 2019) contains long-form, lay-audience explanations. *Example: “Why is the sky blue?”* expects a multi-sentence answer discussing Rayleigh scattering.
- **WikiPassageQA** (Cohen et al., 2018) is a collection designed for long-form, non-factoid answer passage retrieval. It contains thousands of questions with annotated answers. *Example: “What does s.h.i.e.l.d stand for?” → “The acronym originally stood for Supreme Headquarters, International Espionage, Law-Enforcement Division. ”*
- **DuReader** (Chinese) (He et al., 2018) evaluates cross-lingual comprehension with Web passages. *Example (in English for illustration): “Who wrote Dream of the Red Chamber?” → Cao Xueqin.*
- **XQuAD** (Spanish split) (Artetxe et al., 2020) probes zero-shot transfer to non-English languages. *Example (in English for illustration): “Who was the first person to transmit radio waves across the Atlantic?” → Guglielmo Marconi.*
- **FollowBench** (Jiang et al., 2024) measures fine-grained instruction following. *Example: To enhance your time management skills, can you devise a method incorporating a mind map and featuring a touch of alliteration in the suggestion, ensuring each sentence contains no more than 15 words?*

828 D.2 BASELINES

830 **Instruct Model** (Touvron et al., 2023; Yang et al., 2024): A vanilla instruction-tuned LLM queried
831 with a standard retrieval-augmented generation (RAG) prompt.

832 **CAD** (Shi et al., 2024): A training-free decoding strategy that contrastive output distribution that
833 amplifies the difference between the output probabilities when a model is used with and without
834 context.

835 **DECORE** (Gema et al., 2024): A training-free decoding strategy that reduces hallucinations by
836 contrasting outputs of the base LLM and a masked variant (retrieval heads suppressed) guided
837 by conditional entropy. For comparison, we reproduce DECORE with the authors’ open-source
838 implementation.

839 **Trust-Align** (Shi et al., 2024): Builds GPT-4 “gold” answers cross-referenced to the retrieved context
840 as positive samples and Llama outputs as negative samples, then performs DPO to steer the model
841 toward faithful responses. For comparison, we use the official open-source model.

843 **ChatQA** (Liu et al., 2025): Enhances RAG and conversational QA via a two-stage instruction tuning
844 method and a dense retriever optimized for dialogue, reducing deployment costs while matching
845 query rewriting models. For comparison, we use the official open-source model.

846 **Context-DPO** (Bi et al., 2025): Improves context faithfulness by applying Direct Preference Opt-
847 imization on the CONFIQA benchmark, which injects knowledge conflicts to mimic real RAG
848 scenarios. For comparison, we use the official open-source model.

849 **SCOPE** (Duong et al., 2025): Tunes task-specific models using gold labels as positives while
850 synthesizing negatives from a mixture of a fine-tuned and a pre-trained language model. Since
851 SCOPE involves selecting specific training datasets for different tasks, we used the same dataset as
852 our own method for a fair comparison in our experiments.

854 D.3 DETAILS ON SELF-SUPERVISED PREFERENCE DATA CONSTRUCTION

856 Starting from the MS MARCO (Bajaj et al., 2018) corpus, we randomly sample and construct 900
857 (*query, context*) pairs, ensuring topic diversity and broad open-domain coverage. Using the prompts
858 in Table 5, we construct both preferred and dispreferred responses from the base-instruct model,
859 discarding empty outputs (e.g., responses such as “I do not know”). This yields a self-supervised
860 preference dataset that reflects the model’s native response style. In practice, training the base-instruct
861 model on approximately 500 pairs already achieves over 85% of the final performance gain.

862 We compare generated preference data in Table 6, Trust-Align induces a large style gap—the
863 preferred response is verbose and citation-driven, while the dispreferred one is concise and citation-
light; Context-DPO performs closed-form QA with simple entity swaps (e.g., “microfiber cloth” vs.

864 Table 5: Prompts for self-supervised preference data generation and inference.
865

866	Prompt for preferred response
867	Based on the following context: 868 Context: {Context}
869	Question: {Question}
870	If you are not sure of the answer, please reply “I don’t know”.
871	Prompt for dispreferred response
872	Question: {Question}
873	If you are not sure of the answer, please reply “I don’t know”.
874	Inference Prompt
875	Based on the following context: {Context}
876	Answer the following question: {Question}

879
880
881
882 “paper towel”); SSFO (Open-Domain QA) preserves the model’s native style for both preferred
883 and dispreferred answers, enabling optimization to focus purely on faithfulness improvements
884 without introducing a confounding style gap.

885 Table 6: Comparison of responses generated by different post-training-based methods.
886

887 Strategy	888 Preferred Response	889 Dispreferred Response
890 Trust-Align	891 To safely clean your computer screen, first 892 power off the device, as this makes dust 893 and smudges easier to see and reduces the 894 risk of damage [2][3]. Use only a clean, dry 895 microfiber cloth as microfiber is specifically 896 designed to clean screens gently without 897 scratching them [1][3].	898 First, turn off your laptop to prevent any 899 damage to the screen. According to a guide 900 by [1] How to Safely Clean Your Screen, this 901 is essential for effective cleaning. Ref- 902 erences: [1] How to Safely Clean Your 903 Screen
904 Context- 905 DPO	906 Lightly wipe the screen with a clean, dry 907 microfiber cloth.	908 Lightly wipe the screen with a clean, dry 909 paper towel.
910 SSFO	911 Based on the passages, to safely clean your 912 computer screen: 913 1. Wipe gently with a microfiber cloth, 914 avoiding excessive pressure. 915 2. Do not use paper towels, kitchen towels, 916 or household rags.	917 To safely clean your computer screen, you 918 can use a soft, dry cloth or a microfiber 919 cloth to gently wipe it. Avoid liquids, chemi- 920 cals, or abrasive materials that may damage 921 the surface.

922 **D.4 TRAINING AND INFERENCE SETTINGS.**

923
924 We fine-tune each model using a global batch size of 8 on 8×NVIDIA A6000 GPUs in BF16.
925 Optimisation employs AdamW ($\beta_1=0.9$, $\beta_2=0.95$) with a peak learning rate of 1×10^{-6} , linearly
926 warmed up from 0 over the first 10 steps and then held constant. For SSFO- λ , we set $\lambda = 1.5$ for
927 Llama and Mistral, and $\lambda = 1.3$ for Qwen2.5. During both dataset generation and evaluation, we
928 decode with a temperature of 0.7.

918 Table 7: Prompts for LLM-Faithfulness Score
919920 **Prompt for using LLM-as-Judge to evaluate the faithfulness of long-form generation**
921922 **Task:**923 You are a rigorous, no-nonsense evaluator of CONTEXT-faithfulness for retrieval-augmented generation.
924 Read the CONTEXT and the QUESTION, then assess whether the MODEL_ANSWER is faithful to the
925 CONTEXT when addressing the QUESTION.926 **Definitions:**927

- "unfaithful": The answer contradicts the CONTEXT, or asserts key facts not supported by the
928 CONTEXT (using outside/world knowledge, fabrications, or misquotes). If any contradiction exists, choose
929 this.
- "partially_faithful": The answer is mostly grounded but includes at least one unsupported or
930 speculative claim, or mixes supported and unsupported details, or overgeneralizes beyond the CONTEXT
931 without directly contradicting it.
- "faithful": Every substantive claim used to answer the QUESTION is directly supported by the
932 CONTEXT (allow paraphrases). Minor wording changes are fine; no extraneous unsupported facts.

933 **Inputs:**934

- CONTEXT: {CONTEXT}
- QUESTION: {QUESTION}
- MODEL_ANSWER: {MODEL_ANSWER}

937 **E ADDITIONAL RESULTS**938 **E.1 EFFECT OF MODEL SCALE ON SSFO PERFORMANCE**939 Table 8: Impact of SSFO on robustness and response quality across varying LLM scales (1.5B–72B parameters).
940

941 Instruct Model	942 Method	943 Robustness			944 Response Quality			
		945 NQ-Swap	946 Memo-Trap	947 NQ-Open	948 SQuAD	949 Eli5	950 R-1 F1↑	951 R-2 F1↑
953 Span EM↑	954 Span EM↑	955 Span EM↑	956 Span EM↑	957 Span EM↑	958 Span EM↑	959 Span EM↑	960 R-1 F1↑	961 R-2 F1↑
962 Qwen2.5 1.5B	963 Baseline SSFO	964 65.78%	965 25.44%	966 79.17%	967 88.80%	968 22.11%	969 4.26%	970 19.40%
		79.65%	41.12%	83.88%	92.90%	28.10%	8.86%	24.87%
971 Qwen2.5 3B	972 Baseline SSFO	973 76.38%	974 47.66%	975 76.95%	976 88.20%	977 23.57%	978 6.60%	979 21.11%
		82.11%	59.12%	81.32%	92.40%	25.74%	9.16%	23.31%
980 Qwen2.5 7B	981 Baseline SSFO	982 79.35%	983 54.19%	984 82.29%	985 90.30%	986 23.08%	987 6.06%	988 20.55%
		84.18%	57.66%	83.88%	92.00%	24.63%	7.17%	21.83%
989 Qwen2.5 14B	990 Baseline SSFO	991 82.15%	992 64.08%	993 82.49%	994 90.00%	995 22.48%	996 5.62%	997 20.03%
		85.04%	66.52%	84.14%	92.80%	25.42%	8.19%	22.97%
998 Qwen2.5 72B	999 Baseline SSFO	1000 81.84%	1001 66.99%	1002 83.50%	1003 91.20%	1004 21.85%	1005 5.26%	1006 19.45%
		87.51%	67.39%	84.48%	92.70%	22.46%	5.71%	19.96%

957 To assess the scalability of SSFO, we apply it to Qwen2.5 models with sizes from 1.5 B to 72
958 B parameters and report relative gains over each instruct baseline on five benchmarks (Table 8).
959 Across all model sizes, SSFO consistently improves robustness—yielding +3 % to +14 % span
960 EM gains—and enhances response quality—boosting closed-book QA and long-form generation
961 metrics by up to +6 %. The largest relative improvements occur on smaller models (e.g., +13.9 %
962 EM on Memo-Trap for Qwen2.5 1.5 B), while even the 72 B model sees steady gains (e.g., +5.6 %
963 EM on NQ-Swap). These results demonstrate that SSFO delivers a stable, scalable enhancement to
964 faithfulness and answer quality across a wide spectrum of LLM sizes.
965

966 **E.2 INSTRUCT FOLLOWING**

967 In Table 9, we present detailed sub-metrics for several faithfulness-enhancement methods to evaluate
968 their impact on LLMs' overall instruction-following capabilities. Among these approaches, SSFO
969 not only best preserves general instruction adherence but also delivers the gains on Content-category
970 tasks—a result we attribute to SSFO's ability to steer the model to attend more closely to the source
971 text. **SSFO emerges as a practical technique for boosting faithfulness while maintaining the**

972 Table 9: Constraint Satisfaction Levels (CSL↑) on FollowBench across Llama-3-Instruct and Qwen2.5-7B-
973 Instruct models. Results are broken down by Content, Situation, Style, Format, and Mixed constraint categories,
974 as well as their overall mean.

976 Model	977 Method	978 Implement	979 Supervision	980 Instruction Following (FollowBench)				
				981 Content CSL↑	982 Situation CSL↑	983 Style CSL↑	984 Format CSL↑	985 Mixed CSL↑
986 Llama-3-8B	987 Instruct-Baseline	\	\	2.6	2.4	3.3	2.9	1.5
				1.0	0.7	2.1	0.6	0.2
	988 Decoding-Strategy	989 CAD	990 X	2.4	2.0	3.1	3.3	2.46
				0.1	0.1	0.0	0.0	0.4
		991 Post-Training	992 Trust-Align	1.3	1.0	1.0	1.1	0.8
				0.1	0.1	0.0	0.0	0.12
			993 Context-DPO	2.5	2.5	3.0	2.8	1.5
				0.4	0.2	0.1	0.1	0.16
994 Qwen2.5-7B	995 Instruct-Baseline	\	\	2.8	2.7	3.2	3.2	1.6
				2.3	2.4	3.1	3.1	2.50
	996 Decoding-Strategy	997 CAD	998 X	1.0	1.4	2.4	0.8	0.5
				2.4	3.2	2.7	2.8	1.7
		999 Post-Training	999 Trust-Align	0.5	1.5	0.3	0.1	0.5
				2.6	3.3	3.0	2.9	1.4
			999 Context-DPO	0.4	0.9	0.3	0.1	0.4
				2.6	3.1	3.2	2.9	1.7
				2.6	3.0	3.2	2.7	1.6

987
988
989 **model’s effectiveness on general-purpose tasks.** For example, in a RAG-powered law assistant, in a
990 legal research setting, SSFO can preserve verbatim case-law citations yet allows users to reorganize,
991 highlight, and summarize key holdings according to specified style and formatting instructions.

992 E.3 CASE STUDY

993 We provide more qualitative illustration of SSFO’s benefits. As shown in Table 10 SSFO corrects
994 parametric hallucinations made by the instruct model. In Table 11, example from FollowBench
995 highlights SSFO’s ability to retain strong instruction-following capabilities under complex, context-
996 based scenarios. In Table 12 a cross-language case study underscores SSFO’s capacity to maintain
997 faithfulness even when queries and context are presented in a different language, such as Spanish.

1000 Table 10: A case study showing how SSFO improves faithfulness on a NQ-swap dataset (Longpre et al.,
1001 2021). **blue** text indicates the correct, context-based answer; **red** text denote parametric-induced faithfulness
1002 hallucination.

1003 Question	1004 Who plays grace in The Secret Life of the American Teenager?
1005 Context	1006 Ferraro (born July 24, 1986) is a Canadian actress and singer. She is known for her portrayal of Grace Bowman in the 1007 television series The Secret Life of the American Teenager.
1008 Base	1009 According to the text, Molly Ringwald plays the role of Grace Bowman in the television series The Secret Life of the 1010 American Teenager. 1011 Hallucination
1010 SSFO	1011 Based on the text, Ferraro plays the role of Grace Bowman in the television series The Secret Life of the American 1012 Teenager. 1013 Context-Faithful

1013 Table 11: Case study from FollowBench (Jiang et al., 2024): showing that SSFO retains strong instruction-
1014 following capabilities under a complex, context-based NLP task.

1015 Instruction	1016 Below we show examples of soft drink. Following these examples, keep listing three more soft drink that satisfy following 1017 conditions: 1. not manufactured by coca cola company; First Three Examples:
1018 Examples	1019 a) in chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. b) coca cola, or 1020 coke, is a carbonated soft drink manufactured by the coca cola company.c) an egg cream is a cold beverage consisting of 1021 milk, carbonated water, and flavored syrup (typically chocolate or vanilla).
1021 ChatQA	1022 D) Fanta E) Pepsi Cola F) Mecca cola 1023 Fanta is manufactured by coca cola company
1022 SSFO	1023 Based on the given examples, here are three more soft drinks that satisfy the condition of not being manufactured by the 1024 Coca-Cola company: 1. Dr Pepper: a carbonated soft drink that is a blend of vanilla and cherry flavors. 2. Mountain 1025 Dew: a sweet and citrus-flavored carbonated soft drink that is owned by PepsiCo. 3. A&W Root Beer: a creamy and 1026 sweet carbonated soft drink that is flavored with vanilla and anise, owned by Dr Pepper Snapple Group (now Keurig Dr 1027 Pepper). 1028 General Ability Retained

1026 Table 12: Cross-language case study demonstrating that SSFO maintains faithfulness even when the
 1027 query–answer pair is presented in Spanish (ES). **Blue** spans highlight correct, context-grounded information; **Red** spans mark parametric hallucinations.
 1028

1029	Query	(EN) Who first sent radio waves across the Atlantic? 1030 (ES) ¿Quién fue el primero en enviar ondas de radio a través del Atlántico?
1031	Context	(EN) ... Guglielmo Marconi made his famous trans-Atlantic radio transmission for the first time in 1901 ... (193 words omitted) 1032 (ES) ... <i>Cuando Guglielmo Marconi realizó por primera vez su famosa transmisión transatlántica de radio en 1901</i> ...
1033	Context-DPO	(EN) According to the context, Guglielmo Marconi made the first-ever trans-Atlantic radio transmission in 1034 1901 . 1035 (ES) <i>Según el contexto, no se puede determinar con certeza</i> quién fue el primero en enviar ondas de radio a través 1036 del Atlántico, ya que la Corte Suprema de los Estados Unidos declaró que la decisión no tenía nada que ver con la 1037 reivindicación de Marconi... 1038
1039		Faithful to context 1040
1041		Hallucination 1042
1043	SSFO	(EN) Based on the context, Guglielmo Marconi made the first-ever trans-Atlantic radio transmission in 1044 1901 . 1045 (ES) <i>Según el contexto, Guglielmo Marconi fue el primero en enviar ondas de radio a través del Atlántico, en</i> 1046 1901 . 1047
1048		Faithful to context 1049
1050		Faithful to context

F LIMITATION

This paper introduces SSFO, a novel and efficient self-supervised method that significantly enhances faithfulness in RAG systems without inference overhead. While the current work demonstrates strong performance, one potential avenue for future investigation could be to extend its application and further assess its efficacy in more complex RAG scenarios, such as those involving extremely long contexts or the synthesis of information from multiple retrieved documents. Investigating the scalability and adaptability of SSFO to even more intricate and diverse knowledge domains represents a direction for continued advancement. SSFO is designed for regimes where the retrieved context is treated as authoritative. In scenarios with high noise or malicious retrieval (Wang et al., 2025; Huang et al., 2025), SSFO should be paired with upstream verification modules to prevent the faithful propagation of misinformation.

G BROADER IMPACTS

Our work on Self-Supervised Faithfulness Optimization (SSFO) presents significant positive impacts for the advancement of reliable and trustworthy AI systems. By enhancing the faithfulness of Retrieval-Augmented Generation (RAG) models to provide context, SSFO alleviates the critical issue of faithfulness hallucination. This improvement leads to more accurate, verifiable, and dependable outputs from Large Language Models, which is crucial for applications where information integrity is paramount, such as in educational tools, scientific research, and systems providing critical information to the public. Reducing the propensity of LLMs to generate content that deviates from factual sources fosters greater user trust and promotes the responsible deployment of AI technologies in diverse real-world scenarios.

Furthermore, the self-supervised nature of SSFO offers considerable practical benefits that can accelerate the adoption of more faithful AI. By eliminating the need for costly human annotation or extensive, resource-intensive post-training procedures, our method makes the development of highly faithful models more accessible and economically viable for a broader range of researchers and developers. The negligible inference burden and the demonstrated strong generalization capabilities, including improved cross-lingual faithfulness and preservation of general instruction-following abilities, mean that the benefits of SSFO can be widely applied across different languages and tasks. This facilitates the development of more robust and equitable AI systems globally, contributing to a more informed and reliably assisted digital environment.