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Abstract

Model merging integrates the parameters of001
multiple models into a unified model, combin-002
ing their diverse capabilities. Existing model003
merging methods are often constrained by fixed004
parameter merging ratios. In this study, we005
propose Mixup Model Merge (M3), an inno-006
vative approach inspired by the Mixup data007
augmentation technique. This method merges008
the parameters of two large language models009
(LLMs) by randomly generating linear interpo-010
lation ratios, allowing for a more flexible and011
comprehensive exploration of the parameter012
space. Extensive experiments demonstrate the013
superiority of our proposed M3 method in merg-014
ing fine-tuned LLMs: (1) it significantly im-015
proves performance across multiple tasks, (2)016
it enhances LLMs’ out-of-distribution (OOD)017
robustness and adversarial robustness, (3) it018
achieves superior results when combined with019
sparsification techniques such as DARE, and020
(4) it offers a simple yet efficient solution that021
does not require additional computational re-022
sources. In conclusion, M3 is a simple yet effec-023
tive model merging method that significantly024
enhances the performance of the merged model025
by randomly generating contribution ratios for026
two fine-tuned LLMs.027

1 Introduction028

In the field of Natural Language Processing (NLP),029

the emergence of large language models (LLMs)030

(Brown et al., 2020; Touvron et al., 2023; OpenAI,031

2023; Chowdhery et al., 2023) represents a rev-032

olutionary breakthrough. With their remarkable033

capabilities, these models have demonstrated out-034

standing performance across various tasks (Jiao035

et al., 2023; Chang et al., 2024b; Nam et al., 2024;036

Xing, 2024; Guo et al., 2024), significantly advanc-037

ing NLP technologies.038

(a) Performance of the merged models obtained through Task
Arithmetic and TIES-Merging with/without M3.

(b) (Left) Performance of merged models with/without M3

on OOD datasets. (Right) Adversarial robustness (PDR) of
merged models with/without M3.

(c) The performance trend of the merged models obtained
through the following methods: TIES-Merging without M3

and DARE, TIES-Merging with DARE, TIES-Merging with
M3, and TIES-Merging with both M3 and DARE.

Figure 1: (a) M3 significantly boosts the model merg-
ing performance. (b) OOD robustness, and adversarial
robustness of the merged models. (c) Combined with
DARE, M3 delivers even better results. LM, MATH,
and Code refer to the WizardLM13B, WizardMath-13B,
and llama-2-13b-code-alpaca models. TA stands for
Task Arithmetic and TIES stands for TIES-Merging.

Supervised Fine-Tuning (SFT) is a crucial tech- 039

nique for adapting LLMs to specific tasks, refining 040

their performance by training on domain-specific 041

data (Hu et al., 2021; Ding et al., 2023; Xia et al., 042

2024). However, SFT requires substantial compu- 043

tational resources and long training times (Brown 044

et al., 2020; Chang et al., 2024a). To address this 045
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challenge, Model Merging has emerged as an ef-046

ficient solution, fusing the parameters of multiple047

fine-tuned LLMs into a unified model with diverse048

capabilities, without the need for additional train-049

ing or computational costs (Yang et al., 2024; Ak-050

iba et al., 2024). It effectively reduces the resource-051

intensive demands of SFT while preserving and052

even enhancing model performance.053

A simple analogy for model merging is the Su-054

per Mario game, where the protagonist gains spe-055

cial abilities by absorbing power-up items. Sim-056

ilarly, merging model parameters integrates the057

strengths of different models, enabling more effec-058

tive multi-task learning (Yu et al., 2024). However,059

existing model merging methods have some limi-060

tations, these methods heavily rely on predefined061

or heuristic parameter fusion strategies (Wortsman062

et al., 2022; Ilharco et al., 2022; Matena and Raf-063

fel, 2022; Jin et al., 2022; Yadav et al., 2023; Yu064

et al., 2024) such that they fail to fully explore the065

parameter space, thereby restricting the potential066

of the merged model.067

To address this issue, we draw inspiration from068

Mixup (Zhang, 2017) and propose a novel tech-069

nique called Mixup Model Merge (M3). This070

method introduces randomness by dynamically071

adjusting the contribution ratios between models,072

making the model merging process more flexible073

and enabling a thorough exploration of the parame-074

ter space. M3 further unlocks the potential of model075

merging, significantly enhancing the generalization076

performance of the merged model while improv-077

ing its out-of-distribution (OOD) and adversarial078

robustness (Wang et al., 2023; Zhu et al., 2023).079

As shown in Figure 2, the implementation of M3080

is similar to the process of proportionally mixing081

magical potions in Harry Potter. Specifically, this082

method dynamically controls the parameter fusion083

ratio between two fine-tuned LLMs by randomly084

generating a linear interpolation ratio λm, where085

λm ∈ (0, 1) and λm ∼ Beta(α, α). By adjusting086

the parameter α, we can precisely control the distri-087

bution of λm, allowing M3 to explore the parameter088

space of model merging more deeply and thus fully089

unleash the potential of the models, leading to im-090

proved overall performance.091

We conducted extensive experiments with three092

fine-tuned LLMs: WizardLM-13B (Xu et al.,093

2024), WizardMath-13B (Luo et al., 2023),094

and llama-2-13b-code-alpaca (Chaudhary, 2023),095

which specialize in instruction following, math-096

ematical reasoning, and code generation, respec-097

tively. Inspired by Mixup’s effectiveness in en- 098

hancing the robustness of neural networks when 099

handling corrupted labels or adversarial examples 100

(Zhang, 2017), we further performed comprehen- 101

sive evaluations on LiveBench (White et al., 2024) 102

and PromptBench (Zhu et al., 2024) to validate the 103

potential of M3 in improving the OOD robustness 104

and adversarial robustness of merged models. The 105

experimental results demonstrate that our proposed 106

M3 method can significantly improve merged mod- 107

els’ performance across various tasks (as shown 108

in Figure 1a), enhance the OOD and adversarial 109

robustness of the merged models (as shown in Fig- 110

ure 1b), and boost model merging when combined 111

with sparsification techniques like DARE (Yu et al., 112

2024) (as shown in Figure 1c). 113

2 Related Works 114

Model Merging Model merging is a technique 115

that integrates the parameters of multiple models 116

to create a unified model with enhanced or diverse 117

capabilities (Wortsman et al., 2022; Ilharco et al., 118

2022; Matena and Raffel, 2022; Jin et al., 2022; 119

Yadav et al., 2023; Yu et al., 2024; Lin et al., 2024). 120

Task arithmetic (Ilharco et al., 2022) leverages task 121

vectors for model merging through arithmetic oper- 122

ations, incorporating a predefined scaling term to 123

weight the contribution of different models. Fisher 124

Merging (Matena and Raffel, 2022) performs pa- 125

rameter fusion by applying weights derived from 126

the Fisher information matrix (Fisher, 1922), result- 127

ing in more precise parameter integration. TIES- 128

Merging (Yadav et al., 2023) addresses task con- 129

flicts by removing low-magnitude parameters, re- 130

solving sign disagreements, and merging only the 131

parameters that align with the final agreed-upon 132

sign. In (Yu et al., 2024), it is found that LLMs 133

can enhance their capabilities through model merg- 134

ing. Additionally, it introduces DARE, a method 135

for sparsifying the delta parameters of the model 136

(Ilharco et al., 2022), significantly improving the 137

performance of various model merging techniques. 138

Mixup Mixup is proposed to enhance the gen- 139

eralization ability of deep learning models by sur- 140

passing traditional Empirical Risk Minimization 141

(ERM) (Zhang, 2017). It is a simple, data-agnostic 142

augmentation technique that trains models using 143

virtual examples created by linearly interpolating 144

pairs of random examples and their corresponding 145

labels. Rooted in the Vicinal Risk Minimization 146

(VRM) principle (Chapelle et al., 2000), this ap- 147
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Figure 2: Implementation of m3: A process analogous to proportionally mixing magical potions in harry potter.
The proposed method controls the contribution ratio between two fine-tuned llms by randomly generating a linear
interpolation ratio λm, where λm ∈ (0, 1) and λm ∼ Beta(α, α). The distribution of λm is controlled by adjusting
α.

proach improves generalization across a variety148

of datasets (Russakovsky et al., 2015; Krizhevsky149

et al., 2009; Warden, 2017; Asuncion et al., 2007),150

and helps reduce overfitting, sensitivity to adver-151

sarial examples, and training instability, all with152

minimal computational cost. Given two samples153

(xi, yi) and (xj , yj), Mixup generates a new sam-154

ple using the following formulas:155

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(1)156

x̃ and ỹ represent the generated synthetic sample157

and its label, respectively, with λ determining their158

interpolation ratio, typically ranging from 0 to 1.159

Here, λ is a hyperparameter sampled from a Beta160

distribution, i.e., λ ∼ Beta(α, α), where α controls161

the strength of the interpolation between feature-162

target pairs. Inspired by Mixup, we propose a novel163

model merging method, M3, which generates the164

parameters of the merged model by performing165

linear interpolation between the parameters of two166

fine-tuned LLMs, with the interpolation ratio being167

random.168

3 Methodology169

3.1 Model Merging Problem170

Following Yu et al. (2024), we focus on merging171

fine-tuned LLMs that have been optimized from the172

same pre-trained backbone (Touvron et al., 2023).173

Specifically, we aim to fuse the parameters of these174

LLMs to create a unified model capable of handling175

multiple tasks. In this context, we restrict our at-176

tention to the merging of two models, as the mixup177

theory, which forms the basis of our approach, is178

generally applied to two entities.179

Given two tasks t1 and t2 with the correspond- 180

ing fine-tuned LLMs having parameters θt1SFT and 181

θt2SFT, model merging aims to combine the parame- 182

ters of these two models into a single model with 183

parameters θM . The resulting model should be 184

able to effectively perform both tasks simultane- 185

ously, leveraging the knowledge learned from each 186

individual model. 187

3.2 Mixup Model Merge 188

Inspired by Mixup (Zhang, 2017), we propose a 189

simple yet effective model merging method called 190

Mixup Model Merge (M3). Unlike existing meth- 191

ods that use fixed merging ratios, M3 generates 192

the model contribution ratio randomly, harnessing 193

randomness to inject fresh vitality into the model 194

merging process. Specifically, M3 further explores 195

the parameter space of the merged model to unlock 196

the potential of model merging. 197

To further elaborate, given two fine-tuned LLMs 198

with parameters {θt1SFT, θ
t2
SFT}, we combine M3 with 199

established model merging methods to fuse these 200

parameters and obtain a single merged model with 201

parameters θM . As illustrative examples, we con- 202

sider two widely used merging methods: Average 203

Merging (Wortsman et al., 2022) and Task Arith- 204

metic (Ilharco et al., 2022). 205

The official computation process for Average 206

Merging is described as follows: 207

θM =
1

2

(
θt1SFT + θt2SFT

)
(2) 208

The official computation process for Task Arith- 209
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metic is:210

θM = θPRE + λ · (δt1 + δt2)211

= θPRE + λ ·
2∑

i=1

(θtiSFT − θPRE), (3)212

where θPRE ∈ Rd represents the parameters of213

the pre-trained language model (PLM), such as214

Llama 2 (Touvron et al., 2023). λ is a scaling fac-215

tor that weights the contribution of each model216

during the merging process. δti denotes the delta217

parameter (Ilharco et al., 2022), which is defined218

as the difference between the parameters of the219

language models (LMs) before and after SFT, i.e.,220

δt = θtSFT − θPRE ∈ Rd, where t refers to task t.221

When introducing M3, the process for Average222

Merging is reformulated as:223

θM = λmθt1SFT + (1− λm)θt2SFT, (4)224

while the process for Task Arithmetic is reformu-225

lated as:226

θM = θPRE + λmδt1 + (1− λm)δt2 , (5)227

where λm determines the linear interpolation ratio228

between the two fine-tuned LLMs, and is generally229

a value between 0 and 1. λm is sampled from a Beta230

distribution, typically λm ∼ Beta(α, α), where α231

controls the shape of the Beta distribution.232

The hyperparameter α for M3 is selected from233

the range [0.2, 0.4, 0.5, 1, 2, 3, 5]. As shown in Fig-234

ure 3: (1) When α = 1, λ follows a uniform distri-235

bution, meaning all values within the range (0, 1)236

are equally likely to be sampled. (2) When α < 1,237

the distribution of λ exhibits a bimodal shape, with238

higher probabilities near the extremes (0 and 1).239

This indicates that the merged model is more likely240

to be dominated by one of the two models. (3)241

When α > 1, the distribution of λ becomes con-242

centrated around the middle (e.g., 0.5), resulting in243

more balanced contributions from both models.244

3.3 Theoretical Analysis245

Mixup performs linear interpolations between data246

samples and their labels in the data space (Zhang,247

2017). Similarly, M3 can be viewed as applying248

random linear interpolation in the parameter space,249

where the interpolation occurs between the param-250

eters of two fine-tuned models trained on differ-251

ent tasks. M3 represents a natural extension of252

the Vicinal Risk Minimization (VRM) principle253

(Chapelle et al., 2000) into the model parameter254

Figure 3: The Beta distribution visualization for differ-
ent α values.

space. In data space, VRM introduces a vicinal 255

distribution to simulate the true data distribution, 256

thereby increasing the diversity of training data 257

and enhancing the model’s generalization ability. 258

Similarly, M3 extends this principle by construct- 259

ing a virtual neighborhood in the model parameter 260

space between two task-specific models, combin- 261

ing their knowledge in a way that is more natural 262

and balanced. 263

In the context of model merging, interpolating 264

between two sets of model parameters, θt1SFTand 265

θt2SFT, defines a new neighborhood distribution in 266

the parameter space, which can be expressed as: 267

Pν(θM ) =

∫
ν(θM | θt1SFT, θ

t2
SFT) dθM

× P (θt1SFT)P (θt2SFT),

(6) 268

where Pν(θM ) represents the probability distri- 269

bution of the new model parameters θM gener- 270

ated through interpolation. The function ν(θM | 271

θt1SFT, θ
t2
SFT) defines the range and behavior of θM , 272

depending on the interpolation strategy (such as 273

linear interpolation). Additionally, P (θt1SFT) and 274

P (θt2SFT) represent the prior distributions of the pa- 275

rameters of the two models, respectively. 276

Under the linear interpolation strategy, the func- 277

tion ν(θM | θt1SFT, θ
t2
SFT) is defined as: 278

θM = λm · θt1SFT + (1− λm) · θt2SFT, (7) 279

where λm ∈ (0, 1) is the interpolation ratio. The 280

corresponding distribution Pν(θM ) is expressed as: 281

282

Pν(θM ) =

∫
δ
(
θM −

(
λm · θt1SFT + (1− λm) · θt2SFT

))
· P (θt1SFT)P (θt2SFT) dθ

t1
SFTdθ

t2
SFT,

(8)

283
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where δ(·) is the Dirac delta function, ensuring that284

θM satisfies the linear interpolation rule. By us-285

ing this linear interpolation method, the parameters286

θt1SFT and θt2SFT are combined in the parameter space,287

forming a new neighborhood distribution Pν(θM ).288

This process effectively merges the knowledge of289

both models into a unified parameter space, thus290

achieving robust performance across different tasks291

while maintaining the original strengths of the mod-292

els.293

By interpolating the parameters, M3 encourages294

the model to learn smoother decision boundaries.295

In this context, smoother decision boundaries can296

be understood as the boundaries between different297

tasks, such as instruction following, mathematical298

reasoning, and code generation, where the model299

must understand and adapt to each task differently.300

In tasks t1 and t2, M3 creates a virtual neighbor-301

hood that seamlessly integrates knowledge from302

both tasks. This approach prevents the merged303

model from overfitting task-specific details, ensur-304

ing a balanced and effective performance across all305

tasks.306

Secondly, M3 introduces a linear inductive bias307

in the parameter space, encouraging the merged308

model parameters to lie on a linear manifold be-309

tween the two source models. This linear structure310

offers significant advantages in terms of simplic-311

ity and generalization. According to Occam’s Ra-312

zor, simpler solutions tend to generalize better. By313

performing linear interpolation between two sets314

of parameters, M3 avoids unnecessary complexity315

in the model merging process, leading to a more316

straightforward and efficient solution.317

Thirdly, M3 can improve the performance of318

the merged model across multiple tasks by miti-319

gating task conflicts. Different tasks may require320

conflicting parameter values, which can lead to per-321

formance degradation on one task while optimiz-322

ing for another. Linear interpolation helps balance323

these conflicts, resulting in a model that performs324

well among all tasks.325

4 Experiments326

4.1 Experimental Setup327

Task-Specific Fine-Tuned LLMs and Datasets328

Following the experimental setup given in Yu329

et al. (2024), we select three task-specific fine-330

tuned LLMs: WizardLM-13B (Xu et al., 2024),331

WizardMath-13B (Luo et al., 2023), and llama-2-332

13b-code-alpaca (Chaudhary, 2023), all of which333

use Llama-2-13b (Touvron et al., 2023) as the pre- 334

trained backbone. These models are respectively 335

designed for instruction-following, mathematical 336

reasoning, and code generation tasks. To evaluate 337

the instruction-following task we use AlpacaEval 338

(Li et al., 2023). For testing mathematical reason- 339

ing task, we employ GSM8K (Cobbe et al., 2021) 340

and MATH (Hendrycks et al., 2021). For estimat- 341

ing the performance of code-generating task, we 342

use HumanEval (Chen et al., 2021) and MBPP 343

(Austin et al., 2021). More details of these LLMs 344

and datasets can be found in Appendix A.1. 345

The Benchmarks for evaluating Out-of- 346

Distribution and Adversarial Robustness To 347

assess OOD robustness, we evaluate math & code, 348

LM & math, and LM & code models using instruc- 349

tion following (LiveBench-Instruction), coding 350

(LiveBench-Coding), and language comprehension 351

(LiveBench-TypoFixing) category in LiveBench 352

(White et al., 2024), respectively. More details on 353

OOD benchmarks are given in Appendix A.3. 354

We utilize the Adversarial Prompt Attacks mod- 355

ule in PromptBench (Zhu et al., 2024) to as- 356

sess the robustness of LLMs against adversarial 357

prompts. Specifically, we employ three attack 358

methods: DeepWordBug (character-level) (Gao 359

et al., 2018), BERTAttack (word-level) (Li et al., 360

2020), and StressTest (sentence-level) (Naik et al., 361

2018). The evaluation is conducted on two datasets 362

supported by PromptBench: SST2 (sentiment anal- 363

ysis) (Socher et al., 2013) and CoLA (grammatical 364

correctness) (Warstadt, 2019). For more details on 365

PromptBench and attack methods, please refer to 366

Appendix A.4. 367

Evaluation Metrics We calculate win rate 368

for AlpacaEval and LiveBench-Instruction, zero- 369

shot accuracy for GSM8K and MATH, pass@1 370

for HumanEval, MBPP and LiveBench-Coding, 371

Matthews correlation coefficient (MCC) for CoLA, 372

accuracy for SST2, and zero-shot accuracy for 373

LiveBench-TypoFixing. 374

Implementation Details Unless otherwise spec- 375

ified, the details of the model merging experi- 376

ments are consistent with Yu et al. (2024). The 377

hyperparameter α for M3 is chosen from the range 378

[0.2, 0.4, 0.5, 1, 2, 3, 5]. For a detailed description 379

of the hyperparameter settings in model merging 380

methods, please refer to Appendix A.2. Addition- 381

ally, all experiments are conducted on NVIDIA 382

GeForce RTX 4090 GPUs. 383
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4.2 Merging Task-Specific Fine-Tuned LLMs384

We integrate M3 into three prominent model merg-385

ing techniques: Average Merging, Task Arithmetic,386

and TIES-Merging. The performance of merging387

task-specific fine-tuned LLMs is presented in Ta-388

ble 1.389

From Table 1, we obtain the following observa-390

tions: 1) M3 generally enhances Average Merging,391

Task Arithmetic, and TIES-Merging when merg-392

ing fine-tuned LLMs. For example, the improve-393

ments achieved by Average Merging with M3 for394

Math & Code are 7.43% on GSM8K, 3.74% on395

Math, and 11.0% on MBPP. For LM & Code, Av-396

erage Merging with M3 shows improvements of397

7.31% on AlpacaEval, 7.32% on HumanEval, and398

2.4% on MBPP. Task Arithmetic with M3 results in399

improvements of 2.0% on AlpacaEval and 2.44%400

on HumanEval for LM & Code, and 10.4% on401

MBPP for Math & Code. TIES-Merging with M3402

achieves an improvement of 4.01% for LM & Math403

on GSM8K. For LM & Code, TIES-Merging with404

M3 shows significant improvements of 3.11% on405

AlpacaEval, 25.61% on HumanEval, and 30.8% on406

MBPP. 2) Compared to Task Arithmetic, Average407

Merging and TIES-Merging tend to benefit more408

from M3. This is because both Average Merging409

and TIES-Merging use a fixed merging ratio of 1/2,410

whereas Task Arithmetic allows the merging ratio411

to vary within the range [0.5, 1.0]. Consequently,412

the randomness introduced by M3 in the merging413

ratio has a more pronounced impact on Average414

Merging. This further highlights the critical role415

of an effective merging ratio in determining the416

performance of the merged model. 3) Yu et al.417

(2024) has indicated that the suboptimal results of418

merging WizardMath-13B with llama-2-13b-code-419

alpaca are due to llama-2-13b-code-alpaca not be-420

ing well fine-tuned for code generation. In this421

context, the proposed M3 approach improves the422

pass@1 score on MBPP by 10.4% for the merged423

model of WizardMath-13B and llama-2-13b-code-424

alpaca. The improvement demonstrates that when425

one of the fine-tuned models to be merged is not426

well fine-tuned for the specific task, M3 can effec-427

tively unlock the potential of both models, maxi-428

mizing the performance of the merged model. The429

M3 approach helps mitigate the impact of subopti-430

mal fine-tuning on model merging performance.431

4.3 Model Robustness432

Figure 4: Performance of merged models (Math & Code,
LM & Math, and LM & Code) using three model merg-
ing methods (Average Merging, Task Arithmetic, and
TIES-Merging) on OOD datasets.

Out-of-distribution robustness To ensure that 433

the evaluation datasets are as representative as 434

possible of OOD data, we select datasets with 435

sufficiently recent release dates and ensure they 436

cover domains that fine-tuned LLMs have not been 437

specifically trained on. Consequently, Math & 438

Code is evaluated on LiveBench-Instruction, LM 439

& Math on LiveBench-Coding, and LM & Code 440

on LiveBench-TypoFixing. The performance of 441

the merged LLMs is shown in Figure 4. As illus- 442

trated in Figure 4, M3 consistently enhances the 443

performance of merged models—Math & Code, 444

LM & Math, and LM & Code—on OOD datasets. 445

Specifically, when Task Arithmetic is combined 446

with M3, the Math & Code model demonstrates 447

a 1.9% improvement in win rate on LiveBench- 448

Instruction, the LM & Math model achieves a 449

1.6% increase in pass@1 on LiveBench-Coding, 450

and the LM & Code model shows a significant 6% 451

boost in accuracy on LiveBench-TypoFixing. Sim- 452

ilarly, when Average Merging is combined with 453

M3, the Math & Code model attains a 1.5% im- 454

provement in win rate on LiveBench-Instruction, 455

the LM & Math model achieves a 0.7% increase 456
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Merging
Methods Models Use Model

Mixup
Use

DARE

Instruction
Following

Mathematical
Reasoning Code Generating

AlpacaEval GSM8K MATH HumanEval MBPP

/
LM No No 45.14 2.20 0.04 36.59 34.00

Math No No / 64.22 14.02 / /
Code No No / / / 23.78 27.60

Average
Merging

LM
& Math

No No 45.28 66.34 13.40 / /
Yes No 44.40 66.26 13.80 / /
No Yes 44.22 66.57 12.96 / /
Yes Yes 43.53 66.57 14.12 / /

LM
& Code

No No 36.60 / / 29.88 32.00
Yes No 43.91 / / 37.20 34.40
No Yes 38.81 / / 31.71 32.40
Yes Yes 40.31 / / 36.59 37.00

Math
& Code

No No / 56.17 10.28 8.53 8.20
Yes No / 63.61 14.02 8.54 19.20
No Yes / 56.18 10.28 6.10 7.80
Yes Yes / 64.97 13.54 9.76 21.20

Task
Arithmetic

LM
& Math

No No 45.78 66.34 13.40 / /
Yes No 41.65 66.34 13.74 / /
No Yes 49.00 66.64 13.02 / /
Yes Yes 44.90 67.32 13.74 / /

LM
& Code

No No 44.64 / / 32.93 33.60
Yes No 46.64 / / 35.37 33.80
No Yes 41.47 / / 35.98 33.00
Yes Yes 45.20 / / 35.98 35.20

Math
& Code

No No / 64.67 13.98 8.54 8.60
Yes No / 63.53 13.94 7.93 19.00
No Yes / 65.05 13.96 10.37 9.80
Yes Yes / 65.13 14.32 8.54 18.00

TIES-
Merging

LM
& Math

No No 38.63 14.56 2.12 / /
Yes No 38.73 18.57 2.48 / /
No Yes 37.92 18.04 2.34 / /
Yes Yes 39.93 19.26 2.82 / /

LM
& Code

No No 41.85 / / 0.0 0.0
Yes No 44.96 / / 25.61 30.80
No Yes 43.13 / / 0.0 0.0
Yes Yes 45.65 / / 26.83 33.20

Math
& Code

No No / 64.67 13.68 9.15 22.60
Yes No / 64.75 14.16 9.76 21.4
No Yes / 64.82 13.88 10.37 23.60
Yes Yes / 64.75 14.78 9.15 19.60

Table 1: Performance of merging task-specific LLMs WizardLM-13B (LM), WizardMath-13B (Math), and llama-2-
13b-codealpaca (Code) on all the datasets. The best and second-best results are marked in bold and underlined fonts.

in pass@1 on LiveBench-Coding, and the LM &457

Code model exhibits a 4% enhancement in accu-458

racy on LiveBench-TypoFixing. Finally, when459

TIES-Merging is applied alongside M3, the Math460

& Code model achieves a 1.1% improvement in461

win rate on LiveBench-Instruction, the LM &462

Math model records a 0.6% increase in pass@1463

on LiveBench-Coding, and the LM & Code model464

demonstrates a remarkable 14% improvement in465

accuracy on LiveBench-TypoFixing. These results466

underscore the robustness and versatility of M3 in467

enhancing model performance across diverse merg-468

ing strategies and OOD tasks.469

Adversarial robustness We employ three470

Prompt Attack Methods supported by the prompt-471

bench codebase (DeepWordBug, BERTAttack,472

and StressTest) (Zhu et al., 2024) to evaluate the473

adversarial robustness of three merged models474

(Math & Code, LM & Math, and LM & Code) 475

obtained through the task arithmetic method. 476

To balance experimental effectiveness with 477

computational efficiency, we randomly selected 478

the positions of the three attacked words in the 479

prompts when executing the DeepWordBug and 480

BERTAttack attacks. Adversarial robustness is 481

assessed using the Performance Drop Rate (PDR) 482

(Zhu et al., 2023), where a lower PDR indicates 483

stronger robustness. Further details on PDR can 484

be found in Appendix D. The performance of the 485

merged LLMs is shown in Table 2. 486

As shown in Table 2, M3 improves the adver- 487

sarial robustness of the merged models in most 488

cases with the StressTest Prompt Attack Method. 489

For example, with M3, the PDR of Math & Code 490

decreased by 3.2% on the SST2 dataset and by 491

92.12% on the CoLA dataset, while the PDR of 492

LM & Code decreased by 30.36% on SST2 and 493

7



Model Dataset Use
Mixup

Use
Attack

Metric
(%)

PDR
(%)

Math
&

Code

SST2
No No 57.68 38.97Yes 35.21

Yes No 86.24 35.77Yes 55.39

CoLA
No No 45.54 98.53Yes 0.67

Yes No 71.72 6.42Yes 67.11

LM
&

Math

SST2
No No 92.78 29.05Yes 65.83

Yes No 91.28 34.55Yes 59.75

CoLA
No No 79.19 8.84Yes 72.20

Yes No 80.54 4.52Yes 76.89

LM
&

Code

SST2
No No 10.55 38.04Yes 6.54

Yes No 73.17 7.68Yes 67.55

CoLA
No No 74.21 47.42Yes 39.02

Yes No 74.78 31.67Yes 51.10

Table 2: Adversarial Robustness of Merged Mod-
els on the SST2 and CoLA Datasets when Executing
StressTest prompt attack method. The best and second-
best results are marked in bold and underlined fonts.

by 15.75% on CoLA. Furthermore, in most cases,494

M3 not only improves the adversarial robustness of495

the merged models but also enhances their perfor-496

mance metrics (accuracy and MCC) on the SST2497

and CoLA datasets. Specifically, with M3, Math498

& Code demonstrates a 28.56% increase in accu-499

racy on SST2 and a 26.18% increase in MCC on500

CoLA, while LM & Code achieves a 62.62% in-501

crease in accuracy on SST2. These results show502

that M3 effectively enhances both the adversarial503

robustness and the performance of the merged mod-504

els in sentiment analysis and grammar correctness505

tasks. Detailed experimental results for the remain-506

ing Prompt Attack Methods (DeepWordBug and507

BERTAttack) are presented in Appendix B.508

4.4 Mixup Model Merge with DARE509

DARE is a model sparsification method proposed510

by (Yu et al., 2024), with a more detailed intro-511

duction provided in Appendix E. We combine M3512

and DARE with three model merging techniques,513

including Average Merging, Task Arithmetic, and514

TIES-Merging, to compare the effects of M3 and515

DARE individually and explore their combined im-516

pact. The experimental results are presented in517

Table 1. Additionally, in the DARE method, the518

drop rate hyperparameter is set to 0.2.519

From Table 1, we conclude that: 1) In most cases,520

M3 outperforms DARE, with a particularly signif- 521

icant advantage on certain datasets. For instance, 522

the Math & Code model achieves a pass@1 score 523

of 9.8% on the MBPP dataset when combined with 524

DARE, while this score increases to 19% when 525

combined with M3. This demonstrates that M3 526

unlocks new potential in model merging by ran- 527

domly generating merging ratios, leading to perfor- 528

mance improvements that surpass those achieved 529

by DARE. 2) Combining DARE and M3 generally 530

results in better model merging performance. For 531

example, the LM & Math and LM & Code models, 532

enhanced by TIES-Merging with M3 and DARE, 533

achieve the best performance on the test datasets. 534

While only incorporating TIES-Merging with M3 535

to these models, the enhanced models achieve the 536

second best performance. This suggests that M3 537

and DARE can complement each other. Moreover, 538

in some cases, M3 alone can deliver the best results, 539

while DARE alone only achieves the best perfor- 540

mance in very few cases, further demonstrating the 541

superiority of M3. 542

5 Conclusion 543

Inspired by the mixup method and the Vicinal 544

Risk Minimization (VRM) principle, we propose 545

Mixup Model Merge (M3), a novel approach for 546

merging fine-tuned LLMs by introducing random- 547

ness into the parameters linear interpolation pro- 548

cess. Unlike traditional methods such as average 549

merging and task arithmetic, M3 leverages a Beta 550

distribution to dynamically adjust the merging ra- 551

tio, enabling more flexible exploration of the pa- 552

rameter space. Experimental results demonstrate 553

that M3 not only significantly enhances the perfor- 554

mance of the merged model across various tasks but 555

also improves its OOD and adversarial robustness. 556

Furthermore, when combined with sparsification 557

techniques such as DARE, our approach achieves 558

even more favorable model merging outcomes. In 559

summary, M3 is a simple yet powerful technique 560

that requires minimal computational resources. By 561

merely adjusting the merging ratio, it produces a 562

merged model with enhanced task-specific capabil- 563

ities and robustness. This exciting discovery paves 564

the way for further research into optimizing merg- 565

ing ratio selection in model merging processes. 566

6 Limitations 567

There are several limitations of the M3 method: 568

While it performs well for merging two models, 569

8



(1) its scalability when merging a larger number570

of models, especially those with significant differ-571

ences, remains uncertain. Additionally, (2) due to572

the inherent randomness in the merging process,573

multiple attempts may be required to achieve a574

merged model that meets expectations. This un-575

predictability can lead to increased computational576

costs, particularly in large-scale applications, re-577

sulting in a significant rise in resource consump-578

tion. Finally, (3) Our method may also be extended579

to a wider range of applications, such as merging580

fine-tuned models with RLHF models to reduce the581

alignment tax (FINE-TUNING).582
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A Detailed Experimental Settings822

A.1 Task-Specific Fine-Tuned LLMs and823

Datasets Details824

We conduct model merging experiments using825

three task-specific LLMs fine-tuned from Llama-2-826

13b:827

• WizardLM-13B is an instruction-following828

model based on Llama-2-13b, designed to829

improve open-domain instruction-following.830

Using the Evol-Instruct method (Xu et al.,831

2024), it generates high-complexity instruc- 832

tion data to reduce human annotation and en- 833

hance generalization. The model undergoes 834

supervised fine-tuning with AI-generated data, 835

followed by refinement via RLHF. Evalua- 836

tion results show that Evol-Instruct-generated 837

instructions outperform human-written ones, 838

and WizardLM-13B surpasses ChatGPT in 839

high-complexity tasks. In GPT-4 automated 840

evaluation, it achieves over 90% of ChatGPT’s 841

performance in 17 out of 29 tasks, demonstrat- 842

ing the effectiveness of AI-evolved instruction 843

fine-tuning (Xu et al., 2024). 844

• WizardMath-13B, optimized from Llama-2- 845

13b, is designed for mathematical reasoning 846

and enhances Chain-of-Thought (CoT) (Wei 847

et al., 2022) capabilities. It uses Reinforce- 848

ment Learning from Evol-Instruct Feedback 849

to evolve math tasks and improve reasoning. 850

Trained on GSM8K and MATH datasets, it 851

excels in both basic and advanced math prob- 852

lems. In evaluations, WizardMath-Mistral 853

7B outperforms all open-source models with 854

fewer training data, while WizardMath 70B 855

surpasses GPT-3.5-Turbo, Claude 2, and even 856

early GPT-4 versions in mathematical reason- 857

ing tasks. 858

• llama-2-13b-code-alpaca is a code genera- 859

tion model fine-tuned from Llama-2-13b, de- 860

signed to enhance code understanding and 861

generation. It follows the same training ap- 862

proach as Stanford Alpaca (Taori et al., 2023) 863

but focuses on code-related tasks. The model 864

is fine-tuned with 20K instruction-following 865

code samples generated using the Self-Instruct 866

method (Wang et al., 2022). However, as it 867

has not undergone safety fine-tuning, caution 868

is required when using it in production envi- 869

ronments. 870

We use one dataset to evaluate the instruction- 871

following task: 872

• AlpacaEval (Li et al., 2023) is an LLM- 873

based automated evaluation metric that as- 874

sesses model performance by testing on a 875

fixed set of 805 instructions and computing 876

the win rate of the evaluated model against 877

a baseline. The evaluation process involves 878

an LLM-based evaluator that compares the 879

responses and determines the probability of 880
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preferring the evaluated model. In this paper,881

we use AlpacaEval 2.0 (Dubois et al., 2024).882

To reduce costs, we use chatgpt_fn for evalua-883

tion.884

We use two dataset to evaluate the mathematical885

reasoning task:886

• GSM8K is a dataset of 8.5K high-quality, lin-887

guistically diverse grade school math word888

problems, designed to evaluate the multi-step889

mathematical reasoning abilities of large lan-890

guage models. It consists of 7.5K training891

problems and 1K test problems. In this paper,892

we use the 1K test set for evaluation (Cobbe893

et al., 2021).894

• MATH is a dataset containing 12,500895

competition-level math problems, designed896

to evaluate and enhance the problem-solving897

abilities of machine learning models. It con-898

sists of 7,500 training problems and 5,000 test899

problems. We use the 5,000 test set for evalu-900

ation (Hendrycks et al., 2021).901

We used two dataset to evaluate the code genera-902

tion task:903

• HumanEval is a dataset consisting of 164904

hand-written programming problems, de-905

signed to evaluate the functional correctness906

of code generation models. Each problem907

includes a function signature, docstring, func-908

tion body, and unit tests. The dataset tests909

models’ language comprehension, reasoning,910

and algorithmic abilities (Chen et al., 2021).911

• MBPP is a dataset containing 974 program-912

ming problems designed to evaluate a model’s913

ability to synthesize Python programs from914

natural language descriptions. The problems915

range from basic numerical operations to916

more complex tasks involving list and string917

processing. The test set consists of 500 prob-918

lems, which are used for evaluation in this919

paper (Austin et al., 2021).920

A.2 Hyperparameter Setting Details in Model921

Merging Methods922

Table 3 presents the hyperparameter search ranges923

for the model merging methods. For Task Arith-924

metic and TIES-Merging, the scaling terms are925

selected from [0.5, 1.0], while in TIES-Merging,926

the retain ratio for the largest-magnitude parame-927

ters is chosen from [0.5, 0.7, 0.9]. In contrast, the928

Average Merging method does not require any hy- 929

perparameters.

Merging Methods Search Ranges of Hyperparameters

Task Arithmetic Scaling term for merging model parameters:
[0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

TIES-Merging

Scaling term for merging model parameters:
[0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Ratio for retaining parameters with the
largest-magnitude values: [0.5, 0.7, 0.9]

Table 3: Hyperparameter search ranges for model merg-
ing methods.

930
Table 4 presents the optimal hyperparameter set- 931

tings for the TIES-Merging model merging method 932

obtained through searching. These settings are fur- 933

ther applied to model merging experiments involv- 934

ing M3 and DARE.

Merging Method Model Hyperparameter Values

TIES-Merging
LM & Math scaling_term=0.5, retain_ratio=0.5
LM & Code scaling_term=1.0, retain_ratio=0.7

Math & Code scaling_term=1.0, retain_ratio=0.5

Table 4: Hyperparameter settings in TIES-Merging.

935

A.3 Out-of-Distribution Dataset Selection 936

Details 937

LiveBench (White et al., 2024) is a dynamic bench- 938

mark for large language models, featuring fre- 939

quently updated questions and diverse tasks. To 940

assess OOD robustness, we evaluate math & code, 941

LM & math, and LM & code models using instruc- 942

tion following (LiveBench-Instruction), coding 943

(LiveBench-Coding), and language comprehension 944

(LiveBench-TypoFixing) category in LiveBench, 945

respectively, deliberately avoiding the fine-tuning 946

domains of the merged fine-tuned models. These 947

tasks were released after November 2023, whereas 948

WizardLM-13B, WizardMath-13B, and llama-2- 949

13b-code-alpaca were all introduced earlier. Fur- 950

thermore, their shared Llama-2-13b backbone was 951

trained on data only up to July 2023. Consequently, 952

these factors collectively ensure that the evaluation 953

remains OOD in the temporal dimension. 954

When assessing the OOD robustness of LM & 955

Code using the Language Comprehension category 956

in LiveBench, only the typo-fixing task is con- 957

sidered. This decision is based on the fact that 958

LiveBench is highly challenging, and the merged 959

model performs poorly on other tasks in this cat- 960

egory, with accuracy close to zero, rendering the 961

evaluation results inconclusive and uninformative. 962
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Finally, we acknowledge the limitations of these963

datasets. For large models like Llama-2-13b, iden-964

tifying truly OOD datasets is difficult, as their train-965

ing data likely covers similar distributions. These966

datasets are better described as "out-of-example",967

representing instances not explicitly seen during968

training. As discussed in (Wang et al., 2023),969

distribution shifts can occur across domains and970

time. While Llama-2-13b may have been trained971

on datasets for tasks like instruction-following, cod-972

ing, and language comprehension, the datasets we973

selected remain valuable for OOD evaluation by974

capturing temporal shifts, providing insights into975

robustness over time.976

A.4 Adversarial Robustness Evaluation977

Experiments Setting Details978

PromptBench (Zhu et al., 2024) is a unified library979

designed for evaluating LLMs, providing a stan-980

dardized and extensible framework. It includes981

several key components such as prompt construc-982

tion, prompt engineering, dataset and model load-983

ing, adversarial prompt attacks, dynamic evaluation984

protocols, and analysis tools.985

We use the Adversarial Prompt Attacks mod-986

ule in PromptBench aims to evaluate the robust-987

ness of LLMs against adversarial prompts. We988

employ three methods to perform adversarial at-989

tacks on prompts to evaluate the adversarial ro-990

bustness of the merged models: DeepWordBug991

(Gao et al., 2018), BERTAttack (Li et al., 2020),992

and StressTest (Naik et al., 2018), representing993

Character-level, Word-level, and Sentence-level at-994

tacks, respectively.995

• DeepWordBug introduces subtle character-996

level perturbations (e.g., adding, deleting, or997

replacing characters) to words in text to de-998

ceive language models. It aims to evaluate a999

model’s robustness against small typograph-1000

ical errors that may alter the model’s perfor-1001

mance without being easily detected.1002

• BERTAttack manipulates text at the word1003

level by replacing words with contextually1004

similar synonyms to mislead large language1005

models. This method tests the model’s abil-1006

ity to maintain accuracy despite small lexical1007

changes that might alter the meaning of the1008

input.1009

• StressTest appends irrelevant or redundant1010

sentences to the end of a prompt to distract1011
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(a) The operational steps of TIES-Merging.
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(b) After introducing M3, the Disjoint Merge step in the TIES-
Merging procedure.

Figure 5: The difference between M3 and the origi-
nal TIES-Merging is that, in the Disjoint Merge step,
when two task vectors are retained for a given parameter,
the mean of the task vectors is replaced by a random
linear interpolation, while the other operations remain
unchanged.

and confuse language models. It assesses the 1012

model’s ability to handle extraneous informa- 1013

tion and maintain accuracy when faced with 1014

unnecessary distractions. 1015

The evaluation is conducted on the Sentiment 1016

Analysis dataset (SST2 (Socher et al., 2013)) and 1017

the Grammar Correctness dataset (CoLA (Warstadt, 1018

2019)): 1019

• SST2 (Socher et al., 2013): A sentiment anal- 1020

ysis dataset designed to assess whether a given 1021

sentence conveys a positive or negative senti- 1022

ment. 1023

• CoLA (Warstadt, 2019): A dataset for gram- 1024

mar correctness, where the model must de- 1025

termine whether a sentence is grammatically 1026

acceptable. 1027

B Additional Experimental Results on 1028

Adversarial Robustness 1029

All the merged models are obtained using the Task 1030

Arithmetic method. Table 5 presents the detailed 1031

experimental results of the adversarial robustness 1032

of merged models on the SST2 and CoLA datasets 1033

applying the DeepWordBug prompt attack method. 1034

Table 6 presents the detailed experimental results of 1035

the adversarial robustness of merged models on the 1036
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Model Dataset Use Mixup Use Attack Metric (%) PDR (%)

Math
& Code

SST2
No No 57.68 11.73Yes 50.92

Yes No 78.21 37.10Yes 49.20

CoLA
No No 72.87 56.97Yes 31.35

Yes No 74.02 58.94Yes 30.39

LM
& Math

SST2
No No 92.78 2.60Yes 90.37

Yes No 91.28 3.77Yes 87.84

CoLA
No No 79.19 4.96Yes 75.26

Yes No 80.54 1.07Yes 79.67

LM
& Code

SST2
No No 10.55 98.91Yes 0.11

Yes No 73.17 97.65Yes 1.72

CoLA
No No 74.21 8.79Yes 67.69

Yes No 73.922 11.15Yes 65.68

Table 5: Adversarial robustness of merged models on the SST2 and CoLA datasets when executing the DeepWord-
Bug prompt attack method.

Model Dataset Use Mixup Use Attack Metric (%) PDR (%)

Math
& Code

SST2
No No 57.68 13.92Yes 49.66

Yes No 78.21 4.11Yes 75.00

CoLA
No No 45.54 13.47Yes 39.41

Yes No 71.72 17.25Yes 59.35

LM
& Math

SST2
No No 92.78 2.22Yes 90.71

Yes No 91.28 0.0Yes 91.28

CoLA
No No 79.19 12.00Yes 69.70

Yes No 80.54 5.83Yes 75.84

LM
& Code

SST2
No No 10.55 95.65Yes 0.46

Yes No 73.17 55.02Yes 32.91

CoLA
No No 74.21 7.24Yes 68.84

Yes No 73.92 7.52Yes 68.36

Table 6: Adversarial robustness of merged models on the SST2 and CoLA datasets when executing the Bertattack
prompt attack method.

SST2 and CoLA datasets applying the BERTAttack1037

prompt attack method.1038

C Integrating M3 into the TIES-Merging 1039

Model Merging Method 1040

Figure 5 shows the specific implementation ap- 1041

proach to incorporating M3 into TIES-Merging. 1042

After the steps of trimming parameters with lower 1043

magnitudes and resolving sign disagreements, the 1044
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two models to be merged are denoted as M1 and1045

M2. During the M3 process, only the parameters1046

that are preserved in both M1 and M2 are inter-1047

polated according to the model merging hyperpa-1048

rameter λm to obtain the merged parameters. For1049

parameters that are preserved in only one of the1050

models, no interpolation is performed, and the orig-1051

inal value from the preserved model is retained in1052

the merged model.1053

D Performance Drop Rate (PDR) for1054

Adversarial Robustness1055

The adversarial robustness is evaluated using the1056

Performance Drop Rate (PDR) (Zhu et al., 2023),1057

which is defined as follows:1058

PDR =
Metricno attack − Metricattack

Metricno attack
, (9)1059

where Metricno attack denotes the performance met-1060

ric without any prompt attack, and Metricattack rep-1061

resents the performance metric under the prompt1062

attack. A smaller PDR indicates stronger adversar-1063

ial defense against prompt attacks, implying better1064

adversarial robustness.1065

E Detailed Introduction to DARE1066

DARE (Drop And REscale) (Yu et al., 2024) is1067

a model sparsification method designed to reduce1068

the redundancy of delta parameters in fine-tuned1069

models while preserving their task-specific capabil-1070

ities. In SFT, model parameters are optimized to1071

unlock abilities for specific tasks, with the differ-1072

ence between fine-tuned and pre-trained parameters1073

referred to as delta parameters.1074

However, studies have shown that delta parame-1075

ters are often highly redundant. DARE addresses1076

this redundancy by randomly dropping a propor-1077

tion p of delta parameters (referred to as the drop1078

rate) and rescaling the remaining ones by a factor1079

of 1/(1 − p). This simple yet effective approach1080

enables DARE to eliminate up to 99% of delta1081

parameters with minimal impact on model perfor-1082

mance, particularly in large-scale models, and it1083

can be applied using only CPUs.1084

Beyond sparsification, DARE serves as a ver-1085

satile plug-in for merging multiple homologous1086

fine-tuned models (fine-tuned from the same base1087

model) by reducing parameter interference. When1088

combined with existing model merging techniques1089

such as Average Merging, Task Arithmetic, and1090

TIES-Merging, DARE facilitates the fusion of mod- 1091

els while retaining or even enhancing task perfor- 1092

mance across multiple benchmarks. This effect 1093

is especially pronounced in decoder-based LMs, 1094

where DARE boosts task generalization. 1095

Experiments on AlpacaEval, GSM8K, and 1096

MBPP reveal that the merged LM has the potential 1097

to outperform any individual source LM, present- 1098

ing a significant new discovery. Notably, the 7B 1099

model obtained through DARE merging, Super- 1100

Mario v2, ranks first among models of the same 1101

scale on the Open LLM Leaderboard (Beeching 1102

et al., 2023). These improvements were achieved 1103

without the need for retraining, positioning DARE 1104

as an efficient and resource-friendly solution for 1105

model merging. 1106
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