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ABSTRACT

Multi-Stage Classifier (MSC) - several classifiers work sequentially in an arranged
order and classification decision is partially made at each step - is widely used in
industrial applications for various resource limitation reasons. The classifiers of
a multi-stage process are usually Neural Network (NN) models trained indepen-
dently or in their inference order without considering the signals from the latter
stages. Aimed at two-stage binary classification process, the most common type
of MSC, we propose a novel training framework, named Feedback Training. The
classifiers are trained in an order reverse to their actual working order, and the
classifier at the later stage is used to guide the training of initial-stage classifier
via a sample weighting method. We experimentally show the efficacy of our pro-
posed approach, and its great superiority under the scenario of few-shot training.

1 INTRODUCTION

The state-of-the-art deep neural networks have equipped a various of applications with much better
quality, especially the emergence of BertDevlin et al. (2018), a TransformerVaswani et al. (2017)-
based pre-training language model, and a series of its derivatives Brown et al. (2020); Lan et al.
(2019). Their great success is mainly due to its scalability to encode large-scale data and to maneuver
billions of model parameters. However, it is rather difficult to deploy them to real-time products
such as Fraud Detection Senator et al. (1995); Kirkland et al. (1999), Search and Recommendation
systems Covington et al. (2016); Ren et al. (2021), and many mobile applications, not only because
of the high computational complexity but also the large memory requirements.

Several techniques are developed to make the trade-off between performance and model scale.
Knowledge Distillation (KD) Hinton et al. (2015); Sanh et al. (2019) is the most empirically suc-
cessful approach used to transfer the knowledge learnt from a heavy Teacher to a more light-weight
and faster Student. Besides, Pruning Han et al. (2015); Frankle & Carbin (2018) and Quantization
Han et al. (2015); Chen et al. (2020) further compress deep models even smaller. In many prac-
tical situations, however, we need super tiny models to meet the demanding memory and latency
requirements, which would inevitably suffer serious performance degradation.

From another perspective, multi-stage classification system Trapeznikov et al. (2012) is widely used
to reduce the opportunity of calling the deep and cumbersome models by filtering out some or
even most of the input samples using simpler and faster models trained with limited data and easier
features. In a multi-stage system, light-weight models such as SVM, Logistic Regression or k-
Nearest Neighbors are used as earlier stage classifiers, classifying the samples (usually relatively
easier negative ones) based on simple or easily accessible features, and leaving indeterminate ones
for later. Models of later stages need to be heavier to deal with harder samples as well as more
complex and costly features. A two-stage working mechanism is simply shown in Figure 1(a).

In several practical multi-stage applications, as shown in Figure 1(b) and (c), classifiers in different
stages are trained independently or sequentially without considering the relationships among them
Isler et al. (2019); Kruthika et al. (2019).

To build tighter connections between classifiers in a multi-stage system for better collaboration,
most exist methods Mendes et al. (2020); Qi et al. (2019); Sabokrou et al. (2017); Zeng et al. (2013)
jointly optimize the multi-stage classifiers in a way like cascade, allowing the contextual information
to transfer from earlier stages to later. However, most of them primarily consider classification
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accuracy rather than latency, and therefore would not make the classification decisions until the final
stage.

In this paper, we consider to further explore how to forge closer connections between classifiers
in a two-stage classification problem. We propose a novel training framework, Feedback Training,
where the whole decision-making pipeline is consisted of two classifiers, a extremely lightweight
Pre-classifier followed by a relatively heavier Main-classifier. Different from existing methods, these
two models are trained in the reverse order of inference, that is, the first-stage model would be trained
under the guidance of the second-stage one through a sample weighting method. The capacity of
Pre-classifier is more effectively explored by considering the learning results of Main-classifier.

Our contributions can be summarized threefold:

1) We propose a novel training framework for two-stage classification applications.

2) We discuss a sample weighting method that assists Pre-classifier to learn according to its prefer-
ence.

3) We verify our approach on two data sets that it outperforms baseline models significantly and
shows greater superiority under few-shot scenarios.

Figure 1: Working process and different training strategies for two-stage classifiers. We use the
terms Pre-classifier and Main-classifier to denote the classifiers working at 1st and 2nd stages. (a)
The working process of a two-stage classifier: only samples passed Pre-classifier would be fed into
heavier Main-classifier for final decision, otherwise would be judged as negative without calling
Main-classifier. (b) Independent Training: all classifiers are trained independently without con-
sidering the training results of each other. (c) Sequential Training: Classifiers are trained in their
working order. Only samples passed Pre-classifier would be fed into Main-classifier for training. (d)
Feedback Training: Classifiers are trained in their reverse order of inference. Pre-classifier assigns
different attention to different samples based on the training result of Main-classifier and the pro-
posed sample weighting approach.

2 PRELIMINARIES

We consider a binary classification problem with the training set D = {(x1, y1), . . . , (xn, yn)},
where xi denotes ith observed training sample paired with its label yi ∈ {0, 1}. In a m-stage process,
there are a series of predictive functions, F = {fθj (·)|j = 1, 2, ...,m} working in the given order.
The jth predictive function is parameterized by θj . The classification decision is partially made in
each step. One popular design is to filter out negative samples as many as possible in earlier stages
and leaving the positive ones to the end for final decision. When classifiers are trained independently
without considering the others, each one is trained by optimizing the basic Cross-Entropy loss as in
Eq.1:

L(fθj (·)) = − 1

n

n∑
i=1

LCE(yi, fθj (xi)) (1)

where LCE(y, ŷ) = y · logŷ + (1− y) · log(1− ŷ) (2)
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We also define a set of thresholds T = {thj |j = 1, 2, ...,m} for each classifier. During infer-
ence, samples whose predictive scores are lower than corresponding thresholds would be judged as
negative, and would not be sent to the next stage.

In sequential training, only the samples that pass all the previous classifiers are fed into the next
stage for training. We formally define an indicator function I

j
i = 1{∀k<jScore

k
i > thk} to denote

whether xi would be used to train the jth classifier. Scoreki is the predictive score of kth classifier
for xi. Hence the total samples used to train fθj (·) is ñj =

∑n
i=1 I

j
i . Then we optimize Eq.3:

L(fθj (·)) = − 1

ñj

n∑
i=1

I
j
i · LCE(yi, fθj (xi)) (3)

3 FEEDBACK LEARNING

3.1 BACKGROUND AND MOTIVATION

Classification problems are becoming easier, achieving high performance simply by fine-tuning
those pre-made large-scale language models with enough high quality observed samples. However,
serving those heavy models in practical applications is quite challenging due to their demanding
requirements for memory and latency. Therefore, we design a muti-stage classifier for faster infer-
ence.

Aimed at binary classification problems, our decision system consists of two networks combined,
as demonstrated in Figure 1(a). Pre-classifier is a light-weight Logistic Regression model running
on all input and tries its best to identify positive samples and meanwhile filter out as many nega-
tive ones as possible. The Main-classifier is a Transformer-base heavier network. Samples passed
first-stage are potentially positive ones and would be fed into Main-classifier for final judgement.
Similar workflows are widely used practically. One common learning strategy is to straightforwardly
train the Main-classifier only with samples passed Pre-classifier as shown in Figure 1(c). However,
this method arises a dual funnel Mendes et al. (2020) issue where a great number of samples are
filtered out by the initial stage and the Main-classifier trained on this bias data set would lose its
generalization ability.

Figure 2: Scores predicted by Main-classifier and Pre-classifier.

If classifiers are trained independently (see Figure 1(b)), there would be an inconsistency problem
shown in Figure 2. Some positive cases passed Pre-classifier may be rejected by Main-classifier
(useless recalls of Pre-classifier), but some other positive cases rejected by Pre-classifier while they
are highly scored by Main-classifier (potentially valuable recalls). If Pre-classifier rotates the scoring
preference of these two kinds of cases, the overall performance would be improved. The same is
true for negative samples. Therefore, modeling this preference is undoubtedly useful for the overall

3



Under review as a conference paper at ICLR 2023

performance, even without improving the accuracy of the classifiers. To this end, we propose the
Feedback Training, a reversed order training framework, as described in the next section.

3.2 FEEDBACK TRAINING FRAMEWORK

Main-classifier In order to maintain the generalization performance of the Main-classifier, we train
it independently in the first place on full training dataset with Cross-Entropy loss as shown in Eq.1.

Pre-classifier To better collaborate with the Main-classifier in a combined pipeline with its limited
capacity, the Pre-classifier is trained with the following learning preferences:

• Pass positive samples and pay more attention to the samples could be identified by Main-
classifier.

• Filter out negative samples and those could not be identified by Main-classifier (whether
they are positive or negative).

Modeling the above-mentioned learning preferences of Pre-classifier is not easy as it doesn’t have
a formal mathematical definition, but Machine Learning is essentially an optimization process that
requires a definite objective. To address this problem, we use a sample weighted loss function as
Eq.4.

L(yi, fθj (x)) = − 1

n

∑
w(si) · LCE(yi, fθj (xi)) (4)

where w(si) is the sample weight of xi based on the prediction Scoremain
i (si for simplification in

the formula) of Main-classifier.

3.3 WEIGHTED SAMPLING

To embody the above-mentioned learning preferences, following points are considered for the design
of our sample weighting approach:

• For Positive samples, Pre-classifier is expected to focus more on the samples with high
Scoremain, for the reason that samples with low Scoremain are supposed to be rejected
by Main-Classifier even they pass the Pre-classifier.

• For negative samples, it’s more important to reject the ones with high Scoremain as it
might be accepted by Main-classifier.

• If one sample’s Scoremain is hugely high, it should be weighted higher, but not unlimited
high.

• The weights for negative samples should have a lower bound in case too many of them are
weighted near 0 as most of them are supposed to be scored very low by Main-classifier.

These principles can be formulated as in Eq.5 and curved in Figure 3.

w(s) =

{
min(σ(s− 0.5, tpos, apos), wmax) y = 1

min(wneg_min + σ(s− 0.5, tneg, aneg), wmax) y = 0
(5)

σ(z, t, a) =
a

1 + exp(− z
t )

(6)

where t is the temperature parameter, controlling the steep degree of the weighting function, wmax

and wneg_min denote the upper bound of all samples and the lower bound of negative samples.
Besides, a is the attention intensity, controlling the theoretic fluctuation range of our weighting
method. We force the model to pay more attention to the positive samples by setting apos = 2 and
aneg = 1.
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Figure 3: Sample weighting curves for negative and positive samples.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In this section, we describe the settings of our experiments.

Datasets

The proposed approach is empirically verified on two data sets.

1) Task Extraction is to judge whether one input sentence is a Commitment you made or a Request
from others. We have training samples in 4 languages (PT, IT, FR, DE), each consists of 50K
sentences machine translated from English. Evaluation samples are organic sentences from Enron
emails Klimt & Yang (2004) and bad cases from user feedback, both annotated manually, 20K per
language.

2) Yahoo! Answers Xiang Zhang & Lecun (2015) topic classification dataset has 10 main cate-
gories, each class contains 140K training samples and 6K testing samples. To take use of them in
our binary classification scenario, we only consider class "Society & Culture" as positive while all
others as negative. Only the “Answer” column is retained as the input of models. Besides, samples
less than 5 tokens are filtered out. There are 1.46M (146K X 10) samples in total and they are split
into 8:1:1 for training, validation and evaluation.

Experiment Setup

Baselines: we consider the Independent and Sequential Training as our baseline. Both frameworks
share the same model architectures and settings with Feedback Training.

Comparison Method: Generally, the direct output of a binary classification model is a score, and we
choose a threshold to decide whether it is positive or negative. In our two-stage Classifier, We define
the term PassRate to denote the proportion of test samples passing through the Pre-classifier. For the
sake of fairness, the PassRate for Pre-classifiers in Baseline and Treatments are set to be the same.
In other words, they call the same times of Main-classifier and consumed the same computation
resource.

Implementation

Pre-classifier: a Logistic Regression model trained by scikit-learn(0.24.1), using 30k token and Bi-
gram features. The 30k features are selected using chi2-score from all tokens and Bi-gram features.
Besides, balanced class weighting method King & Zeng (2001) is adopted to mitigate unbalanced
distribution of class labels.

Main-classifier: a 12-layer Transformer-based model plus a softmax classification head, which
has been pre-trained based on InfoXLM Chi et al. (2021), an XLM-Roberta Conneau et al. (2020)
equivalent multi-lingual models. The fine-tuning is conducted by minimizing Cross-Entropy loss
with Adam Kingma & Ba (2014) (lr = 0.00005 and batch-size = 64). It is a multi-lingual model
which is shared by all languages when multiple languages are involved. The threshold of Main-
classifier is 0.5.
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Figure 4: The optimization process of Feedback Training using Genetic Algorithm on Task Extrac-
tion Italian dataset.

Lang. Rpre Pmain Rmain F1e2e
0.6720 0.6988 0.8909 0.6449

DE 0.6720 0.7010 0.9004 0.6495
0.6943 0.7214 0.9266 0.6801
0.5946 0.5830 0.8977 0.5573

FR 0.5946 0.5681 0.8920 0.5292
0.6047 0.5962 0.8994 0.5789
0.6154 0.6538 0.9296 0.6102

IT 0.6154 0.6609 0.8984 0.6021
0.6971 0.6585 0.9310 0.6537
0.7168 0.6976 0.9259 0.6802

PT 0.7168 0.6958 0.9320 0.6817
0.7301 0.7218 0.9272 0.7143

Table 1: Results on Task Extraction for different languages. In each group, the three lines denote
the results of Independent, Sequential and Feedback Training. P and R denote precision and re-
call. Metrics footnoted with ’pre’, ’main’ and ’e2e’ denote the performance of Pre-classifier, Main-
classifier and the whole workflow.

Genetic Algorithm (GA): As the numerical optimization method is highly dependent on initializa-
tion and the underivable objective function is easy to be caught in abnormal solution. The tpos, tneg ,
wneg_min, wmax are searched by Genetic Algorithm (using scikit-opt library) with the objective to
maximize the F1e2e on validation set. Figure 4 shows an example of this optimization process for
language Italian on Task Extraction dataset.

Evaluation Metrics

We compare the performance of the multi-stage Classifiers in terms of F1, the geometric average of
Precision (P) and Recall (R). The precision of the whole pipeline equals that of the Main-classifier
in the final stage while the pipeline recall equals the production of that of all classifiers.

4.2 RESULTS AND ANALYSIS

Task Extraction We summarize the experimental results on the test set in 4 languages in Table 1,
comparing the proposed Feedback Training framework with Independent and Sequential Training.
For each language, the PassRate of Pre-classifier is the same for the control and treatment models.
With Feedback Training, the e2e performances are consistently better than these of baseline in all
4 languages, demonstrating the proposed training strategy allows the whole pipeline to collaborate
better than other training strategies. Sequential Training performs even worse than Independent
Training for the reason that most of training samples are filtered out by Pre-classifier and the Main-
model tends to overfit over the small number of the survived samples.
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PassRate Rpre Pmain Rmain F1e2e
20% 0.6161 0.7059 0.5159 0.4383

0.6194 0.7244 0.5477 0.4462
30% 0.7242 0.7009 0.4487 0.4440

0.7393 0.7167 0.4543 0.4574
40% 0.8034 0.6987 0.4095 0.4473

0.7914 0.6923 0.4210 0.4499
50% 0.8706 0.6952 0.3823 0.4502

0.8857 0.6932 0.3825 0.4551

Table 2: Experiments on Yahoo! Answer with different PassRates of Pre-classifier. In each group,
the two lines denote the results of Independent and Feedback Training. The same goes for all the
tables below.

DataPortion Ppre Rpre PMain RMain Re2e F1e2e
1% 0.1604 0.4797 0.7128 0.4549 0.2182 0.3342

0.1666 0.6416 0.7174 0.4742 0.3042 0.4272 (+27.84%)
2% 0.1731 0.5158 0.7355 0.4742 0.2446 0.3671

0.1771 0.6668 0.7117 0.4856 0.3237 0.4450 (+21.23%)
5% 0.1904 0.5675 0.7210 0.4686 0.2661 0.3886

0.2244 0.6686 0.7075 0.4693 0.3138 0.4348 (+11.89%)
10% 0.2017 0.6011 0.7191 0.4607 0.2861 0.4094

0.2088 0.7179 0.7019 0.4665 0.3349 0.4535 (+10.77%)

Table 3: Results of using different proportion of data to train Pre-classifer on Yahoo Answer dataset.
The Pre-classifiers are trained with 1% to 10% training data while Main-classifiers is trained with
full training set. PassRate of Pre-classifier is 30%.

Yahoo! Answer We further compare the proposed approach with Independent Training on this
open-source dataset. Table 2 shows Feedback Training outperforms baseline in case of all PassRate
of Pre-classifier. More notably, the smaller the PassRate, the greater the advantage. Examining the
experiments with PassRate equals to 20% or 40%, although the recall of Pre-classifier remains un-
changed under Feedback framework, the Main-classifier gets significant improvement. This demon-
strates that Feedback method indeed learns to pass more samples that the Main-classifier can better
deal with.

Experimental results under fewshot scenario are summarized in Table 3. Pre-classifiers are trained
with 1% to 10% training data while Main-classifiers are trained with full training set. The Feedback
Training shows superiority over the baseline, especially when less than 5% data is used to train
Pre-classifier. The e2e gain of Feedback Training mainly derives from the much higher recall of
Pre-classifier. Instead of focusing on the classification accuracy, the Pre-classifier is forced to pay
more attention to recall more positive samples and meanwhile to avoid opposite forces from some
hard negative samples that even can not be distinguished by Main-classifier.

DataPortion Ppre Rpre PMain RMain Re2e F1e2e
5% 0.1904 0.5676 0.6676 0.4990 0.2832 0.3977

0.2007 0.7032 0.6560 0.5065 0.3562 0.4617 (+16.10%)
10% 0.2017 0.6011 0.6721 0.4854 0.2918 0.4069

0.2110 0.7148 0.6574 0.5011 0.3582 0.4637 (+13.96%)
25% 0.2191 0.6530 0.7290 0.4476 0.2923 0.4173

0.2162 0.7352 0.7175 0.4433 0.3259 0.4482 (+7.41%)
50% 0.2173 0.7180 0.7627 0.3984 0.2861 0.4161

0.2165 0.7348 0.760 0.3959 0.2909 0.4208 (+1.13%)

Table 4: Results of using different proportion of data to train both Pre-classifer and Main-classifier
on Yahoo Answer dataset.

More thorough fewshot experiments are conducted by using different proportion of data to train
both Pre-classifer and Main-classifier, the results are shown in Table 4. The proposed approach still
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shows its advantages for the following reasons: (1) Main-classifier trained with fewer samples tends
to score higher to the test data (experimentally, as the input samples for Main-classifier are those
passed Pre-classifier, and the Main-classifier here is worse than the one trained with full dataset.
Hence it can not detect negative samples well and tend to give higher scores overall), thus acquires
higher recall; (2) As the Main-classifier has higher recall, and the target of GA is to maximize the
F1e2e, therefore the learned Pre-classifier also prefers to acquire higher recall with the sacrifice of
precision more intensively. With the combined effects of these two reasons, the power of Feedback
Training is amplified. This result indicates the great value of Feedback Training when the training
data is scarce.

5 CONCLUSIONS

This paper proposes a novel learning framework, Feedback Training, to improve the end-to-end
performance of two-stage Classifier, the most common type of MSC. Experiments on both Task
Extraction and Yahoo! Answer demonstrate the superior performance of the proposed approach and
it becomes more advantageous when it comes to few-shot training scenario, reducing the require-
ments on the number of training samples for Pre-classifier in a great extent when a Main-classifier is
given. The proposed Feedback Training method works only on two-stage binary-classification sys-
tem, further work should be carried out to extend this approach to multi-stage multi-classification
scenario.
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