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ABSTRACT

Do large language models (LLMs) represent concepts abstractly, i.e., independent
of input format? We revisit Function Vectors (FVs), compact representations of in-
context learning (ICL) tasks that causally drive task performance. Across multiple
LLMs, we show that Vs are not fully invariant: FVs of the same concept are
nearly orthogonal when extracted from different input formats (e.g., open-ended vs.
multiple-choice). We introduce Concept Vectors (CVs) which produce more stable
concept representations. Like FVs, CVs are composed of attention head outputs;
however, unlike Vs, head selection is optimized via Representational Similarity
Analysis (RSA) to encode concepts consistently across input formats. While these
heads emerge in similar layers to /V-related heads, the two sets are largely distinct,
suggesting different underlying mechanisms. Steering experiments reveal that 7Vs
excel in-distribution, when extraction and application formats match (e.g., both
open-ended in English), while CVs generalize better out-of-distribution across both
question types (open-ended vs. multiple-choice) and languages. Our results show
that LLMs do contain abstract concept representations, but these differ from those
that drive ICL performance.
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Figure 1: Function vs. Concept Vectors. Top: Similarity matrices for Vs (left) and CVs (right) in
Llama 3.1 70B; cells show how similar two prompt representations are (warmer = more similar).
Middle: Schematic highlighting the distinction between heads with causal effect (AP-selected) and
heads that encode format-invariant structure (RSA-selected). Bottom: Example prompts for two
concepts across three formats (EN open-ended, FR open-ended, multiple-choice). Takeaway: F Vs

cluster by input format; CVs cluster by concept across formats.



1 INTRODUCTION

Do large language models represent concepts abstractly, i.e., in a way that is stable across surface
form? We focus on relational concepts: mappings between entities, such as linking a word to its
antonym. Cognitive science has long argued that abstract representation of such structure underlies
human generalization (Gentner, |1983}; [Hofstadter, |1995}; [Mitchell, 2020). This capability allows
identifying that “hot — cold” and “big — small” share the same oppositional relation, independent of
the specific words or how the task is presented. Recent work shows that LLMs exhibit representational
structures similar to humans (Pinier et al., 2025} Du et al., 2025} |Doerig et al., 2025)), raising the
question: do the abstract representations hypothesized to support analogical reasoning actually drive
LLM performance on such tasks?

We find that LLMs do contain abstract relational concept information, but the components that encode
it differ from those that causally drive in-context learning (ICL) behavior. This separation challenges
the single-circuit hypothesis that format-invariant representations are what primarily enable ICL.

We revisit Function Vectors (FVs)—compact vectors formed by summing outputs of a small set of
attention heads that mediate ICL (Todd et al.| [2024; Hendel et al., 2023} |Yin & Steinhardt, |2025]).
Because Vs transfer across contexts (e.g., differently formatted prompts and natural text), they are
often treated as encoding the underlying concept (Zheng et al.| [2024; |Griffiths et al.,|2025; Bakalova
et al.,[2025; |Brumley et al., [2024; |[Ful 2025). We update this view: FVs are not fully invariant. For
the same concept, F Vs extracted from different input formats (open-ended vs. multiple-choice) are
nearly orthogonal, indicating that 7V’s mix concept with format (§2.2.1).

To isolate format-invariant structure, we contrast activation patching (AP), which localizes compo-
nents with causal effects on outputs, with representational similarity analysis (RSA) (Kriegeskortel
2008), which localizes components whose representations organize by concept independent of for-
mat. Using RSA to select heads and then summing their activations yields Concept Vectors (CVs).
Across seven relational concepts, three input formats (open-ended English, open-ended French,
multiple-choice), and four models (Llama 3.1 8B/70B; Qwen 2.5 7B/72B), we find that CV heads
arise in similar layers but are largely disjoint from ) heads, suggesting separable mechanisms for
invariance vs. causality (§2.2.2).

Finally, we test whether CVs can steer. In steering experiments, F Vs produce larger in-distribution
gains when extraction and application formats match (§3.2.1), whereas CVs generalize more con-
sistently out-of-distribution across question type and language (§3.2.2)) and produce fewer format
artifacts (e.g., tokens and language from extraction prompts; §3.2.3).

Overall, our contributions are as follows:

e FVsare not input-invariant. They mix relational concepts with input format; same-concept
FVs differ sharply across formats.

* RSA reveals CV heads. These heads encode relational concepts at a higher level of
abstraction than FV heads[[]

* CV and FV heads are disjoint. FVs and CVs are realized by different attention heads,
suggesting that abstract concept representations are distinct from the mechanisms that
causally drive ICL performance.

* Steering trade-off. 7V’s steer more strongly in-distribution, while CVs generalize more
consistently out-of-distribution, albeit with smaller absolute gains.

2 IN SEARCH OF INVARIANCE

We test whether concept representations are stable across surface form, using AP (causal heads) and
RSA (format-invariant heads) across models, datasets, and formats. We then form Function/Concept
Vectors to compare clustering by format vs. concept; AP/RSA heads lie in similar layers but show
minimal top-K overlap.

'We expand on what we mean by “higher level of abstraction” in the Discussion (.
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2.1 METHODS

2.1.1 MODELS

We test Llama 3.1 (8B, 70B) and Qwen 2.5 (7B, 72B) models (Meta Al, [2024; Qwen et al., 2025).
All models are autoregressive, residual-based transformers (Vaswani et al., 2023). Each model, f
internally comprises of £ layers. Each layer is composed of a multi-layer perceptron (MLP) and
J attention heads a,; which together produce the vector representation of the last token of layer /,
hy =hy,_; + MLP, + ZjeJ ag; (Elhage et al.l 2021).

2.1.2 TASKS

Datasets We define a dataset as one concept expressed in one input format (e.g., Antonym in open-
ended English). For each dataset we build a set of in-context prompts Py = {p/;} where i indexes
individual prompts within dataset d. Each prompt contains few-shot input—output examples (z, y)
that illustrate the same concept, followed by a query input xfl whose target output yz is withheld. The
input-output pairs (x, y) were either sourced from prior work or generated using OpenAI’s GPT-4o0
(see Appendix [D]for details). Example prompts are provided in Appendix [A]

Concepts. We consider seven concepts:

* Antonym Map a word to one with opposite meaning (e.g., hot — cold).

* Categorical Map a word to its semantic category (e.g., apple — fruit).

e Causal Map a cause to an effect (e.g., rain — wet).

* Synonym Map a word to one with similar meaning (e.g., big — large).

* Translation Translate a word to another language (e.g., house — maison).
* Present-Past Convert a verb from present to past tense (e.g., run — ran).
 Singular-Plural Convert a noun from singular to plural (e.g., cat — cats).

Input formats. We vary only the prompt’s surface format; the (x, y) relation stays the same. Formats:

* Open-ended ICL in English (OE-EN)
* Open-ended ICL in a different language (French or Spanish; OE-FR or OE-ES)
* Multiple-choice ICL in English (MC)

We use 5-shot prompts for open-ended and 3-shot for multiple-choice to reduce computational load
given prompt length. Altogether, we have 21 datasets (7 concepts x 3 input formats). We build 50
prompts per dataset (total N = 1050 prompts).

2.1.3 ACTIVATION PATCHING

Activation patching replaces specific activations with cached ones from a clean run to assess their im-
pact on the model’s output. The cached activations are then inserted into selected model components
in a corrupted run, where the systematic relationships in the prompt are disrupted. For example, in
an antonym ICL task, consider a clean prompt: Hot — Cold, Big — Small, Clean —
? and a corrupted prompt: House — Cold, Eagle — Small, Clean — ? The goal of
activation patching is then to localize model components that push the model to the correct answer,
Dirty, on the corrupted prompt.

We compute the causal indirect effect (CIE) for each attention head ay; as the difference between
the probability of predicting the expected token y when processing the corrupted prompt p with and
without the transplanted mean activation az; from clean runs:

CIE(ar) = (5 | g = a0, ) ly] = £ (7)Y M
We then compute the average indirect eﬁect (AIE) over a collection D of all datasets (§2.1.2). E]

AIE(as;) = ] D| > =
deD

CIE 2
W Z (ae;) ©)

where Py denotes the set of corrupted prompts for dataset d.

2Note: Unlike [Todd et al.| (2024) we compute AIE scores across all input formats, not OE-ENG only.
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Figure 2: Representational Similarity Analysis (RSA). For each attention head, we compute a represen-
tational similarity matrix (RSM) over prompts spanning concepts and input formats (cosine similarity
of head outputs). We construct a binary design matrix that marks pairs sharing the same concept,
independent of format. The RSA score for a head is Spearman’s p between the lower-triangular
entries of the RSM and the design matrix; higher p indicates stronger concept-invariant encoding.

2.1.4 REPRESENTATIONAL SIMILARITY ANALYSIS

To find attention heads encoding concepts invariant to input formats, we employ representational
similarity analysis (RSA; [Kriegeskorte| (2008))).

For each attention head a,; we compute representational similarity matrices (RSMs) where v; denotes
the output extracted from a; for the ith prompt p; € Py, and (-, -) is a cosine similarity function.

1 ceo B(v,uN)
RSM = : : 3)
O(vn,v1) -+ 1

We then construct a binary design matrix, DM, where each entry is set to 1 if the corresponding pair
of prompts share the same attribute value, and 0 otherwise. In this paper, we consider two attributes:
(1) concept - does a pair of prompts illustrate the same concept, regardless of the input format?
and (2) prompt__format - does a pair of prompts have the same question type (i.e. open-ended or
multiple-choice)?

We then quantify the alignment between the RSM and DM for the lower-triangles (since similarity
matrices are symmetric) using the non-parametric Spearman’s rank correlation coefficient (p).

To localize attention heads carrying invariant concept information we compute the RSA for each
attention head obtaining a single Concept RSA score for each attention head.

Concept-RSA(agj) = p(RSMy;, Concept-DM) )
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Figure 3: Similarity matrices. Full similarity matrices extracted from top K = 5 heads in CVs and
FVsin Llama 3.1 70B for all concepts. See Appendix for other models.



2.1.5 FUNCTION & CONCEPT VECTORS

To form Function/Concept Vectors we create sets of top K ranking attention heads, Ay and Acy,
based on their AIE and RSA scores respectively. Function/Concept Vectors for prompt 7 are then
computed as the sum of activations for this prompt, aj, from the sets Ary and Acy respectively.
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Figure 4: Concept vs. format RSA. Question type and Concept RSA scores for C)s and /s in all
models. Takeaway: CVs encode more concept information and less input format than FVs.

2.2 RESULTS

2.2.1 CONCEPT VECTORS ARE MORE INVARIANT TO INPUT FORMAT

We test invariance to input format by computing RSA with design matrices for concept and question
type (following the setup in §2.1.4). We form FVs/CVs by summing the top-K heads ranked by
AIE/RSA (Eq.[3). Across models and K, CVs show higher concept RSA and lower question-type
RSA than FVs (Figure[d)), indicating that F Vs encode format more strongly while CVs track concept.
Consistently, similarity matrices for Llama 3.1 70B cluster by concept across formats for CVs, but
by format for FVs (Figure[3), where within-format type 'V clusters are nearly identical with mean
cosine similarity = 0.90. CVs nonetheless exhibit a weaker within-format type cluster (mean cosine
similarity = 0.55), suggesting they retain some low-level format information. Overall, however, CVs
remain markedly more invariant to input format than FVs.

Model K=3 K=5 K=10 K=20 K=50 K=100
Llama-3.1 8B 0 0 1 1 12 28
Llama-3.1 70B 0 0 0 0 1 6
Qwen2.5 7B 0 0 0 4 15 39
Qwen2.5 72B 0 0 0 1 3 13

Table 1: RSA-AIE head overlap. Overlap between RSA and AIE heads (number of overlapping
heads among top-K'). Bold numbers indicate overlap significantly above chance (p < 0.05; details in
Appendix . Takeaway: FVs and CV's are composed of different attention heads.

2.2.2 FUNCTION & CONCEPT VECTORS ARE COMPOSED OF DIFFERENT ATTENTION HEADS

If we compare which heads are selected by the two procedures, we see that FVs and CVs are
composed of different attention heads. First, we ranked each head for each method, i.e., AIE (§|27_75[)



for FVs and by Concept-RSA (§2.1.4) for CVs. Then we examined depth and top-K overlap. Layer-
averaged scores show similar layer profiles (Figure[3)), but head identities barely overlap: for K < 20
the intersection is near zero and stays small at larger K (Table[I)). We also note that AIE scores are
highly sparse: their histogram peaks at zero with a long right tail (Figure [I2)—so only a few heads
have measurable causal effect. Together this supports that AIE-selected causal heads are largely
distinct from the invariant, RSA-selected heads.

To ensure this separation is not an artifact of patching within the same format, we also performed
cross-format activation patching (e.g., extracting activations from open-ended prompts and patching
them into multiple-choice). This procedure continued to identify the same FV heads and did not
identify CV heads (see Appendix [O)), confirming that FVs are the primary causal drivers regardless
of input format.
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Figure 5: Layer-wise AIE vs. RSA. AIE and RSA scores averaged across all heads per layer.
Takeaway: FV and CV heads are in similar layers.

3 CAN CONCEPT VECTORS STEER?

We now test whether these invariant heads can steer: we introduce how we construct vectors, the
AmbiguousICL setup with conflicting cues, and the intervention protocol. Vs win in-distribution;
CVs transfer better out-of-distribution with fewer format artifacts, at a cost of smaller gains.
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Figure 6: Overview of steering results. Top: We extract CVs and FVs from antonym ICL prompts
in formats that are in-distribution (ID; OE-ENG) or out-of-distribution (OOD; OE-FR, MC) relative
to the AmbiguousICL task (bottom-left). Bottom-left: We interleave two concepts—antonym and
EN—FR translation—within one prompt; the model’s original prediction is the French translation.
Bottom-right: Predictions after steering. Takeaways: (1) F Vs yield larger ID gains. (2) CVs show
more stable OOD effects across formats. (3) F Vs can conflate concept with input format (e.g., French
version of antonym and multiple-choice formatting).

3.1 STEERING METHODS

Steering Vectors Construction. For each concept and input format (OE-ENG, OE-FR, MC), we
compute for every selected head ay; the mean last-token activation across the 50 extraction prompts



of that concept—format. We then form one vector per format by summing these mean activations
over the top-K heads selected for CV or FV (as in Eq. [5] but using per-format means in place of
per-prompt activations). This yields one ID vector (OE-ENG) and two OOD vectors (OE-FR, MC)
per concept.

AmbiguousICL Task. We evaluate on AmbiguousICL tasks (Figure[6): each prompt interleaves two
concepts (3 then 2 exemplars) followed by a query. The second concept is always English—French
translation. Unsteered models tend to continue with the second concept; we aim to steer toward
the first. Note that steering prompts are distinct from the extraction prompts used to construct the
vectors. This setup is diagnostic: it tests whether representations encode abstract relational structure
independent of extraction prompts’ surface format. To perform well in this setup requires consistency
between ID and OOD performance.

Steering with CVs and FVs. We add a vector v to the last-token residual stream at a chosen layer:
hy < hy+av (6)

We measure effectiveness as AP = Phger(y) — Prefore (y), averaged over 100 prompts per concept
(see Figure[22]|for Top-1 accuracy). We sweep a and K and report the best per model (Appendix [F).
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Figure 7: Steering effect across layers. We inject CVs and FVs into Llama-3.1-70B and plot the
change in target-token probability (A P) for four representative concepts (columns). Curves compare
ID extraction format with OOD formats relative to the AmbiguousICL task (Figure [6). Higher
AP means the model assigns more probability to the expected token than the unsteered model.
Takeaways: (1) FVs typically achieve larger ID gains but often drop OOD. (2) CV’s yield smaller
gains yet show more stable OOD behavior across formats. See Figure @]for other concepts/models.

3.2 STEERING RESULTS

3.2.1 FUNCTION VECTORS OUTPERFORM CONCEPT VECTORS IN DISTRIBUTION

Extracted from OE-ENG (ID setting), F Vs yield the largest gains on ambiguous prompts (Figure 7).
CVs also help but with smaller AP and minimal zeroshot effect (Figure[I7). At the token level both
vectors lift plausible English antonyms in the ID case (Table [2).

3.2.2 CONCEPT VECTORS ARE MORE STABLE OUT OF DISTRIBUTION

Performance gains (A P). Out of distribution (extracting vectors from OE-FR or MC), CVs more
often maintain positive effects across formats, whereas F Vs frequently degrade—especially for
MC—and only occasionally stay consistent for specific concepts/models (Figs. [7,[I6). CVs raise the
probability of the correct English answer across formats, and their top-A tokens remain concept-
aligned (Table [2)). Crucially, the key finding is not absolute performance but consistency: CVs
increase the probability of producing similar concept-aligned tokens regardless of extraction format.

Distributional consistency (KL). To quantify consistency across formats independent of absolute
gains, we compare the model’s next-token distributions after steering with ID and OOD vectors. For



Query: salty —

+ Antonym  Top A Tokens

OE-ENG _sweet (+56%), _fresh (+16%), _bland (+6%), _taste (+3%), _uns (+2%)
FYV OE-FR _su (+31%), _dou (+27%), _frais (+5%), _fade (+5%), _ins (+3%)

MC _ ((+53%), _A (+1%), _\n (+1%), _space (+0%), __) (+0%)

OE-ENG _sweet (+49%), _fresh (+8%), _bland (+3%), _taste (+3%), _uns (+3%)
cy OE-FR _sweet (+54%), _fresh (+9%), _bland (+3%), _uns (+3%), _taste (+2%)

MC _sweet (+35%), _fresh (+12%), _bland (+4%), _uns (+3%), _taste (+3%)

Table 2: Token-level steering effects. Top tokens with largest probability gains when injecting CVs or
FVs into Llama-3.1-70B on the AmbiguousICL prompt (query shown above). Results shown at the
layer with the strongest in-distribution effect per vector. Without intervention, the model predicts
French _sa (from salé) with 49%; antonym _sweet has 2%. English antonyms in red, French in
blue, and the opening bracket (MC token) in green.

each concept and vector type, we select the top 5 layers that achieve the highest ID AP. At each
selected layer we compute KL divergence

Dk [p(x|voop) || p(x | vip)]

between the post-intervention distributions at the query token, where lower values indicate more
similar effects of ID and OOD vectors. We average this KL divergence over prompts and selected
layers to obtain one score per concept, and then summarize per model (Figure [8). Across models,
CVs yield lower KL than FVs. The CV-FV KL gap is larger for MC than for OE-FR.

3.2.3 FUNCTION VECTORS MI1X CONCEPT WITH INPUT FORMAT

Out of distribution, Vs reflect both prompt format and concept. When vectors are extracted from
OE-FR, they push the model toward the French translation of the concept (e.g., French antonyms),
and when extracted from MC, they increase the probability of format tokens such as the opening
bracket (Table [2). We quantify the language effect by measuring AP for the French translation
across concepts (Figure[T3). In the larger models, FVs substantially increase the probability of the
French token, whereas CVs remain near zero; in smaller models the effect is negligible. Notably, FVs
extracted from open-ended Spanish prompts induce almost the same bias toward the French translation
as FVs extracted from French prompts (Figure[T4), even though the AmbiguousICL alternatives are
French only. This pattern suggests that Vs capture a generic translation/foreign-language signal
tied to the extraction format rather than language-specific content. Combined with the MC bracket
effect (Figure[T3)), these findings indicate that Vs mix concept with surface format, while CVs are
comparatively format-invariant.
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Figure 8: Consistency of steering effects. KL divergence between the probability distributions after
the models were steered with an ID (OE-ENG) and OOD vectors (OE-FR [top], MC [bottom]).
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4 RELATED WORK

Attention Head Categorization. Recent work has made significant progress in characterizing
specialized attention heads that process in-context learning (ICL) tasks. For instance, |Olsson et al.
(2022) identified induction-heads, which|Yin & Steinhardt (2025)) found can develop into F)-heads
during training. Other specialized head types include semantic-induction heads (Ren et al., [2024]),
symbol-abstraction heads (Yang et al., 2025)), and various others (Zheng et al., 2024). Our work
extends this line of research by identifying CV heads, attention heads that invariantly represent
concepts in ICL tasks at high levels of abstraction.

Linear Representation of Concepts. A substantial body of research has established that concepts
are represented linearly in LLMs’ representational space (Mikolov et al., 2013}; |Arora et al., 2016;
Elhage et al., 2022). This phenomenon, often termed the "Linear Representation Hypothesis" (Park
et al.| [2024), has been extensively studied across various tasks and domains. [Hernandez et al.| (2024)
demonstrated that relational concepts—similar to those we study in this paper—can be decoded from
LLM activations using linear approximation. Subsequent work by Merullo et al.| (2025) revealed
that the success of such decoding depends on the frequency of concepts in the pretraining corpora,
which may explain why some concepts are represented more consistently than others in our study.
Our findings contribute to this literature in two ways: (1) providing further support for the Linear
Representation Hypothesis, and (2) extending previous work on relational concept representations by
localizing specific attention heads that carry such representations and demonstrating their invariance
to input formats.

Symbolic-like reasoning in LLMs. Recent work has demonstrated that LLMs can exhibit symbol-
like representational properties even without explicit symbolic architecture (Feng & Steinhardt, |2024;
Yang et al., 2025} |Griffiths et al.| 2025)). |Yang et al|(2025) define symbolic processing as requiring
two key properties: (1) invariance to content variations, and (2) indirection through pointers rather
than direct content storage. Our CVs exhibit both properties: they are invariant to input format
changes and function as pointers to content stored elsewhere, unlike /s which directly store content

(§3.2.3).
5 DISCUSSION

Our results separate two representational roles in LLMs: components that cause strong ICL perfor-
mance and components that encode abstract concept structure. Function Vectors (FVs) occupy the
first role, steering models effectively when extraction and application formats match, but deteriorating
out of distribution (formats/languages). Conversely, Concept Vectors (CVs) built from RSA-selected
heads encode concepts at a higher level of abstraction and generalize more robustly across languages
and question types, albeit with smaller causal effects. This supports a view that invariance and
causality are mediated by largely distinct mechanisms in similar layers.

Layers of abstraction. We define abstraction as encoding relational structure (e.g., “antonym’)
while discarding surface details (e.g., “English, multiple-choice”). Our results suggest FVs do
capture abstract task information: they reliably encode concepts within a format (Figure[T9) and are
causally effective even across formats (Appendix [O). However, their orthogonality across formats
and retention of surface signals (e.g., MC brackets) reveal that they conflate this abstract content with
surface form. In contrast, CVs cluster by concept regardless of format. Thus, F Vs operate at a lower
level of abstraction (“antonym in MC format”), while CVs operate at a higher level (“antonym”),
independent of surface form.

Relation to Function Vectors. Prior work shows that 7 Vs compactly mediate ICL and can transfer
across contexts (Todd et al.,[2024)). We refine this: FV portability is strong within families of prompts,
but is not fully invariant to surface format. Same-concept F Vs extracted from different formats are
nearly orthogonal and can carry language/format signals (e.g., French subword or multiple-choice
bracket tokens), while CVs track concept across formats with less surface content. This distinction
can be framed as equivariance vs. invariance: FVs adapt to extraction format (e.g., producing
French antonyms from French prompts, MC formatting tokens from MC prompts), whereas CVs
steer toward similar outputs regardless of format. Finally, we do not propose CVs as competitors
to FVs, but rather highlight a mechanistic dissociation: FVs drive behavior (causality) while CVs
represent abstract structure (invariance).



These findings have implications for theoretical models of ICL, such as recent work by Bu et al.
(2025)) which posits the retrieval of a single function vector af for a function f. Our results suggest
this model is incomplete: given the orthogonality of FVs across formats, the function vector is better
conceptualized as format-conditional a(f, ¢), implying convergence to multiple format-specific
basins rather than a single global minimum. Furthermore, we find that Vs and CV's are orthogonal
(even within the same format) which suggests that task representations partition into distinct abstract
and format-specific subspaces, rather than residing in a single unified space.

Implications for steering and interpretability. The dissociation between FVs and CVs sug-
gests a practical trade-off. For maximal in-distribution control, FVs are preferable. For robust
out-of-distribution control or probing abstract knowledge, CVs are more reliable.

However, CVs appear to require the concept to be already present in the prompt to exert influence. In
zero-shot steering (Figure and activation patching—which require inducing or restoring a task
"from scratch"—CVs are ineffective. In contrast, in AmbiguousICL, where the concept is present
but competing, CVs successfully steer by amplifying the existing abstract signal. Thus, Vs seem
necessary to instantiate a task, while CVs can modulate it once present.

Methodologically, AP identifies what causally drives behavior, while RSA reveals how representations
organize by concept. This distinction highlights that behavioral control and abstract representation
can be mediated by different mechanisms.

Analogies and abstract representation. Hill et al.| (2019) propose that "analogies are something like
the functions of the mind": concepts achieve their flexibility by being represented abstractly enough
to permit context-dependent adaptation across diverse domains of application. This view predicts
that relational concepts like antonym or causation should function identically whether presented
as open-ended prompts, multiple-choice questions, or in different languages. Our findings offer a
mechanistic refinement: while LLMs do form abstract relational representations (CVs), these are
largely distinct from the components that causally drive ICL behavior (FVs). This dissociation
suggests that analogical task performance may not require—or primarily rely on—the most abstract
conceptual representations. Instead, LLMs appear to solve ICL tasks via more format-specific
mechanisms, even though they do form abstract representations.

Limitations and Future Directions. Our CV head selection targeted heads that encode all concepts
simultaneously; this global criterion may miss concept-specific heads, which a per-concept RSA
could reveal. We also did not probe how FVs and CVs emerge during model training or how they
interact during inference.

We propose two possible hypotheses that could be explored in future work:

1. CVs and FVs interact during inference as detection/execution mechanisms. Previous work by
Lindsey et al.[(2025)) has discovered model features that seem to fire just before the model produces
a certain type of output (e.g., a "capital” feature that fires just before the model outputs a name of
a capital), and ones that fire more generally when the text mentions different capitals. Other work
found that ICL tasks can be understood from an "encoder/decoder" perspective (Han et al., [2025]),
where the encoder encodes the task into a latent space and the decoder decodes the latent space into
the output. Both of these findings suggest that models separate the task encoding and execution into
distinct mechanisms which can be linked to CVs (encoding/detection) and FVs (execution).

2. CVs and FVs do not interact during inference; CVs are simply a backup circuit. Another
possibility is that the two mechanisms are independent. Other works have found backup circuits
where models can form multiple, partially redundant circuits and compensatory self-repair under
ablations (McGrath et al.,|2023; Wang et al.,[2022). Given that a) both sets of heads are in similar
layers (Figure [3), suggesting CVs and Vs may operate in parallel or via lateral information flow
within the residual stream, rather than strict deep-hierarchical dependencies and b) that CV heads
do not seem to have causal effects in usual ICL tasks (since they were not identified by AP), this
hypothesis is also plausible. What is more [Davidson et al.| (2025) found that different prompting
methods yield a different causal tasks representations, therefore it is possible that ICL in LLMs
consist of multiple, separate mechanisms.

10



REFERENCES

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to PMI-based word embeddings. Transactions of the Association for Computational
Linguistics, 4:385-399, 2016. doi: 10.1162/tacl_a_00106. URL https://aclanthology.
0rg/016-1028/]

Aleksandra Bakalova, Yana Veitsman, Xinting Huang, and Michael Hahn. Contextualize-then-
aggregate: Circuits for in-context learning in gemma-2 2b, 2025. URL https://arxiv.org/
abs/2504.00132.

Madeline Brumley, Joe Kwon, David Krueger, Dmitrii Krasheninnikov, and Usman Anwar. Com-
paring bottom-up and top-down steering approaches on in-context learning tasks, 2024. URL
https://arxiv.org/abs/2411.07213.

Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Qingfu Zhang, Hau-San Wong, and Taiji Suzuki.
Provable in-context vector arithmetic via retrieving task concepts, 2025. URL|https://arxiv|
org/abs/2508.09820.

Guy Davidson, Todd M. Gureckis, Brenden M. Lake, and Adina Williams. Do different prompting
methods yield a common task representation in language models?, 2025. URL|https://arxiv,
org/abs/2505.12075.

DeepL SE. Deepl translator, 2025. URL https://www.deepl.com/translator. Accessed:
2025.

Adrien Doerig, Tim Kietzmann, Emily Allen, Yihan Wu, Thomas Naselaris, Kendrick Kay, and Ian
Charest. High-level visual representations in the human brain are aligned with large language
models. Nature Machine Intelligence, 7:1220-1234, 08 2025. doi: 10.1038/s42256-025-01072-0.

Changde Du, Kaicheng Fu, Bincheng Wen, Yi Sun, Jie Peng, Wei Wei, Ying Gao, Shengpei Wang,
Chuncheng Zhang, Jinpeng Li, Shuang Qiu, Le Chang, and Huiguang He. Human-like object
concept representations emerge naturally in multimodal large language models. Nature Machine
Intelligence, 7(6):860-875, June 2025. ISSN 2522-5839. doi: 10.1038/s42256-025-01049-z. URL
http://dx.doi.org/10.1038/s42256-025-01049~-2z.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCan-
dlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
superposition, 2022. URL https://arxiv.org/abs/2209.10652,

Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context?, 2024. URL
https://arxiv.org/abs/2310.17191.

Shuhao Fu. Function Vectors for Relational Reasoning in Multimodal Large Language Models. PhD
thesis, UCLA, 2025.

Dedre Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive science, 7(2):
155-170, 1983.

Thomas L. Griffiths, Brenden M. Lake, R. Thomas McCoy, Ellie Pavlick, and Taylor W. Webb.
Whither symbols in the era of advanced neural networks?, 2025. URL https://arxiv.org/
abs/2508.05776.

Seungwook Han, Jinyeop Song, Jeff Gore, and Pulkit Agrawal. Emergence and effectiveness
of task vectors in in-context learning: An encoder decoder perspective, 2025. URL https:
//arxiv.org/abs/2412.12276.

11


https://aclanthology.org/Q16-1028/
https://aclanthology.org/Q16-1028/
https://arxiv.org/abs/2504.00132
https://arxiv.org/abs/2504.00132
https://arxiv.org/abs/2411.07213
https://arxiv.org/abs/2508.09820
https://arxiv.org/abs/2508.09820
https://arxiv.org/abs/2505.12075
https://arxiv.org/abs/2505.12075
https://www.deepl.com/translator
http://dx.doi.org/10.1038/s42256-025-01049-z
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2310.17191
https://arxiv.org/abs/2508.05776
https://arxiv.org/abs/2508.05776
https://arxiv.org/abs/2412.12276
https://arxiv.org/abs/2412.12276

Roee Hendel, Mor Geva, and Amir Globerson. In-Context Learning Creates Task Vectors, October
2023.

Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas,
Yonatan Belinkov, and David Bau. Linearity of relation decoding in transformer language models,
2024. URL https://arxiv.org/abs/2308.09124.

Felix Hill, Adam Santoro, David G. T. Barrett, Ari S. Morcos, and Timothy Lillicrap. Learning to
make analogies by contrasting abstract relational structure, 2019. URL https://arxiv.org/
abs/1902.00120.

Douglas R Hofstadter. Fluid concepts and creative analogies: Computer models of the fundamental
mechanisms of thought. Basic books, 1995.

Nikolaus Kriegeskorte. Representational similarity analysis — connecting the branches of systems
neuroscience. Frontiers in Systems Neuroscience, 2008. ISSN 16625137. doi: 10.3389/neuro.06.
004.2008.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer—-circuits,
pub/2025/attribution-graphs/biology.html.

Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra
effect: Emergent self-repair in language model computations, 2023. URL https://arxiv|
org/abs/2307.15771l

Jack Merullo, Noah A. Smith, Sarah Wiegreffe, and Yanai Elazar. On linear representations and
pretraining data frequency in language models, 2025. URL |https://arxiv.org/abs/
2504 .12459.

Meta Al. The Llama 3 Herd of Models, November 2024.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. In Lucy Vanderwende, Hal Daumé 111, and Katrin Kirchhoff (eds.), Proceedings
of the 2013 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 746751, Atlanta, Georgia, June 2013. Association
for Computational Linguistics. URL https://aclanthology.org/N13-1090/

Melanie Mitchell. Artificial Intelligence: A Guide for Thinking Humans. Picador, New York, first
picador paperback edition, 2020 edition, 2020. ISBN 978-1-250-75804-0.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895

OpenAl. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276

Kiho Park, Yo Joong Choe, and Victor Veitch. The Linear Representation Hypothesis and the
Geometry of Large Language Models, July 2024.

Christopher Pinier, Sonia Acufia Vargas, Mariia Steeghs-Turchina, Dora Matzke, Claire E. Stevenson,

and Michael D. Nunez. Large language models show signs of alignment with human neurocogni-
tion during abstract reasoning, 2025. URL |https://arxiv.org/abs/2508.10057.

12


https://arxiv.org/abs/2308.09124
https://arxiv.org/abs/1902.00120
https://arxiv.org/abs/1902.00120
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2504.12459
https://arxiv.org/abs/2504.12459
https://aclanthology.org/N13-1090/
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2508.10057

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Jie Ren, Qipeng Guo, Hang Yan, Dongrui Liu, Quanshi Zhang, Xipeng Qiu, and Dahua Lin.
Identifying semantic induction heads to understand in-context learning, 2024. URL https:
//arxiv.org/abs/2402.13055.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function Vectors in Large Language Models, February 2024.

Eduard Tulchinskii, Laida Kushnareva, Kristian Kuznetsov, Anastasia Voznyuk, Andrei Andriiainen,
Irina Piontkovskaya, Evgeny Burnaev, and Serguei Barannikov. Listening to the wise few: Select-
and-copy attention heads for multiple-choice qa, 2024. URL https://arxiv.org/abs/
2410.02343\

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: A circuit for indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Sarah Wiegreffe, Oyvind Tafjord, Yonatan Belinkov, Hannaneh Hajishirzi, and Ashish Sabharwal.
Answer, assemble, ace: Understanding how Ims answer multiple choice questions, 2025. URL
https://arxiv.org/abs/2407.15018.

Yukang Yang, Declan Campbell, Kaixuan Huang, Mengdi Wang, Jonathan Cohen, and Taylor Webb.
Emergent symbolic mechanisms support abstract reasoning in large language models, 2025. URL
https://arxiv.org/abs/2502.20332,

Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning?, 2025. URL
https://arxiv.org/abs/2502.14010.

Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao Song, Mingchuan Yang, Bo Tang, Feiyu
Xiong, and Zhiyu Li. Attention heads of large language models: A survey, 2024. URL |https:
//arxiv.org/abs/2409.03752.

13


https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2402.13055
https://arxiv.org/abs/2402.13055
https://arxiv.org/abs/2410.02343
https://arxiv.org/abs/2410.02343
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2407.15018
https://arxiv.org/abs/2502.20332
https://arxiv.org/abs/2502.14010
https://arxiv.org/abs/2409.03752
https://arxiv.org/abs/2409.03752

A PROMPT EXAMPLES

A.1 OPEN-ENDED (5-SHOT)

Q: resistant
A: susceptible

Q: classify
A: disorganize

Q: posterior
A: anterior

Q: goofy
A: serious

Q: stationary
A: moving

Q: hairy
A

A.2 MULTIPLE-CHOICE (3-SHOT)

Instruction: Q: unveil A: ?
(a) optional

(b) mild

(c) con

(d) conceal

Response: (d)

Instruction: Q: hooked A: ?
(a) unhooked

(b) stale

(c) sturdy

(d) sell

Response: (a)

Instruction: Q: spherical A: ?
(a) unconstitutional

(b) flat
(c) demand
(d) healthy

Response: (b)

Instruction: Q: minute A: ?
(a) conservative

(b) hour

(c) retail

(d) awake

Response: (
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B SIMILARITY MATRICES FOR OTHER MODELS

Function Vectors Concept Vectors
H o e

Antonym Antonym 1
Category Category a
Causal - Causal - a
Synonym - Synonym | %
Translation - Translation n
Past Tense - Past Tense - 2

Plural Form - Plural Form 0

Figure 9: Similarity matrices extracted from top K = 1 heads in CVs and F Vs in Llama 3.1 8B.

Function Vectors Concept Vectors

Antonym - Antonym ‘ Er 1
Category Category A
Causal Causal - @
Synonym Synonym %
Translation Translation - w
Past Tense & Past Tense 8
Plural Form Plural Form - 0

Figure 10: Similarity matrices extracted from top K = 1 heads in CVs and FVs in Qwen 2.5 7B.

Function Vectors Concept Vectors

Antonym Antonym 1
Category Category I~
Causal - Causal - @
Synonym - Synonym %
Translation Translation w
Past Tense Past Tense 8

Plural Form : Plural Form ° 0

Figure 11: Similarity matrices extracted from top K = 2 heads in CVs and FVs in Qwen 2.5 72B.
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C AIE SCORES
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Figure 12: Histogram of AIE scores for Llama 3.1 8B, 70B, Qwen 2.5 7B, and Qwen 2.5 72B. Note,
the y-axis is on a log-scale. Takeaway: AIE scores are highly sparse.

D DATA GENERATION PROCESS

Concept sourcing: For most concepts (antonym, synonym, translation, present—past, singular—plural), we
sourced word pairs from the datasets used by [Todd et al.| (2024). For categorical and causal concepts, we
generated word pairs using OpenAI’s GPT-40 model (OpenAl, |2024)).

Translation generation: French and Spanish translations were created using DeepL’s translation service (DeepL
SEl 2025) to ensure high-quality, contextually appropriate translations.

Generated concepts (categorical and causal): We prompted GPT-40 to generate exemplar:category pairs (e.g.,
“apple:fruit”, “blue:colour”) and cause:effect pairs (e.g., “stumble:fall”, “storm:flood”). The model was given
examples of the desired format and asked to produce 100 pairs per batch. We generated pairs in batches of 100
until reaching approximately 1000 examples per concept, with retry mechanisms to ensure sufficient coverage.
The final datasets were saved as JSON files containing input-output pairs.

Quality filtering: Generated pairs underwent several filtering steps: (1) removal of duplicates based on input
words, (2) exclusion of pairs containing underscores or numbers, (3) restriction to single words or two-word
phrases (maximum one space per input/output), and (4) conversion to lowercase for consistency.

Multiple choice format: For multiple choice prompts, we generated four options per question by randomly
sampling three additional outputs from the same concept dataset, ensuring all four options were unique. The
correct answer was randomly positioned among the four options.
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E SIGNIFICANCE TEST FOR RSA—AIE HEAD OVERLAP

We assess whether the observed overlap between the top- K heads selected by Concept-RSA and by AIE is larger
than expected by chance under a simple null model. Let N denote the total number of attention heads in the
model (layers X heads per layer). For a fixed K, each method selects a size-K subset of heads. Under the null
hypothesis that these two subsets are independent, uniformly random size- K subsets of {1, ..., N}, the overlap
size

X = |Srsa,x N Sa, x|
follows a hypergeometric distribution X ~ Hypergeom(N, K, K).

For an observed intersection x, we report the one-sided tail probability

pzx:Pr[sz]:iw

= ®

Entries with p>, < 0.05 are typeset in bold in Table[]

F STEERING HYPERPARAMETERS

To optimize the intervention performance, we conduct a hyperparameter search for two parameters:

¢ «: the steering weight that controls the strength of the intervention

¢ K: the number of attention heads to extract for concept vector computation
We evaluate the following parameter ranges:

« K €11,3,5,10,20,50} for the number of heads
* a€{1,3,5,10, 15} for the steering weight

The hyperparameter optimization is performed separately for each model using antonym prompts. We select the
parameter combination that maximizes the average steering effect across all input formats. This ensures that our
chosen hyperparameters generalize well across different prompt structures. We report the best hyperparameters
for each model in Table

Model Best X Best «
Llama 3.1 8B 1 10
Llama 3.1 70B 5 10
Qwen 2.5 7B 3 10
Qwen 2.5 72B 5 15

Table 3: Optimal hyperparameters for steering interventions across different models. K represents
the number of attention heads used for FV/CVextraction, while « controls the intervention strength.
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G INPUT FORMAT MIXING IN FUNCTION VECTORS

Llama 8B Llama 70B Qwen 7B  Qwen 72B

0.2
Fy Antonym
Categorical
0.0-—f“---ﬁ- --&-% FRatanw V=, -
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—— Singular-Plural
00 ugzET—| (PR [N
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Figure 13: AP for French translations of all the concepts. FVs and CVs are extracted from open-
ended French prompts.
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Figure 14: AP for French translations of all the concepts. FVs and CVs are extracted from open-
ended Spanish prompts.
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Figure 15: AP for the opening bracket token _ (. FVs and CVs are extracted from multiple-choice
prompts.
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H STEERING RESULTS
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Figure 16: Steering effect across layers and all concepts for different models.
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0-SHOT STEERING RESULTS
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Figure 17: 0-shot steering effect across layers and all concepts for different models.
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J  QWEN 2.5 72B OUTLIER ANALYSIS

We identified anomalous CIE values for Qwen 2.5 72B in the Categorical concept across French open-ended
and multiple-choice formats. As shown in Figure[T8] these conditions exhibit unusually high CIE values with a
bimodal distribution that deviates from the expected pattern. We excluded these two datasets from the final AIE
calculations. This exclusion has minimal impact on our results: the top-5 head rankings remain identical (100%
overlap), confirming that our main findings are robust to this methodological decision.
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Figure 18: Violin plots of CIE for different concepts and prompts.
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K DISENTANGLING FORMAT-SPECIFIC AND ABSTRACT REPRESENTATIONS IN
FUNCTION VECTORS

Multiple-choice (MC) format involves distinct computational steps beyond open-ended generation: evaluating
options, comparing candidates, and selecting among labeled alternatives (Tulchinskii et al., 2024} [Wiegreffe
[2025). When FV heads are extracted from MC prompts, they must therefore capture both (a) the
task representation (e.g., antonym, causation) and (b) the MC-specific formatting demands. We test whether
partitioning out of the MC information, makes the task representation abstract, i.e., is shared across all formats?

‘We partition FV heads in Llama 3.1 70B into three subsets:

¢ All Heads: Top-5 heads identified by AIE computed over all input formats (standard FV selection, Eq.

¢ Common Heads: Heads that appear in the top-10 heads for all three input formats independently. (3
heads).

* Unique MC Heads: Heads that appear in the top-10 heads for MC format only. (6 heads)

If abstract task representations exist in FVs independent of format, we would expect them to reside primarily in
the common heads that are causally important across all formats. We then computed similarity matrices and
RSA scores for each head subset.

We see that within the MC format, common heads cluster by concept (Figure[T9), but the representations are
nearly orthogonal between open-ended and multiple-choice prompts for the same concept (Figure 20).

It is still possible that these heads could encode both abstract task in open-ended and format features in MC
prompts in superposition. However, under the Linear Representation Hypothesis [2024), a shared
abstract concept should occupy a consistent linear subspace detectable via cosine similarity. The observed
orthogonality across formats implies that any abstract representation is not linearly accessible in a format-
invariant way. This suggests that FVs encode tasks at a lower level of abstraction (i.e., ’antonym in MC format’)
rather than a shared, format-independent concept.

Fv Fp: Common Heads Fv: MC Unique Heads 1.0
Antonym Antonym Antonym 0.8
Categorical Categorical Categorical
Causal Causal Causal 0.6 £
Translation Translation Translation H
PresentPast PresentPast PresentPast 0438
SingularPlural SingularPlural SingularPlural 02
Synonym Synonym Synonym
Concept-RSA: 0.47 Concept-RSA: 0.45 Concept-RSA: 0.09 0.0

Figure 19: Similarity matrices for MC prompts only. Each panel shows the similarity matrix
for a different subset of AIE-selected heads computed over MC prompts only (7 concepts x 50
prompts each). Common heads show stronger concept clustering than unique MC heads (albeit with
large similarity between concepts due to the shared MC structure). Full FVs show a very similar
representational structure to the common heads. Model: Llama 3.1 70B.
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Q-Type-RSA: 0.83 Q-Type-RSA: 0.84 Q-Type-RSA: 0.73

Figure 20: Similarity matrices for different FV head subsets across all formats. Same as Figurebut
computed over all input formats (7 concepts x 3 formats x 50 prompts). Within the same concept
the representations are nearly orthogonal between open-ended and multiple-choice prompts. Model:
Llama 3.1 70B.
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L STEERING RESULTS (ACCURACY)

Antonym Categorical Causal Singular-Plural
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Figure 21: Steering effect across layers (Accuracy). We inject CVs and FVs into Llama-3.1-70B and
plot the Top-1 accuracy for four representative concepts (columns). The grey horizontal line indicates
the accuracy of the unsteered model. See Figure|2|for AP results.

M MULTIPLE-CHOICE FORMAT WITH WORDS AS OUTPUT
Example prompt:

Instruction: Q:
unconstitutional
flat
demand
healthy
Response:

spherical A: ?

flat

unveil A: ?

Instruction: Q:
optional

mild

sturdy

conceal
Response:

Antonym OE-EN &8 Antonym OE-EN 1.0
Antonym OE-FR Antonym OE-FR
Antonym MC-Letter Antonym MC-Letter - 0.8
Antonym MC-Word Antonym MC-Word -_
Categorical OE-EN Categorical OE-EN - 06 g
Categorical OE-FR i Categorical OE-FR A
Categorical MC-Letter Categorical MC-Letter 3
Categorical MC-Word 4 | Categorical MC-Word 040
Causal OE-EN Causal OE-EN -
Causal OE-FR Causal OE-FR 0.2
Causal MC-Letter Causal MC-Letter 1
Causal MC-Word Causal MC-Word 0.0

Figure 22: Similarity matrices for 7 Vs and CVs with the inclusion of MC prompts where the model
is expected to produce a word instead of a letter. Takeaway: Unlike CVs, F)V MC representations
still cluster due to the input format, therefore MC cluster effect is not due to the model producing
words/letters. Model: Llama 3.1 70B.
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N AMBIGUOUSICL IN DIFFERENT LANGUAGES

In the original AmbiguousICL implementation, the concepts are presented in English and the translations are
presented in French.

Here, we test the effect of presenting the concepts in a different language to determine if CVs are tied to a
specific surface form (e.g., “English Antonym”). Specifically, we present the concepts in Spanish and interleave
them with Spanish-to-English translations.

Example antonym prompt:

Q: final
A: inicial

Q: inmaduro
A: madura

Q: norte
A: sur

Q: descendiente
A: descendant

Q: probablemente
A: probable

Q: vivo

The expected response is the Spanish antonym ‘vivo’” — ‘muerto’. Therefore, the ID vectors are extracted
from open-ended Spanish antonym prompts and the OOD vectors are extracted from open-ended English and
multiple-choice prompts.

In Figure 23] we see that the steering effect trends are similar to the original implementation (although the
absolute performance is lower for both CVs and FVs). In Figure 24] we also see that the KL divergence is
lower for the CVs compared to the FVs. Crucially, the CVs (extracted from English) steer the model to produce
the Spanish antonym (the contextually appropriate response), rather than the English antonym or the English
translation. This demonstrates that CVs encode the abstract ‘Antonym’ concept rather than ‘English Antonym’.
Mechanistically, this suggests that the C) amplifies the task probability (“do an antonym”) while relying on the
prompt’s existing context to determine the surface form (“in Spanish”), rather than injecting language-specific
content.
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Figure 23: Steering effect across layers and all concepts for different languages.
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Figure 24: KL divergence between ID and OOD for different languages. Model: Llama 3.1 70B.

O CROSS-FORMAT ACTIVATION PATCHING

To determine whether the dissociation between causal (FV) and invariant (CV) heads stems from the activation
patching setup—specifically, whether patching within the same format biases results toward format-specific
heads—we conducted cross-format activation patching across all 6 combinations of input formats. In this
experiment, we extracted activations from clean prompts in one format (e.g., Open-Ended English) and patched
them into a corrupted run of a different format (e.g., Multiple-Choice).

We found that cross-format patching consistently identified a subset of the original Function Vector heads (e.g.,
in Llama-3.1-70B, head L31H18 always appears in the top-5 for both within-format and cross-format patching).
It did not identify Concept Vector heads. This result shows that FVs are the primary causal mechanism for
the task across all formats, despite their representations being format-specific. CVs, while representationally
invariant, do not appear to causally drive the model’s behavior in these tasks.

Source Format Target Format Max AIE Overlap w/ FV (top-5) Overlap w/ CV (top-5)

OE-ENG OE-FR 0.22 4 0
OE-ENG MC 0.02 2 0
OE-FR MC 0.01 1 0
MC OE-ENG 0.23 3 0
OE-FR OE-ENG 0.41 4 0
MC OE-FR 0.12 4 0

Table 4: Cross-format Activation Patching Results (Llama 3.1 70B). We show the max Average
Indirect Effect (AIE) and the number of overlapping heads with the standard Function Vectors (FV)
and Concept Vectors (CV) (top-5 heads). The patching source refers to the format from which
activations were extracted, and the target refers to the corrupted prompt format into which they were
patched. FV heads are consistently identified across formats (specifically L31H18 and L35H57),
while CV heads are not.

25



	Introduction
	In search of Invariance
	Methods
	Models
	Tasks
	Activation Patching
	Representational Similarity Analysis
	Function & Concept Vectors

	Results
	Concept Vectors are More Invariant to Input Format
	Function & Concept Vectors are Composed of Different Attention Heads


	Can Concept Vectors Steer?
	Steering Methods
	Steering Results
	Function Vectors Outperform Concept Vectors in Distribution
	Concept Vectors Are More Stable Out of Distribution
	Function Vectors Mix Concept with Input Format


	Related Work
	Discussion
	Prompt Examples
	Open-ended (5-shot)
	Multiple-choice (3-shot)

	Similarity Matrices for Other Models
	AIE Scores
	Data Generation Process
	Significance Test for RSA–AIE Head Overlap
	Steering Hyperparameters
	Input Format Mixing in Function Vectors
	Steering Results
	0-shot Steering Results
	Qwen 2.5 72B Outlier Analysis
	Disentangling Format-Specific and Abstract Representations in Function Vectors
	Steering Results (Accuracy)
	Multiple-choice Format with Words as Output
	AmbiguousICL in Different Languages
	Cross-Format Activation Patching

