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ABSTRACT

Retrieval-Augmented Generation (RAG) systems require Large Language Models
(LLMs) to generate responses that are faithful to the retrieved context. However,
faithfulness hallucination remains a critical challenge, as existing methods often
require costly supervision and post-training, or imposing significant inference
burdens. To overcome these limitations, we introduce Self-Supervised Faithfulness
Optimization (SSFO), a self-supervised alignment approach for enhancing faith-
fulness. SSFO constructs preference data pairs by contrasting the model’s outputs
generated with context versus without context. Leveraging Direct Preference Opti-
mization (DPO), SSFO aligns model faithfulness without incurring labeling costs
or additional inference burdens. We analyze this faithfulness alignment process and
provide empirical evidence that it leverages a benign form of likelihood displace-
ment, shifting probability mass from parametric-based tokens to context-aligned
tokens. Based on this insight, we adapt the DPO loss using a weighting scheme
that encourages likelihood displacement. Comprehensive evaluations show that
SSFO significantly outperforms existing methods, achieving state-of-the-art results
in faithfulness on multiple context-based question-answering datasets. Notably,
SSFO exhibits strong generalization, improving cross-lingual faithfulness while
preserving general instruction-following capabilities. The code is available at:
https://anonymous.4open.science/r/SSFO

1 INTRODUCTION

With the widespread deployment of Retrieval Augmented Generation (RAG) (Lewis et al., 2020;
Jokinen, 2024), Large Language Models (LLMs) (Achiam et al., 2023; Touvron et al., 2023) are
increasingly expected to generate responses that adhere closely to the provided context (Song et al.,
2025; 2024; Niu et al., 2024). However, an LLM’s parametric knowledge from pre-training can
interfere with the provided context and lead the model to generate unsupported information, known
as faithfulness hallucination (Zhou et al., 2023; Huang et al.; Es et al., 2024). It has emerged as a
critical challenge for current LLMs, especially in scenarios where their parametric knowledge is
insufficient or outdated.

A growing body of work has emerged to address faithfulness hallucination. Current approaches can
be broadly categorized as follows: (1) post-training-based methods (Song et al., 2025; 2024; Bi et al.,
2025; Liu et al., 2025) employ supervised fine-tuning and direct preference optimization (Rafailov
et al., 2023) to enhance faithfulness. However, these methods often necessitate costly human or
stronger LLM supervision (e.g., GPT-4). Meticulously creating thousands to tens of thousands of
training examples incurs significant annotation costs. (2) decoding strategy-based methods (Gema
et al., 2024; Shi et al., 2024) alleviate faithfulness hallucinations through a plug-and-play approach
that can be easily adapted to newly developed LLMs. However, they typically double the inference
computation by requiring parallel processing with perturbed and natural inputs.

To overcome these limitations, we propose Self-Supervised Faithfulness Optimization (SSFO).
SSFO offers two advantages: (1) a self-supervised faithfulness alignment framework with a minor
post-training cost (hundreds of self-generated examples), which helps SSFO adapt easily to newly
developed LLMs. (2) no additional inference burden, which is crucial for lightweight deployment
on edge devices (Yu et al., 2024). To generate the training signal for faithfulness, we leverage the
model’s own differential behavior when its knowledge access is altered. As shown in Fig. 1, we
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leverage the model itself to generate pairs of preference data: the preferred response is generated
from the query with retrieved context, while the dispreferred response is generated from the query
alone, relying solely on the model’s parametric knowledge. We then apply DPO (Rafailov et al.,
2023) training to align the model toward enhanced faithfulness. Our results show that SSFO attains
contextual faithfulness comparable to both post-training-based methods (Song et al., 2025; Bi et al.,
2025; Liu et al., 2025) and decoding strategy-based methods (Gema et al., 2024).

To understand the underlying mechanism of self-supervised faithfulness alignment, we show that it
can be attributed to the likelihood displacement phenomenon (Razin et al., 2025). We provide both a
gradient-based analysis and empirical results demonstrating that likelihood displacement transfers
probability mass from parametric-based tokens to context-aligned tokens, making the alignment
well-grounded. Building on this insight, we adapt the DPO loss with a weighting scheme (SSFO-λ)
to enhance this beneficial displacement and strengthen faithfulness alignment.

Results show that SSFO-λ achieves state-of-the-art faithfulness, improving performance by an
average of 12% on LLaMA-3 and 27% on Mistral across faithfulness metrics relative to the instruct
baseline. SSFO and SSFO-λ also deliver superior generalization, improving cross-lingual contextual
faithfulness across diverse LLMs. Moreover, since trained on only hundreds of self-generated
examples, they preserve LLM’s general instruction following ability and avoid the catastrophic
forgetting common in more extensive fine-tuning (Kirkpatrick et al., 2017; Dong et al., 2023; 2024).

Overall, our contributions can be summarized as follows:

• We introduce SSFO, a self-supervised method for LLM faithfulness alignment. SSFO leverages
self-generated data during training, requiring no human annotations, superior LLM models, or
ground-truth labels; the training signal derives entirely from contrasting the model’s own parametric
knowledge (as dispreferred examples) against retrieved knowledge (as preferred examples). We
show that faithfulness alignment can be achieved via self-supervision.

• We analyze the alignment process through the lens of likelihood displacement and provide empirical
evidence that probability mass shifts from parametric to context-grounded tokens. Motivated by
this finding, we investigate an easy-to-implement variant (SSFO-λ) that explicitly encourages
likelihood displacement and further boosts faithfulness alignment.

• We conduct comprehensive evaluations across diverse LLMs and benchmarks. Results show that
SSFO achieves state-of-the-art faithfulness and superior generalization, including robust cross-
lingual contextual faithfulness. Moreover, since trained with only hundreds of self-generated
examples, SSFO preserves LLM’s general instruction-following ability, avoiding the catastrophic
forgetting common in more extensive fine-tuning.

2 PRELIMINARIES

Direct Preference Optimization (DPO) (Rafailov et al., 2023): RLHF is computationally expen-
sive (Cheng et al., 2023; Yuan et al., 2023) and can suffer from instabilities (Song et al., 2023; Go
et al., 2023). DPO bypasses both explicit reward estimation and performing reinforcement learning
to learn the policy using a single maximum likelihood objective. The DPO loss is defined as:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
, (1)

where (x, yw, yl) represents a data sample from dataset D consisting of a prompt x, a preferred
completion yw, and an dispreferred completion yl. πθ is the policy model undergoing optimization,
and reference model πref is the original state of the model before optimization. The hyperparameter β
controls the difference between policy model πθ and reference model πref.

Likelihood Displacement (Razin et al., 2025; Pal et al., 2024; Tajwar et al., 2024): Likelihood
displacement is a counterintuitive phenomenon observed during direct preference optimization, where
the probabilities for the preferred response πθ(yw | x) and the dispreferred response πθ(yl | x) both
decrease, while the margin between them widens. Since yw is typically the (almost) optimal response
(e.g., human-written or from a superior model), this reduction is problematic. Recent work (Yang
et al., 2025; Gupta et al., 2025) aims to alleviate this phenomenon.
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Figure 1: (a): Existing post-training methods rely on human annotators or superior LLM models to construct
SFT or preference datasets, resulting in heavy labeling costs and lengthy post-training processes. (b) SSFO
leverages the model itself to generate preference data: Given query x, it generates a context-grounded response
y′
c (with external knowledge) and a parametric-based response yp (query only). SSFO reduces faithfulness

hallucination without external supervision and incurs negligible post-training costs.

3 METHODOLOGY

In this section, we describe the methodology of the proposed Self-Supervised Faithfulness Optimiza-
tion (SSFO). SSFO leverages self-supervised data construction and preference alignment training to
reduce faithfulness hallucination in language models. Our goal is to train models to prioritize faithful-
ness to the provided external context over their internal parametric knowledge. This prioritization is
critical for robust RAG systems.

3.1 SELF-SUPERVISED PREFERENCE DATA CONSTRUCTION

Existing approaches (Song et al., 2025; 2024; Bi et al., 2025) employ DPO to mitigate faithfulness
hallucinations and rely on curated preference data, often from human annotators or superior LLM
models like GPT-4, as shown in Fig. 1 (a). Although effective, these approaches incur substantial
data annotation costs and post-training overhead.

To address this challenge, we propose a self-supervised data construction method that avoids external
labeling or supervision, as shown in Fig. 1 (b). Our key idea is to exploit the LLM’s own responses
under different knowledge-access conditions to construct preference pairs. Specifically, we generate
two types of outputs for preference optimization:

Construction of preferred response: We provide the model πθ with the query x and the retrieved
context c to construct preferred responses, i.e., y ∼ πθ(· | x, c). Given the known faithfulness
hallucination of LLMs (i.e., blend parametric knowledge and external context when generating
responses) (Song et al., 2025; Niu et al., 2024; Bao et al., 2024), we denote this partially faithful
response as y′c.

Construction of dispreferred response: We provide the model with the query x only, omitting
the external context c. The model generates a response based solely on its parametric knowledge:
y ∼ πθ(· | x). We denote this response as yp, which reflects the model’s internal knowledge and is
more susceptible to hallucinations due to the absence of grounding in retrieved information.

The preference data pairs (y′c, yp) thus establish the context-grounded response as the positive
example, and the parametric knowledge-based response as the negative example.

3
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3.2 SELF-SUPERVISED FAITHFULNESS OPTIMIZATION

We perform DPO on the generated preference dataset (y′c, yp) to achieve faithfulness alignment.
Specifically, given a language model πθ, we minimize the following loss:

L (πθ;πref) = −E(x,c,y′
c,yp)∼D

[
log σ

(
β log

πθ (y
′
c | x, c)

πref (y′c | x, c)
− β log

πθ (yp | x, c)
πref (yp | x, c)

)]
. (2)

This objective encourages the model to increase the likelihood of the context-grounded response y′c
while penalizing the parametric knowledge-based response yp. The underlying principle is that y′c,
generated when conditioned on the external context, is generally more faithful than yp, which relies
solely on the model’s internal parametric knowledge. By widening this preference margin, the model
learns to prioritize contextual information over its internal knowledge, thereby mitigating faithfulness
hallucinations without costly external supervision.

In practice, training on a few hundred instances yields significant improvements in faithfulness,
outperforming methods that rely on human or superior LLM-generated training data (Section 4.3).

3.3 ANALYZING AND ENCOURAGING LIKELIHOOD DISPLACEMENT IN SELF-SUPERVISED
FAITHFULNESS OPTIMIZATION

Empirical studies (Section 4.1) show that although y′c is an imperfect answer generated by πref,
training with SSFO leads to a policy model π∗

θ that can significantly outperform πref. We attribute
these gains to a benign form of likelihood displacement (Razin et al., 2025; Pal et al., 2024; Tajwar
et al., 2024). Specifically, we demonstrate that in the context-based question-answering setting (i.e.,
RAG setting), SSFO shifts probability mass from tokens associated with parametric knowledge to
those grounded in external contextual information. This effect suppresses the parametric component
in both y′c and yp, favoring tokens grounded in the external context.

As shown in Fig. 2 (left), we observe a likelihood displacement phenomenon during optimization:
the optimized model π∗

θ satisfies Pπ∗
θ
(y′c|x, c) < Pπθ

(y′c|x, c) and Pπ∗
θ
(yp|x, c) < Pπθ

(yp|x, c), i.e.,
probability mass is driven away from both the composite response y′c and the parametric response yp.

Figure 2: Left: Log-likelihood of preferred response πθ(y
′
c|x, c) versus dispreferred responses πθ(yp|x, c)

over the course of SSFO optimization. Right: We compare the base instruct model and optimized model on
MemoTrap (Liu & Liu, 2023) dataset and show the mean change for context-based tokens zc and parametric-
based tokens zp, revealing that optimization increases ∆P (zc) while decreasing ∆P (zp), r denotes the Pearson
correlation coefficient.

To understand where probability mass goes and ensure analytical tractability, we analyze the instanta-
neous update to the next-token distribution under gradient flow. Building on Theorem 5 of (Razin
et al., 2025), the instantaneous change in the log-probability of an arbitrary token z from vocabulary,
conditioned on input context (x, c), is given by:

d

dt
lnπθ(t)(z|x, c) ∝ ⟨Wz(t),Wtoken(y′

c)
(t)−Wtoken(yp)(t)⟩, (3)

Here, Wz(t) denote the unembedding vector of token z at training time t, while Wtoken(y′
c)
(t) is

the unembedding vector of the token that the model is likely to generate given the context and
Wtoken(yp)(t) corresponds to the token likely generated from the parametric-knowledge. In other
words, the larger the inner product ⟨Wz(t),Wtoken(y′

c)
(t)−Wtoken(yp)(t)⟩, the more positive the

change in πθ(t)(z|x, c).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Let V (t) = Wtoken(y′
c)
(t)−Wtoken(yp)(t) denote the direction vector. We analyze how the probabilities

of different types of output tokens z vary by examining the inner product ⟨Wz(t), V (t)⟩.

• Faithful Token zc (derived from context c): With the LLM’s inherent ability to follow external
context (Lewis et al., 2020; Zhou et al., 2023; Gao et al.), when generating the preferred response
y′c conditioned on c, the model is highly likely to produce tokens consistent with the context. Thus,
Wtoken(y′

c)
is expected to be well aligned with Wzc . In contrast, since yp reflects ungrounded,

parametric-based generation, Wzc is likely unaligned with Wtoken(yp). Therefore, the inner product
⟨Wzc(t), V (t)⟩ is expected to be large.

• Parametric Token zp (derived from internal knowledge, potentially hallucinated): The token
zp is likely aligned with Wtoken(yp), reflecting the model’s internal parametric memory. However,
its alignment with Wtoken(y′

c)
is expected to be weak or negative. Consequently, ⟨Wzp(t), V (t)⟩ is

expected to be small.
• Irrelevant Token zother (unrelated to context c or parametric response yp): Wzother is unlikely to

exhibit strong alignment with either the context-dependent Wtoken(y′
c)

or the internal knowledge-
based Wtoken(yp). As a result, ⟨Wzother(t), V (t)⟩ is expected to be small.

Let ∆P (z) denote the increase in probability for token z due to likelihood displacement, proportional
to d

dt lnπθ(t)(z|x, c). Based on the analysis of the alignment above, we have:

⟨Wzc(t), V (t)⟩ ≫ ⟨Wzp(t), V (t)⟩ and ⟨Wzc(t), V (t)⟩ ≫ ⟨Wzother(t), V (t)⟩.

Therefore, in the Eq. (2) setting, the likelihood displacement mechanism preferentially transfers
probability mass towards tokens zc that are consistent with the external context c. This constitutes
a benign likelihood displacement, actively promoting faithfulness by reinforcing context-aligned
generation while suppressing tokens derived from parametric knowledge or irrelevant content.

Figure 3: Case study from the MemoTrap dataset illustrating benign likelihood displacement. The
probability mass shifts from the parametric knowledge based token zp to the external knowledge based token zc
after SSFO optimization.

3.3.1 EMPIRICAL VALIDATION OF BENIGN LIKELIHOOD DISPLACEMENT

Setting. Our experiments utilize the MemoTrap dataset (Liu & Liu, 2023), designed to evaluate
whether language models exhibit memorization traps. MemoTrap consists of instructions prompting
the model to complete well-known proverbs with endings that deviate from the common completion.
For instance, given the prompt "Write a quote that ends in the word ’right’: If you want a thing done
right, do it __", the instructed target completion is "right". In this context, the token "right" represents
the external knowledge token zc, while the commonly memorized completion token "yourself" is
considered to be based on the parametric knowledge token zp.

The SSFO optimization induces a benign form of likelihood displacement. As shown in Fig. 2
(Right), the probability of the faithful token zc increases after SSFO training. Furthermore, this
rise is mirrored by a complementary fall in the probability of the parametric token zp, producing a
pronounced negative Pearson correlation (r = −0.58). Probabilities for all remaining vocabulary
tokens remain essentially unchanged and show no discernible correlation with zc. A case study
illustrating this displacement is presented in Fig. 3.

5
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3.3.2 ENCOURAGING BENIGN PROBABILITY DISPLACEMENT WITH SSFO-λ

As established in the previous analysis, the SSFO framework induces a benign form of likelihood
displacement, in which probability mass shifts away from responses that rely on parametric knowl-
edge to those grounded in the external context. To further promote this desirable effect, we introduce
SSFO-λ, a variant that explicitly encourages this displacement through a single tuning parameter.
The method is easy to implement, requiring only a rescaling of the DPO objective.

Prior approaches have mainly treated likelihood displacement as a drawback (Pal et al., 2024; Yang
et al., 2025; Gupta et al., 2025; Xiao et al., 2024), since their “preferred” response yw is typically a
high-quality, "golden" example (e.g., human-written), where reducing likelihood would indeed be
harmful. However, our work explores using an imperfect, "silver" preferred response y′c generated
by the reference model itself. As analyzed in Section 3.3, in this context-based question answering
setting, encouraging the likelihood displacement proves to be an advantage for enhancing the model’s
faithfulness. Motivated by (Yang et al., 2025), we introduce a scaling factor λ > 1 to encourage the
likelihood displacement during optimization:

LSSFO−λ (πθ;πref) = −E(x,c,y′
c,yp)∼D

[
log σ

(
β log

πθ (y
′
c | x, c)

πref (y′c | x, c)
− λ · β log

πθ (yp | x, c)
πref (yp | x, c)

)]
.

(4)

Figure 4: Correlation plot illustrating Span
Exact Match scores for NQ-Swap, NQ-Open,
and MemoTrap (scaled to the left y-axis) and
ROUGE-L F1 scores for ELI5 (scaled to the
right y-axis). Grey lines depict the regression
trends. r denotes Pearson correlation.

Empirical Validation of λ’s Effect. As shown in Fig. 4,
we investigate the impact of varying λ from 1.0 to 1.5
across multiple context-based question-answering bench-
marks: NQ-Swap, NQ-Open, MemoTrap, and ELI5. As
λ increases, we observe a consistent improvement in per-
formance across all evaluated tasks. Pearson correlation
coefficients r reveal a positive relationship between λ and
performance on all datasets. For instance, span EM score
on MemoTrap rises by 2.1 points (from 76.2% to 78.3%);
NQ-Swap gains 1.2 points (from 81.2% to 82.5%). These
results confirm that strategically amplifying the weight
on the ungrounded (parametric) response via λ > 1 (to
encourage benign likelihood displacement) indeed yields
a more faithful response.

Gradient Analysis. To further understand how this mod-
ification encourages the desired displacement, we analyze
the gradient of SSFO–λ loss in Eq. (4). The gradient with
respect to parameters θ is:

∇θLSSFO−λ = −E
[
c′1
(
∇θ log πθ(y

′
c|x, c)− λ∇θ log πθ(yp|x, c)︸ ︷︷ ︸

decrease likelihood of yp

)]
, (5)

where c′1 is a positive coefficient. We present a detailed derivation of Eq. (5) in Section C.2. Compared
to the standard DPO update, Eq. (4) applies a stronger negative weight (−λ where λ > 1) to the
gradient component associated with the parametric response yp. Therefore, this parameter leads to a
more pronounced suppression of the likelihood of the parametric response during optimization.

4 EXPERIMENTS

Datasets: To comprehensively evaluate faithfulness, we assess model performance across several
dimensions. (1) For evaluating Robustness against conflicting parametric knowledge,we follow
prior work (Gema et al., 2024; Shi et al., 2024), using MemoTrap (Liu & Liu, 2023) and NQ-
Swap (Longpre et al., 2021).(2) For Response Quality, we evaluate on the context-based short-form
QA datasets NQ-Open (Lee et al., 2019) and SQuAD (Rajpurkar et al., 2016), as well as the long-form
generation datasets ELI5 (Fan et al., 2019) and WikiPassageQA (Cohen et al., 2018). (3) To assess the
generalization ability of the proposed methods, we benchmark Cross-language Response Quality
using DuReader (He et al., 2018) and XQuAD (Artetxe et al., 2020), and Instruction Following
Ability using FollowBench (Jiang et al., 2024).
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Metrics: For short-form QA datasets (NQ-Open, NQ-Swap, MemoTrap, SQuAD), we adopt a
standard zero-shot setting simulating a RAG scenario where the model answers queries based on the
provided context. Performance is measured using the span Extraction Matching (span EM) score
(a prediction is deemed correct if any segment of the generated output precisely matches one of the
reference answers). For the long-form generation dataset ELI5, we report ROUGE scores (Lin, 2004)
to quantify lexical overlap between the generated responses and the reference answers. We also
report the LLM-Faithfulness Score (LFS). The LFS is calculated using GPT-4 (Achiam et al., 2023)
to classify outputs as faithful, partially faithful, or unfaithful (see the prompt in Table 7), and the
score is defined as the number of faithful generations divided by the total number of generations. For
instruction following (FollowBench), we report Consistent Satisfaction Levels (CSL) (Jiang et al.,
2024), which measures how many consecutive levels of instruction hardness a model can satisfy.

Models and Baselines: To ensure the generality of our approach, we conduct experiments using
three families of open-source large language models: LLaMA 3 Instruct (Touvron et al., 2023), Qwen
2.5 Instruct (Yang et al., 2024), and Mistral Instruct. We compare the proposed method against
the strong methods focused on improving faithfulness: CAD (Shi et al., 2024), DECORE (Gema
et al., 2024), ChatQA (Liu et al., 2025), Trust-Align (Song et al., 2025), Context-DPO (Bi et al.,
2025), and SCOPE (Duong et al., 2025). It is worth noting that SCOPE also claims to require no
external supervision. However, SCOPE tunes task-specific models by using gold reference labels
as positive examples and synthesizes unfaithful negatives from a mixture of a fine-tuned model
and an unconditional pre-trained language model. This process needs to be repeated for each type
of downstream task. In contrast, SSFO is entirely label-free and pursues a more direct alignment
strategy, yielding broadly task-agnostic faithfulness gains.

4.1 FAITHFULNESS EVALUATION RESULTS

Table 1: Faithfulness evaluation. Comparison of SSFO and SSFO–λ on Robustness under conflicting
parametric knowledge (NQ-Swap, MemoTrap) and Response Quality on short-form (NQ-Open, SQuAD) and
long-form (ELI5, WikiQA) datasets. Best results are shown in bold.

Model Method Implement Supervision
Robustness Response Quality

NQ-Swap Memo-Trap NQ-Open SQuAD Eli5 WikiQA
Span EM ↑ Span EM ↑ Span EM ↑ Span EM ↑ R-L F1 ↑ LFS ↑ R-L F1 ↑ LFS ↑

Llama-3-8B

Instruct-Baseline \ \ 73.54% 73.60% 80.15% 88.20% 25.95% 59.80% 13.07% 75.31%

Decoding-Strategy CAD ✗ 75.90% 74.67% 81.44% 86.30% 24.50% 57.20% 15.02% 76.87%
DECORE ✗ 80.53% 74.40% 82.03% 84.90% 27.87% 68.90% 14.57% 78.41%

Post-Training

ChatQA ✓ 67.70% 30.60% 76.80% 88.50% 27.13% 69.70% 13.83% 56.79%
Trust-Align ✓ 75.56% 70.95% 77.38% 50.90% 10.08% 55.10% 12.99% 76.19%

Context-DPO ✓ 82.76% 72.90% 82.86% 89.90% 27.19% 66.40% 11.00% 76.13%
SCOPE ✗ 76.72% 74.26% 80.38% 68.80% 22.41% 60.20% 15.69% 76.46%
SSFO ✗ 81.23% 76.28% 84.40% 89.00% 29.91% 71.40% 13.98% 75.72%

SSFO-λ ✗ 82.81% 78.38% 85.69% 90.90% 31.48% 72.30% 15.53% 79.01%

Qwen2.5-7B

Instruct-Baseline \ \ 79.35% 54.19% 82.29% 90.30% 23.11% 41.30% 15.33% 68.72%

Decoding-Strategy CAD ✗ 79.78% 63.10% 84.29% 85.90% 18.10% 49.80% 14.28% 26.75%
DECORE ✗ 81.93% 54.56% 83.76% 82.80% 26.83% 53.60% 14.49% 71.66%

Post-Training

Trust-Align ✓ 79.69% 53.71% 77.93% 80.30% 15.67% 50.70% 16.30% 73.84%
Context-DPO ✓ 82.13% 55.34% 83.13% 91.80% 23.81% 49.30% 15.23% 72.84%

SCOPE ✗ 79.75% 44.90% 87.98% 78.50% 36.26% 60.20% 16.18% 51.03%
SSFO ✗ 84.18% 57.66% 83.88% 92.00% 24.49% 54.60% 15.96% 79.01%

SSFO-λ ✗ 84.88% 60.77% 84.48% 93.30% 23.96% 62.80% 15.60% 74.07%

Mistral-7B

Instruct-Baseline \ \ 67.76% 34.34% 79.13% 84.80% 23.38% 52.10% 18.34% 59.67%

Decoding-Strategy CAD ✗ 75.26% 22.57% 80.75% 89.00% 24.57% 48.30% 18.19% 32.92%
DECORE ✗ 78.17% 30.68% 86.52% 85.30% 25.24% 62.50% 22.07% 67.13%

Post-Training

Context-DPO ✓ 79.62% 33.20% 80.68% 86.50% 24.55% 66.30% 15.29% 63.20%
SCOPE ✗ 49.58% 15.87% 64.71% 54.00% 27.06% 63.40% 15.47% 60.29%
SSFO ✗ 86.66% 37.22% 87.53% 89.00% 30.43% 80.60% 16.67% 63.79%

SSFO-λ ✗ 85.48% 46.91% 90.32% 88.50% 33.58% 88.10% 19.64% 69.96%

*We present the results for varying model sizes in Table 8.

SSFO and SSFO-λ deliver strong faithfulness across multiple datasets and models, as shown
in Table 1: Both variants of Self-Supervised Direct Preference Optimization (SSFO and SSFO-λ)
substantially improve contextual faithfulness over the instruct baseline. For example, SSFO markedly
improves Robustness, raising NQ-Swap Span EM scores by 18.9% for Mistral, and boosts Response
Quality on NQ-Open for Llama from 80.15% to 84.40%. SSFO-λ further increases scores on Llama
and achieves top scores across all metrics for this model. Overall, SSFO-λ attains state-of-the-art
performance compared to both post-training-based baselines and decoding strategy-based baselines.
These results indicate that explicitly encouraging benign likelihood displacement not only enhances
faithfulness but also improves overall response quality.
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Table 2: A case study on faithfulness improvement. Comparing the instruct baseline, Context-DPO, and
SSFO on equivalent English–Spanish (ES) query–answer pairs. This example from XQuAD (Artetxe et al.,
2020) demonstrates that SSFO improves faithfulness over the instruct baseline and also preserves faithfulness
cross-lingually. Blue texts highlight context-grounded information; Red texts mark unfaithful content.

Query (EN) What is Cultural Imperialism often referred to as?

(ES) ¿A qué se refiere a menudo el imperialismo cultural?

Context (EN) ...Cultural imperialism is when a country’s influence is felt in social and cultural circles, i.e. its soft power,
such that it changes the moral, cultural and societal worldview of another...

(ES) ...El imperialismo cultural es cuando la influencia de un país se siente en los círculos sociales y culturales, es
decir, su poder blando, de tal manera que cambia la cosmovisión moral, cultural y social de otro...

Instruct Model (EN) Cultural Imperialism is often referred to as cultural hegemony or cultural dominance. Hallucination

Context-DPO (EN) Cultural Imperialism is often referred to as the spread of a dominant culture’s influence. This is also known as
the use of soft power. Partially Context-Faithful

(ES) El imperialismo cultural suele aludir a la influencia de la cultura de un país sobre la esfera sociocultural de
otro, transformando su cosmovisión. Hallucination

SSFO (EN) A country’s influence is felt in social and cultural circles, i.e. its soft power, such that it changes the moral,
cultural, and societal worldview of another... Context-Faithful

(ES) La influencia de un país se siente en los círculos sociales y culturales, es decir, su poder blando, de tal manera
que cambia la cosmovisión moral, cultural y social de otro... Context-Faithful

Table 3: Cross-language faithfulness and instruction-following evaluation. Comparison of SSFO and
SSFO–λ on cross-language context-based QA benchmarks (XQuAD—Spanish, DuReader—Chinese) and
instruction-following (FollowBench).

Cross-language Response Quality Instruction Following
XQuAD(ES) DuReader(CN) FollowBenchModel Method Implement Training Data

Required Span EM ↑ Span EM ↑ CSL ↑
Instruct-Baseline \ \ 78.60% 78.80% 2.54

Decoding-Stratagy CAD \ 70.34% 76.57% 0.92
DECORE \ 81.87% 79.89% 2.46

ChatQA ∼30k 77.98% 72.05% 1.04
Trust-Align ∼15k 20.17% 8.12% 0.12

Context-DPO ∼5k 83.03% 84.40% 2.46
SCOPE ∼5k 69.70% 73.90% 0.16
SSFO ∼800 83.10% 84.90% 2.70

Llama-3-8B
Post-Training

SSFO-λ ∼800 84.12% 83.56% 2.50

Instruct-Baseline \ \ 78.90% 81.50% 2.68

Decoding-Stratagy CAD \ 71.85% 76.71% 1.22
DECORE \ 80.08% 76.57% 2.56

Trust-Align ∼15k 75.21% 73.61% 0.58
Context-DPO ∼5k 79.92% 82.78% 2.64

SCOPE ∼5k 84.96% 89.27% 0.42
SSFO ∼800 79.83% 83.27% 2.70

Qwen2.5-7B
Post-Training

SSFO-λ ∼800 81.76% 87.72% 2.62

4.2 GENERALIZATION ACROSS TASKS AND LANGUAGES

SSFO enhances multi-language faithfulness. We evaluate the generalization ability of SSFO in
Table 3, and results show it can improve cross-lingual faithfulness using only an English-based
training set. For instance, on Llama, SSFO increases Span EM scores by 6.10% on DuReader
(Chinese) and 5.52% on XQuAD (Spanish) compared to the instruct baseline. In contrast, heavily
supervised methods like ChatQA (Liu et al., 2025) and Trust-Align (Song et al., 2025) exhibit
decreased performance on these non-English QA datasets. This shows that by training the model
to prioritize context knowledge over parametric knowledge, it learns a principle of contextual
adherence that can transfer across languages.

SSFO minimally impacts instruction following capability. Requiring only a few hundred self-
supervised data examples, SSFO largely preserves, and even slightly enhances, the model’s instruction
following capabilities. The CSL scores on FollowBench indicate that models fine-tuned with SSFO
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retain comparable general instruction-following ability to the original base instruction models. We
provide several cases that SSFO retains strong general instruction following ability under context-
based scenarios in Table 4. In contrast, other post-training approaches, such as Trust-Align (Song
et al., 2025), improve faithfulness at the cost of degrading general generative abilities (e.g., CSL
score decreases from 2.54 to 0.12 on LLaMA-3-8B-Instruct).

Table 4: Case study from FollowBench (Jiang et al., 2024). SSFO retains strong instruction-following
capabilities under a context-based, composite NLP task. In contrast, the heavily post-trained Trust-Align
model (Song et al., 2025) fails, demonstrating a loss of general capabilities.

Query Analyze the provided text to pinpoint a category and the sentiment (positive, neutral, or negative) it emanates. Additionally,
perform named entity recognition to emphasize notable entities and also identify the core topic discussed. Select the
category from this array: company, educational institution, artist, athlete, office holder, means of transportation, building,
natural place, village, animal, plant, album, film, or written work.

Context Michael DenDekker - Michael G. DenDekker (born July 11, 1961) is an assemblyman for the state of New York’s 34th
district which includes the neighborhoods of Woodside, Jackson Heights, and East Elmhurst, all in the borough/county of
Queens.

Trust Align I apologize, but I couldn’t find an answer to your question in the search results. General Ability Lost

SSFO Category: Office Holder; Sentiment: Neutral ; Notable entities: Michael DenDekker, State of New York, 34th district,
Woodside... Core topic discussed: Michael DenDekker’s role as an assemblyman for the state of New York’s 34th district.
Rationale: Note that the text does not contain any information about the office holder’s achievements, opinions, or personal
life, which is why the sentiment is neutral... General Ability Retained

4.3 DATA EFFICIENCY ANALYSIS

Figure 5: Data efficiency study: SSFO requires about
60% of data (400–500 examples) to achieve 85% of the
total performance gain over the instruct baseline.

To measure how many self-supervised prefer-
ence examples SSFO actually needs, we subsam-
ple the training dataset in 10% increments. As
shown in Fig. 5, we evaluate the average perfor-
mance gain (an average improvement over the
base instructed model). SSFO models cross the
85% performance threshold by approximately
50–60 % of the data (400–500 examples). We
attribute this efficiency stems from using self-
generated data, which avoids the stylistic distri-
bution mismatch often caused by external data
from human annotators or superior LLM models.
Since the training data inherently matches the
model’s native response style, optimization can
focus on improving faithfulness. We compare
the training examples from SSFO with other
post-training methods in Table 6.

5 CONCLUSION

This work addressed the critical challenge of faithfulness hallucination in RAG systems, where
existing methods often introduce significant computational overhead or rely on costly external
supervision. We introduced SSFO, an efficient self-supervised alignment approach that leverages
the model’s own outputs to build preference pairs by comparing responses generated with retrieved
context to responses based only on parametric knowledge. Our analysis shows the alignment proceeds
through a benign form of likelihood displacement, which shifts probability mass from parametric-
based tokens to context-aligned ones. Motivated by this finding, we proposed SSFO-λ, a variant
that amplifies this beneficial displacement and further enhances faithfulness. Our experiments
across diverse benchmarks show that SSFO and SSFO-λ significantly enhance model faithfulness and
robustness against parametric knowledge, achieving state-of-the-art performance compared to existing
methods. Furthermore, SSFO exhibits strong generalization capabilities, improving faithfulness
even in cross-lingual settings using only English training data, while preserving the model’s general
instruction-following abilities.
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A APPENDIX

B RELATED WORK

B.1 FAITHFULNESS HALLUCINATION OF LARGE LANGUAGE MODELS

Hallucination in LLMs can be generally categorized into two types: factuality hallucination, where
generated content deviates from established world knowledge (e.g., claiming “Mars has oceans”), and
faithfulness hallucination, where the generated response is inconsistent with the provided context(e.g.,
misrepresenting a source document’s information). (Huang et al.)

Current methods to address faithfulness hallucination primarily fall into two categories:

• Post-training-based methods rely on supervised fine tuning (Touvron et al., 2023; Hu et al., 2022)
or preference alignment (Rafailov et al., 2023). Liu et al. (2025) propose a two-stage instruction
tuning method and create a dataset (including human annotation) that aims at enhancing LLM’s
capability of integrating external context. For alignment-based methods, one key factor lies in
creating the preference dataset: Song et al. (2025) uses GPT-4 (Achiam et al., 2023) to generate a
well cross-referenced response as the positive answer and uses Llama2 (Touvron et al., 2023) to
generate negative response results in an alignment dataset of 15K samples. RAG-HAT (Song et al.,
2024) prompts GPT-4 to correct hallucinations in the response, which uses as positive response and
the original response as the negative one. Context-DPO creates preference data by perturbing a
knowledge graph and employs GPT-4 to generate counterfactual context (Bi et al., 2025). While
these methods can yield more customized responses, they often demand costly supervision from
humans or advanced LLM models and can lead to extensive post-training processes that may cause
catastrophic forgetting (Kirkpatrick et al., 2017; Lin et al., 2024), thereby undermining the model’s
generalization capabilities

• Decoding strategy-based methods: In (Shi et al., 2024), the author presents context-aware decoding
(CAD), which follows a contrastive output distribution that amplifies the difference between the
output probabilities when a model is used with and without context. DECORE (Gema et al., 2024)
extends this framework to masking retrieval heads to induce faithfulness hallucinations, followed
by a dynamic entropy-controlled contrastive decoding to penalize uncertain outputs. While these
methods are training-free and adaptable, they often significantly increase the inference burden,
typically by requiring parallel processing

13
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To overcome these challenges, this paper introduces Self-Supervised Faithfulness Optimization
(SSFO), a self-supervised alignment method that enhances faithfulness without introducing external
supervision or additional inference burden. To our knowledge, the most closely related work is
SCOPE (Duong et al., 2025), which tunes task-specific models by using gold reference labels as
positive examples and synthesizes unfaithful negatives via a noisy, token-level mixture of a fine-
tuned model and an unconditional pre-trained LM. This process must be repeated for each new
downstream task, limiting its generalizability across diverse RAG scenarios. In contrast, SSFO is
entirely label-free and pursues a more direct alignment strategy. It generates its own preference
data by contrasting the model’s output generated with retrieved context against the output generated
without context. Moreover, we analyze this self-supervised alignment process, demonstrating that it
leverages a benign form of likelihood displacement to enhance faithfulness. Overall, SSFO learns
a broadly task-agnostic principle of contextual adherence, yielding significant faithfulness gains
without requiring ground-truth labels or being rebuilt for each new task.

B.2 DIRECT PREFERENCE OPTIMIZATION AND LIKELIHOOD DISPLACEMENT

RLHF (Ouyang et al., 2022; Bai et al., 2022) requires fitting a reward model to a dataset of human
(or AI) preferences, and then training the language model to maximize the reward, which is com-
putationally expensive and can suffer from instabilities. This has led to the rise of direct preference
optimization (DPO) (Rafailov et al., 2023) . DPO implicitly optimizes the same objective as RLHF
algorithms but is easy to implement and straightforward to train.

Likelihood displacement (Razin et al., 2025) refers to the counterintuitive phenomenon where, during
direct preference alignment, while the gap between preferred responses and dispreferred responses
increases, they both decrease. Such a phenomenon is unwanted since the preferred response is derived
from a human annotator or a strong AI model. To alleviate this problem, DPOP (Pal et al., 2024)
design a modified DPO loss function to penalizes reducing the probability of the positive completion;
AlphaPO (Gupta et al., 2025) introduce a parameter to adjust the shape of the reward function beyond
standard log rewards, providing fine control over the likelihood displacement; DPO-Shift (Yang et al.,
2025) adds a real-valued function to controllably shift the distribution of the preferred probability.

Existing approaches typically assume the preferred response is a "golden" label and aim to alleviate
likelihood displacement. In contrast, SSFO optimizes the model using self-supervised preference
data, which can be considered "silver" labels, yet still provides a clear supervisory signal towards
faithfulness. This work demonstrates that, in the RAG setting, likelihood displacement can be a
benign phenomenon and can even be encouraged to benefit the faithfulness alignment process.

C MATHEMATICAL DERIVATIONS

C.1 LIKELIHOOD DISPLACEMENT ANALYSIS FOR LSSFO−λ

Let σ denote the logistic function. Define the chosen-likelihood target and the (smoothed) reward-
margin target:

ω1(θ) = E[log πθ(y
′
c | x, c)] , ω2(θ) = E

[
σ
(
γlog

πθ(y
′
c|x,c)

πref (y′
c|x,c)

− γlog
πθ(yp|x,c)
πref (yp|x,c)

)]
.

Consider the SSFO-λ loss:

LSSFO-λ(θ) = −E
[
log σ

(
β log

πθ(y
′
c|x,c)

πref (y′
c|x,c)

− λβ log
πθ(yp|x,c)
πref (yp|x,c)

)]
,

Let θt+1 = θt − η∇L(θt), and define the one-step gaps between SSFO-λ and vanilla SSFO (i.e.,
λ = 1):

gi(t+1) = ωi(θt+1)
∣∣
SSFO-λ − ωi(θt+1)

∣∣
SSFO

, i ∈ {1, 2}.

Following Theorem 2.1 of (Yang et al., 2025), for a single gradient step and to first order,

g1(t+1) = (1− λ)u1, g2(t+1) = (1− λ)u2,

where u1 > 0 and u2 < 0.
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If λ > 1, then 1− λ < 0, hence

g1(t+1) < 0 and g2(t+1) > 0.

Thus, the chosen likelihood ω1 decreases while the margin ω2 increases, i.e., choosing λ > 1
encourages likelihood displacement.

C.2 GRADIENT DERIVATION FOR LSSFO−λ

The loss function for SSFO-λ is given by:

LSSFO−λ(πθ, πref ) = −E(x,c,y′
c,yp)∼Dpref

[log σ(u)]

where

u := β log
πθ(y

′
c|x, c)

πref (y′c|x, c)
− λ · β log

πθ(yp|x, c)
πref (yp|x, c)

The gradient with respect to θ is:

∇θLSSFO−λ = −E
[
σ′(u)

σ(u)
∇θu

]
Using the properties of the sigmoid function σ′(x) = σ(x)(1 − σ(x)) and substituting −u, the
gradient simplifies to:

∇θLSSFO−λ = −E
[
σ

(
λ · β log

πθ(yp|x, c)
πref (yp|x, c)

− β log
πθ(y

′
c|x, c)

πref (y′c|x, c)

)
× (β∇θ log πθ(y

′
c|x, c)− λ · β∇θ log πθ(yp|x, c))] (6)

Let c′1 be defined as:

c′1 := βσ

(
λ · β log

πθ(yp|x, c)
πref (yp|x, c)

− β log
πθ(y

′
c|x, c)

πref (y′c|x, c)

)
Then the final gradient form is:

∇θLSSFO−λ = −E [c′1 (∇θ log πθ(y
′
c|x, c)− λ∇θ log πθ(yp|x, c))]

This matches the target formula.

D IMPLEMENTATION DETAILS

D.1 DATASETS

We utilize a variety of datasets to comprehensively evaluate the proposed SSFO method across
different aspects of faithfulness, response quality, and generalization to ensure consistently strong
performance in a retrieval-augmented generation (RAG) setting.

• MemoTrap (Liu & Liu, 2023) is designed to reveal “memorisation traps” by pitting a well-known
proverb against a context-correct but counter-habitual ending. Example (prompt): “Write a quote
that ends in the word ‘right’: If you want a thing done right, do it ” – the context expects the
completion right, not the cached continuation yourself.

• NQ-Open (Lee et al., 2019) is an open-domain QA benchmark provide with supporting passages.
Example: Passage: Vatican City.... is the smallest country in Europe by both area and population;
Question: Which country has the smallest population in Europe?” → Vatican City.

• NQ-Swap (Longpre et al., 2021) extends Natural-Questions with entity swaps to create conflicts
between retrieved context and parametric memory. Example: Context states “Ferraro is known
for her portrayal of Grace Bowman in The Secret Life of the American Teenager”; the query asks
“Who plays Grace in . . . ?” – the correct answer is Ferraro, although parametric knowledge often
yields Molly Ringwald.
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• SQuAD v1.1 (Rajpurkar et al., 2016) provides short passages with span-based questions. Example:
Passage: “Google was founded in 1998 by Larry Page and Sergey Brin”; “Question: Who founded
Google?” → Larry Page; Sergey Brin.

• ELI5 (Fan et al., 2019) contains long-form, lay-audience explanations. Example: “Why is the sky
blue?” expects a multi-sentence answer discussing Rayleigh scattering.

• WikiPassageQA (Cohen et al., 2018) is a collection designed for long-form, non-factoid answer
passage retrieval. It contains thousands of questions with annotated answers. Example: “What does
s.h.i.e.l.d stand for?” → “The acronym originally stood for Supreme Headquarters, International
Espionage, Law-Enforcement Division. ”

• DuReader (Chinese) (He et al., 2018) evaluates cross-lingual comprehension with Web passages.
Example (in English for illustration): “Who wrote Dream of the Red Chamber?” → Cao Xueqin.

• XQuAD (Spanish split) (Artetxe et al., 2020) probes zero-shot transfer to non-English languages.
Example (in English for illustration): “Who was the first person to transmit radio waves across the
Atlantic?” → Guglielmo Marconi.

• FollowBench (Jiang et al., 2024) measures fine-grained instruction following. Example: To enhance
your time management skills, can you devise a method incorporating a mind map and featuring a
touch of alliteration in the suggestion, ensuring each sentence contains no more than 15 words?

D.2 BASELINES

Instruct Model (Touvron et al., 2023; Yang et al., 2024): A vanilla instruction-tuned LLM queried
with a standard retrieval-augmented generation (RAG) prompt.

CAD (Shi et al., 2024): A training-free decoding strategy that contrastive output distribution that
amplifies the difference between the output probabilities when a model is used with and without
context.

DECORE (Gema et al., 2024): A training-free decoding strategy that reduces hallucinations by
contrasting outputs of the base LLM and a masked variant (retrieval heads suppressed) guided
by conditional entropy. For comparison, we reproduce DECORE with the authors’ open-source
implementation.

Trust-Align (Shi et al., 2024): Builds GPT-4 “gold” answers cross-referenced to the retrieved context
as positive samples and Llama outputs as negative samples, then performs DPO to steer the model
toward faithful responses. For comparison, we use the official open-source model.

ChatQA (Liu et al., 2025): Enhances RAG and conversational QA via a two-stage instruction tuning
method and a dense retriever optimized for dialogue, reducing deployment costs while matching
query rewriting models. For comparison, we use the official open-source model.

Context-DPO (Bi et al., 2025): Improves context faithfulness by applying Direct Preference Op-
timization on the CONFIQA benchmark, which injects knowledge conflicts to mimic real RAG
scenarios. For comparison, we use the official open-source model.

SCOPE (Duong et al., 2025): Tunes task-specific models using gold labels as positives while
synthesizing negatives from a mixture of a fine-tuned and a pre-trained language model. Since
SCOPE involves selecting specific training datasets for different tasks, we used the same dataset as
our own method for a fair comparison in our experiments.

D.3 DETAILS ON SELF-SUPERVISED PREFERENCE DATA CONSTRUCTION

Starting from the MS MARCO (Bajaj et al., 2018) corpus, we randomly sample and construct 900
(query, context) pairs, ensuring topic diversity and broad open-domain coverage. Using the prompts
in Table 5, we construct both preferred and dispreferred responses from the base-instruct model,
discarding empty outputs (e.g., responses such as “I do not know”). This yields a self-supervised
preference dataset that reflects the model’s native response style. In practice, training the base-instruct
model on approximately 500 pairs already achieves over 85% of the final performance gain.

We compare generated preference data in Table 6, Trust-Align induces a large style gap—the
preferred response is verbose and citation-driven, while the dispreferred one is concise and citation-
light; Context-DPO performs closed-form QA with simple entity swaps (e.g., “microfiber cloth” vs.
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Table 5: Prompts for self-supervised preference data generation and inference.

Prompt for preferred response

Based on the following context:
Context: {Context}
Question: {Question}
If you are not sure of the answer, please reply “I don’t know”.

Prompt for dispreferred response

Question: {Question}
If you are not sure of the answer, please reply “I don’t know”.

Inference Prompt

Based on the following context: {Context}
Answer the following question: {Question}

“paper towel”); SSFO (Open-Domain QA) preserves the model’s native style for both preferred
and dispreferred answers, enabling optimization to focus purely on faithfulness improvements
without introducing a confounding style gap.

Table 6: Comparison of responses generated by different post-training-based methods.

Strategy Preferred Response Dispreferred Response
Trust-Align To safely clean your computer screen, first

power off the device, as this makes dust
and smudges easier to see and reduces the
risk of damage [2][3]. Use only a clean, dry
microfiber cloth as microfiber is specifically
designed to clean screens gently without
scratching them [1][3].

First, turn off your laptop to prevent any
damage to the screen. According to a guide
by[1]How to Safely Clean Your Screen, this
is essential for effective cleaning. .... Ref-
erences: [1] How to Safely Clean Your
Screen

Context-
DPO

Lightly wipe the screen with a clean, dry
microfiber cloth.

Lightly wipe the screen with a clean, dry
paper towel.

SSFO Based on the passages, to safely clean your
computer screen:
1. Wipe gently with a microfiber cloth,
avoiding excessive pressure.
2. Do not use paper towels, kitchen towels,
or household rags.

To safely clean your computer screen, you
can use a soft, dry cloth or a microfiber
cloth to gently wipe it. Avoid liquids, chem-
icals, or abrasive materials that may damage
the surface.

D.4 TRAINING AND INFERENCE SETTINGS.

We fine-tune each model using a global batch size of 8 on 8×NVIDIA A6000 GPUs in BF16.
Optimisation employs AdamW (β1=0.9, β2=0.95) with a peak learning rate of 1×10−6, linearly
warmed up from 0 over the first 10 steps and then held constant. For SSFO-λ, we set λ = 1.5 for
Llama and Mistral, and λ = 1.3 for Qwen2.5. During both dataset generation and evaluation, we
decode with a temperature of 0.7.
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Table 7: Prompts for LLM-Faithfulness Score

Prompt for using LLM-as-Judge to evaluate the faithfulness of long-form generation

Task:
You are a rigorous, no-nonsense evaluator of CONTEXT-faithfulness for retrieval-augmented generation.
Read the CONTEXT and the QUESTION, then assess whether the MODEL_ANSWER is faithful to the
CONTEXT when addressing the QUESTION.
Definitions:
- "unfaithful": The answer contradicts the CONTEXT, or asserts key facts not supported by the
CONTEXT (using outside/world knowledge, fabrications, or misquotes). If any contradiction exists, choose
this.
- "partially_faithful": The answer is mostly grounded but includes at least one unsupported or
speculative claim, or mixes supported and unsupported details, or overgeneralizes beyond the CONTEXT
without directly contradicting it.
- "faithful": Every substantive claim used to answer the QUESTION is directly supported by the
CONTEXT (allow paraphrases). Minor wording changes are fine; no extraneous unsupported facts.
Inputs:
- CONTEXT: {CONTEXT}
- QUESTION: {QUESTION}
- MODEL_ANSWER: {MODEL_ANSWER}

E ADDITIONAL RESULTS

E.1 EFFECT OF MODEL SCALE ON SSFO PERFORMANCE

Table 8: Impact of SSFO on robustness and response quality across varying LLM scales (1.5B–72B parameters).

Instruct Model Method

Robustness Response Quality
NQ-Swap Memo-Trap NQ-Open SQuAD Eli5
Span EM↑ Span EM↑ Span EM↑ Span EM↑ R-1 F1↑ R-2 F1↑ R-L F1↑

Qwen2.5 1.5B Baseline 65.78% 25.44% 79.17% 88.80% 22.11% 4.26% 19.40%
SSFO 79.65% 41.12% 83.88% 92.90% 28.10% 8.86% 24.87%

Qwen2.5 3B Baseline 76.38% 47.66% 76.95% 88.20% 23.57% 6.60% 21.11%
SSFO 82.11% 59.12% 81.32% 92.40% 25.74% 9.16% 23.31%

Qwen2.5 7B Baseline 79.35% 54.19% 82.29% 90.30% 23.08% 6.06% 20.55%
SSFO 84.18% 57.66% 83.88% 92.00% 24.63% 7.17% 21.83%

Qwen2.5 14B Baseline 82.15% 64.08% 82.49% 90.00% 22.48% 5.62% 20.03%
SSFO 85.04% 66.52% 84.14% 92.80% 25.42% 8.19% 22.97%

Qwen2.5 72B Baseline 81.84% 66.99% 83.50% 91.20% 21.85% 5.26% 19.45%
SSFO 87.51% 67.39% 84.48% 92.70% 22.46% 5.71% 19.96%

To assess the scalability of SSFO, we apply it to Qwen2.5 models with sizes from 1.5 B to 72
B parameters and report relative gains over each instruct baseline on five benchmarks (Table 8).
Across all model sizes, SSFO consistently improves robustness—yielding +3 % to +14 % span
EM gains—and enhances response quality—boosting closed-book QA and long-form generation
metrics by up to +6 %. The largest relative improvements occur on smaller models (e.g., +13.9 %
EM on Memo-Trap for Qwen2.5 1.5 B), while even the 72 B model sees steady gains (e.g., +5.6 %
EM on NQ-Swap). These results demonstrate that SSFO delivers a stable, scalable enhancement to
faithfulness and answer quality across a wide spectrum of LLM sizes.

E.2 INSTRUCT FOLLOWING

In Table 9, we present detailed sub-metrics for several faithfulness-enhancement methods to evaluate
their impact on LLMs’ overall instruction-following capabilities. Among these approaches, SSFO
not only best preserves general instruction adherence but also delivers the gains on Content-category
tasks—a result we attribute to SSFO’s ability to steer the model to attend more closely to the source
text. SSFO emerges as a practical technique for boosting faithfulness while maintaining the
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Table 9: Constraint Satisfaction Levels (CSL↑) on FollowBench across Llama-3-Instruct and Qwen2.5-7B-
Instruct models. Results are broken down by Content, Situation, Style, Format, and Mixed constraint categories,
as well as their overall mean.

Model Method Implement Supervision
Instruction Following (FollowBench)

Content CSL ↑ Situation CSL ↑ Style CSL↑ Format CSL ↑ Mixed CSL ↑ CSL Mean↑

Llama-3-8B

Instruct-Baseline \ \ 2.6 2.4 3.3 2.9 1.5 2.54

Decoding-Strategy CAD ✗ 1.0 0.7 2.1 0.6 0.2 0.92
DECORE ✗ 2.4 2.0 3.1 3.3 1.5 2.46

Post-Training

ChatQA ✓ 1.3 1.0 1.0 1.1 0.8 1.04
Trust-Align ✓ 0.1 0.1 0.0 0.0 0.4 0.12
Context-DPO ✓ 2.5 2.5 3.0 2.8 1.5 2.46
SCOPE ✗ 0.4 0.2 0.1 0.1 0.0 0.16
SSFO ✗ 2.8 2.7 3.2 3.2 1.6 2.70
SSFO-λ ✗ 2.3 2.4 3.1 3.1 1.6 2.50

Qwen2.5-7B

Instruct-Baseline \ \ 2.6 3.5 2.9 2.8 1.6 2.68

Decoding-Strategy CAD ✗ 1.0 1.4 2.4 0.8 0.5 1.22
DECORE ✗ 2.4 3.2 2.7 2.8 1.7 2.56

Post-Training

Trust-Align ✓ 0.5 1.5 0.3 0.1 0.5 0.58
Context-DPO ✓ 2.6 3.3 3.0 2.9 1.4 2.64
SCOPE ✗ 0.4 0.9 0.3 0.1 0.4 0.42
SSFO ✗ 2.6 3.1 3.2 2.9 1.7 2.70
SSFO-λ ✗ 2.6 3.0 3.2 2.7 1.6 2.62

model’s effectiveness on general-purpose tasks. For example, in a RAG-powered law assistant, in a
legal research setting, SSFO can preserve verbatim case-law citations yet allows users to reorganize,
highlight, and summarize key holdings according to specified style and formatting instructions.

E.3 CASE STUDY

We provide more qualitative illustration of SSFO’s benefits. As shown in Table 10 SSFO corrects
parametric hallucinations made by the instruct model. In Table 11, example from FollowBench
highlights SSFO’s ability to retain strong instruction-following capabilities under complex, context-
based scenarios. In Table 12 a cross-language case study underscores SSFO’s capacity to maintain
faithfulness even when queries and context are presented in a different language, such as Spanish.

Table 10: A case study showing how SSFO improves faithfulness on a NQ-swap dataset (Longpre et al.,
2021). blue text indicates the correct, context-based answer; red text denote parametric-induced faithfulness
hallucination.

Question Who plays grace in The Secret Life of the American Teenager?

Context Ferraro (born July 24, 1986) is a Canadian actress and singer. She is known for her portrayal of Grace Bowman in the
television series The Secret Life of the American Teenager.

Base According to the text, Molly Ringwald plays the role of Grace Bowman in the television series The Secret Life of the
American Teenager. Hallucination

SSFO Based on the text, Ferraro plays the role of Grace Bowman in the television series The Secret Life of the American
Teenager. Context-Faithful

Table 11: Case study from FollowBench (Jiang et al., 2024): showing that SSFO retains strong instruction-
following capabilities under a complex, context-based NLP task.

Instruction Below we show examples of soft drink. Following these examples, keep listing three more soft drink that satisfy following
conditions: 1. not manufactured by coca cola company; First Three Examples:

Examples a) in chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. b) coca cola, or
coke, is a carbonated soft drink manufactured by the coca cola company.c) an egg cream is a cold beverage consisting of
milk, carbonated water, and flavored syrup (typically chocolate or vanilla).

ChatQA D) Fanta E) Pepsi Cola F) Mecca cola Fanta is manufactured by coca cola company

SSFO Based on the given examples, here are three more soft drinks that satisfy the condition of not being manufactured by the
Coca-Cola company: 1. Dr Pepper: a carbonated soft drink that is a blend of vanilla and cherry flavors. 2. Mountain
Dew: a sweet and citrus-flavored carbonated soft drink that is owned by PepsiCo. 3. A&W Root Beer: a creamy and
sweet carbonated soft drink that is flavored with vanilla and anise, owned by Dr Pepper Snapple Group (now Keurig Dr
Pepper). General Ability Retained
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Table 12: Cross-language case study demonstrating that SSFO maintains faithfulness even when the
query–answer pair is presented in Spanish (ES). Blue spans highlight correct, context-grounded informa-
tion; Red spans mark parametric hallucinations.

Query (EN) Who first sent radio waves across the Atlantic?

(ES) ¿Quién fue el primero en enviar ondas de radio a través del Atlántico?

Context (EN) ...Guglielmo Marconi made his famous trans-Atlantic radio transmission for the first time in 1901... (193 words
omitted)

(ES) ...Cuando Guglielmo Marconi realizó por primera vez su famosa transmisión transatlántica de radio en 1901...

Context-DPO (EN) According to the context, Guglielmo Marconi made the first-ever trans-Atlantic radio transmission in
1901. Faithful to context

(ES) Según el contexto, no se puede determinar con certeza quién fue el primero en enviar ondas de radio a través
del Atlántico, ya que la Corte Suprema de los Estados Unidos declaró que la decisión no tenía nada que ver con la
reivindicación de Marconi... Hallucination

SSFO (EN) Based on the context, Guglielmo Marconi made the first-ever trans-Atlantic radio transmission in
1901. Faithful to context

(ES) Según el contexto, Guglielmo Marconi fue el primero en enviar ondas de radio a través del Atlántico, en
1901. Faithful to context

F LIMITATION

This paper introduces SSFO, a novel and efficient self-supervised method that significantly enhances
faithfulness in RAG systems without inference overhead. While the current work demonstrates
strong performance, one potential avenue for future investigation could be to extend its application
and further assess its efficacy in more complex RAG scenarios, such as those involving extremely
long contexts or the synthesis of information from multiple retrieved documents. Investigating the
scalability and adaptability of SSFO to even more intricate and diverse knowledge domains represents
a direction for continued advancement. SSFO is designed for regimes where the retrieved context
is treated as authoritative. In scenarios with high noise or malicious retrieval (Wang et al., 2025;
Huang et al., 2025), SSFO should be paired with upstream verification modules to prevent the faithful
propagation of misinformation.

G BROADER IMPACTS

Our work on Self-Supervised Faithfulness Optimization (SSFO) presents significant positive impacts
for the advancement of reliable and trustworthy AI systems. By enhancing the faithfulness of
Retrieval-Augmented Generation (RAG) models to provide context, SSFO alleviates the critical issue
of faithfulness hallucination. This improvement leads to more accurate, verifiable, and dependable
outputs from Large Language Models, which is crucial for applications where information integrity is
paramount, such as in educational tools, scientific research, and systems providing critical information
to the public. Reducing the propensity of LLMs to generate content that deviates from factual sources
fosters greater user trust and promotes the responsible deployment of AI technologies in diverse
real-world scenarios.

Furthermore, the self-supervised nature of SSFO offers considerable practical benefits that can
accelerate the adoption of more faithful AI. By eliminating the need for costly human annotation or
extensive, resource-intensive post-training procedures, our method makes the development of highly
faithful models more accessible and economically viable for a broader range of researchers and
developers. The negligible inference burden and the demonstrated strong generalization capabilities,
including improved cross-lingual faithfulness and preservation of general instruction-following
abilities, mean that the benefits of SSFO can be widely applied across different languages and tasks.
This facilitates the development of more robust and equitable AI systems globally, contributing to a
more informed and reliably assisted digital environment.
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