
A Planar-Symmetric SO(3) Representation for
Learning Grasp Detection

Tianyi Ko∗

Woven by Toyota, Inc.
tianyi.ko@woven.toyota

Takuya Ikeda∗

Woven by Toyota, Inc.
takuya.ikeda@woven.toyota

Hiroya Sato
The University of Tokyo

h-sato@jsk.imi.i.u-tokyo.ac.jp

Koichi Nishiwaki
Woven by Toyota, Inc.

koichi.nishiwaki@woven.toyota

(a) Non-symmetric representation

(c) Small variance (d) Medium vairance (e) Large variance

(b) Our proposal

Figure 1: (a) For symmetric grippers, two distinct rotations (180◦-flipped around the approach di-
rection) representing the same grasp cause inconsistency and ambiguity. (b) We propose a novel
planar-symmetric SO(3) representation that can express a pair of poses with a single parameter set.
(c-e) It also provides deviation information, which is beneficial in the inference time.

Abstract: Planar-symmetric hands, such as parallel grippers, are widely adopted
in both research and industrial fields. Their symmetry, however, introduces ambi-
guity and discontinuity in the SO(3) representation, which hinders both the train-
ing and inference of neural-network-based grasp detectors. We propose a novel
SO(3) representation that can parametrize a pair of planar-symmetric poses with
a single parameter set by leveraging the 2D Bingham distribution. We also detail a
grasp detector based on our representation, which provides a more consistent rota-
tion output. An intensive evaluation with multiple grippers and objects in both the
simulation and the real world quantitatively shows our approach’s contribution. A
supplementary video is available at https://youtu.be/24JZ9t7ZcI0.
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1 Introduction

Parallel grippers are commonly selected for grasping tasks due to their reliability, availability, and
cost. For those grippers, flipping the gripper by 180◦ around the approaching direction results in
the same grasp due to their planar symmetry, forming a bi-modal distribution in SO(3). While
it is reported that having multiple feasible solutions introduces ambiguity [1] and a representation
to explicitly manage such a multi-modal distribution is beneficial [2], many neural-network-based
grasp detectors [3, 4, 5, 6, 7] directly regress the gripper rotation without enough consideration
on this bi-modal ambiguity. In this paper, we propose a rotation representation that can represent
the two feasible gripper rotations in a single parameter set, forming the problem into a uni-modal
distribution.
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Bingham [8] proposed an antipodal symmetric distribution on the (hyper-)sphere. Peretroukhin et al.
[9] and Sato et al. [10] discussed the application of 3D Bingham distribution for SO(3) represen-
tation by leveraging the fact that a pair of antipodal quaternions (+q and −q) represent a single
rotation in 3D. While [9, 10] handles a single 3D rotation, in this work, we propose a representation
that can handle a pair of 3D rotations by leveraging 2D Bingham distribution to represent one of the
basis vectors of a rotation matrix (See Fig. 1.)

Our approach is applicable to any grasp detector that explicitly regresses the gripper rotation. With-
out modifying the training data, it only requires (i) changing the network’s rotation output channel
to 9, (ii) replacing the rotation term of the loss function with our proposed one, (iii) additional
eigenvector decomposition or sampling process for the inference time.

The contributions of this paper are summarized as follows:

1. We propose a novel SO(3) representation where one of the basis vectors of the rotation
matrix is expressed by the 2D Bingham distribution so that a pair of two planar-symmetric
poses are expressed by a single parameter set.

2. We propose a learned grasp detector with the planar-symmetric SO(3) representation. We
qualitatively show its continuous properties and efficacy of the distribution information.
We quantitatively show its superiority over the existing representation through simulation
and real-robot experiments.

2 Related Works

2.1 Rotation Representations for Grasp Detectors

Morrison et al. [11] tackled 2D planar grasp generation and incorporated the symmetry of their two-
fingered gripper by limiting the yaw angle representation in the range of [0, π]. Qin et al. [3] detected
grasp poses in SE(3) by inferring the translational displacement and the rotation matrix [12] for each
point on the object surface with a PointNet [13] backbone. Sundermeyer et al. [6] treated the point
cloud as candidates of the gripper’s contact points and estimated per-point rotation matrix. Breyer
et al. [4] employed a 3D fully convolutional network to infer per-voxel rotation in quaternion form
from a TSDF [14] input. Jiang et al. [5] followed [4] in the sense of rotation expression. Ko et al.
[7] expressed the gripper rotation by the rotation matrix in their fully convolutional network. Our
approach targets this line of work, in which the gripper rotation is explicitly learned by a neural
network with a rotation loss function. In [3, 4], the planar-symmetry problem was already pointed
out and tackled by selecting the smaller one of the two rotation losses for the ground truth rotation
and the flipped one for the backpropagation. This paper quantitatively shows that our approach can
better handle such problems.

There is another line of work for which our representation is not applicable. Zhao et al. [15] ex-
pressed the rotation by the direction the fingers move and the 1D angle around that direction. Wang
et al. [16] first selected “view direction” that corresponded to the hand approach direction, then
inferred the remaining 1D in-plane rotation against the cropped and reprojected point cloud, with
both rotations discretized. Cai et al. [17] inferred five degrees of freedom (DoF) of the grasp pose
in SE(3) by the location and the surface normal of the point cloud and discretized the remaining
one DoF, which can handle multimodal grasp pose. Huang et al. [18] represented grasps as pairs of
points on the point cloud and avoided direct rotation representation by analytically deriving it from
the position and normal of the points. This work does not discuss which architecture is superior
since it depends on the application, sensor, and hardware. Instead, we focus on providing a handy
add-on to boost the performance of direct-rotation-regression-type grasp detectors.

2.2 Rotation Representations for Symmetric Objects

To our best knowledge, there are no symmetry-aware SO(3) representations for learning grasp de-
tection. On the other hand, there are several such representations in the fields of object pose esti-

2



mation. Sato et al. [10] showed that the combination of the 3D Bingham distribution and a nega-
tive log-likelihood (NLL) loss can well represent the rotation of axial symmetry. However, a sin-
gle 3D Bingham distribution can only handle a unimodal distribution over rotations. To handle a
multimodal distribution, Riedel et al. [19] and Deng et al. [2] utilized the Bingham Mixture Model
(BMM). Manhardt et al. [20] used multiple quaternions to represent multiple hypotheses of rotations
that come from object symmetry. Zhang et al. [1] employed a continuous 6D rotation representa-
tion [12] and applied a diffusion model [21] to manage multiple feasible rotations. Although these
approaches have the capability to handle the multimodality of rotations that come from discrete
symmetries, they increase the number of hyperparameters or the complexity of the loss function
compared to approaches with unimodal representations.

Since our target is the specific multimodal distribution of planar-symmetric grippers, which is a
bimodal distribution, there can be a simpler and more efficient rotation representation without lack
of capability. As such, our approach extends the work by Zhou et al. [12] by expressing one of its
basis vectors with the 2D Bingham distribution to allow planar symmetry. Unlike the approaches
based on a mixture distribution, the explicit constraint of antipodality to manage planner symmetry
is unnecessary, thanks to the nature of 2D Bingham distribution.

3 Method

3.1 2D Bingham Distribution

The Bingham distribution [8] which has the property of antipodal symmetry is a probability distribu-
tion on the unit sphere Sd−1 ⊂ Rd. We set d = 3 because we only consider S2 throughout this paper.
The 2D Bingham distribution is parametrized by a 3× 3 symmetric matrix. Letting Symn be the set
of n-dimensional symmetric matrices, the parameter of the 2D Bingham distribution A ∈ Sym3 can
be written with 6 parameters a ∈ R6 using the function triu : a ∈ R6 → A ∈ Sym3.

For every real symmetric matrix, we can choose an orthogonal matrix D ∈ R3×3 and a real vector
λ ∈ R3 satisfying

A = D diag(λ)D⊤, (1)

where the operator diag : R3 → R3×3 puts the elements of λ on the diagonal of the matrix. This de-
composition can always be performed so that λ1 ≤ λ2 ≤ λ3 is satisfied. Using this decomposition,
the 2D Bingham distribution is defined as follows.

B(A)(v) =
1

C(λ) exp
(
v⊤Av

)
, (2)

where v ∈ S2 and A ∈ Sym3. Here C(λ) is the normalizing constant of the Bingham distribution
defined as below:

C(λ) =
∫

v∈S2
exp

(
v⊤ diag(λ)v

)
dS2(v), (3)

where dS2(·) is the uniform measure on the S2. Note that C(λ) depends only on λ, the eigenvalues
of A. Importantly, the below equation holds for any c ∈ R,

B(D diag(λ+ c)D⊤) = B(D diag(λ)D⊤), (4)

where λ+ c = (λ1 + c, . . . , λ3 + c). Hence, the entries of λ can be shifted to satisfy the below.

λ1 ≤ λ2 ≤ λ3 = 0 (5)

It follows directly from the Rayleigh’s quotient formula [22],

argmax
v∈S2

v⊤(D diag(λ)D⊤)v = vλ3
, (6)

where vλ3 is a column vector of D corresponding to the maximum entry of λ. The mode vector vλ3

coincides with the right-most column vector of D when λ is sorted as Eq. 5. In the following parts,
it is assumed that the condition Eq. 5 is always met.
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Figure 2: Architecture of our grasp detection network with the hand symmetric plane’s normal
vector ez expressed in the 2D Bignham representation. We can either sample ez from the Bingham
distribution B(A) or directly perform eigenvalue decomposition of A and take the eigenvector with
the largest eigenvalue as ez while taking the difference of the three eigenvalues as the confidence.

3.2 A Planar-Symmetric SO(3) Representation and Its Loss Function

We propose a novel planar-symmetric SO(3) representation that can express a pair of poses with a
single parameter set. Our proposal is a 9-parameter representation as follows.

[a⊤,x⊤]⊤ ∈ R9, where a ∈ R6,x ∈ R3. (7)

The 6-parameter vector a is the parameter of 2D Bingham distribution, that are described in Sec-
tion 3.1. We make the mode antipodal-vector of the 2D Bingham distribution orthogonal to the
symmetric plane. The 3 parameters x are a unit 3D vector that is parallel to the symmetric plane.

To train a neural network with our planar-symmetric SO(3) representation, we first sample a pose
from a training dataset and express it as a rotation matrix [ex ey ez] ∈ R3×3 where, using x and a
defined in Eq. 7, ex corresponds to x and ez is a mode vector of B(triu(a)). The loss function is
then expressed as

Lcos(x, ex) + LBNLL(triu(a), ez) (8)

where Lcos(a, b) = a⊤b/(∥a∥∥b∥) denotes the cosine similarity loss and LBNLL denotes the 2D
Bingham negative log-likelihood loss (see Appx. B for more details). Note that while Lcos has
the same input size for x and ex, A (= triu(a)) and ez have a different sizes for LBNLL be-
cause we implicitly represent ez with the symmetric matrix A. In addition, since LBNLL(A, ez) =
LBNLL(A,−ez), we only need to sample one pose per each symmetric pair from the training data.
In Eq. 8, we add the two losses without scaling. Even though cosine and log have different natures,
we empirically observed that LBNLL typically converges from a range of 2-3 after the first epoch to
a range of ±0.5, which is close to that of Lcos. Our quantitative evaluation in Sec. 4 shows that this
simple addition works well for the grasp detection.

3.3 Grasp Detector with Planar-Symmetric SO(3) Representation

In this section, we introduce our rotation representation to [7]. Figure 2 illustrates its network
architecture. The network takes a 40×40×40 TSDF [14] volume as input and employs a 3D fully-
convolutional encoder-decoder feature extractor to acquire a 40×40×40×16 channel feature vol-
ume. The feature volume is further processed by three distinct fully convolutional heads. A gravity-
rejection score head estimates, for each voxel, the magnitude of disturbance in the gravity direction
that the grasp can resist if the TCP (tool center point) is located at that voxel. The grasp-success
classification head classifies whether the grasp is feasible. Lastly, the grasp-rotation head estimates
the per-voxel gripper rotation. More training details are in Appx. C.

In the original work [7], the grasp rotation head outputs 6 channels, which is a concatenation of
ex and ez (red and blue vector in Fig. 1 (a), respectively) of the rotation matrix. To introduce the
planar-symmetric SO(3) representation, we extend the output channels to 9 to parameterize Eq. 7.
At the training time, we feed the network output x and a to Eq. 8. At the inference time, we perform
an eigenvalue decomposition on A to acquire its eigenvalues λi and their corresponding eigenvectors
vλi

.
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The implementation of LBNLL is based on [23], with a minor modification to support 2D Bingham
distribution. While the original code takes a few days to train our network, re-writing the NumPy-
based operations with CuPy [24] makes the training time comparable to other rotation representa-
tions. With an Nvidia V100 GPU, four training runs took an average of 190 minutes, 90 minutes
for the minimum case and 350 minutes for the maximum case. The rotation matrix versions took
200 minutes in average, and the quaternion version took 170 minutes. Considering the variance,
the training cost overhead of our representation can be regarded as negligible. The overhead on the
memory footprint is also small since our representation only changes the last layers of the network.

There are three ways for reconstructing the hand rotation during the inference time. The simplest
one is to directly use the primary eigenvector vλ3 as ez . We analyze its effect in Section 4.1. In
order to make use of the information on the uncertainty, we can introduce a confidence threshold
derived from λ. A mask to reject voxels with low confidence can be added to the output of the
grasp-success classification head. We quantitatively evaluate this second approach in Section 4.3.
The third approach is to sample ez from B(A) based on the method in [25]. This solves a major
limitation of the original works: each voxel can only represent one grasp pose. We evaluate this
case in Section 4.2. In this case, in exchange for lower sample efficiency, we can get a diverse
set of grasp poses, which is beneficial for considering additional constraints such as placement and
collision avoidance.

In any case, there is no guarantee that ez is orthogonal to the network output ex. Following [12],
we perform a Gram-Schmidt orthogonization to reconstruct a valid rotation matrix. [7] reported that
keeping ex and modifying ez provides a superior performance since ex typically coincides with the
normal of the object’s surface and is easier for the network to learn. We follow this approach by first
normalizing ex then modifying ez as ez − (ex · ez)ex.

4 Experiment and Evaluation

This section evaluates our approach with the vanilla version [7] as our baseline, which uses the
rotation matrix representation proposed by [12]. For a more comprehensive comparison, we also
trained a quaternion version, similarly to [4]. To train the baselines, we followed [3, 4] where we
computed the rotation losses for both non-flipped and 180◦-flipped rotation, then selected the smaller
one for the backpropagation.

4.1 Analysis of Rotation Continuity

This section compares the continuity of the rotation volume output. A 60×60×200mm-sized box-
shaped object was placed at the workspace origin, and a single depth image was captured from
[0.5, 0, 0.5] m. Figure 3 shows a comparison of our approach and the baseline rotation matrix version
by plotting the gravity-rejection score field and gripper rotation field at z = 57 mm. In this case,
the basis vector ez of the hand’s rotation matrix (blue vector in Fig. 1 (a)) must be aligned with the
y-axis to grasp the thin and long object.

The rotation field for the baseline is not consistent: some voxels have +y output, and others have
−y. This is natural because the network is trained to regress either of them, and both of them are the
correct answer. The problem is that some voxels (surrounded by the red square) have an intermediate
value of the two correct modes. If those voxels are selected for the grasp execution, the grasp will
fail. In the case of our proposal, on the other hand, the vector field is consistent and smooth. Notice
that for the proposed representation ez and −ez is expressed by the same parameter set (see Fig. 1
(b)); therefore, we plot both.

4.2 Analysis of Rotation Distribution

In order to analyze the distribution of the grasp rotation field, we placed a 60 mm tall and 70 mm
diameter flat cylinder next to the thin and long box and acquired the grasp orientation field in the
same process as Section 4.1. This time, we sampled 30 ez from B(A) and overlaid them in Fig. 4.
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Figure 3: Cross-section of the network output grasp score field and rotation field at z = 57 mm
plane when a long box is aligned with the workspace origin. Left: baseline. Right: ours.
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Figure 4: Same plot as Fig. 3 but a flat cylinder is placed next to the box. This time we sample 30
ez from B(A). The uncertainty on the box is small because there are no other possible choices to
grasp the long box, which corresponds to the case in Fig. 1(c). The distribution on the center of the
cylinder is close to a uniform one because any downward grasp on the region is affordable. This
corresponds to the case of Fig. 1 (e).

For the voxels on the thin and long box, the uncertainty is small and ez converges to a single grasp
rotation. This is reasonable because the grasp will only succeed when ez is aligned with the y-axis,
otherwise the finger will collide with the box. This matches the case illustrated in Fig. 1 (c) well. On
the other hand, the uncertainty is large for the voxels on the cylinder. The uncertainty is especially
large when it is aligned with the center of the cylinder, allowing arbitrary hand rotation around the z-
axis. This corresponds to the case illustrated in Fig. 1 (e). For those near the edge of the cylinder, the
uncertainty takes an intermediate value. While this may be reasonable, such inaccurate poses may
cause grasp failures. As the uncertainty can be analytically acquired by the ratio of the eigenvalues,
a proper threshold to reject those poses can be effective. Such cases are illustrated in Fig. 1 (d).

4.3 Quantitative Evaluation with a Physics Simulation

We performed experiments in simulation to compare our proposal with our baseline quantitatively.
We followed the experiment protocol of existing works [4, 3, 15, 17, 18, 5, 7]: multiple objects are
randomly dropped to a scene, and the robot declutters them into a bin. The performance is measured
by two metrics: success ratio (SR), which represents the number of successful grasps divided by
the number of total trials, and clear ratio (CR), which represents the number of successful grasps
divided by the total number of objects. We used Drake [26] with a hydroelastic contact model [27]
as the simulator. We simulated the whole declutter process, including the pre-contact motion, the
interaction between the object and the hand’s passive parallel link mechanism, and the lift motion
until the object is dropped into a container placed near the workspace. Before each grasp, we
rendered a single depth image to mimic the partial observation in the real world.

We trained the networks with two grippers: (i) Robotiq 2F-85 gripper with its passive compliance
mode activated as an example of an underactuated gripper, and (ii) Franka-Emika’s gripper, as an
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Figure 5: Capture the simulation experiment with two kinds of grippers and objects.

example of a rigid parallel-jaw gripper. We created two evaluation datasets: (i) one consisting of
a subset of meshes provided by Breyer et al. [4] to evaluate the grasp performance on household
objects, (ii) one with large flat boxes that require a highly accurate grasp pose due to small clearance
(see Appx. D for more details).

Figure 5 shows simulation captures, and the supplementary video contains more examples. Table 1
summarizes the results. “2D Bingham” represents the case where we used the primary eigenvector
vλ3

as ez of the rotation matrix; “2D Bingham w/ Conf. Tresh.” represents the case with an identical
setup to “2D Bingham,” except that the voxels where (λ3 − λ2) + (λ3 − λ1) < 15 were masked
out as an invalid grasp. Qualitatively, we observed two major failure modes. One was an incorrect
approach direction corresponding to an inaccurate ex. We could see some improvement in the
rotation matrix version over the quaternion version but could not see the advantage of our approach.
This is natural because our approach does not contribute to this. The other failure mode was an
inaccurate yaw angle corresponding to ez , frequently occurring when the object was laid on the
surface and required a top-down grasp. We observed a clear improvement in our approach for this
failure mode. We also saw that despite the underactuated gripper being effective for power grasping,
its compliance is fragile against collision between the fingertip and the object during the approach.
The result that our method had the highest effect for the combination of Robotiq gripper and large-
flat boxes, quantitatively suggests that it improves the hand’s yaw accuracy. As a reference, we also
tried the 3D Bingham representation proposed by [10]. Surprisingly, it underperformed all other
representations, indicating that naively adopting the Bingham distribution is not beneficial.

Table 1: Success ratio (SR) and clear ratio (CR) in simulation

Robotiq 2F-85 Hand Franka-Emika Hand
VGN Dataset Large Box VGN Dataset Large Box

2D Bingham (Ours) w/
Conf. Thresh.

SR [%]
CR [%]

79.0
76.6

62.9
70.6

63.1
64.9

67.7
80.6

2D Bingham (Ours) SR [%]
CR [%]

73.7
74.9

54.3
59.9

63.6
66.6

66.2
79.4

Rotation Matrix [12, 7] SR [%]
CR [%]

65.5
70.2

46.1
52.0

58.7
63.8

48.7
57.5

Quaternion [4] SR [%]
CR [%]

58.3
62.4

22.2
24.6

47.8
48.2

38.5
48.4

3D Bingham [10] SR [%]
CR [%]

45.6
47.4

16.4
17.5

39.1
39.8

20.5
23.4

4.4 Real-Robot Evaluation

To validate our approach in the physical world, we performed a real-robot evaluation with a Franka-
Emika Panda robot, a Robotiq gripper with custom fingertips, and a wrist-mounted ZED X Mini
stereo camera. We selected nine kinds of household objects from YCB [28] dataset. We first created
a random scene in the simulator to ensure a random yet consistent arrangement of objects for all
the test cases. Before each experiment, we manually aligned the objects in the real world to match
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Bingham (Ours) w/
Conf. Thresh.

SR
CR

70.0%
74.5%

Rotation Matrix SR
CR

53.6%
58.8%

Quaternion SR
CR

55.9%
64.7%

Table 2: Success ratio (SR) and clear
ratio (CR) against rotation expressions
in real-robot evaluation

the scene created in the simulation. For each grasp, the robot first moved the wrist to a predefined
pose and captured a single depth image. We then performed the inference and sorted the voxels in
the gravity-rejection-score order, searching for the first applicable robot trajectory that fulfills: (i)
the gripper linearly moves down in the -z direction 30 cm to the pre-grasp pose, (ii) the gripper
moves forward for 10 cm to grasp the object, (iii) the gripper is linearly lifted by 30 cm. In order
to avoid collision with the environment, we first used the camera to scan the table and used a planar
patch detection [29] provided by Open3D [30] to acquire a set of static collision shapes. We did
not explicitly avoid the collision between the gripper and objects other than the object to be grasped
since colliding grasps are expected to be rejected during network inference [4, 7].

Table 2 summarizes the result, and a full video of the experiment is included in the supplementary
material. These results prove that our representation also outperformed the baseline in the real world.
Qualitatively, our approach worked better in three typical top-down grasp cases: (i) a T-shaped
object, such as the electric drill; (ii) a large and flat object with limited position error tolerance,
such as the laid-down mustard bottle; (iii) a small and thin object, such as the whiteboard marker.
Similarly to the case in simulation, the baselines occasionally provided a clearly wrong yaw rotation,
which could not be seen for our representation. Figure 6 shows some typical cases. Appendix E
provides more details on target objects and their major failure modes.

5 Limitation and Scope of This Work

Our work only applies to planar-symmetric grippers since it relies on the nature of the Bingham
distribution to represent a pair of antipodal vectors. Thus, it is not applicable to the works using
three-fingered grippers or anthropomorphic hands. Another limitation is that our work applies only
to grasp detectors that explicitly regress the gripper rotation. For example, EdgeGraspNet [18]
estimates two points on the object and uses their location and normal information to reconstruct the
gripper rotation, leaving no room for our approach. It’s also difficult to apply our method to works
such as [17, 16] which discretize the grasp rotation and avoid direct regression. Since each hardware
and detector architecture has pros and cons, in this work, we focus on investigating the benefits of
our approach as an add-on, leaving the comparison against those approaches as a future work.

6 Conclusion

In this paper, we proposed a SO(3) representation that can parameterize two planar-symmetric poses
with a single parameter set by leveraging the 2D Bingham distribution. We also detailed the imple-
mentation of a neural-network-based grasp detector that uses our planar-symmetric SO(3) represen-
tation. Qualitative analysis showed the benefits of our representation for a consistent network output.
Finally, we performed an intensive quantitative evaluation with multiple grippers and objects in both
the simulation and the real world to demonstrate efficacy of our approach.
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[29] A. M. Araújo and M. M. Oliveira. A robust statistics approach for plane detection in unorga-
nized point clouds. Pattern Recognition, 100:107115, 2020.

[30] Q.-Y. Zhou, J. Park, and V. Koltun. Open3d: A modern library for 3d data processing. arXiv
preprint arXiv:1801.09847, 2018.

[31] J. T. Kent. Asymptotic expansions for the bingham distribution. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 36(2):139–144, 1987. URL http://www.jstor.
org/stable/2347545.

[32] K. V. Mardia and P. E. Jupp. Directional Statistics. Wiley Series in Probability and Statistics.
John Wiley & Sons, Inc., Hoboken, NJ, USA, jan 1999. ISBN 9780470316979. doi:10.1002/
9780470316979. URL http://doi.wiley.com/10.1002/9780470316979.

10

https://github.com/woven-planet/BinghamNLL
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://drake.mit.edu
http://www.jstor.org/stable/2347545
http://www.jstor.org/stable/2347545
http://dx.doi.org/10.1002/9780470316979
http://dx.doi.org/10.1002/9780470316979
http://doi.wiley.com/10.1002/9780470316979





1 0 0

0 1 0

0 0 1







1 0 0

0 0 −1

0 1 0




θ
(99%)
1 [deg]

θ
(99%)
2 [deg]

(6.60, 6.61± 8.29E-04)
(6.60, 6.60± 8.81E-04)

(6.60, 6.60± 8.47E-04)
(66.00, 73.44± 1.29E-02)

(66.00, 73.79± 9.90E-03)
(66.00, 73.79± 1.28E-02)

(66.00, 72.02± 1.20E-02)
(208.72, 168.40± 6.41E-03)

(208.72, 160.44± 8.96E-03)
(208.72, 160.45± 9.41E-03)

(−1000,−1000, 0) (−1000,−10, 0) (−10,−10, 0) (−10,−1, 0) (−1,−1, 0)
D

λ

Figure 7: Visualizations of 2D Bingham distribution which is sampled by the method in Kent et al.
[25]. The blue arrows represent the peak of the distribution. The parameter D in Eq. 1 controls
the peak direction. The λ parameters satisfying Eq. 5 correlate the shape of the distribution. The
values of θ(99%)

i are represented by tuples whose first element is the 99th percentile approximated
by Eq. 12 and second is calculated directly from 1M sampled points. The second element is in the
form µMC ± σMC, where µMC is the mean of 100 calculation of percentiles and σMC is the standard
deviation of µMC.

Figure 8: The visualization of the sampled points from B(diag(−50,−10, 0)). Note that di = ei
whose i-th component is 1 and the others are 0. In the left 3D figure, the sampled points are depicted
as blue scatter points. The domain between the red planes denotes A1(θ

(99%)
1 ), which contains 99%

of the sampled points. Similarly, the domain between the green planes is A2(θ
(99%)
2 ). In the right

2D figures, the upper (repr., lower) figure shows the projection of the sampled points onto the plane
spanned by (d1, d3) (repr., (d2, d3)), where the red line (repr., the green line) corresponds to the red
plane (repr., the green plane) in the left figure.

Appendices
A Understanding of 2D Bingham Distribution

To show correlations between shape parameters, λ = (λ1, λ2, λ3), and output distributions, we
visualize several results in Fig. 7.

Furthermore, we conduct an intuitive analysis about shape parameters, λ = (λ1, λ2, λ3). Let A ∈
Sym3 be the parameter matrix of Bingham distribution and be diagonalized as Eq. 1. We sorted
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the entries of λ satisfying Eq. 5. Letting (c1, c2, c3)
⊤ be the coordinates of x relative to the frame

spanned by the column vectors of D, we get

(c1, c2, c3)
⊤ = D⊤x. (9)

We define a subset of S2 as

Ai(θi) :=
{
x ∈ S2

∣∣ ci ∈ [− sin(θi/2), sin(θi/2)]
}
. (10)

The visual description of Ai(θi) is provided in Fig. 8. Letting X ∼ B(A) be a random variable that
follows the Bingham distribution with the parameter A, we can define θ

(p)
i ∈ [0, π] as θi satisfying

the following equation.
Prob (X ∈ Ai(θi)) = p. (11)

In this paper, p = 99% is used for specific calculations.

Kent [31] implies that if both λ3 − λ1 and λ3 − λ2 are sufficiently large, the distribution of 2θi
asymptotically approaches a von Mises distribution with the shape parameter κ = (λ3 − λi)/2.
Approximating von Mises distribution as Gaussian [32], we can yield the following approximation.

θ
(p)
i ≈ 2 erf−1(p)√

λ3 − λi

(12)

Here erf : R → (−1, 1) is defined by Eq. 18, and erf−1 : (−1, 1) → R is its inverse function.

B 2D Bingham Negative Log-Likelihood Loss

The negative log-likelihood loss [10] for the 2D Bingham distribution is defined as:

LBNLL(A,vgt) = −v⊤
gtAvgt + ln C(λ). (13)

The normalizing constant C(λ) can be calculated as

C(λ) = ech
√
π

N∑

n=−N−1

w(|nh|)F(nh,λ) enh
√
−1, (14)

where

F(t,λ) =

3∏

k=1

(
−λk + t

√
−1 + c

)−1/2
. (15)

The derivative ∂C/∂λ can be obtained by substituting ∂F/∂λ for F in Eq. 14. Let c, h be defined
as

c =
Nminπ

r2(1 + r)ωd
, h =

√
2πd(1 + r)

ωdN
, r ≥ 2 and

1

r
≤ ωd ≤ 1, (16)

where d is any positive number satisfying d < c, and N is a positive integer satisfying N ≥ Nmin.
The function w in Eq. 14 can be parametrized by p1, p2.

w(x) =
1

2
erfc

(
x

p1
− p2

)
, p1 =

√
Nh

ωd
, p2 =

√
ωdNh

4
, (17)

where erfc is the complementary error function which defined by erfc(x) := 1 − erf(x). Here
erf : R → (−1, 1) is the error function defined by

erf(x) =
2√
π

∫ x

0

e−t2dt, (18)

As described in Sato et al. [10], we set d = c/2, Nmin = 15, r = 2.5, ωd = 0.5, N = 200 here.
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C Additional Training Details

Our model architecture and training pipeline follows [7]. We first created 90 meshes of daily house-
hold objects. For each object, we first sampled antipodal grasps and then randomized the grasp pose.
For each grasp pose, we performed a grasp simulation in a gravity-less simulator and measured the
relative pose between the hand and the object. This allows us to create a grasp pose dataset with
both precision grasps and power grasps. We then project the grasp poses to the scenes, which contain
multiple objects in a randomized way.

We trained the network against three labels. (i) Gravity-rejection score (trained via L2 loss) stands
for how strong a grasp can resist against a gravity-direction disturbance. This label is generated in
the simulator based on the approximation proposed in [7]. It serves to encourage power grasping,
which is more robust than precision grasping. (ii) Grasp-validness score (trained via cross-entropy
loss) stands for the probability that a grasp is a valid one. This label is generated by filling all voxels
with a grasp by one and those without a grasp by zero. It serves to reject grasps that are colliding
with the objects or trying to grasp parts that are too wide to grasp. Finally, (iii) per-voxel grasp
rotation trained via the loss proposed in Eq. 8.

D Large Flat Box

The Robobiq 2F-85 gripper has a maximum grasp width of 85 mm. We, therefore, created a box
object with 30 mm × 70 mm × 200 mm size. When the box is laid down, the clearance between
the object and the finger surface is 7.5 mm. This corresponds to 22.6◦ yaw tolerance if the hand’s
position is perfectly aligned with the box, considering the finger’s 22 mm width (See Fig. 9). The
effective tolerance, however, is smaller because both the network input TSDF volume and the grasp
position are discretized by the voxel size of 7.5 mm (30 cm workspace divided by 40 resolution).
This makes the decluttering task challenging and requires a high position/rotation accuracy of the
grasp pose.

7
0

8
5

22

22.6°

Figure 9: The combination of a 70mm-wide box and the gripper with 85 mm open width only allows
a 7.5 mm translation error on each side, which is the same value as the voxel size of the network’s
input/output. Even when the gripper is at the perfect location, the yaw tolerance is limited to 22.6◦.

E Additional Details of Real-Robot Evaluation

Figure 10 shows the target objects used in the real-robot evaluation described in Sec. 4.4. Among
the objects, the most challenging one was 035 power drill, with more than 1kg of weight
unevenly distributed to the adversarial shape. Its slippery plastic surface also makes the grasping
hard. In many cases, even when the grasp looked good, it was dropped when the robot tried to lift it.
Other challenging objects include 005 tamato soup can and 010 potted meat can. While
the official YCB objects are shipped with their insides vacant, we replaced them with unopened
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Figure 10: Target objects for real-robot evaluation.

ones to avoid damaging them. However, this makes the objects heavier (roughly 300g) and more
rigid (meaning smaller contact regions). Combined with their slippy metal surface, the grasp was
significantly more challenging. We also observed that 006 mustard bottle was challenging
when it was laid down on the surface. Even though it is a popular object that is used in various
evaluations, when laid down, it has a 90 mm width in the widest part and an 80 mm width in
the narrowest part, leaving almost zero tolerance for our hand with an 85 mm maximum aperture.
Similarly, 010 potted meat can was also challenging with its 80 mm height and 95 mm width
when it was laid down.
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