Mixup Model Merge: Enhancing Model Merging Performance through
Randomized Linear Interpolation

Anonymous ACL submission

Abstract

Model merging integrates the parameters of
multiple models into a unified model, combin-
ing their diverse capabilities. Existing model
merging methods are often constrained by fixed
parameter merging ratios. In this study, we
propose Mixup Model Merge (M?), an inno-
vative approach inspired by the Mixup data
augmentation technique. This method merges
the parameters of two large language models
(LLMs) by randomly generating linear interpo-
lation ratios, allowing for a more flexible and
comprehensive exploration of the parameter
space. Extensive experiments demonstrate the
superiority of our proposed M? method in merg-
ing fine-tuned LLMs: (1) it significantly im-
proves performance across multiple tasks, (2)
it enhances LLMs’ out-of-distribution (OOD)
robustness and adversarial robustness, (3) it
achieves superior results when combined with
sparsification techniques such as DARE, and
(4) it offers a simple yet efficient solution that
does not require additional computational re-
sources. In conclusion, M? is a simple yet effec-
tive model merging method that significantly
enhances the performance of the merged model
by randomly generating contribution ratios for
two fine-tuned LLMs.

1 Introduction

In the field of Natural Language Processing (NLP),
the emergence of large language models (LLMs)
(Brown et al., 2020; Touvron et al., 2023; OpenAl,
2023; Chowdhery et al., 2023) represents a rev-
olutionary breakthrough. With their remarkable
capabilities, these models have demonstrated out-
standing performance across various tasks (Jiao
et al., 2023; Chang et al., 2024b; Nam et al., 2024;
Xing, 2024; Guo et al., 2024), significantly advanc-
ing NLP technologies.

E= 1M & Code (TA) LM & Code (TIES + M?)
FHH tM&code (tA+M) [LM & Math (TIES)
LM & Code (TIES) B v & Man (TIES + W)
Win Rate (%) Accuracy (%) Accuracy (%)
466 18.6

B Math & Code (TA)

EC:H Math & Code (TA + M?)

Pass@] (%) Pass@] (%)
354 308

MATH wanEv: . M.Bp};
(a) Performance of the merged models obtained through Task
Arithmetic and TIES-Merging with/without M3,

5= Math & Code % LM & Math B8 LM & Code

58 Without M? With M*
PDR (%) PDR (%)

PDR (%)

50

45

iv o : poFixing Mmh&‘(":gc IM&Math
(b) (Left) Performance of merged models with/without M3
on OOD datasets. (Right) Adversarial robustness (PDR) of

merged models with/without M3,

LM & Code

- Ihlmuul:\:\l\ 332 461 [~ Aumcnm\]]

308
30 MBPP

|
o
o
%
=
o
P

Win Rate (%)
£

Pass@] (%)

3
&

42141977
21448
oo 0) | .
Without M* ith With With M* Without M*
and DARE DARE Only M’ Only and DARE and DARE
Method Configurations

With With With M*
DARE Only M?® Only and DARE
Method Configurations

(c) The performance trend of the merged models obtained
through the following methods: TIES-Merging without M3
and DARE, TIES-Merging with DARE, TIES-Merging with
M3, and TIES-Merging with both M® and DARE.

Figure 1: (a) M? significantly boosts the model merg-
ing performance. (b) OOD robustness, and adversarial
robustness of the merged models. (c) Combined with
DARE, M? delivers even better results. LM, MATH,
and Code refer to the WizardLM13B, WizardMath-13B,
and llama-2-13b-code-alpaca models. TA stands for
Task Arithmetic and TIES stands for TIES-Merging.

Supervised Fine-Tuning (SFT) is a crucial tech-
nique for adapting LLMs to specific tasks, refining
their performance by training on domain-specific
data (Hu et al., 2021; Ding et al., 2023; Xia et al.,
2024). However, SFT requires substantial compu-
tational resources and long training times (Brown
et al., 2020; Chang et al., 2024a). To address this

challenge, Model Merging has emerged as an ef-
ficient solution, fusing the parameters of multiple
fine-tuned LLMs into a unified model with diverse
capabilities, without the need for additional train-
ing or computational costs (Yang et al., 2024; Ak-
iba et al., 2024). It effectively reduces the resource-
intensive demands of SFT while preserving and
even enhancing model performance.

A simple analogy for model merging is the Su-
per Mario game, where the protagonist gains spe-
cial abilities by absorbing power-up items. Sim-
ilarly, merging model parameters integrates the
strengths of different models, enabling more effec-
tive multi-task learning (Yu et al., 2024). However,
existing model merging methods have some limi-
tations, these methods heavily rely on predefined
or heuristic parameter fusion strategies (Wortsman
et al., 2022; Ilharco et al., 2022; Matena and Raf-
fel, 2022; Jin et al., 2022; Yadav et al., 2023; Yu
et al., 2024) such that they fail to fully explore the
parameter space, thereby restricting the potential
of the merged model.

To address this issue, we draw inspiration from
Mixup (Zhang, 2017) and propose a novel tech-
nique called Mixup Model Merge (M?). This
method introduces randomness by dynamically
adjusting the contribution ratios between models,
making the model merging process more flexible
and enabling a thorough exploration of the parame-
ter space. M? further unlocks the potential of model
merging, significantly enhancing the generalization
performance of the merged model while improv-
ing its out-of-distribution (OOD) and adversarial
robustness (Wang et al., 2023; Zhu et al., 2023).
As shown in Figure 2, the implementation of M3
is similar to the process of proportionally mixing
magical potions in Harry Potter. Specifically, this
method dynamically controls the parameter fusion
ratio between two fine-tuned LLMs by randomly
generating a linear interpolation ratio \,,, where
Am € (0,1) and A\, ~ Beta(a,). By adjusting
the parameter o, we can precisely control the distri-
bution of \,,, allowing M? to explore the parameter
space of model merging more deeply and thus fully
unleash the potential of the models, leading to im-
proved overall performance.

We conducted extensive experiments with three
fine-tuned LLMs: WizardLM-13B (Xu et al.,
2024), WizardMath-13B (Luo et al.,, 2023),
and llama-2-13b-code-alpaca (Chaudhary, 2023),
which specialize in instruction following, math-
ematical reasoning, and code generation, respec-

tively. Inspired by Mixup’s effectiveness in en-
hancing the robustness of neural networks when
handling corrupted labels or adversarial examples
(Zhang, 2017), we further performed comprehen-
sive evaluations on LiveBench (White et al., 2024)
and PromptBench (Zhu et al., 2024) to validate the
potential of M3 in improving the OOD robustness
and adversarial robustness of merged models. The
experimental results demonstrate that our proposed
M3 method can significantly improve merged mod-
els’ performance across various tasks (as shown
in Figure la), enhance the OOD and adversarial
robustness of the merged models (as shown in Fig-
ure 1b), and boost model merging when combined
with sparsification techniques like DARE (Yu et al.,
2024) (as shown in Figure 1c).

2 Related Works

Model Merging Model merging is a technique
that integrates the parameters of multiple models
to create a unified model with enhanced or diverse
capabilities (Wortsman et al., 2022; Ilharco et al.,
2022; Matena and Raffel, 2022; Jin et al., 2022;
Yadav et al., 2023; Yu et al., 2024; Lin et al., 2024).
Task arithmetic (Ilharco et al., 2022) leverages task
vectors for model merging through arithmetic oper-
ations, incorporating a predefined scaling term to
weight the contribution of different models. Fisher
Merging (Matena and Raffel, 2022) performs pa-
rameter fusion by applying weights derived from
the Fisher information matrix (Fisher, 1922), result-
ing in more precise parameter integration. TIES-
Merging (Yadav et al., 2023) addresses task con-
flicts by removing low-magnitude parameters, re-
solving sign disagreements, and merging only the
parameters that align with the final agreed-upon
sign. In (Yu et al., 2024), it is found that LLMs
can enhance their capabilities through model merg-
ing. Additionally, it introduces DARE, a method
for sparsifying the delta parameters of the model
(Ilharco et al., 2022), significantly improving the
performance of various model merging techniques.

Mixup Mixup is proposed to enhance the gen-
eralization ability of deep learning models by sur-
passing traditional Empirical Risk Minimization
(ERM) (Zhang, 2017). It is a simple, data-agnostic
augmentation technique that trains models using
virtual examples created by linearly interpolating
pairs of random examples and their corresponding
labels. Rooted in the Vicinal Risk Minimization
(VRM) principle (Chapelle et al., 2000), this ap-

Randomly generate A Merge the models with

contribution rates of A and 1-A

Merged LLM

Merged model
obtained through M?

Perform model merging
using the existing method

Figure 2: Implementation of m>: A process analogous to proportionally mixing magical potions in harry potter.
The proposed method controls the contribution ratio between two fine-tuned llms by randomly generating a linear
interpolation ratio A, where A, € (0, 1) and A, ~ Beta(c,). The distribution of A, is controlled by adjusting

Q.

proach improves generalization across a variety
of datasets (Russakovsky et al., 2015; Krizhevsky
et al., 2009; Warden, 2017; Asuncion et al., 2007),
and helps reduce overfitting, sensitivity to adver-
sarial examples, and training instability, all with
minimal computational cost. Given two samples
(xi,v:) and (x,y;), Mixup generates a new sam-
ple using the following formulas:

T=Ar;+ (1 - Nz,
J=Xyi+ (L= Ny,

Z and g represent the generated synthetic sample
and its label, respectively, with A determining their
interpolation ratio, typically ranging from O to 1.
Here,) is a hyperparameter sampled from a Beta
distribution, i.e., A ~ Beta(a,), where « controls
the strength of the interpolation between feature-
target pairs. Inspired by Mixup, we propose a novel
model merging method, M3, which generates the
parameters of the merged model by performing
linear interpolation between the parameters of two
fine-tuned LLMs, with the interpolation ratio being
random.

(D

3 Methodology
3.1 Model Merging Problem

Following Yu et al. (2024), we focus on merging
fine-tuned LLMs that have been optimized from the
same pre-trained backbone (Touvron et al., 2023).
Specifically, we aim to fuse the parameters of these
LLMs to create a unified model capable of handling
multiple tasks. In this context, we restrict our at-
tention to the merging of two models, as the mixup
theory, which forms the basis of our approach, is
generally applied to two entities.

Given two tasks ¢; and t2 with the correspond-
ing fine-tuned LLMs having parameters leFT and
«9@% model merging aims to combine the parame-
ters of these two models into a single model with
parameters 0);. The resulting model should be
able to effectively perform both tasks simultane-
ously, leveraging the knowledge learned from each
individual model.

3.2 Mixup Model Merge

Inspired by Mixup (Zhang, 2017), we propose a
simple yet effective model merging method called
Mixup Model Merge (M?). Unlike existing meth-
ods that use fixed merging ratios, M? generates
the model contribution ratio randomly, harnessing
randomness to inject fresh vitality into the model
merging process. Specifically, M? further explores
the parameter space of the merged model to unlock
the potential of model merging.

To further elaborate, given two fine-tuned LLMs
with parameters {05k, 0czr }, we combine M? with
established model merging methods to fuse these
parameters and obtain a single merged model with
parameters 0;;. As illustrative examples, we con-
sider two widely used merging methods: Average
Merging (Wortsman et al., 2022) and Task Arith-
metic (Ilharco et al., 2022).

The official computation process for Average
Merging is described as follows:

On = = (Ogkr + 05)

N

The official computation process for Task Arith-

metic is:

Orr = Opre + X - (611 + 6%2)
2
= Opre + A - Z(Hé’pr —6pre), (3
i—1

where fpre € RY represents the parameters of
the pre-trained language model (PLM), such as
Llama 2 (Touvron et al., 2023).) is a scaling fac-
tor that weights the contribution of each model
during the merging process. 6% denotes the delta
parameter (Ilharco et al., 2022), which is defined
as the difference between the parameters of the
language models (LMs) before and after SFT, i.e.,
6 = 0Ll — Opre € RY, where ¢ refers to task ¢.

When introducing M3, the process for Average
Merging is reformulated as:

Onr = Ambgkr + (1 — A)0, 4)

while the process for Task Arithmetic is reformu-
lated as:

Orr = Opre + A0 + (1 — A)8%, (5)

where \,, determines the linear interpolation ratio
between the two fine-tuned LLMs, and is generally
a value between O and 1. \,, is sampled from a Beta
distribution, typically \,, ~ Beta(a, o), where «
controls the shape of the Beta distribution.

The hyperparameter o for M? is selected from
the range [0.2,0.4,0.5, 1,2, 3, 5]. As shown in Fig-
ure 3: (1) When o = 1, X follows a uniform distri-
bution, meaning all values within the range (0, 1)
are equally likely to be sampled. (2) When o < 1,
the distribution of A exhibits a bimodal shape, with
higher probabilities near the extremes (0 and 1).
This indicates that the merged model is more likely
to be dominated by one of the two models. (3)
When « > 1, the distribution of A\ becomes con-
centrated around the middle (e.g., 0.5), resulting in
more balanced contributions from both models.

3.3 Theoretical Analysis

Mixup performs linear interpolations between data
samples and their labels in the data space (Zhang,
2017). Similarly, M? can be viewed as applying
random linear interpolation in the parameter space,
where the interpolation occurs between the param-
eters of two fine-tuned models trained on differ-
ent tasks. M? represents a natural extension of
the Vicinal Risk Minimization (VRM) principle
(Chapelle et al., 2000) into the model parameter

4 a=0.2 a=
a=04 — o=
a=0.5 a=5

o8}

Probability Density
8]

(=}

Figure 3: The Beta distribution visualization for differ-
ent o values.

space. In data space, VRM introduces a vicinal
distribution to simulate the true data distribution,
thereby increasing the diversity of training data
and enhancing the model’s generalization ability.
Similarly, M? extends this principle by construct-
ing a virtual neighborhood in the model parameter
space between two task-specific models, combin-
ing their knowledge in a way that is more natural
and balanced.

In the context of model merging, interpolating
between two sets of model parameters, 0. and
9§2FT, defines a new neighborhood distribution in
the parameter space, which can be expressed as:

P,(0n) = / v(On | Ok, 0r) dOar
X P(0gr) P(0gr),

where P,(0)s) represents the probability distri-
bution of the new model parameters 6, gener-
ated through interpolation. The function v(6 |
9@%, H?FT) defines the range and behavior of 6,/,
depending on the interpolation strategy (such as
linear interpolation). Additionally, P(f4kL;) and
P(Qé’%T) represent the prior distributions of the pa-
rameters of the two models, respectively.

Under the linear interpolation strategy, the func-
tion v/(Oar | O4ky, 0%r) is defined as:

Am) Ot (D)

where A\, € (0, 1) is the interpolation ratio. The
corresponding distribution P, (657) is expressed as:

P,(0um) = /5 (Onr — (A - Oy + (1 —

t t t t
P(bspr) P (9s2FT) Oy dOsir,

(6)

On = A - Oy + (1 —

/\m) : aéi?T))

®)

where 0(+) is the Dirac delta function, ensuring that
0ys satisfies the linear interpolation rule. By us-
ing this linear interpolation method, the parameters
047 and 02 are combined in the parameter space,
forming a new neighborhood distribution P, (65y).
This process effectively merges the knowledge of
both models into a unified parameter space, thus
achieving robust performance across different tasks
while maintaining the original strengths of the mod-
els.

By interpolating the parameters, M? encourages
the model to learn smoother decision boundaries.
In this context, smoother decision boundaries can
be understood as the boundaries between different
tasks, such as instruction following, mathematical
reasoning, and code generation, where the model
must understand and adapt to each task differently.
In tasks t; and to, M? creates a virtual neighbor-
hood that seamlessly integrates knowledge from
both tasks. This approach prevents the merged
model from overfitting task-specific details, ensur-
ing a balanced and effective performance across all
tasks.

Secondly, M? introduces a linear inductive bias
in the parameter space, encouraging the merged
model parameters to lie on a linear manifold be-
tween the two source models. This linear structure
offers significant advantages in terms of simplic-
ity and generalization. According to Occam’s Ra-
zor, simpler solutions tend to generalize better. By
performing linear interpolation between two sets
of parameters, M? avoids unnecessary complexity
in the model merging process, leading to a more
straightforward and efficient solution.

Thirdly, M? can improve the performance of
the merged model across multiple tasks by miti-
gating task conflicts. Different tasks may require
conflicting parameter values, which can lead to per-
formance degradation on one task while optimiz-
ing for another. Linear interpolation helps balance
these conflicts, resulting in a model that performs
well among all tasks.

4 Experiments

4.1 Experimental Setup

Task-Specific Fine-Tuned LLMs and Datasets
Following the experimental setup given in Yu
et al. (2024), we select three task-specific fine-
tuned LLMs: WizardLM-13B (Xu et al., 2024),
WizardMath-13B (Luo et al., 2023), and llama-2-
13b-code-alpaca (Chaudhary, 2023), all of which

use Llama-2-13b (Touvron et al., 2023) as the pre-
trained backbone. These models are respectively
designed for instruction-following, mathematical
reasoning, and code generation tasks. To evaluate
the instruction-following task we use AlpacaEval
(Li et al., 2023). For testing mathematical reason-
ing task, we employ GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). For estimat-
ing the performance of code-generating task, we
use HumanEval (Chen et al., 2021) and MBPP
(Austin et al., 2021). More details of these LLMs
and datasets can be found in Appendix A.1.

The Benchmarks for evaluating Out-of-
Distribution and Adversarial Robustness To
assess OOD robustness, we evaluate math & code,
LM & math, and LM & code models using instruc-
tion following (LiveBench-Instruction), coding
(LiveBench-Coding), and language comprehension
(LiveBench-TypoFixing) category in LiveBench
(White et al., 2024), respectively. More details on
OOD benchmarks are given in Appendix A.3.

We utilize the Adversarial Prompt Attacks mod-
ule in PromptBench (Zhu et al., 2024) to as-
sess the robustness of LLMs against adversarial
prompts. Specifically, we employ three attack
methods: DeepWordBug (character-level) (Gao
et al., 2018), BERTAttack (word-level) (Li et al.,
2020), and StressTest (sentence-level) (Naik et al.,
2018). The evaluation is conducted on two datasets
supported by PromptBench: SST2 (sentiment anal-
ysis) (Socher et al., 2013) and CoLA (grammatical
correctness) (Warstadt, 2019). For more details on
PromptBench and attack methods, please refer to
Appendix A.4.

Evaluation Metrics We calculate win rate
for AlpacaEval and LiveBench-Instruction, zero-
shot accuracy for GSM8K and MATH, pass@1
for HumanEval, MBPP and LiveBench-Coding,
Matthews correlation coefficient (MCC) for CoLA,
accuracy for SST2, and zero-shot accuracy for
LiveBench-TypoFixing.

Implementation Details Unless otherwise spec-
ified, the details of the model merging experi-
ments are consistent with Yu et al. (2024). The
hyperparameter o for M? is chosen from the range
[0.2,0.4,0.5,1,2,3,5]. For a detailed description
of the hyperparameter settings in model merging
methods, please refer to Appendix A.2. Addition-
ally, all experiments are conducted on NVIDIA
GeForce RTX 4090 GPUs.

4.2 Merging Task-Specific Fine-Tuned LLMs

We integrate M? into three prominent model merg-
ing techniques: Average Merging, Task Arithmetic,
and TIES-Merging. The performance of merging
task-specific fine-tuned LLMs is presented in Ta-
ble 1.

From Table 1, we obtain the following observa-
tions: 1) M3 generally enhances Average Merging,
Task Arithmetic, and TIES-Merging when merg-
ing fine-tuned LLMs. For example, the improve-
ments achieved by Average Merging with M? for
Math & Code are 7.43% on GSMS8K, 3.74% on
Math, and 11.0% on MBPP. For LM & Code, Av-
erage Merging with M3 shows improvements of
7.31% on AlpacaEval, 7.32% on HumanEval, and
2.4% on MBPP. Task Arithmetic with M? results in
improvements of 2.0% on AlpacaEval and 2.44%
on HumanEval for LM & Code, and 10.4% on
MBPP for Math & Code. TIES-Merging with M3
achieves an improvement of 4.01% for LM & Math
on GSMSK. For LM & Code, TIES-Merging with
M3 shows significant improvements of 3.11% on
AlpacaEval, 25.61% on HumanEval, and 30.8% on
MBPP. 2) Compared to Task Arithmetic, Average
Merging and TIES-Merging tend to benefit more
from M3. This is because both Average Merging
and TIES-Merging use a fixed merging ratio of 1/2,
whereas Task Arithmetic allows the merging ratio
to vary within the range [0.5, 1.0]. Consequently,
the randomness introduced by M? in the merging
ratio has a more pronounced impact on Average
Merging. This further highlights the critical role
of an effective merging ratio in determining the
performance of the merged model. 3) Yu et al.
(2024) has indicated that the suboptimal results of
merging WizardMath-13B with llama-2-13b-code-
alpaca are due to llama-2-13b-code-alpaca not be-
ing well fine-tuned for code generation. In this
context, the proposed M? approach improves the
pass@1 score on MBPP by 10.4% for the merged
model of WizardMath-13B and llama-2-13b-code-
alpaca. The improvement demonstrates that when
one of the fine-tuned models to be merged is not
well fine-tuned for the specific task, M? can effec-
tively unlock the potential of both models, maxi-
mizing the performance of the merged model. The
M3 approach helps mitigate the impact of subopti-
mal fine-tuning on model merging performance.

4.3 Model Robustness

== Math & Code 4 LM & Math B LM & Code

EEE Math & Code (M*) P58 LM & Math (M*) Jah LM & Code (M?)
Win Rate (%)
210

Pass@]1 (%) Accuracy (%)

4.0

38

35

LiveBench-Instruction

LiveBench-Coding
(a) Average Merging

LiveBench-TypoFixing

Win Rate (%) Pass@]1 (%)

Accuracy (%)
18.0

16.0

14.0

12,01 g

LiveBench-Coding LiveBench-TypoFixing
(b) Task Arithmetic
Pass@]1 (%)

LiveBench-Instruction

Win Rate (%) Accuracy (%)

52

(c) TIES-Merging

Figure 4: Performance of merged models (Math & Code,
LM & Math, and LM & Code) using three model merg-
ing methods (Average Merging, Task Arithmetic, and
TIES-Merging) on OOD datasets.

Out-of-distribution robustness To ensure that
the evaluation datasets are as representative as
possible of OOD data, we select datasets with
sufficiently recent release dates and ensure they
cover domains that fine-tuned LLMs have not been
specifically trained on. Consequently, Math &
Code is evaluated on LiveBench-Instruction, LM
& Math on LiveBench-Coding, and LM & Code
on LiveBench-TypoFixing. The performance of
the merged LLMs is shown in Figure 4. As illus-
trated in Figure 4, M? consistently enhances the
performance of merged models—Math & Code,
LM & Math, and LM & Code—on OOD datasets.
Specifically, when Task Arithmetic is combined
with M3, the Math & Code model demonstrates
a 1.9% improvement in win rate on LiveBench-
Instruction, the LM & Math model achieves a
1.6% increase in pass@1 on LiveBench-Coding,
and the LM & Code model shows a significant 6%
boost in accuracy on LiveBench-TypoFixing. Sim-
ilarly, when Average Merging is combined with
M3, the Math & Code model attains a 1.5% im-
provement in win rate on LiveBench-Instruction,
the LM & Math model achieves a 0.7% increase

. Instruction Mathematical .
%Z:ﬁ;ﬁ% Models U?\f;[il\):ll?;lel Dlis}iE Following Reasoning Code Generating
AlpacaEval GSM8K MATH HumanEval MBPP
LM No No 45.14 2.20 0.04 36.59 34.00
/ Math No No / 64.22 14.02 / /
Code No No / / / 23.78 27.60
No No 45.28 66.34 13.40 / /
LM Yes No 44.40 66.26 13.80 / /
& Math No Yes 4422 66.57 12.96 / /
Yes Yes 43.53 66.57 14.12 / /
No No 36.60 / / 29.88 32.00
Average LM Yes No 4391 / / 37.20 34.40
Merging & Code No Yes 38.81 / / 31.71 32.40
Yes Yes 40.31 / / 36.59 37.00
No No / 56.17 10.28 8.53 8.20
Math Yes No / 63.61 14.02 8.54 19.20
& Code No Yes / 56.18 10.28 6.10 7.80
Yes Yes / 64.97 13.54 9.76 21.20
No No 45.78 66.34 13.40 / /
LM Yes No 41.65 66.34 13.74 / /
& Math No Yes 49.00 66.64 13.02 / /
Yes Yes 44.90 67.32 13.74 / /
No No 44.64 / / 32.93 33.60
Task LM Yes No 46.64 / / 35.37 33.80
Arithmetic & Code No Yes 41.47 / / 35.98 33.00
Yes Yes 45.20 / / 35.98 35.20
No No / 64.67 13.98 8.54 8.60
Math Yes No / 63.53 13.94 7.93 19.00
& Code No Yes / 65.05 13.96 10.37 9.80
Yes Yes / 65.13 14.32 8.54 18.00
No No 38.63 14.56 2.12 / /
LM Yes No 38.73 18.57 248 / /
& Math No Yes 37.92 18.04 2.34 / /
Yes Yes 39.93 19.26 2.82 / /
No No 41.85 / / 0.0 0.0
TIES- LM Yes No 44.96 / / 25.61 30.80
Merging & Code No Yes 43.13 / / 0.0 0.0
Yes Yes 45.65 / / 26.83 33.20
No No / 64.67 13.68 9.15 22.60
Math Yes No / 64.75 14.16 9.76 21.4
& Code No Yes / 64.82 13.88 10.37 23.60
Yes Yes / 64.75 14.78 9.15 19.60

Table 1: Performance of merging task-specific LLMs WizardLM-13B (LM), WizardMath-13B (Math), and llama-2-
13b-codealpaca (Code) on all the datasets. The best and second-best results are marked in bold and underlined fonts.

in pass@1 on LiveBench-Coding, and the LM &
Code model exhibits a 4% enhancement in accu-
racy on LiveBench-TypoFixing. Finally, when
TIES-Merging is applied alongside M3, the Math
& Code model achieves a 1.1% improvement in
win rate on LiveBench-Instruction, the LM &
Math model records a 0.6% increase in pass@ 1
on LiveBench-Coding, and the LM & Code model
demonstrates a remarkable 14% improvement in
accuracy on LiveBench-TypoFixing. These results
underscore the robustness and versatility of M? in
enhancing model performance across diverse merg-
ing strategies and OOD tasks.

Adversarial robustness We employ three
Prompt Attack Methods supported by the prompt-
bench codebase (DeepWordBug, BERTAttack,
and StressTest) (Zhu et al., 2024) to evaluate the
adversarial robustness of three merged models

(Math & Code, LM & Math, and LM & Code)
obtained through the task arithmetic method.
To balance experimental effectiveness with
computational efficiency, we randomly selected
the positions of the three attacked words in the
prompts when executing the DeepWordBug and
BERTAttack attacks. Adversarial robustness is
assessed using the Performance Drop Rate (PDR)
(Zhu et al., 2023), where a lower PDR indicates
stronger robustness. Further details on PDR can
be found in Appendix D. The performance of the
merged LLMs is shown in Table 2.

As shown in Table 2, M3 improves the adver-
sarial robustness of the merged models in most
cases with the StressTest Prompt Attack Method.
For example, with M3, the PDR of Math & Code
decreased by 3.2% on the SST2 dataset and by
92.12% on the CoLLA dataset, while the PDR of
LM & Code decreased by 30.36% on SST2 and

. Use Use Metric PDR
Model Dataset Mixup Attack (%) (%)
No No 57.68 38.97
Yes 35.21
SST2 No 86.24
Méa;h Yes Yes 5539 35.77
Code No Noo 45534 g 53
Yes 0.67
CoLA
Yes No 72 e
s Yes 67.11 -
No Now 9278 = 1905
Yes 65.83
SST2 No 9128
Lglz/[Yes Yes 5075 34.55
Math No No D19 ¢ g4
Yes 72.20
CoLA
Y No 80.54 4.52
es Yes 7689 "
No Now 1055 56 4
Yes 6.54
SST2 No 73.17
L81:/I Yes Yes 6755 7.68
Code No Noo 7421 g 4p
Yes 39.02
CoLA
Yes No B8 367
Yes 51.10 :
Table 2: Adversarial Robustness of Merged Mod-

els on the SST2 and CoL A Datasets when Executing
StressTest prompt attack method. The best and second-
best results are marked in bold and underlined fonts.

by 15.75% on CoLA. Furthermore, in most cases,
M2 not only improves the adversarial robustness of
the merged models but also enhances their perfor-
mance metrics (accuracy and MCC) on the SST2
and CoLA datasets. Specifically, with M3, Math
& Code demonstrates a 28.56% increase in accu-
racy on SST2 and a 26.18% increase in MCC on
CoLA, while LM & Code achieves a 62.62% in-
crease in accuracy on SST2. These results show
that M? effectively enhances both the adversarial
robustness and the performance of the merged mod-
els in sentiment analysis and grammar correctness
tasks. Detailed experimental results for the remain-
ing Prompt Attack Methods (DeepWordBug and
BERTAttack) are presented in Appendix B.

4.4 Mixup Model Merge with DARE

DARE is a model sparsification method proposed
by (Yu et al., 2024), with a more detailed intro-
duction provided in Appendix E. We combine M?
and DARE with three model merging techniques,
including Average Merging, Task Arithmetic, and
TIES-Merging, to compare the effects of M? and
DARE individually and explore their combined im-
pact. The experimental results are presented in
Table 1. Additionally, in the DARE method, the
drop rate hyperparameter is set to 0.2.

From Table 1, we conclude that: 1) In most cases,

M? outperforms DARE, with a particularly signif-
icant advantage on certain datasets. For instance,
the Math & Code model achieves a pass@1 score
of 9.8% on the MBPP dataset when combined with
DARE, while this score increases to 19% when
combined with M3. This demonstrates that M?
unlocks new potential in model merging by ran-
domly generating merging ratios, leading to perfor-
mance improvements that surpass those achieved
by DARE. 2) Combining DARE and M? generally
results in better model merging performance. For
example, the LM & Math and LM & Code models,
enhanced by TIES-Merging with M? and DARE,
achieve the best performance on the test datasets.
While only incorporating TIES-Merging with M3
to these models, the enhanced models achieve the
second best performance. This suggests that M3
and DARE can complement each other. Moreover,
in some cases, M? alone can deliver the best results,
while DARE alone only achieves the best perfor-
mance in very few cases, further demonstrating the
superiority of M3,

5 Conclusion

Inspired by the mixup method and the Vicinal
Risk Minimization (VRM) principle, we propose
Mixup Model Merge (M?), a novel approach for
merging fine-tuned LLMs by introducing random-
ness into the parameters linear interpolation pro-
cess. Unlike traditional methods such as average
merging and task arithmetic, M? leverages a Beta
distribution to dynamically adjust the merging ra-
tio, enabling more flexible exploration of the pa-
rameter space. Experimental results demonstrate
that M? not only significantly enhances the perfor-
mance of the merged model across various tasks but
also improves its OOD and adversarial robustness.
Furthermore, when combined with sparsification
techniques such as DARE, our approach achieves
even more favorable model merging outcomes. In
summary, M? is a simple yet powerful technique
that requires minimal computational resources. By
merely adjusting the merging ratio, it produces a
merged model with enhanced task-specific capabil-
ities and robustness. This exciting discovery paves
the way for further research into optimizing merg-
ing ratio selection in model merging processes.

6 Limitations

There are several limitations of the M® method:
While it performs well for merging two models,

(1) its scalability when merging a larger number
of models, especially those with significant differ-
ences, remains uncertain. Additionally, (2) due to
the inherent randomness in the merging process,
multiple attempts may be required to achieve a
merged model that meets expectations. This un-
predictability can lead to increased computational
costs, particularly in large-scale applications, re-
sulting in a significant rise in resource consump-
tion. Finally, (3) Our method may also be extended
to a wider range of applications, such as merging
fine-tuned models with RLHF models to reduce the
alignment tax (FINE-TUNING).

References

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and
David Ha. 2024. Evolutionary optimization of model
merging recipes. arXiv preprint arXiv:2403.13187.

Arthur Asuncion, David Newman, et al. 2007. Uci
machine learning repository.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.
Open llm leaderboard. Hugging Face.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Yupeng Chang, Yi Chang, and Yuan Wu. 2024a. Ba-
lora: Bias-alleviating low-rank adaptation to mitigate
catastrophic inheritance in large language models.
arXiv preprint arXiv:2408.04556.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024b. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1-45.

Olivier Chapelle, Jason Weston, Léon Bottou, and
Vladimir Vapnik. 2000. Vicinal risk minimization.
Advances in neural information processing systems,
13.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. GitHub
repository.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1-113.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220-235.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

TIVE LLM FINE-TUNING. Paft: Aparallel training
paradigm for effec-tive llm fine-tuning.

Ronald A Fisher. 1922. On the mathematical founda-
tions of theoretical statistics. Philosophical transac-
tions of the Royal Society of London. Series A, con-
taining papers of a mathematical or physical charac-

ter, 222(594-604):309-368.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50-56. IEEE.

Chenlu Guo, Nuo Xu, Yi Chang, and Yuan Wu.
2024. Chbench: A chinese dataset for evaluating
health in large language models. arXiv preprint
arXiv:2409.15766.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is chatgpt a good
translator? a preliminary study. arXiv preprint
arXiv:2301.08745, 1(10).

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and
Pengxiang Cheng. 2022. Dataless knowledge fu-
sion by merging weights of language models. arXiv
preprint arXiv:2212.09849.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learn-
ing multiple layers of features from tiny images.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang
Xue, and Xipeng Qiu. 2020. Bert-attack: Adver-
sarial attack against bert using bert. arXiv preprint
arXiv:2004.09984.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. 2023. Alpacaeval: An auto-
matic evaluator of instruction-following models.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jian-
meng Liu, Jipeng Zhang, Rui Pan, Haoxiang Wang,
Wenbin Hu, Hanning Zhang, et al. 2024. Mitigat-
ing the alignment tax of rlhf. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 580-606.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in

Neural Information Processing Systems, 35:17703—
17716.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
arXiv preprint arXiv:1806.00692.

Daye Nam, Andrew Macvean, Vincent Hellendoorn,
Bogdan Vasilescu, and Brad Myers. 2024. Using an
llm to help with code understanding. In Proceedings
of the IEEE/ACM 46th International Conference on
Software Engineering, pages 1-13.

R OpenAl. 2023. Gpt-4 technical report. arxiv
2303.08774. View in Article, 2(5).

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
et al. 2015. Imagenet large scale visual recognition

10

challenge. International journal of computer vision,

115:211-252.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen,
Runkai Zheng, Yidong Wang, Linyi Yang, Hao-
jun Huang, Wei Ye, Xiubo Geng, et al. 2023.
On the robustness of chatgpt: An adversarial
and out-of-distribution perspective. arXiv preprint
arXiv:2302.12095.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Pete Warden. 2017. Launching the speech commands
dataset. Google Research Blog.

A Warstadt. 2019. Neural network acceptability judg-
ments. arXiv preprint arXiv:1805.12471.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Colin White, Samuel Dooley, Manley Roberts, Arka
Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-Ziv,
Neel Jain, Khalid Saifullah, Siddartha Naidu, et al.
2024. Livebench: A challenging, contamination-free
IIm benchmark. arXiv preprint arXiv:2406.19314.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, et al. 2022. Model soups: averag-
ing weights of multiple fine-tuned models improves
accuracy without increasing inference time. In In-
ternational conference on machine learning, pages
23965-23998. PMLR.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan
Wu, Yuan Tian, Yi Chang, and Junyang Lin. 2024.
Rethinking data selection at scale: Random se-
lection is almost all you need. arXiv preprint
arXiv:2410.09335.

Frank Xing. 2024. Designing heterogeneous llm agents
for financial sentiment analysis. ACM Transactions
on Management Information Systems.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering
large pre-trained language models to follow complex
instructions. In The Twelfth International Conference
on Learning Representations.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023. Resolving in-
terference when merging models. arXiv preprint
arXiv:2306.01708, 1.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang,
Xiaochun Cao, Jie Zhang, and Dacheng Tao. 2024.
Model merging in 1lms, mllms, and beyond: Meth-
ods, theories, applications and opportunities. arXiv
preprint arXiv:2408.07666.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning.

Hongyi Zhang. 2017. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang,
Hao Chen, Yidong Wang, Linyi Yang, Wei Ye, Yue
Zhang, Neil Gong, et al. 2023. Promptrobust: To-
wards evaluating the robustness of large language
models on adversarial prompts. In Proceedings of
the 1st ACM Workshop on Large Al Systems and Mod-
els with Privacy and Safety Analysis, pages 57-68.

Kaijie Zhu, Qinlin Zhao, Hao Chen, Jindong Wang, and
Xing Xie. 2024. Promptbench: A unified library
for evaluation of large language models. Journal of
Machine Learning Research, 25(254):1-22.

A Detailed Experimental Settings

A.1 Task-Specific Fine-Tuned LLMs and
Datasets Details

We conduct model merging experiments using
three task-specific LLMs fine-tuned from Llama-2-
13b:

* WizardLM-13B is an instruction-following
model based on Llama-2-13b, designed to
improve open-domain instruction-following.
Using the Evol-Instruct method (Xu et al.,

11

2024), it generates high-complexity instruc-
tion data to reduce human annotation and en-
hance generalization. The model undergoes
supervised fine-tuning with Al-generated data,
followed by refinement via RLHF. Evalua-
tion results show that Evol-Instruct-generated
instructions outperform human-written ones,
and WizardLM-13B surpasses ChatGPT in
high-complexity tasks. In GPT-4 automated
evaluation, it achieves over 90% of ChatGPT’s
performance in 17 out of 29 tasks, demonstrat-
ing the effectiveness of Al-evolved instruction
fine-tuning (Xu et al., 2024).

* WizardMath-13B, optimized from Llama-2-
13b, is designed for mathematical reasoning
and enhances Chain-of-Thought (CoT) (Wei
et al., 2022) capabilities. It uses Reinforce-
ment Learning from Evol-Instruct Feedback
to evolve math tasks and improve reasoning.
Trained on GSM8K and MATH datasets, it
excels in both basic and advanced math prob-
lems. In evaluations, WizardMath-Mistral
7B outperforms all open-source models with
fewer training data, while WizardMath 70B
surpasses GPT-3.5-Turbo, Claude 2, and even
early GPT-4 versions in mathematical reason-
ing tasks.

llama-2-13b-code-alpaca is a code genera-
tion model fine-tuned from Llama-2-13b, de-
signed to enhance code understanding and
generation. It follows the same training ap-
proach as Stanford Alpaca (Taori et al., 2023)
but focuses on code-related tasks. The model
is fine-tuned with 20K instruction-following
code samples generated using the Self-Instruct
method (Wang et al., 2022). However, as it
has not undergone safety fine-tuning, caution
is required when using it in production envi-
ronments.

We use one dataset to evaluate the instruction-
following task:

* AlpacaEval (Li et al., 2023) is an LLM-
based automated evaluation metric that as-
sesses model performance by testing on a
fixed set of 805 instructions and computing
the win rate of the evaluated model against
a baseline. The evaluation process involves
an LLM-based evaluator that compares the
responses and determines the probability of

preferring the evaluated model. In this paper,
we use AlpacaEval 2.0 (Dubois et al., 2024).
To reduce costs, we use chatgpt_fn for evalua-
tion.

We use two dataset to evaluate the mathematical
reasoning task:

* GSMSK is a dataset of 8.5K high-quality, lin-
guistically diverse grade school math word
problems, designed to evaluate the multi-step
mathematical reasoning abilities of large lan-
guage models. It consists of 7.5K training
problems and 1K test problems. In this paper,
we use the 1K test set for evaluation (Cobbe
et al., 2021).

MATH is a dataset containing 12,500
competition-level math problems, designed
to evaluate and enhance the problem-solving
abilities of machine learning models. It con-
sists of 7,500 training problems and 5,000 test
problems. We use the 5,000 test set for evalu-
ation (Hendrycks et al., 2021).

We used two dataset to evaluate the code genera-
tion task:

* HumanEval is a dataset consisting of 164
hand-written programming problems, de-
signed to evaluate the functional correctness
of code generation models. Each problem
includes a function signature, docstring, func-
tion body, and unit tests. The dataset tests
models’ language comprehension, reasoning,
and algorithmic abilities (Chen et al., 2021).

MBPP is a dataset containing 974 program-
ming problems designed to evaluate a model’s
ability to synthesize Python programs from
natural language descriptions. The problems
range from basic numerical operations to
more complex tasks involving list and string
processing. The test set consists of 500 prob-
lems, which are used for evaluation in this
paper (Austin et al., 2021).

A.2 Hyperparameter Setting Details in Model
Merging Methods

Table 3 presents the hyperparameter search ranges
for the model merging methods. For Task Arith-
metic and TIES-Merging, the scaling terms are
selected from [0.5,1.0], while in TIES-Merging,
the retain ratio for the largest-magnitude parame-
ters is chosen from [0.5,0.7,0.9]. In contrast, the

12

Average Merging method does not require any hy-
perparameters.

Merging Methods Search Ranges of Hyperparameters

Scaling term for merging model parameters:

Task Arithmetic [0.5.0.6,0.7,0.8,0.9, 1.0]

Scaling term for merging model parameters:
[0.5,0.6,0.7,0.8,0.9, 1.0]
Ratio for retaining parameters with the
largest-magnitude values: [0.5, 0.7, 0.9]

TIES-Merging

Table 3: Hyperparameter search ranges for model merg-
ing methods.

Table 4 presents the optimal hyperparameter set-
tings for the TIES-Merging model merging method
obtained through searching. These settings are fur-
ther applied to model merging experiments involv-
ing M? and DARE.

Merging Method Model Hyperparameter Values
LM & Math scaling_term=0.5, retain_ratio=0.5
TIES-Merging LM & Code scaling_term=1.0, retain_ratio=0.7

Math & Code scaling_term=1.0, retain_ratio=0.5

Table 4: Hyperparameter settings in TIES-Merging.

A.3 Out-of-Distribution Dataset Selection
Details

LiveBench (White et al., 2024) is a dynamic bench-
mark for large language models, featuring fre-
quently updated questions and diverse tasks. To
assess OOD robustness, we evaluate math & code,
LM & math, and LM & code models using instruc-
tion following (LiveBench-Instruction), coding
(LiveBench-Coding), and language comprehension
(LiveBench-TypoFixing) category in LiveBench,
respectively, deliberately avoiding the fine-tuning
domains of the merged fine-tuned models. These
tasks were released after November 2023, whereas
WizardLM-13B, WizardMath-13B, and llama-2-
13b-code-alpaca were all introduced earlier. Fur-
thermore, their shared Llama-2-13b backbone was
trained on data only up to July 2023. Consequently,
these factors collectively ensure that the evaluation
remains OOD in the temporal dimension.

When assessing the OOD robustness of LM &
Code using the Language Comprehension category
in LiveBench, only the typo-fixing task is con-
sidered. This decision is based on the fact that
LiveBench is highly challenging, and the merged
model performs poorly on other tasks in this cat-
egory, with accuracy close to zero, rendering the
evaluation results inconclusive and uninformative.

Finally, we acknowledge the limitations of these
datasets. For large models like Llama-2-13b, iden-
tifying truly OOD datasets is difficult, as their train-
ing data likely covers similar distributions. These
datasets are better described as "out-of-example”,
representing instances not explicitly seen during
training. As discussed in (Wang et al., 2023),
distribution shifts can occur across domains and
time. While Llama-2-13b may have been trained
on datasets for tasks like instruction-following, cod-
ing, and language comprehension, the datasets we
selected remain valuable for OOD evaluation by
capturing temporal shifts, providing insights into
robustness over time.

A.4 Adversarial Robustness Evaluation
Experiments Setting Details

PromptBench (Zhu et al., 2024) is a unified library
designed for evaluating LLMs, providing a stan-
dardized and extensible framework. It includes
several key components such as prompt construc-
tion, prompt engineering, dataset and model load-
ing, adversarial prompt attacks, dynamic evaluation
protocols, and analysis tools.

We use the Adversarial Prompt Attacks mod-
ule in PromptBench aims to evaluate the robust-
ness of LLMs against adversarial prompts. We
employ three methods to perform adversarial at-
tacks on prompts to evaluate the adversarial ro-
bustness of the merged models: DeepWordBug
(Gao et al., 2018), BERTAttack (Li et al., 2020),
and StressTest (Naik et al., 2018), representing
Character-level, Word-level, and Sentence-level at-
tacks, respectively.

* DeepWordBug introduces subtle character-
level perturbations (e.g., adding, deleting, or
replacing characters) to words in text to de-
ceive language models. It aims to evaluate a
model’s robustness against small typograph-
ical errors that may alter the model’s perfor-
mance without being easily detected.

BERTA(ttack manipulates text at the word
level by replacing words with contextually
similar synonyms to mislead large language
models. This method tests the model’s abil-
ity to maintain accuracy despite small lexical
changes that might alter the meaning of the
input.

StressTest appends irrelevant or redundant
sentences to the end of a prompt to distract

13

1.Trim redundant
parameters

Task Vectors

2.Elect the sign for
—
of two LLMs

each parameter

Merged

— 3 .Disjoint Merge > Task Vector

Take their mean
as the final
parameter value

The values that align with the clected sign Merged Task Vector

Task Vector of LLM I ——» Task Vector of Merged LLM Parameter
Task Vector of LLM 2~ —® Influential values

(a) The operational steps of TIES-Merging.

Merged Task Vector

The values that align with the elected sign

Task Vector of LLM 1~ = Task Vector of Merged LLM

[Parameter

Task Vector of LLM2 ~—® Influential values

(b) After introducing M, the Disjoint Merge step in the TIES-
Merging procedure.

Figure 5: The difference between M? and the origi-
nal TIES-Merging is that, in the Disjoint Merge step,
when two task vectors are retained for a given parameter,
the mean of the task vectors is replaced by a random
linear interpolation, while the other operations remain
unchanged.

and confuse language models. It assesses the
model’s ability to handle extraneous informa-
tion and maintain accuracy when faced with
unnecessary distractions.

The evaluation is conducted on the Sentiment
Analysis dataset (SST2 (Socher et al., 2013)) and
the Grammar Correctness dataset (CoLA (Warstadt,
2019)):

* SST2 (Socher et al., 2013): A sentiment anal-
ysis dataset designed to assess whether a given
sentence conveys a positive or negative senti-
ment.

* CoLA (Warstadt, 2019): A dataset for gram-
mar correctness, where the model must de-
termine whether a sentence is grammatically
acceptable.

B Additional Experimental Results on
Adversarial Robustness

All the merged models are obtained using the Task
Arithmetic method. Table 5 presents the detailed
experimental results of the adversarial robustness
of merged models on the SST2 and CoL A datasets
applying the DeepWordBug prompt attack method.
Table 6 presents the detailed experimental results of
the adversarial robustness of merged models on the

Model Dataset Use Mixup Use Attack Metric (%) PDR (%)
No 57.68
No Yes 50.92 173
SST2
Yes No 78.21 3710
Math Yes 49.20 ’
& Code No No 72.87 56.97
Yes 31.35
CoLA
Yes No 74.02 5804
Yes 30.39 ’
No 92.78
No Yes 90.37 2.60
SST2
Yes No 91.28 377
LM ; Yes 87.84)
& Math No No 79.19 496
Yes 75.26
CoLA
Yes No 80.54 107
Yes 79.67 ’
No No 10.55 9891
Yes 0.11
SST2
Yes No 7317 97.65
LM Yes 1.72 ’
& Code No No 74.21 879
Yes 67.69
CoLA
Yes No 73.922 11.15
Yes 65.68 ’

Table 5: Adversarial robustness of merged models on the SST2 and CoL A datasets when executing the DeepWord-

Bug prompt attack method.

Model Dataset Use Mixup Use Attack ~ Metric (%) PDR (%)
No 57.68
No Yes 49.66 13.92
SST2
Yes No 78.21 A1l
Math Yes 75.00 ’
& Code No No 45.54 13.47
Yes 3941
CoLA
Yes No 172 17.25
Yes 59.35 ’
No No 92.78 292
Yes 90.71
SST2
Yes No 91.28 00
LM Yes 91.28 ’
& Math No No 79.19 12.00
Yes 69.70
CoLA
Yes No 80.54 533
Yes 75.84 ’
No No 10.55 95 65
Yes 0.46
SST2
Yes No 73.17 5500
LM Yes 3291 ’
& Code No No 74.21 794
Yes 68.84
CoLA
Yes No 73.92 752
Yes 68.36 ’

Table 6: Adversarial robustness of merged models on the SST2 and CoLLA datasets when executing the Bertattack

prompt attack method.

SST2 and CoLLA datasets applying the BERTAttack

prompt attack method.

14

C Integrating M? into the TIES-Merging
Model Merging Method

Figure 5 shows the specific implementation ap-
proach to incorporating M? into TIES-Merging.
After the steps of trimming parameters with lower
magnitudes and resolving sign disagreements, the

two models to be merged are denoted as M and
M. During the M3 process, only the parameters
that are preserved in both M; and M are inter-
polated according to the model merging hyperpa-
rameter \,, to obtain the merged parameters. For
parameters that are preserved in only one of the
models, no interpolation is performed, and the orig-
inal value from the preserved model is retained in
the merged model.

D Performance Drop Rate (PDR) for
Adversarial Robustness

The adversarial robustness is evaluated using the
Performance Drop Rate (PDR) (Zhu et al., 2023),
which is defined as follows:

Metricyo attack — MetriCagack
PDR = ; ,
Metricyo attack

€))

where MetriCpg attack denotes the performance met-
ric without any prompt attack, and Metricy,ck rep-
resents the performance metric under the prompt
attack. A smaller PDR indicates stronger adversar-
ial defense against prompt attacks, implying better
adversarial robustness.

E Detailed Introduction to DARE

DARE (Drop And REscale) (Yu et al., 2024) is
a model sparsification method designed to reduce
the redundancy of delta parameters in fine-tuned
models while preserving their task-specific capabil-
ities. In SFT, model parameters are optimized to
unlock abilities for specific tasks, with the differ-
ence between fine-tuned and pre-trained parameters
referred to as delta parameters.

However, studies have shown that delta parame-
ters are often highly redundant. DARE addresses
this redundancy by randomly dropping a propor-
tion p of delta parameters (referred to as the drop
rate) and rescaling the remaining ones by a factor
of 1/(1 — p). This simple yet effective approach
enables DARE to eliminate up to 99% of delta
parameters with minimal impact on model perfor-
mance, particularly in large-scale models, and it
can be applied using only CPUs.

Beyond sparsification, DARE serves as a ver-
satile plug-in for merging multiple homologous
fine-tuned models (fine-tuned from the same base
model) by reducing parameter interference. When
combined with existing model merging techniques
such as Average Merging, Task Arithmetic, and

15

TIES-Merging, DARE facilitates the fusion of mod-
els while retaining or even enhancing task perfor-
mance across multiple benchmarks. This effect
is especially pronounced in decoder-based LMs,
where DARE boosts task generalization.

Experiments on AlpacaEval, GSMS8K, and
MBPP reveal that the merged LM has the potential
to outperform any individual source LM, present-
ing a significant new discovery. Notably, the 7B
model obtained through DARE merging, Super-
Mario v2, ranks first among models of the same
scale on the Open LLM Leaderboard (Beeching
et al., 2023). These improvements were achieved
without the need for retraining, positioning DARE
as an efficient and resource-friendly solution for
model merging.

	Introduction
	Related Works
	Methodology
	Model Merging Problem
	Mixup Model Merge
	Theoretical Analysis

	Experiments
	Experimental Setup
	Merging Task-Specific Fine-Tuned LLMs
	Model Robustness
	Mixup Model Merge with DARE

	Conclusion
	Limitations
	Detailed Experimental Settings
	Task-Specific Fine-Tuned LLMs and Datasets Details
	Hyperparameter Setting Details in Model Merging Methods
	Out-of-Distribution Dataset Selection Details
	Adversarial Robustness Evaluation Experiments Setting Details

	Additional Experimental Results on Adversarial Robustness
	Integrating M3 into the TIES-Merging Model Merging Method
	Performance Drop Rate (PDR) for Adversarial Robustness
	Detailed Introduction to DARE

