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Abstract
We study the algorithmic problem of robust mean
estimation of an identity covariance Gaussian in
the presence of mean-shift contamination. In this
contamination model, we are given a set of points
in Rd generated i.i.d. via the following process.
For a parameter α < 1/2, the i-th sample xi is
obtained as follows: with probability 1− α, xi is
drawn from N (µ, I), where µ ∈ Rd is the target
mean; and with probability α, xi is drawn from
N (zi, I), where zi is unknown and potentially ar-
bitrary. Prior work characterized the information-
theoretic limits of this task. Specifically, it was
shown that— in contrast to Huber contamination—
in the presence of mean-shift contamination con-
sistent estimation is possible. On the other hand,
all known robust estimators in the mean-shift
model have running times exponential in the di-
mension. Here we give the first computationally
efficient algorithm for high-dimensional robust
mean estimation with mean-shift contamination
that can tolerate a constant fraction of outliers. In
particular, our algorithm has near-optimal sample
complexity, runs in sample-polynomial time, and
approximates the target mean to any desired ac-
curacy. Conceptually, our result contributes to a
growing body of work that studies inference with
respect to natural noise models lying in between
fully adversarial and random settings.

1. Introduction
Robust statistics (Huber & Ronchetti, 2009; Diakonikolas
& Kane, 2023) aims to develop accurate estimators in the
presence of a constant fraction of outliers. In a range of ma-
chine learning scenarios, the standard i.i.d. assumption does
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not accurately represent the underlying phenomenon. For
example, in ML security applications (Barreno et al., 2010;
Biggio et al., 2012; Steinhardt et al., 2017; Tran et al., 2018;
Diakonikolas et al., 2019), the data may be adversarially
manipulated or contain out-of-distribution data which arise
from unknown categories (Du et al., 2024); in biological
applications, datasets often contain natural outliers (Rosen-
berg et al., 2002; Paschou et al., 2010; Li et al., 2008) that
may pollute downstream statistical analysis. The field of
robust statistics originates from the early 1960s with the
pioneering works of Tukey and Huber (Tukey, 1960; Huber,
1964). Early work in the field obtained minimax optimal
robust estimators for the mean estimation and other tasks.
However, the multivariate versions of these robust estima-
tors incurred exponential runtime in the dimension. A recent
line of work in computer science, starting with Diakonikolas
et al. (2016); Lai et al. (2016), has led to a revival of robust
statistics from an algorithmic standpoint, by providing the
first robust estimators in high dimensions with polynomial
sample and time complexity.

The prototypical robust statistics task is that of Gaussian
mean estimation in Huber’s contamination model (Huber,
1964). Letting α ∈ (0, 1/2) be the contamination parameter,
each sample in Huber’s model is drawn either from an inlier
normal distributionN (µ, I) (where µ is the unknown target
mean) with probability 1− α; or from an unknown and po-
tentially arbitrary distribution E with probability α. Recent
work has provided efficient algorithms with near-optimal
guarantees in Huber’s model (Diakonikolas et al., 2018a;
2024). Huber’s contamination is a rather strong model, as
it allows for the unknown distribution of corruptions to be
arbitrary. On the one hand, this level of generality makes
the model quite powerful—by allowing it to cover a wider
range of phenomena. On the other hand, its definition is
inherently tied to significant information-theoretic limita-
tions. Specifically, it is known that even with an infinite
number of samples, any mean estimator µ̂ in Huber’s model
has to incur an error of ∥µ − µ̂∥ = Ω(α), where α is the
rate of contamination. This happens because it is possible
to start from two Gaussians (even in one dimension) with
means Ω(α) apart, and mix them with appropriate outlier
distributions so that the contaminated distributions are iden-
tical; see, e.g., Chapter 1 of Diakonikolas & Kane (2023).
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(Consistency is similarly unachievable in other commonly
used corruption models like total variation contamination.)

A natural way to achieve consistency is to impose additional
structure on the contamination model. A prominent and
well-studied assumption is that outliers do not follow arbi-
trary distributions, but instead correspond to mean-shifted
copies of the original distribution. Mean shift contamination
has been extensively studied in the robust statistics litera-
ture, for both regression (Sardy et al., 2001; Gannaz, 2007;
McCann & Welsch, 2007; She & Owen, 2011) and mean
estimation (Cai & Jin, 2010; Collier & Dalalyan, 2019; Car-
pentier et al., 2021; Li, 2023; Kotekal & Gao, 2025).

In this paper, we consider arguably the most basic version of
mean shift contamination, where the inliers are drawn from
a known covariance Gaussian distribution with unknown
mean µ, while each outlier is sampled from a (potentially
different) Gaussian with the same covariance and unknown
arbitrary mean. The goal is to understand the statistical-
computational landscape of mean estimation in this model.

Definition 1.1 (Mean-Shift Contamination Model). For
α ∈ (0, 1/2) and n ∈ Z+, a set T of n points in Rd is
called an α-corrupted set of points from N (µ, I) under the
mean-shift model, if an adversary chooses z1, . . . , zn, and
each point xi ∈ T is then sampled independently as follows:
With probability 1 − α, xi is sampled from N (µ, I), and
probability α, xi is sampled from N (zi, I).

Some comments are in order. A more general version
of Definition 1.1 would allow the inliers and outliers be
drawn from Gaussians with covariance matrix Σ. When Σ
is known to the algorithm, it suffices to consider the case
Σ = I (as we can transform the samples and reduce to this
case). The known covariance version of the shift contam-
ination model has been studied in a number of works, in-
cluding Collier & Dalalyan (2019); Carpentier et al. (2021);
Li (2023); Kotekal & Gao (2025).1 Moreover, the closely
related (more challenging) model where the covariance is
unknown has also been considered (Cai & Jin, 2010; Car-
pentier et al., 2021; Kotekal & Gao, 2025). Mean shift
contamination has been studied from a theoretical statistics
standpoint, with a focus on minimax rates, and as a model-
ing assumption (Jin & Cai, 2007; Sun & Cai, 2007; Cai &
Sun, 2009; Efron, 2004; 2007; 2008). Additional motivation
can be found in (Kotekal & Gao, 2025). A more detailed
summary of related work is provided in Appendix A.

The majority of prior work has primarily focused on the one-
dimensional setting. Specifically, Kotekal & Gao (2025)
obtained sharp minimax rates (upper and lower bounds)
of estimating µ in absolute error. (These works also con-
sider the more general estimation task for the unknown vari-

1Carpentier et al. (2021) considers a special case of the model
where zi − µ are assumed to be non-negative.

ance case.) Intriguingly, and in sharp contrast to Huber’s
model, consistency is achievable in the mean-shift model.
Intuitively, this happens because now all the samples are
convoluted with a Gaussian; thus, given infinitely many
samples, one can form the underlying distribution, perform
deconvolution, and recover the single spike corresponding
to the inliers. More specifically, Kotekal & Gao (2025)
showed that, if the contamination parameter α is a positive
constant strictly less than 1/2, the mean can be estimated to
any desired accuracy ϵ using 2Θ(1/ϵ2) samples. This can be
used to show (see Proposition 2.1) that the d-dimensional
version of the problem can be solved, up to ℓ2-error ϵ, with
n = d 2O(1/ϵ2) samples—an upper bound that is essentially
best possible.

While the one-dimensional estimators of Li (2023); Kotekal
& Gao (2025) can be implemented in polynomial time,
very little is known from an algorithmic standpoint for the
multivariate problem. Specifically, the only known methods
(achieving any desired accuracy) involve a brute-force
search with complexity that scales exponentially in the
dimension (Proposition 2.1). Of course, one could apply
efficient robust algorithms designed for Huber’s model
from the existing robust statistics literature. Unfortunately,
such algorithms inherently cannot obtain error better than
Ω(α)—while our goal is to achieve any desired accuracy
ϵ ≪ α. This discussion leads to the following question,
which was the main motivation for this work:

Is there a sample and computationally efficient multivariate
robust mean estimator in the mean-shift model?

By the term “sample efficient”, we mean an estimator with
sample complexity n = poly(d, 21/ϵ

2

) samples. As is
standard, computationally efficient refers to an algorithm
with poly(n, d) runtime. In this paper, we answer this
question in the affirmative. As a bonus, the sample
complexity of our algorithm is minimax near-optimal,
within logarithmic factors.

Specifically, we establish the following theorem:

Theorem 1.2. (Main Algorithmic Result) Let d ∈ Z+

denote the dimension, µ ∈ Rd be an unknown mean vector,
ϵ ∈ (0, 1) be an accuracy parameter, and α ≤ 0.49 be a
contamination parameter. There exists an algorithm that
takes as input ϵ, draws n = Õ(d/ϵ2+o(1) + 2O(1/ϵ2)) α-
corrupted samples fromN (µ, I) under the mean-shift model
(Definition 1.1), runs in poly(n, d) time, and outputs µ̂ such
that with probability at least 0.99 it holds ∥µ̂− µ∥ ≤ ϵ.

Theorem 1.2 gives the first sample efficient algorithm for
our problem that runs in sample-polynomial time. We re-
mind the reader that, in the Huber contamination model,
this goal is information-theoretically impossible; that is, no
algorithm can achieve consistency regardless of its sample
and computational resources. Note that the sample com-
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plexity of our algorithm is close to optimal: even for one-
dimension with α ≤ 0.49, any estimator requires 2Ω(1/ϵ2)

samples (Carpentier et al., 2021; Kotekal & Gao, 2025); and
linear dependence on d is necessary even for the outlier-free
setting. Moreover, we point out that our algorithm does not
need to know the value of the contamination parameter α.
While we have assumed for simplicity of the statement that
α ≤ 0.49, we show in Appendix F (see Theorem F.1) that
by a mild increase in the error and sample complexity, our
algorithm can be generalized to work for α ∈ (0, 1/2− c),
for any constant c ∈ (0, 1/2), without the need to know c a
priori.

1.1. Organization

The paper is structured as follows: In Section 1.2, we pro-
vide intuition about the techniques used and the structure of
the algorithm. In Section 2, we formally state the algorithm
and sketch its analysis. Finally, in Section 3, we present our
conclusions and discuss some interesting open problems.

1.2. Our Techniques

Given samples of the form x ∼ N (m, I), where m is a ran-
dom variable taking the value m = µ with probability 2/3
(instead of 2/3, our model of Definition 1.1 uses 1−α; this
is a simplification for the purpose of this proof overview),
the goal is to estimate µ to ℓ2-error ϵ with high constant
probability.

Note that, using the results of Li (2023); Kotekal & Gao
(2025), it is straightforward to design a (computationally in-
efficient) algorithm with sample complexity d2O(1/ϵ2) and
runtime 2O(d+1/ϵ2) — via a standard reduction to the 1-
dimensional case (cf. Proposition 2.1). In particular, for
every v in an exponentially-sized cover of the unit sphere,
we apply a robust one-dimensional estimator to the projec-
tions of the samples v⊤x. This gives us an ϵ-approximation
of v⊤µ. Piecing these values together for various values of
v allows us to reconstruct an ϵ-approximation of µ.

As a first step towards Theorem 1.2, we will design an
algorithm with sample complexity poly(d)2Θ(1/ϵ2) and run-
time poly(d)2Θ(1/ϵ4). Note that this is not yet a compu-
tationally efficient algorithm, since the runtime is quasi-
polynomial in the sample size. It turns out that this simpler
algorithm is a good start, as it will lay down the main ideas
which eventually lead to the efficient algorithm of Theo-
rem 1.2. The main idea is to design some kind of (data
dependent) dimension reduction. Ideally, we would like
to first find the direction µ/∥µ∥ along which µ lies, and
then run a one-dimensional robust estimator on that direc-
tion to recover ∥µ∥. More realistically, we will attempt to
recover a low-dimensional subspace that on which µ has
a large projection, and then run a low-dimensional robust

estimator on that subspace. In particular, if we can find a
subspace V of dimension dim(V) ≤ poly(1/ϵ) such that
∥ProjV⊥(µ)∥ ≤ ϵ/2, then we can apply the algorithm of
Proposition 2.1 to the projection of the dataset onto V to
find a µ̂ ∈ V with ∥ProjV(µ) − µ̂∥ ≤ ϵ/2. This would
imply the desired error bound of ∥µ− µ̂∥ ≤ ϵ.

A standard way to find such a V is by leveraging the sec-
ond moment of the data. We have that E[xx⊤ − I] =
E[mm⊤] ≽ 2

3µµ
⊤, since at least 2/3 of samples (inliers)

follow N (µ, I) and the terms corresponding to outliers
are positive semidefinite. Therefore, if V is the subspace
spanned by all of the eigenvectors of E[xx⊤ − I] with
eigenvalues more than ϵ2/6, then ∥ProjV⊥(µ)∥ ≤ ϵ/2. Un-
fortunately, as m is unbounded, E[mm⊤] could have many
such eigenvalues. To fix this issue, we will need a way to
effectively truncate the larger values of m.

To achieve this, we instead estimate the matrix A :=
E[(xx⊤− 1

1+2γ I) exp(−(∥x∥
2− d)γ)], for some carefully

chosen γ < 1. We can explicitly calculate the expectation
for x ∼ N (m, I), which turns out to be roughly equal to
mm⊤e−∥m∥2γ (cf. Lemma 2.3). Since 2/3 fraction of the
samples have m = µ, it follows that A ≽ 2

3µµ
⊤e−∥µ∥2γ .

Note that so long as ∥µ∥ is not too large (indeed, we can
assume it is O(1) by some naı̈ve outlier removal), every
unit vector with v⊤Av ≤ ϵ2/6 must satisfy |v⊤µ| ≤ ϵ/2
(cf. Lemma 2.9). Additionally, it is not hard to see that A
has trace bounded by O(1/γ); this implies that the num-
ber of eigenvectors with eigenvalue larger than Cϵ2 is at
most O(1/(γϵ2)). Thus, if we take V to be the span of such
eigenvectors, we would have that ∥ProjV⊥(µ)∥ ≤ ϵ/2 and
dim(V) = O(1/(γϵ2)).

This procedure implements one round of our dimension re-
duction. For γ = 1/

√
d, this reduces the dimension from d

to O(
√
d/ϵ2). That is, the dimension is reduced by a factor

of 2 whenever d is at least a large constant multiple of 1/ϵ4.
By repeating this procedure, we reduce the dimension down
to O(1/ϵ4). Then, applying the algorithm of Proposition 2.1
on the remaining subspace of dimension d′ = O(1/ϵ4),
completes the algorithm using 2O(d′+1/ϵ2) = 2O(1/ϵ4) addi-
tional samples and time.

The first challenge towards implementing the above ap-
proach is approximating A from samples. This is non-trivial,
as exp(−(∥x∥2 − d)γ) can be as large as exp(dγ), suggest-
ing that we might need roughly this many samples. Fortu-
nately, we note that ∥x∥2 is unlikely to be much less than
d. In particular, the squared norm of a standard normal is
approximately Gaussian distributed with mean d and stan-
dard deviation

√
d. This implies that the expected size of

exp(−(∥x∥2 − d)γ) is approximately exp(dγ2) (and it is
smaller for Gaussians with other means). By simple con-
centration arguments, for each entry of the matrix A, it is
not difficult to show that poly(d/ϵ) exp(dγ2) samples suf-
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fice for A to convergence . Thus, the choice γ = 1/
√
d

made in the previous paragraph suffices for our purposes
(Lemma 2.8).

We emphasize that there are two problems with this
approach to be addressed. The first is that the run-
time of the algorithm presented so far is not polynomial:
this is because the overall number of samples is n =

poly(d)2Θ(1/ϵ2), while the runtime of the final brute-force
step is poly(d)2Θ(1/ϵ4). Second, we would like the sample
complexity to be linear in d rather than poly(d).

In order to resolve the first issue, we need our dimensionality
reduction to be able to bring the dimension all the way
down to O(1/ϵ2)— rather than O(1/ϵ4). To achieve this,
we can first reduce the dimension to d′ = O(1/ϵ4), as
described in the earlier paragraphs, and then change the
value of γ to 1/(

√
d′ϵ). This way, the next iteration will

reduce d′ to O(
√
d′/ϵ) (which means that we can keep

halving the dimension until d′ becomes a constant multiple
of 1/ϵ2). Using this value for γ implies that each iteration
will be using exp(O(d′γ2)) = exp(O(1/ϵ2)) samples and
time (Lemma 2.8). Finally, we apply Proposition 2.1 to the
resulting subspace V .

To improve the sample size dependence on the dimension
(cf. Lemma 2.7), we require strong concentration bounds, in
particular the Matrix Bernstein inequality. However, to ap-
ply this inequality, one needs a universal bound for our ran-
dom variable xx⊤ exp(−(∥x∥2 − d)γ), which is bad when
∥x∥2 is small. Fortunately, this happens with small probabil-
ity, and we are able to show that truncating the values when
∥x∥2 is much smaller than d will not affect the final mean by
much. However, taking γ = 1/

√
d will prove not quite suf-

ficient for our purposes: there will be roughly a 1/d-fraction
of samples with ∥x∥2 = d−Ω(

√
d log(d)), leading to terms

with norm on the order of d exp(Ω(
√
log(d))), and it will

take a slightly super-linear number of samples to average
these away. To handle this, we need to use a slightly smaller
value of γ, such as 1/

√
d log(d).

Notation We use Z+ for the set of positive integers. We
denote [n] = {1, . . . , n}. For a vector x we denote by
∥x∥ its Euclidean norm. Let Id denote the d × d identity
matrix (omitting the subscript when it is clear from the
context). We use⊤ for the transpose of matrices and vectors.
For a subspace V of Rd of dimension m, we denote by
ΠV ∈ Rd×d the orthogonal projection matrix of V . That is,
if the subspace V is spanned by the columns of the matrix
A, then ΠV := A(A⊤A)−1A⊤. For a vector x ∈ Rd, we
use ProjV(x) = ΠVx to denote the orthogonal projection
of x onto V . We say that a symmetric d×d matrix A is PSD
(positive semidefinite) and write A ≽ 0 if for all x ∈ Rd it
holds x⊤Ax ≥ 0. We use ∥A∥op and ∥A∥F for the operator
(spectral) and Frobenius norm of a matrix A respectively.

We write x ∼ D for a random variable x following the
distribution D and use E[x] for its expectation. We use
N (µ,Σ) to denote the Gaussian distribution with mean µ
and covariance matrix Σ. For a scalar random variable x,
we define the Lp-norm of x to be ∥x∥Lp

= E[|x|p]1/p. We
use a ≲ b to denote that there exists an absolute universal
constant C > 0 (independent of the variables or parameters
on which a and b depend) such that a ≤ Cb. We use
polylog() to denote a quantity that is polylogarithmic in its
arguments and we use Õ to hide such factors.

2. Efficient Robust Mean Estimation in the
Mean-Shift Model: Proof of Theorem 1.2

In this section, we present our algorithm (Algorithm 1)
and establish Theorem 1.2. Section 2.1 provides a sample-
efficient but computationally inefficient estimator, which
will be employed at the final step of our algorithm (after the
dimension has been significantly decreased). Sections 2.2
and 2.3 analyze our dimension reduction procedure: Sec-
tion 2.2 records the desired properties of the reweighted
second moment matrix that our algorithm relies on, and
shows that they hold with high probability with sufficiently
many samples. Finally, Section 2.3 provides the core anal-
ysis of the dimension reduction procedure, and combines
everything to prove Theorem 1.2.

2.1. Computationally Inefficient Multivariate Robust
Estimator

Proposition 2.1 below provides a robust multivariate mean
estimator for the mean-shift model that uses n = d 2O(1/ϵ2)

samples and 2O(d) poly(n, d) runtime. Although the run-
time is exponential in the dimension, it becomes just
poly(n, d) if d = O(1/ϵ2). Therefore, this estimator will
be useful after our dimension reduction technique that will
be developed in the next sections manages to reduce the
dimension to O(1/ϵ2).

Proposition 2.1 (Inefficient Estimator). Let d ∈ Z+ denote
the dimension, and C be a sufficiently large absolute con-
stant. Let α ≤ 0.49, ϵ > 0, and δ ∈ (0, 1) be parameters,
and µ ∈ Rd be an (unknown) vector. There exists an algo-
rithm that, on input ϵ and any set of n ≥ 2C/ϵ2(d+log(1/δ))
α-corrupted set of points fromN (µ, I) under the mean-shift
model (cf. Definition 1.1), outputs a µ̂ such that ∥µ̂−µ∥ ≤ ϵ
with probability at least 1 − δ. Moreover, it runs in time
2O(d) poly(n, d).

Proposition 2.1 follows in a relatively standard way by tak-
ing a fine discretization of the unit sphere, running the one-
dimensional estimator for each of the directions in that cover
set, and combining the solutions to a vector (see, e.g., Sec-
tion 1.5 of Diakonikolas & Kane (2023)). For completeness,
we provide a proof of correctness in Appendix C using the
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univariate estimator of Fact 2.2 as a black-box. A nice prop-
erty of the prior work is that the robust univariate estimator
has breakdown point arbitrarily close to 1/2 and does not
need to know the contamination parameter (c.f. Section 5.3
of Kotekal & Gao (2025)).
Fact 2.2 (One-dimensional estimator, see, e.g., Li (2023);
Kotekal & Gao (2025)). Let µ ∈ R be an (unknown) mean.
Let C be a sufficiently large constant and α ≤ 0.49. There
is an algorithm that given, ϵ > 0, δ ∈ (0, 1) and a set
of n = 2C/ϵ2 log(1/δ) α-corrupted samples from N (µ, 1)
according to the mean-shift model (Definition 1.1), finds
µ̂ ∈ R such that, with probability at least 1 − δ, it holds
|µ̂− µ| ≤ ϵ. The runtime of the algorithm is poly(n).

2.2. Reweighted Second Moment Matrix

The structure of this section is as follows. Equation (1) de-
fines the reweighted second moment matrix that will be used
by our dimensionality reduction procedure. Subsequently,
Definition 2.6 states the deterministic conditions regarding
this matrix that will be required for the correctness of our
dimension reduction algorithm. Finally, in Lemmas 2.7
and 2.8, we show that the matrix satisfies these conditions
given sufficiently many samples.

For β ∈ (0, 1], a subspace V ⊆ Rd of dimension k ≤ d,
and points x1, . . . , xn ∈ V , define the matrix:

Â :=
1

n

n∑
i=1

Âi, where Âi := Fβ,k(xi)Zβ,k,

Zβ,k :=

(
1 +

2

β
√
k

) k
2+2

,

Fβ,k(x) :=

(
xx⊤ − β

√
k

β
√
k + 2

ΠV

)
e
− ∥x∥2

β
√

k , (1)

where ΠV denotes the orthogonal projection matrix of
the subspace V . The subspace V will be the one that the
algorithm maintains in each round (and whose dimension
decreases in every round). For simplicity, the reader can
think of V = Rk and ΠV = Ik; however, since the basis
of the subspace may not be aligned with the elements of the
standard orthonormal basis, using ΠV is required in general.

The definition of Â has been designed so that the ex-
pectation of a single sample’s deviation, namely (xx⊤ −
β
√
k

β
√
k+2

I)e
− ∥x∥2

β
√

k when x ∼ N (z, I) is roughly proportional

to zz⊤e
− ∥z∥2

β
√

k . This is shown in Lemma 2.3 below. The fac-
tor Zβ,k is the appropriate normalization factor that arises.
Lemma 2.3. Let V ⊆ Rd be a subspace of Rd of
dimension k ≤ d. For any z ∈ V , we have that

Ex∼N (z,ΠV) [Fβ,k(x)]Zβ,k = zz⊤e
− ∥z∥2

β
√

k+2 , where Fβ,k

and Zβ,k are as defined in Equation (1).

Algorithm 1 Mean Estimation under Definition 1.1
1: Input: Accuracy ϵ > 0.
2: Output: µ̂ ∈ Rd such that ∥µ̂− µ∥ ≤ ϵ.

3: Fix C a sufficiently large constant, n0=Cd,
n1=(d/ϵ2+o(1)) logC(d), and n2=2C/ϵ2 logC(d).

4: /*Rough Estimation:*/
5: Draw T0, a set of n0 corrupted points according to

Definition 1.1.
6: Use T0 to find µ̂0 with ∥µ̂0−µ∥=O(1). {e.g., Corollary

2.12 and Exercise 2.10 in Diakonikolas & Kane (2023)}
7: /*Dimension Reduction:*/
8: Initialize t ← 1, k ← d and V1 = Rk.{k will denote

the dimension of the current subspace}
9: while k ≥ 1/ϵ2 do

10: if k ≥ C log4(d)/ϵ5 then
11: set β ←

√
log(k) and N ← n1, ηt ← (ϵ/log d)

2.
12: else
13: set β ← ϵ and N ← n2, ηt ← 36ϵ/

√
k.

14: end if
15: Draw a set T ′

t of N corrupted points from the model
of Definition 1.1.

16: Tt ← {ProjVt
(x− µ̂0) : x ∈ T ′

t}.
17: Ât ← 1

|Tt|
∑

xi∈Tt
Âi, as defined in (1).

18: Find the eigenvectors of v
(t+1)
1 , . . . , v

(t+1)
k′ of Ât

with eigenvalue at least ηt (let k′ denote the number
of such eigenvectors).

19: Let Vt be the subspace spanned by
{v(t+1)

1 , . . . , v
(t+1)
k′ }.

20: Update k ← k′ and t← t+ 1.
21: end while
22: /*Run Inefficient Algorithm:*/
23: Sample a set T ′

t of n2 corrupted points from the model
of Definition 1.1.

24: Tt ← {ProjVt
(x) : x ∈ T ′

t}.
25: Use Tt to find µ̂1 ∈ Vt with ∥µ̂1 − ProjVt

(µ)∥ ≤ ϵ.
{Use Algorithm from Proposition 2.1}

26: return ProjV⊥
t
(µ̂0) + µ̂1.
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The deterministic conditions that we require to hold with
high probability quantify how close Â needs to be to its

expectation A := 1
n

∑n
i=1 ziz

⊤
i e

− ∥zi∥
2

β
√

k+2 . For the inlier
points, we will require closeness of the reweighted second
moment to its expectation in operator norm (cf. Defini-
tion 2.4). For the outlier samples, it will suffice to have
the milder condition that the reweighted second moment
is not too negative (cf. Definition 2.5). Finally, note that

the expectation matrix A := 1
n

∑n
i=1 ziz

⊤
i e

− ∥zi∥
2

β
√

k+2 has

tr(A) = 1
n

∑n
i=1 ∥zi∥2e

− ∥zi∥
2

β
√

k+2 ≤ β
√
k + 2, where we

used the elementary inequality ye−y/γ ≤ γ for y > 0. The
bounded trace will be a key property for the correctness of
our dimensionality reduction procedure. We will thus re-
quire the same property to hold for the empirical reweighted
moment matrix. Definition 2.6 combines all three of the
aforementioned conditions.
Definition 2.4 ((η, β)-concentrated set). Let η, β > 0 be
parameters, V be a k-dimensional subspace of Rd and let
x1, . . . , xn ∈ V . We say that the set {x1, . . . , xn} is (η, β)-
concentrated with respect to V and z1, . . . , zn ∈ V , if the
matrix Â defined in Equation (1) satisfies ∥Â−A∥op ≤ η,

where A := 1
n

∑n
i=1 ziz

⊤
i e

− ∥zi∥
2

β
√

k+2 .
Definition 2.5 ((η, β)-positive definite). Let η, β > 0 be
parameters and V be a k-dimensional subspace of Rd. We
say that the set of points x1, . . . , xn ∈ V is (η, β)-positive
definite, if the matrix Â defined in Equation (1) satisfies
v⊤Âv ≥ −η, for all v ∈ V with ∥v∥ = 1.
Definition 2.6 ((η, β)-good set). Let η, β > 0 be param-
eters and V be a k-dimensional subspace of Rd. A set T
of points in V is called (η, β)-good with respect to V and
the vectors µ, z1, . . . , zαn ∈ V if there exists S ⊆ T , with
|S| = (1− α)|T | such that:

1. (Condition for inliers) S is (η, β)-concentrated with re-
spect to V and the vector sequence µ, . . . , µ (i.e., the
sequence that has the µ vector (1− α)n times).

2. (Condition for outliers) T \ S is (η, β)-positive definite.

3. (Bounded trace condition) The matrix Â from (1) com-
puted over all xi ∈ T has tr(Â) ≤ 18β

√
k.

Lemmas 2.7 and 2.8 show that a sufficiently large set of
samples from our model satisfies our (η, β)-goodness condi-
tions with high probability. We need two lemmata because
our algorithm will use β =

√
log k for the most part, and

β = ϵ for the last few iterations.

For the case β =
√
log k (corresponding to Lemma 2.7),

we need to use strong concentration bounds in order for the
sample complexity to scale linearly (up to polylog factors)
with the dimension k (see proof sketch at the end of this
section and full proof in Appendix D).

Lemma 2.7. Let η ∈ (0, 1) and k ∈ Z+ denote the dimen-
sion, and assume k is bigger than a sufficiently large con-
stant. There exists sample size n = klog3(k)(1/η)2+o(1) 1

δ
such that the following holds: Let T be a set of n α-
corrupted points from N (µ, I) according to Definition 1.1
with the assumption that ∥µ∥ = O (1). Denote by
z1, . . . , zαn the adversarial centers in Definition 1.1. Then,
with probability at least 1− δ, T is (η,

√
log k)-good with

respect to µ, z1, . . . , zαn.

For the case β = ϵ, we can resort to a simpler proof which
consists of calculating the variance of each entry of our ran-
dom matrix and using Chebyshev’s inequality entry-wise.
This is done in Lemma 2.8. Although the resulting depen-
dence on the dimension k scales as k5, we will use this
bound only after the dimension has decreased to roughly
1/ϵ5; meaning that the sample complexity will be domi-
nated by the factor 2C/ϵ2 . The full proof can also be found
in Appendix D.

Lemma 2.8. Let T be a set of n α-corrupted set of points
from N (µ, I) according to Definition 1.1 for some µ with
∥µ∥ = O(1). Assume n = k5

η2δ2
C/ϵ2 for a sufficiently large

absolute constant C, where k ≥ 1/ϵ2 and η ≤ ϵ. Denote
by z1, . . . , zαn the adversarial points used in Definition 1.1.
Then, with probability at least 1− δ, T is (η, ϵ)-good with
respect to µ, z1, . . . , zαn.

We conclude this section with a brief proof sketch of the
first of these lemmata.

Proof Sketch of Lemma 2.7. We focus on showing Item 2
(η-positive definiteness) for the set of outliers, as the other
parts can be proved similarly. Let Â =

∑
i:xi∈T\S Âi,

where Âi as defined in Equation (1). First note that,
using Lemma 2.3, we have that E[Â] = A :=

1
αn

∑
i ziz

⊤
i e

− ∥zi∥
2

√
kβ+2 is positive semidefinite. Hence, in

order to prove that Â is η-positive definite, it suffices to
prove that Â cannot be much smaller than A in every direc-
tion.

First note that the e
− ∥xi∥

2
√

kβ Zβ,k factor appearing in the def-

inition of Â behaves roughly like e
− ∥xi∥

2−k√
k log k , as Zβ,k =

Θ(e
√

k/ log k) for β =
√
log k. Towards showing con-

centration with a linear number of samples, we first note
that the ∥xi∥2 − k (appearing before) is bounded, except
with tiny probability. That is, we argue that, without loss
of generality, we can work with the matrix of the form
Â′ =

∑
xi∈T\S Âi1(Ei) instead of Â. Here Ei is defined

to be the following good event: | ∥xi∥2 − (∥zi∥2 + k)| ≲
log(1/τ) + (

√
k + ∥zi∥)

√
log(1/τ), where τ := (1/n)4.

This is indeed without loss of generality because: (i) Ei hold
with probability 1− δ for all i simultaneously (each Ei fails

6
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with probability τ by Fact B.5, and thus the probability that
there exists Ei that fails is at most nτ ≤ 1/n3 ≤ δ by union
bound); and (ii) we can prove that ∥E[Â′]−A∥ ≤ η/2, i.e.,
the truncation shifts the mean by a small amount.

Then we can apply standard concentration results on Â′,
as our expressions are appropriately bounded. We achieve
this by carefully decomposing Â′ into three terms by writ-
ing xi = zi + gi, where gi ∼ N (0, I): Âi = ((gig

⊤
i −√

klog(k)√
klog(k)+2

I) + (zig
⊤
i + giz

⊤
i ) + ziz

⊤
i )e

− ∥xi∥
2

√
klog(k)Zβ,k =:

T̂1i + T̂2i + T̂3i. For the first and second term, we use
Hoeffding’s inequality for subgaussian random variables
along with a cover argument. For the third term, we
use the Matrix Bernstein Fact B.4 inequality. This ap-
plication requires an absolute bound on ∥T3i∥ ≤ K that
holds almost surely, as well as a bound for the matrix
variance ∥E[T̂ 2

3i]∥. Given the “good events” from above,
we can use that exp(−∥x∥2/

√
k log k)Z√

log k,k is roughly
less than exp(−∥zi∥2/

√
k log k). We can thus obtain that

∥T3i∥ ≤ ∥zi∥2 exp(−∥zi∥2/
√
k log k) ≲

√
k log k and

∥zi∥4 exp(−2∥zi∥2/
√
k log k) ≲ k log k, which results in

near-linear in k sample complexity.

2.3. Analysis of Algorithm 1

The lemma below is the core of the analysis for a single
iteration of our dimensionality reduction technique. Since
the sample version Ât of the matrix, that we use in Algo-
rithm 1 of Algorithm 1, is close to its expectation, we show
that our naı̈ve estimator from the first step of the algorithm
is accurate inside the subspace of small eigenvalues of Ât

(see Lemma 2.9). Combined with Item 3 of Definition 2.6,
which bounds from above the number of high eigenvalues,
we conclude that a single round of our dimensionality re-
duction loop halves the dimension without accumulating
error.

Lemma 2.9. Let β > 0 and V be a subspace of Rd of
dimension k ≤ d. Let T be an (η, β)-good set of n samples
(cf. Definition 2.6) with respect to the subspace V and
the vectors µ, z1, . . . , zαn ∈ V , and assume that ∥µ∥ =

O(1). Define Â as in (1). If U is a subspace of V such
that v⊤Âv ≤ η for all unit vectors v ∈ U , then we have
that ∥ProjU (µ)∥ = O(

√
η), where ProjU (·) denotes the

projection to subspace U .

Proof. Without loss of generality, we will prove the lemma
for the case where V = Rk. Since T is (η, β)-good, it can
be partitioned into S (inliers) and T \S (outliers), where the
two sets satisfy the properties of Definition 2.6. Consider
the matrices

Âinliers =
Zβ,k

n

∑
x∈S

Fβ,k(x),

Ainliers = µµ⊤e
− ∥µ∥2

β
√

k+2 ,

Âoutliers =
Zβ,k

αn

∑
x∈T\S

Fβ,k(x),

Aoutliers =
1

αn

∑
i:xi∈T\S

ziz
⊤
i e

− ∥zi∥
2

β
√

k+2 ,

where Zβ,k and Fβ,k are as defined in Equation (1). We
can decompose Â into inliers and outliers, i.e., Â = (1 −
α)Âinliers + αÂoutliers. By the assumption that T is (η, β)-
good (cf. Definition 2.6), we have that T \ S is η-positive
definite (cf. Definition 2.5); hence v⊤Âoutliersv ≥ −η.

By assumption, S is η-concentrated (Item 1 of Defini-
tion 2.6); thus |v⊤Âinliersv − v⊤Ainliersv| ≤ η.

Putting everything together, for every unit vector v for which
v⊤Âv ≤ η, we have that:

(1− α)v⊤Ainliersv (2)

= (1− α)v⊤Âinliersv + (1− α)v⊤(Ainliers − Âinliers)v

= v⊤Âv − αv⊤Âoutliersv + (1− α)v⊤(Ainliers − Âinliers)v

≤ η + αη + (1− α)η ≤ 2η .

Using that Ainliers = µµ⊤e
− ∥µ∥2

β
√

k+2 , the above im-

plies that (v⊤µ)2 ≤ 2η e
∥µ∥2

β
√

k+2 ≲ η, where the last
inequality is because ∥µ∥ = O(1). Finally, since
∥ProjU (µ)∥ = maxv∈U :∥v∥=1|v⊤µ|, it follows that
∥ProjU (µ)∥ ≤ O(

√
η).

2.3.1. PROOF OF THEOREM 1.2

We are now ready to prove our main theorem. The full
proof is deferred to Appendix E. We use the same notation
as in the pseudocode provided in Algorithm 1: the t-th
iteration of the while loop maintains a subspace Vt, whose
dimension, k, starts from d and can only decrease from a
round to the next one. This while loop has two distinct
phases: Phase 1 will refer to all the iterations during which
C log4(d)/ϵ5 ≤ k ≤ d, and Phase 2 will refer to all the
iterations with 1/ϵ2 ≤ k < C log4(d)/ϵ5. The analysis of
the algorithm consists of the claims stated below. The claims
are that each of the following holds with high constant
probability:

1. Warm start: If µ̂0 is the estimator from line 1 of Algo-
rithm 1, then ∥µ̂0 − µ∥ = O(1).

2. Dimension Reduction: If T1, T2 denote the number
of iterations of Phase 1 and Phase 2 respectively, then
T1 ≤ log(d), T2 ≤ 100 log(log(d)/ϵ). Moreover, for
all t = 1, . . . , T1 + T2, we have ∥ProjV⊥

t+1
(µ̂0 − µ)∥ ≲∑t

t′=1

√
ηt′ , where ηt′ are the values set in lines 1 and 1.
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3. Estimator for the remaining subspace: The lines
1-1 of Algorithm 1 find a vector µ̂1 ∈ Vt such that
∥µ̂1 − ProjVt

(µ)∥ ≤ ϵ.

Here we will sketch how each claim can be proved, with
the full details in Appendix E. We start by showing how the
claims imply that ∥µ̂− µ∥ = O(ϵ) for µ̂ := µ̂0 + µ̂1.2

Consider t = T1 + T2, so that Vt denotes the subspace after
exiting the while loop. By decomposing the true mean into
the projections onto the two orthogonal subspaces we have
that µ = ProjV⊥

t
(µ) + ProjVt

(µ). By the Pythagorean
theorem, we can write

∥µ̂− µ∥2 = ∥ProjV⊥
t
(µ̂0 − µ) + ProjVt

(µ̂1 − µ)∥2

= ∥ProjV⊥
t
(µ̂0 − µ)∥2 + ∥ProjVt

(µ̂1 − µ)∥2.

The last term is
∥∥ProjVt

(µ̂1 − µ)
∥∥ ≤ ϵ by Item 3. It

suffices to bound the first term by O(ϵ). Towards this end,
denote D := C log4(d)/ϵ5, which is the dimension during
the first iteration of Phase 2. Then,

∥ProjV⊥
t
(µ̂0 − µ)∥

≲
T1+T2∑
t′=1

√
ηt′ =

T1∑
t′=1

√
ηt′ +

T1+T2∑
t′=T1+1

√
ηt′

(from Item 2)

≤ T1
ϵ

log d
+

T1+T2∑
t′=T1+1

√
ηt′ ≤ ϵ+

T1+T2∑
t′=T1+1

√
ηt′

≤ ϵ+

(√
36ϵ√
D

+

√
36ϵ√
D/2

+ · · ·+
√

36ϵ√
1/ϵ2

)

≤ ϵ+
6
√
ϵ

D1/4

lg(Dϵ2)∑
i=0

2i/4 ≤ ϵ+
6
√
ϵ

(21/4 − 1)D1/4
2

lg(Dϵ2)
4

= ϵ+
6
√
ϵ

(21/4 − 1)D1/4
(Dϵ2)1/4 ≲ ϵ ,

where we used the definition of ηt′ from lines 1,1, and
direct calculations for the series (lg(·) denotes the logarithm
with base 2).

Finally, we discuss briefly the proofs of the claims in
Items 1 to 3. The first and the last follow immediately
by Diakonikolas & Kane (2023) (Corollary 2.12 and Ex-
ercise 2.10) and Proposition 2.1 respectively. Regarding
Item 2, let us first consider Phase 1 (iterations during which
k ≥ C log4(d)/ϵ5). By an application of Lemma 2.7 with
η = ηt = (ϵ/ log d)2 and a union bound, all the sets Tt

drawn in line 1 will be (ηt,
√
log k)-good with high constant

2The guarantee of Theorem 1.2 is ∥µ̂ − µ∥ ≤ ϵ. Here we
show O(ϵ) in order to keep the constants that appear simple. This
is w.l.o.g. as one can later replace ϵ by ϵ/C for a large enough
constant C to obtain Theorem 1.2.

probability. Note that because of the warm start in line 1
and the transformation subtracting µ̂0 in Algorithm 1, every
sample essentially comes from the mean-shift with mean
O(1), which makes Lemma 2.7 applicable. The number
of eigenvectors with eigenvalue larger than ηt is at most
tr(Ât)/ηt ≤ 18

√
k log k/ηt = O((log d)2ϵ−2

√
log k) ≤

O(log2.5(d)ϵ−2), where we first used the definition of
(ηt,
√
log k)-goodness (Definition 2.6) and then that ηt =

(ϵ/ log d)2. Thus, as long as k > C log5(d)/ϵ4, the dimen-
sion during each round gets halved. After T1 = O(log d)
such iterations, the dimension reaches C log5(d)/ϵ4, af-
ter which the aforementioned no longer guarantees that it
will continue to drop. This is the reason why we need
to change the value of β to ϵ, and set ηt := 36ϵ/

√
k in

Algorithm 1 for the remaining iterations (Phase 2). The
argument for Phase 2 is similar, but uses different param-
eters: our datasets are now (ηt, ϵ)-good by Lemma 2.8,
and the number of eigenvectors larger than ηt is now at
most tr(Ât)/ηt ≤ 18β

√
k/ηt = k/2. Thus, Phase 2 will

continue to halve the dimension. Finally, the claim that
∥ProjV⊥

t+1
(µ̂0 − µ)∥ ≲

∑t
t′=1

√
ηt′ follows immediately

from Lemma 2.9.

Runtime and Sample Complexity of Algorithm 1 It can
be readily verified that the number of samples n0, n1, n2

defined in Algorithm 1 of the algorithm suffice for the afore-
mentioned applications of Lemmas 2.7 and 2.8. Thus,
the overall sample complexity of the algorithm is n =
n0+n1·T1+n2·(T2+1) = O(d)+dpolylog(d)ϵ−(2+o(1))+

2O(1/ϵ2) polylog(d). Regarding runtime, the most compu-
tationally intensive part is the last step of the algorithm
(Algorithm 1), which has runtime τ = 2O(k) poly(n2, d),
where the k = 1/ϵ2 here denotes the dimension of the final
subspace. Since n2 = 2Θ(1/ϵ2) polylog(d), that runtime is
sample-polynomial, i.e., poly(n2, d). It is easy to check
that the other parts of the algorithm are also polynomial in
the size of the input.

This completes the proof of Theorem 1.2.

3. Conclusions and Open Problems
In this paper, we provide the first polynomial-time algo-
rithm for high-dimensional mean estimation under mean-
shift outliers. In this model, the outliers are not completely
adversarial as they include a randomized component. This
additional structure allows for consistent estimation, which
is unattainable in purely adversarial models.

Our work takes a first algorithmic step in understanding the
complexity of high-dimensional estimation for the known
covariance mean-shift model of Definition 1.1. A number of
concrete open problems and future directions suggest them-
selves. What is the complexity of robust mean estimation for
the known covariance case when the underlying distribution
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is not Gaussian? Is there a computationally efficient learner
for the unknown covariance Gaussian case? We hope that
this work will inspire further algorithmic work in robust
estimation under structured contamination models.
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Supplemental Material
The appendix is structured as follows: First, Appendix A includes a more detailed summary of related work. Appendix B
includes additional preliminaries required in subsequent technical sections. Appendix C gives the correctness analysis of
Proposition 2.1. Appendix D contains the proofs of the technical lemmas involving the reweighted matrix used in Section 2.2.
Appendix E contains the full proof of our main result (Theorem 1.2). Finally, Appendix F establishes Theorem F.1, which
demonstrates adaptivity to unknown contamination parameter α arbitrarily close to 1/2.

A. Additional Related Work
Additional Related Work on Mean Shift Contamination The most closely related work to ours is Kotekal & Gao (2025).
They study the same problem as ours in one dimension and derive matching information theoretic upper and lower bounds
for mean estimation. Kotekal & Gao (2025) also considers estimating the variance in the case when it is unknown to the
algorithm. A similar upper bound for mean estimation in the unit variance case was also given in Li (2023). In earlier work,
Carpentier et al. (2021) studied the sample complexity of robust mean estimation for the special case of Definition 1.1 in
one dimension where zi − µ > 0.

More broadly, the problem of mean estimation with mean shift outliers has its roots in influential work by Bradley Efron
(Efron, 2004; 2007; 2008) in the context of multiple hypothesis testing. In these works, Efron noticed through empirical
evidence that, because the parameters of the null distribution are unknown, testing should be done in two stages: (i)
estimation of the null parameters, and (ii) testing of null vs alternative hypothesis using standard multiple testing procedures.
Although the focus of our paper theoretical, we refer to the discussions in Carpentier et al. (2021); Kotekal & Gao (2025),
the CIRM talk in Gao (2024) and the references therein, for a discussion of the connection between the mean-shift noise
model and Efron’s work.

Variance Parameter We highlight two points regarding the variance of samples in the mean-shift model. First, the
variance may be unknown to the algorithm, unlike the identity/known covariance case in Definition 1.1. Specifically,
consider a variant of the model (in one dimension for simplicity) where inliers are drawn from N (µ, σ2) and outliers from
N (zi, σ

2). This setting has been studied in prior work (see, e.g., Cai & Jin (2010); Carpentier et al. (2021); Kotekal & Gao
(2025)). Notably, the last two works first analyze the case where the variance is known and equal to one, and then extend to
the more general setting where it is unknown, designing estimators for both the variance and the mean. Even when the goal
is solely mean estimation, their approach requires variance estimation as a first step. In contrast, Li (2023) considers only
the known variance case.

The second point concerns what happens to the optimal error if outliers have different variances than inliers. Concretely,
consider the model where inliers are drawn fromN (µ, σ2) and outliers fromN (zi, σ

2
i ). If outliers can have smaller variance

than the inliers (σi < σ), then estimation is intrinsically harder than in the case where σi ≥ σ. The reason is that estimation
under Huber contamination can be reduced to estimation in the mean-shift model with σi < σ. Specifically consider the
Huber contaminated sample with inliers that follow N (µ, σ2) and outliers zi. By adding N (0, α2) noise (with α > 0) to
both inliers and outliers, we have that the inliers after the transformation follow N (µ, σ2 + α2) and the outliers follow
N (zi, α

2), which is an instance of mean-shift contamination with σi < σ. Importantly, the consequence is that estimation
with error that goes to zero is not possible in the mean-shift model where outliers have smaller variance than the inliers.
There exists experimental work in the literature (Cai & Sun, 2009) which includes experiments with both smaller and larger
variance, however as we mentioned provable consistent estimation is impossible in such cases.

Furthermore, note that in the setting where σi ≥ σ, we can essentially assume that all σi are exactly equal to σ. To see
why, consider the random variable for a single outlier sample: xi = zi + N (0, σ2

i ). Observe that we can rewrite xi as
xi = (zi +N (0, σ2

i − σ2)) +N (0, σ2). Hence, by treating the outlier centers themselves as random variables, one can run
an algorithm that solves the mean-estimation problem in the mean-shift model with unknown variance. Finally, the same
argument applies in higher dimensions, in the setting where Σi ⪰ Σ. Let Σ,Σi be PSD matrices with Σi ⪰ Σ. Then we
can rewrite an outlier sample of the form xi = zi +N (0,Σi) as xi = (zi +N (0,Σi − Σ)) +N (0,Σ), since Σi − Σ is
PSD and therefore a valid covariance matrix.

Mean Shift Models for Other Problems The concept of more structured corruptions in the form of mean shifts has also
been studied in the regression setting (Sardy et al., 2001; Gannaz, 2007; McCann & Welsch, 2007; She & Owen, 2011). In
this model, it is assumed that yi = β⊤xi + γi + ξi, where γi are adversarial mean shifts on top of the standard Gaussian
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additive noise ξi ∼ N (0, σ2).

Comparison with Lai et al. (2016) The approach of dimension reduction until a low-dimensional inefficient estimator
can be employed has also appeared in previous robust statistics work (Lai et al., 2016), however that similarity is rather
superficial and the underlying techniques are significantly different. Each iteration of dimension reduction in Lai et al.
(2016) uses the centered second moment matrix to identify a sizable “good” subspace (spanned by the bottom eigenvectors)
where the empirical mean achieves O(α) accuracy, and then it iterates on the remaining small subspace. Even in our more
relaxed outlier model, the accuracy within the good subspace might be as bad as Ω(α), which is insufficient for our purposes
since we aim for ϵ-error. Thus our Theorem 1.2 cannot be obtained by the technique of Lai et al. (2016) and we instead we
have to look at the non-centered moment matrix after appropriate reweighting, as described in Section 1.2.

We conclude this section with two additional points of comparison.

Connection to Mixture Models The mean-shift model is related to the classical task of parameter learning for mixture
models, albeit in a regime that is qualitatively different from the one commonly studied. In the canonical setting (see Dasgupta
(1999); Arora & Kannan (2001); Achlioptas & McSherry (2005); Kannan et al. (2005) for classic references and (Belkin &
Sinha, 2015; Moitra & Valiant, 2010; Charikar et al., 2017; Hopkins & Li, 2018; Kothari et al., 2018; Diakonikolas et al.,
2018b; Kong et al., 2020; Diakonikolas et al., 2022; Bakshi et al., 2022; Liu & Li, 2022; Diakonikolas et al., 2023) for more
recent work), it is typically assumed that there is a small (constant) number of components, k ≪ n, each with a distinct
mean. In contrast, in the mean-shift model, all inlier samples come from the same component, while each outlier is drawn
from its own component. Consequently, parameter estimation of the outlier means is information-theoretically impossible in
the mean-shift model.

Connection to Entangled Mean Estimation Another related contamination model in the context of mean estimation is
the heteroskedasticity model. In heteroskedastic mean estimation, each datapoint is drawn independently from a potentially
different distribution within a (known) family that shares a common mean. Such distributions are also referred to as
entangled. For the Gaussian family, this model involves each sample having potentially different covariance (Chierichetti
et al., 2014; Pensia et al., 2019a;b; 2021; Xia, 2019; Yuan & Liang, 2020; Liang & Yuan, 2020; Devroye et al., 2023;
Compton & Valiant, 2024; Diakonikolas et al., 2025). This contamination model can also be viewed as a Gaussian mixture
model. However, here each sample originates from its own component (k = N ). Importantly, the shared mean assumption
enables meaningful results despite the large number of components.

B. Additional Preliminaries
Cover set of the unit sphere For some of our proofs, we will need the following standard facts about cover sets of the
unit sphere:

Fact B.1 (see, e.g., Corollary 4.2.13 in Vershynin (2018)). Let ξ > 0. There exists a set C of unit vectors of Rd such that
|C| < (1 + 2/ξ)d and for every u ∈ Rd with ∥u∥ = 1 it holds miny∈C ∥y − u∥ ≤ ξ.

Corollary B.2 (see, e.g., Exercise 4.4.3 (b) in Vershynin (2018)). There exists a subset C of the d-dimensional unit ball with
|C| ≤ 7d such that ∥x∥ ≤ 2maxv∈C |v⊤x| for all x ∈ Rd and ∥A∥op ≤ 3maxx∈C x

⊤Ax for every symmetric A ∈ Rd×d.

We will use the notions of subgaussian and subexponential random variables in the following standard way that we briefly
review below.

Subgaussian and subexponential random variables The following three statements are equivalent: (i) the random
variable x−E[x] is subgaussian with “variance proxy” σ2 (ii) ∥x−E[x]∥Lp ≲ σ

√
p for all p ≥ 1 and (iii) Pr[|x−E[x]| >

t] ≤ e−Ω(t2/σ2). The following three are also equivalent: (i) the random variable x − E[x] is subexponential with
parameter λ (ii) ∥x − E[x]∥Lp

≲ pλ for all p ≥ 1 and (iii) Pr[|x − E[x]| > t] ≤ e−Ω(t/λ). If X1, . . . , Xn are zero-
mean independent subexponential random variables with parameter λ, and X̄ =

∑
i∈[n] Xi/n then Pr[|X̄| > t] ≤

exp(−Ω(n)min(t2/λ2, t/λ)) (Bernstein’s inequality).

Fact B.3 (see, e.g., Exercise 2.5.1 in Vershynin (2018)). If X ∼ N(0, 1) then for any p ≥ 1, ∥X∥Lp
= (E[|X|p])

1
p =

√
2
[
Γ((1+p)/2)

Γ(1/2)

]1/p
, and thus by Stirling’s approximation ∥X∥Lp

≲
√

p/e.
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Fact B.4 (Matrix Bernstein Inequality; see, e.g., Theorem 5.4.1 in Vershynin (2018) ). Let X1, . . . , XN be independent,
mean zero, n× n symmetric random matrices, such that ∥Xi∥op ≤ K almost surely for all i. Then, for every t ≥ 0, we have

P

∥∥∥∥∥
N∑
i=1

Xi

∥∥∥∥∥
op

≥ t

 ≤ 2n exp

(
−c ·min

(
t2

σ2
,
t

K

))
,

where σ2 =
∥∥∥∑N

i=1 E[X2
i ]
∥∥∥

op
is the operator norm of the matrix variance of the sum.

The following is a standard fact regarding concentration of norms for Gaussian vectors (see, e.g., Vershynin (2018) for a
version of the fact for zero-mean Gaussians). For completeness, we provide a proof below.

Fact B.5 (Gaussian Norm Concentration). If x ∼ N (µ, I), with probability 1− τ we have that∣∣∣∥x∥2 − (∥µ∥2 + d
)∣∣∣ ≲ log

1

τ
+
(√

d+ ∥µ∥
)√

log
1

τ
.

Proof. Write x = z + µ for z ∼ N (0, I) then∣∣∣∥z + µ∥2 − ∥µ∥2 − d
∣∣∣ = ∣∣∣∥z∥2 − d+ 2z⊤µ

∣∣∣ ≤ ∣∣∣∥z∥2 − d
∣∣∣+ 2

∣∣z⊤µ∣∣ .
First, using Bernstein’s inequality, we have that∣∣∣∥z∥2 − d

∣∣∣ ≲ log
1

τ
+

√
d log

1

τ
.

with probability at least 1− τ . Also as z⊤µ ∼ N
(
0, ∥µ∥2

)
it satisfies the Gaussian tails

Pr
[∣∣z⊤µ∣∣ > t

]
≤ e

−Ω( t2

∥µ∥2
)
,

or equivalently
∣∣z⊤µ∣∣ ≲ ∥µ∥√log 1

τ with probability 1− τ .

C. Omitted Proofs from Section 2.1
We restate and prove the following result.

Proposition C.1 (Inefficient Estimator). Let d ∈ Z+ denote the dimension, and C be a sufficiently large absolute constant.
Let α ≤ 0.49, ϵ > 0, and δ ∈ (0, 1) be parameters, and µ ∈ Rd be an (unknown) vector. There exists an algorithm that,
on input ϵ and any set of n ≥ 2C/ϵ2(d+ log(1/δ)) α-corrupted set of points from N (µ, I) under the mean-shift model (cf.
Definition 1.1), outputs a µ̂ such that ∥µ̂−µ∥ ≤ ϵ with probability at least 1− δ. Moreover, it runs in time 2O(d) poly(n, d).

Proof of Proposition 2.1. Denote by T = {xi}ni=1, xi ∈ Rd an α-corrupted set of points from N (µ, I) under the model of
Definition 1.1 and denote by C the the cover set of Corollary B.2. The algorithm is the following: First, using the algorithm
from Fact 2.2, calculate a mv for each v ∈ C such that |mv − v⊤µ| ≤ ε/8 (see next paragraph for more details on this step).
Then, output the solution of the following linear program (note that the program always has a solution, as it is satisfied by
µ̂ = µ):

Find µ̂ ∈ Rd s.t.
|v · µ̂−mv| ≤ ε/4,∀v ∈ C .

The claim is that this solution µ̂ is indeed close to the target µ, since

∥µ− µ̂∥ ≤ 2max
v∈C
|v⊤(µ− µ̂)| (using Corollary B.2)

≤ 2max
v∈C

(|v⊤µ−mv|+ |mv − v⊤µ̂|)

14



Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination

≤ 2(ϵ/8 + ϵ/4) < ϵ . (3)

We now explain how to obtain the approximations mv with the guarantee |mv − v⊤µ| ≤ ε/8. Fixing a direction v ∈ C, we
note that v⊤x ∼ N (v⊤µ, 1) thus {v⊤xi}mi=1 is a set of α-corrupted samples of N (v⊤µ, 1). Thus, if we apply algorithm
from Fact 2.2 with probability of failure δ′ = δ/|C|, the event |mv−v⊤µ| ≤ ε/8 will hold with probability at least 1−δ/|C|.
By union bound, the probability all the events for v ∈ C hold simultaneously is at least 1− δ. The number of samples for
this application of Fact 2.2 is 2O(1/ϵ2) log(1/δ′) = 2O(1/ϵ2) log(|C|/δ) = 2O(1/ϵ2)(d+ log(1/δ)).

We conclude with the runtime analysis. The runtime to find the mv’s is O(|C| poly(nd)) = 2O(d) poly(nd) since for each
fixed v ∈ C we need poly(nd) time to calculate the projection {x⊤

i v} of our dataset onto v and poly(n) time to run the
one-dimensional estimator. The linear program can be solved using the ellipsoid algorithm. Consider the separation oracle
that exhaustively checks all 2O(d) constraints. We need poly(d) log(Rr ) calls to that separation oracle, where R, r are the
radii of the bounding spheres of the feasible region. First, R ≤ ϵ, because we have already shown in (3) that the feasible set
belongs in a ball of radius ϵ around µ. Regarding the upper bound r, note that all µ̂ inside a ball of radius ε/8 around µ are
feasible since |v⊤µ̂−mv| ≤ |v⊤µ̂− v⊤µ|+ |v⊤µ−mv| ≤ ∥µ̂− µ∥+ ε/8 ≤ ϵ/4. This means that r = ϵ/4. Hence the
total runtime for solving the LP is 2O(d) poly(d) or simply 2O(d).

D. Omitted Proofs from Section 2.2
In this section, we restate and prove Lemmas 2.3, 2.7 and 2.8.

Lemma D.1. Let V ⊆ Rd be a subspace of Rd of dimension k ≤ d. For any z ∈ V , we have that

Ex∼N (z,ΠV) [Fβ,k(x)]Zβ,k = zz⊤e
− ∥z∥2

β
√

k+2 , where Fβ,k and Zβ,k are as defined in Equation (1).

Proof. We prove the lemma for V = Rk which has ΠV = I . The same proof generalizes to arbitrary subspaces. First, for
any function f : Rk → Rk×k, we have that

E
x∼N (z,I)

[
f(x)e

− ∥x∥2

β
√

k

]
=

1

Z

∫
Rk

f(x)e
− ∥x∥2

β
√

k e−
∥x−z∥2

2 dx (where Z := (2π)k/2)

=
1

Z

∫
Rk

f(x)e
− ∥x∥2

β
√

k
− ∥x−z∥2

2 dx

=
1

Z

∫
Rk

f(x)e
− 1

2 (∥x∥
2( 2

β
√

k
+1)−2z⊤x+∥z∥2)

dx

=
1

Z

∫
Rk

f(x)e−
1
2 (∥x∥

2c−2z⊤x+∥z∥2)dx (where c := 2
β
√
k
+ 1)

=
1

Z

∫
Rk

f(x)e−
c
2 (∥x∥

2− 2
c z

⊤x+ 1
c ∥z∥

2)dx

=
1

Z

∫
Rk

f(x)e−
c
2 (∥x−

1
c z∥

2+( 1
c−

1
c2

)∥z∥2)dx

=
e−

1
2 (1−

1
c )∥z∥

2

Z

∫
Rk

f(x)e−
c
2∥x−

1
c z∥

2

dx

=
e
− ∥z∥2

β
√

k+2

Z

∫
Rk

f(x)e−
c
2∥x−

1
c z∥

2

dx

=
e
− ∥z∥2

β
√

k+2Z ′

Z
E

x∼N ( 1
c z,

1
c I)

[f(x)] (where Z ′ := (2π)k/2/ck/2)

= b E
x∼N ( 1

c z,
1
c I)

[f(x)] . (where b := e
− ∥z∥2

β
√

k+2 (1/c)k/2)
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Therefore, for f(x) = xx⊤ − (1/c)I , we have that

E
x∼N (z,I)

[(
xx⊤ − 1

c
I

)
e
− ∥x∥2

β
√

k

]
= E

x∼N (z,I)

[
f(x)e

− ∥x∥2

β
√

k

]
= b E

x∼N ( 1
c z,

1
c I)

[f(x)]

= b

(
E

x∼N ( 1
c z,

1
c I)

[xx⊤]− 1

c
I

)
= b

(
1

c
I +

1

c2
zz⊤ − 1

c
I

)

= b

(
1

c2
zz⊤

)
= e

− ∥z∥2

β
√

k+2

(
1

1 + 2
β
√
k

) k
2+2

zz⊤ .

Lemma D.2. Let η ∈ (0, 1) and k ∈ Z+ denote the dimension, and assume k is bigger than a sufficiently large constant.
There exists sample size n = klog3(k)(1/η)2+o(1) 1

δ such that the following holds: Let T be a set of n α-corrupted points
from N (µ, I) according to Definition 1.1 with the assumption that ∥µ∥ = O (1). Denote by z1, . . . , zαn the adversarial
centers in Definition 1.1. Then, with probability at least 1− δ, T is (η,

√
log k)-good with respect to µ, z1, . . . , zαn.

Proof. We will show that Item 2 and Item 1 of Definition 2.6 hold. Without loss of generality, we use V = Rk in
Definition 2.6, i.e., our subspace is the entire Rk. We start with Item 2 since it is more general. The other will be similar.

Proof of Item 2 We remind the reader that T = {xi, . . . , x|T |} is the set are the α-corrupted points and that T \ S denotes
the subset of αn outliers with zi the associated center of xi ∈ T \ S. We want to show that the sample average over T \ S
matrix Â from (1), with β =

√
log(k), satisfies v⊤Âv > −η for all unit vectors v. Without loss of generality, instead of the

definition of Â given in (1) we will use the following definition:

Â =
1

|T \ S|
∑

i:xi∈T\S

Âi where Âi = Fβ,k(xi)e
√

k/ log(k)1(Ei) , (4)

where Fβ,k as in Equation (1) and Ei is defined to be the following good event:∣∣∣∥xi∥2 −
(
∥zi∥2 + k

)∣∣∣ ≲ log
1

τ
+
(√

k + ∥zi∥
)√

log
1

τ
, (5)

where τ := (1/n)4. The first change in our definition is that we replaced the normalization factor Zβ,k that appeared in (1)

by the simpler expression e
√

k/ log(k). This is because (1 + 2/(
√

k log(k)))k/2+2 = Θ(e
√

k/ log(k)), and using e
√

k/ log(k)

will be more convenient for our calculations later on. Without loss of generality we can use ΠV = Ik as we can all of
the statements that we aim to prove are similarity invariant. The second change is that we are using the good event in the
definition of Â. This is indeed without loss of generality because (i) by Fact B.5 we know that Ei holds for each sample
xi with probability 1− τ , thus by a union bound over all samples we have that all the events Ei hold simultaneously with
probability at least 1− nτ ≥ 1− 1/n3 > 1− δ/8 (for k ≥ 2), and (ii) using the indicator 1(Ei) in the definition of Â shifts
the expected value of Â by a negligible amount (much smaller than η) as we show below:

∣∣∣∣v⊤ E
xi∼N (zi,I)

[
Fβ,k(xi)e

√
k/ log(k)1(Ei)− Fβ,k(xi)e

√
k/ log(k)

]
v

∣∣∣∣
=

∣∣∣∣∣v⊤ E
xi∼N (zi,I)

[(
xix

⊤
i −

√
klog(k)√

klog(k) + 2
I

)
e
− ∥xi∥

2−k√
klog(k)1

(
Ēi
)]

v

∣∣∣∣∣
≤ E

xi∼N (zi,I)

[∣∣∣∣∣(v⊤xi

)2 − √
klog(k)√

klog(k) + 2

∣∣∣∣∣ e− ∥xi∥
2−k√

klog(k)1
(
Ēi
)]

≤
√

Pr
xi∼N (zi,I)

[Ēi]

√√√√√ E
xi∼N (zi,I)

(((v⊤xi)
2 −

√
klog(k)√

klog(k) + 2

)
e
− ∥xi∥2−k√

klog(k)

)2
 (using Cauchy-Schwarz)
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≤
(
1

n

)2

√√√√√ E
xi∼N (zi,I)

(((v⊤xi)
2 −

√
klog(k)√

klog(k) + 2

)
e
− ∥xi∥2−k√

klog(k)

)2
 (using Fact B.5 with τ = (1/n)4)

≲

(
1

n

)2√
klog(k)e2/log

2(k) . (using Claim D.6 applied with β =
√
log(k))

≤ η/2 , (6)

where Claim D.6 that was used above is a bound on the reweighted second moment that can be found in Appendix D.1. The
above is considering only a single term in the definition of Â. By triangle inequality it also follows that

∥∥∥E [Â]−A
∥∥∥ ≤ η/2,

where A = E
[

1
|T\S|

∑
i:xi∈T\S Fβ,k(xi)e

√
k/ log(k)1(Ei)

]
.

We now move to show that v⊤Âv > −η with high probability. Write xi = zi + gi where gi ∼ N (0, I) for i ∈ T \ S. We
decompose the matrix Âi for i : xi ∈ T \ S into three terms

Âi =

((
gig

⊤
i −

√
klog(k)√

klog(k) + 2
I

)
+ (zig

⊤
i + giz

⊤
i ) + ziz

⊤
i

)
e
− ∥xi∥

2−k√
klog(k)1 (Ei)

=: T̂1i + T̂2i + T̂3i ,

where by T̂1i, T̂2i and T̂3i we denote each of the terms that sum to Âi and by T1i, T2i and T3i we denote their corresponding
expectations. We will show concentration for each of the terms separately and then combine the results to show that
v⊤Âv > −η.

First Term Fix v ∈ Rk : ∥v∥ = 1 and let i such that xi ∈ T \ S. We bound the Lp norm of the random variable

v⊤
(
T̂1i − T1i

)
v as follows:∥∥∥v⊤ (T̂1i − T1i

)
v
∥∥∥
Lp

≲
∥∥∥v⊤T̂1iv

∥∥∥
Lp

(by triangle inequality and Jensen’s inequality)

=

∥∥∥∥∥
((

g⊤i v
)2 − √

klog(k)√
klog(k) + 2

)
e
− ∥xi∥

2−k√
klog(k)1(Ei)

∥∥∥∥∥
Lp

≤

∥∥∥∥∥
((

g⊤i v
)2 − √

klog(k)√
klog(k) + 2

)
1 (Ei)

∥∥∥∥∥
Lp

(1/η)o(1)e
− ∥zi∥

2
√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

)
(by Claim D.3)

≤

(∥∥∥(g⊤i v)2∥∥∥
Lp

+

√
klog(k)√

klog(k) + 2

)
(1/η)o(1)e

O(
log(k/η)√

klog(k)
)

(by Claim D.4)

≲

(
p+

√
klog(k)√

klog(k) + 2

)
(1/η)o(1) (by Fact B.3 since g⊤i v ∼ N(0, 1))

≲ p · (1/η)o(1) , (7)

where the third line above uses the definition of the good event Ei. The proof follows by the definition of the events Ei and
some simple algebra. We include the proofs of both claims in Appendix D.1.

Claim D.3. Let Ei denote the event from (5). Then,

exp

(
−∥xi∥2 − k√

klog(k)

)
1(Ei) ≤ exp

(
− ∥zi∥2√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

))
(1/η)o(1) .
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Claim D.4. Fix a k > 10, 0 < η < 1 and C > 8. The following inequalities hold:

i. − x2√
klog(k)

+ C
x
√

log( k
η )√

klog(k)
≤ C2 log( k

η )√
klog(k)

for all x > 0.

ii. x2e
− x2√

klog(k)
+C

x
√

log k
η√

klog(k) ≲ C2
√
klog k log

(
k
η

)
e
C2

log ( k
η )√

klog(k) for all x > 0.

iii. x4e
− 2x2√

klog(k)
+C

x
√

log(k/η)√
klog(k) ≲ C4klog(k) log2

(
k
η

)
e
C2

log ( k
η )√

klog(k) for all x > 0.

As a result of (7), we have that v⊤
(
T̂1i − T1i

)
v (where T1i denotes the expectation of T̂1i) is sub-exponential random

variable with parameter λ = 1
ηo(1) , hence from Bernstein’s inequality we have that

Pr

∣∣∣∣∣∣ 1

αn

∑
i:xi∈T\S

v⊤
(
T̂1i − T1i

)
v

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
−cmin

(
t2αn

λ2
,
tαn

λ

))
,

Using the above with t = η/6, we have that with n = log(1/δ′)
η2+o(1) samples3 we have that with probability at least 1 − δ′

for a fixed vector v it holds that
∣∣∣ 1
αn

∑
i:xi∈T\S v⊤

(
T̂1i − T1i

)
v
∣∣∣ ≤ O (η). Now let C be a cover of the unit ball from

Corollary B.2. By using δ′ = δ
8|C| = δ2−O(k) and a union bound over C we have that

sup
v∈Rk:∥v∥=1

∣∣∣∣∣∣ 1

αn

∑
i:xi∈T\S

v⊤
(
T̂1i − T1i

)
v

∣∣∣∣∣∣ ≤ 10max
v∈C

∣∣∣∣∣∣ 1

αn

∑
i:xi∈T\S

v⊤
(
T̂1i − T1i

)
v

∣∣∣∣∣∣ ,
which can be made less than η/6 with probability 1− δ/8 by using n = d log(1/δ)

η2+o(1) samples.

Third Term For the third term T̂3i = ziz
⊤
i e

− ∥xi∥
2−k√

klog(k) , we will use the Matrix Bernstein Inequality (Fact B.4). Recall our
notation that T3i denotes the expected value of the random matrix T̂3i. First, we have that∥∥∥T̂3i − T3i

∥∥∥
op

≲ ∥T̂3i∥op =

∥∥∥∥∥ziz⊤i e
− ∥xi∥

2−k√
klog(k)1 (Ei)

∥∥∥∥∥
op

=
∥∥ziz⊤i ∥∥op e

− ∥xi∥
2−k√

klog(k)1 (Ei)

= ∥zi∥2 e
− ∥zi∥

2
√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

)
(1/η)o(1) (using Claim D.3)

≲
√
klog(k) log(k/η)(1/η)o(1) , (by Claim D.4)

≲
√
klog3/2(k) log(1/η)(1/η)o(1)

≲
√
klog3/2(k)(1/η)o(1) ,

where the first inequality follows by the triangle inequality and Jensen’s inequality almost surely. Moreover∥∥∥∥E[
(
T̂3i − T3i

)2
]

∥∥∥∥
op
≤
∥∥∥E[T̂ 2

3i]
∥∥∥

=

∥∥∥∥∥E
[
∥zi∥2ziz⊤i e

−2
∥xi∥

2−k√
klog(k)1 (Ei)

]∥∥∥∥∥
op

3Here we have used that without loss of generality α = Ω(1) since we can always treat some of the inliers as outliers in the model of
Definition 1.1
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= ∥zi∥2
∥∥ziz⊤i ∥∥op E

[
e
−2

∥xi∥
2−k√

klog(k)1 (Ei)

]

≤ ∥zi∥4e
− 2∥zi∥

2
√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

)
(1/η)o(1) (using Claim D.3)

≤ klog(k) log2(k/η)e
O(

log(k/η)√
klog(k)

)
(1/η)o(1). (by Claim D.4)

≤ klog3(k) log2(1/η)e
O(

log(1/η)√
klog(k)

)
(1/η)o(1)

≤ klog3(k)(1/η)o(1) .

Hence, from Fact B.4, we have that

Pr


∥∥∥∥∥∥ 1

αn

∑
i:xi∈T\S

(
T̂3i − T3i

)∥∥∥∥∥∥
op

≥ t

 ≤ 2k exp

(
−c ·min

(
t2αn

klog3(k)(1/η)o(1)
,

tαn
√
klog3/2(k)(1/η)o(1)

))
.

In summary, using n = O
(
(1/η)2+o(1)klog3(k) log (1/δ)

)
, we have that

∥∥∥ 1
αn

∑
i:xi∈T\S

(
T̂3i − T3i

)∥∥∥
op
≤ η/6 with

probability at least 1− δ/8.

Second Term For the term T̂2 we will prove a multiplicative bound. Again, fix a direction v with ∥v∥ = 1. We will first
show that v⊤T̂2v is subgaussian by bounding the Lp-norms:

∥∥∥v⊤ (T̂2i − T2i

)
v
∥∥∥
Lp

≲
∥∥∥v⊤T̂2iv

∥∥∥
Lp

=

∥∥∥∥∥(g⊤i vz⊤i v
)
e
− ∥xi∥

2−k√
klog(k)1(Ei)

∥∥∥∥∥
Lp

≤
∥∥g⊤i v∥∥Lp

∣∣v⊤zi∣∣ e− ∥zi∥
2

√
klog(k)

+O

(
∥zi∥

√
log(k/η)√

klog(k)

)
(1/η)o(1) (using Claim D.3)

≲
√
p
∣∣v⊤zi∣∣ e− ∥zi∥

2
√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

)
(1/η)o(1) . (since g⊤i v ∼ N (0, I))

Hence, it follows that v⊤
(
T̂2i − T2i

)
v are independent subgaussian random variables with proxy standard

deviations σi =
∣∣v⊤zi∣∣ e− ∥zi∥

2
√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

)
(1/η)o(1). Thus, the proxy variance σ2 of the average

(1/αn)
∑

i:xiT\S v⊤
(
T̂2i − T2i

)
v is

σ2 ≲
1

(αn)2

∑
i:xi∈T\S

(v⊤zi)
2e

−2
∥zi∥

2
√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

)
(1/η)o(1)

≲
1

(αn)2

∑
i:xi∈T\S

(v⊤zi)
2e−∥zi∥2/

√
klog(k)(1/η)o(1)

≤ 1

(αn)2

∑
i:xi∈T\S

(v⊤zi)
2e−∥zi∥2/(

√
klog(k)+2)(1/η)o(1)

≲
1

αn
v⊤Av(1/η)o(1) , (for A := 1

αn

∑
i:xi∈T\S ziz

⊤
i e

− ∥zi∥
2

√
klog(k)+2 )

where the second line used the following:

−2 ∥zi∥2√
klog(k)

+O

(
∥zi∥

√
log(k/η)√

klog(k)

)
= − ∥zi∥2√

klog(k)
+

(
O

(
∥zi∥

√
log(k/η)√

klog(k)

)
− ∥zi∥2√

klog(k)

)
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≤ − ∥zi∥2√
klog(k)

+O
(
(k log(k))−1/2 log(k/η)

)
(using Claim D.4 for last two terms)

≤ − ∥zi∥2√
klog(k)

+O

(
log(1/η)√
k log k

)
.

Using the subgaussian tails of the random variable 1
αn

∑
i v

⊤
(
T̂2i − T2i

)
v, we have that with probability 1− δ′ it holds∣∣∣∣∣∣ 1

αn

∑
i:xi∈T\S

v⊤
(
T̂2i − T2i

)
v

∣∣∣∣∣∣ ≲ σ
√
log(1/δ′) ≲

√
1

αn
(v⊤Av) (1/η)o(1) log(1/δ′) . (8)

Now let C be a cover of the unit ball with accuracy ξ = η/k. The size of such a cover is |C| = (O(k/η))k (Fact B.1). If we
use δ′ = δ/(8|C|) and do a union bound over C we have that (8) holds with probability 1− δ/8 for all v ∈ C simultaneously.
By plugging in the aforementioned value for δ′, we get that the following holds for all v ∈ C:∣∣∣∣∣∣ 1

αn

∑
i:xi∈T\S

v⊤
(
T̂2i − T2i

)
v

∣∣∣∣∣∣ ≲
√

1

αn
(v⊤Av) (1/η)o(1)k log(k/η) log((1/δ)

≲

√
1

αn
(v⊤Av) (1/η)o(1)k log(1/δ) .

By using αn = O
(
k(1/η)o(1) log(1/δ)

)
samples, the above implies that for all v ∈ C it holds

1

αn

∑
i:xi∈T\S

v⊤T̂2iv ≥
1

αn

∑
i:xi∈T\S

v⊤T2iv − (η/6)
√
v⊤Av .

As a result, combining the bounds for the three terms, we have that for every v ∈ C:

v⊤Âv =
1

αn

∑
i:xi∈T\S

v⊤
(
T̂1i + T̂2i + T̂3i

)
v

≥ 1

αn

∑
i:xi∈T\S

v⊤ (T1i + T2i + T3i) v − η/3− (η/6)
√
v⊤Av

= v⊤ E[Â]v − η/3− (η/6)
√
v⊤Av

≥ v⊤Av − 5

6
η − (η/6)

√
v⊤Av . (by (6))

From this, it now easily follows that v⊤Âv ≥ −η by a simple case analysis: If v⊤Av > 1, then

v⊤Av − 5

6
η − (η/6)

√
v⊤Av ≥ v⊤Av − 5

6
η −
√
v⊤Av (η < 1)

≥ −5

6
η ,

where the last line uses that v⊤Av −
√
v⊤Av ≥ 0 whenever v⊤Av > 1. If on the other hand v⊤Av ≤ 1, then our bound

becomes v⊤Av − 5
6η − (η/6)

√
v⊤Av ≥ v⊤Av − 5

6η − (η/6) = v⊤Av − η ≥ −η, where we also used that v⊤Av ≥ 0 by

definition of A := 1
αn

∑
i:xi∈T\S ziz

⊤
i e

− ∥zi∥
2

√
klog(k)+2 .

So far we have shown that v⊤Âv ≥ −η for every v ∈ C, where C is a cover of the k-dimensional unit ball with
accuracy ξ = η/k. It is easy to see that this implies that u⊤Âu ≥ −4η for all arbitrary u with ∥u∥ = 1. Consider
an arbitrary unit vector u. There exists a v ∈ C such that ∥v − u∥ ≤ ξ i.e., u = v + w, with ∥w∥ ≤ ξ. Thus
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u⊤Âu = v⊤Âv + v⊤Aw + w⊤Av + w⊤Âw ≥ −η − |v⊤Aw| − |w⊤Av| − |w⊤Âw|. Since ∥A∥op ≤
√

klog(k) and
∥w∥ ≤ ξ = η/k, |u⊤Aw| ≤ ∥w∥∥A∥op ≤ η and |w⊤Aw| ≤ ξ2η ≤ η.

The total probability of failure for Item 2 is δ/2 by the union bound as the proof relies on 4 events with probability of failure
δ/8.

Proof of Item 1 We will use a similar argument as in Item 2. Let Ei be the same as in (5). First, we will use

Â =
1

|S|
∑

i:xi∈S

Âi where Âi = Fβ,k(xi)e
√

k/ log(k)1(Ei) .

The points xi ∈ S are all drawn from the same Gaussian component N (µ, I). Fix v ∈ Rk : ∥v∥ = 1. We bound the Lp

norm of the random variable v⊤
(
Âi −E[Ai]

)
v for i : xi ∈ S as follows:∥∥∥v⊤ (Âi −E[Ai]

)
v
∥∥∥
Lp

(9)

≲
∥∥∥v⊤Âiv

∥∥∥
Lp

(by triangle inequality and Jensen’s inequality)

=

∥∥∥∥∥
((

x⊤
i v
)2 − √

klog(k)√
klog(k) + 2

)
e
− ∥xi∥

2−k√
klog(k)1(Ei)

∥∥∥∥∥
Lp

≤

∥∥∥∥∥(x⊤
i v
)2 − √

klog(k)√
klog(k) + 2

∥∥∥∥∥
Lp

e
− ∥µ∥2√

klog(k)
+O

(
∥µ∥

√
log(k/η)√

klog(k)

)
(1/η)o(1) (by Claim D.3)

≤

(∥∥∥(µ⊤v + gi
)2∥∥∥

Lp

+

√
klog(k)√

klog(k) + 2

)
e
− ∥µ∥2√

klog(k)
+O

(
∥µ∥

√
log(k/η)√

klog(k)

)
(1/η)o(1) (xi = gi + µ for gi ∼ N(0, 1))

≤

((
µ⊤v

)2
+
∥∥g2i ∥∥Lp

+

√
klog(k)√

klog(k) + 2

)
e
− ∥µ∥2√

klog(k)
+O

(
∥µ∥

√
log(k/η)√

klog(k)

)
(1/η)o(1)

≲

(
∥µ∥2 + p+

√
klog(k)√

klog(k) + 2

)
e
− ∥µ∥2√

klog(k)
+O

(
∥µ∥

√
log(k/η)√

klog(k)

)
(1/η)o(1) (by Fact B.3)

≲ p∥µ∥2e
− ∥µ∥2√

klog(k)
+O

(
∥µ∥

√
log(k/η)√

klog(k)

)
(1/η)o(1)

≲ p(1/η)o(1) . (∥µ∥ = O(1))

Hence, by a cover argument identical to the one that we used when treating the first term in Item 2, we have that with
n = O

(
k log (1/δ)
η2+o(1)

)
we have that

∥∥∥Â−E[A]
∥∥∥

op
≤ η/2 and hence

∥∥∥Â−A
∥∥∥

op
≤ η with probability at least 1− δ/2 where

A := µµ⊤e
− ∥µ∥2√

klog(k)+2 .

Proof of Item 3 Let Â the sample average matrix from (1) over the whole sample set T with β = 1, we will show that
tr(Â) ≤ 18

√
klog(k). In fact, we will show that this holds with probability 1.

tr(Â) =
1

n

∑
i∈[n]

(
∥xi∥2 −

√
klog(k)√

klog(k) + 2
k

)
e
− ∥xi∥

2
√

klog(k) (1 + 2/
√
klog(k))k/2+2

=
1

n

∑
i∈[n]

(
∥xi∥2 −

√
klog(k)√

klog(k) + 2
k

)
e
− ∥xi∥

2−k√
klog(k) e−

√
k/log(k)(1 + 2/

√
klog(k))k/2+2 .

21



Efficient Multivariate Robust Mean Estimation Under Mean-Shift Contamination

We will show that each term in that sum individually is at most 18
√
klog(k). This will follow by two facts: (i) we

have that e−
√

k/log(k)(1 + 2/
√
klog(k))k/2+2 ≤ 6 for all k ≥ 10, and (ii) it is true that (∥xi∥2 − k

√
klog(k)/(2 +√

klog(k)))e
− ∥xi∥

2−k√
klog(k) ≤ 3

√
klog(k), which we will show in what follows. Let y := ∥xi∥2 −

√
klog(k)√

klog(k)+2
k. We have that

(
∥xi∥2 −

√
klog(k)√

klog(k) + 2
k

)
e
− ∥xi∥

2−k√
klog(k) = ye

− y√
klog(k) e

2
√

k√
klog(k)+2

≤
√
klog(k)

e
e

2
√

k√
klog(k)+2

≤ e
√

klog(k)

≤ 3
√
klog(k) ,

where the first step is a re-writing, the second step uses that supy∈R ye
− y√

klog(k) ≤
√
klog(k)/e, and the last step uses that

2
√
k

2+
√

klog(k)
≤ 2 for all k > 10.

The result follows by a union bound over over all three conditions.

Lemma D.5. Let T be a set of n α-corrupted set of points from N (µ, I) according to Definition 1.1 for some µ with
∥µ∥ = O(1). Assume n = k5

η2δ2
C/ϵ2 for a sufficiently large absolute constant C, where k ≥ 1/ϵ2 and η ≤ ϵ. Denote by

z1, . . . , zαn the adversarial points used in Definition 1.1. Then, with probability at least 1− δ, T is (η, ϵ)-good with respect
to µ, z1, . . . , zαn.

Proof. Let S be the subset of the samples that correspond to inliers and T \ S the subset corresponding to outliers. We want
to establish the two conditions of Definition 2.6. We prove each one separately:

Proof of Item 2 Let Â = 1
αn

∑
i:xi∈T\S Âi, where Âi as defined in Equation (1) for β = ϵ, also let A = E[Â]. Now

define the matrix ∆ = Â−A. We will show that for each element ∆ij , with high probability 1− δ it holds |∆ij | ≤ η/k,

which will allow us to conclude that ∥∆∥F =
√∑

ij |∆ij |2 ≤
√

k2η2/k2 = η, which in its turn will imply the desired

∥∆∥op ≤ ∥∆∥F ≤ η.

Fix s, t ∈ [k] and denote by ei the i-th element of the standard basis of Rk. By Lemma 2.3 we have that E[∆kℓ] = 0 and by
Claim D.6 (applied with β = ϵ), we have that

Var[∆st] ≤
1

(αn)2

∑
i:xi∈T\S

Var[e⊤s (Âi −A)et] ≲
e4/ϵ

2

d

αn
.

Thus, by Chebyshev’s inequality, with probability at least 1− τ , we have that

|∆st| ≤
√

Var[∆st]

τ
≲

√
e4/ϵ2k

ατn

The right hand side becomes less than η/k when n = O
(

k3

η2τ e
4/ϵ2
)

. Finally, we can assume α = Ω(1) without loss of
generality, by simply treating some of inlier points as outliers in Definition 2.6.

Now, in order to do a union bound over all pairs (s, t), for s ∈ [k], t ∈ [k], we will use τ = δ
k2 for the failure probability.

This brings the final sample complexity to n = O
(

k5

η2δ e
4/ϵ2
)

.

Proof of Item 1 The proof of this is a special case of the proof of Item 2 where all the zi’s are the same and equal to µ.
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Proof of Item 3 Let Â the sample average matrix from (1) over the whole sample set T with β = ϵ, we will show
that tr(Â) ≤ 2ϵ

√
k with probability 1 − δ. From Item 1 and Item 2 we have proved that

∥∥∥Â−A
∥∥∥

F
≤ η , where

A := 1
n

∑
i:xi∈Tt

ziz
⊤
i e

− ∥zi∥
2

ϵ
√

k+2 . Consequently,

tr(Â) = tr(A) + tr(Â−A) ≤ ϵ
√
k +
√
k∥Â−A∥F ≤ ϵ

√
k +
√
kη ≤ 2ϵ

√
k ,

where the last inequality uses that η ≤ ϵ.

D.1. Proof of Supporting Claims

We restate and prove the following claims that were used in the previous section.

Claim D.6. Assume k > 1/β2. Consider the random k×k matrix Âx := Zβ,kFβ,k(x), with x ∼ N (µ, Ik) is k-dimensional
normal, and Zβ,k, Fβ,k as defined in Equation (1). For any two unit vectors v, u, it holds Var[v⊤Âxu] ≲ e4/β

2

β2k.

Proof. For the random variable Y = v⊤Âxu, we have that

E[|Y |p] = Zp

Z ′

∫
Rk

∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
p

e
−p

∥x∥2

β
√

k e−
∥x−µ∥2

2 dx (for Z ′ = (2π)k/2)

=
Zp

Z ′

∫
Rk

∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
p

e
− 1

2 (∥x∥
2( 2p

β
√

k
+1)−2x⊤µ+∥µ∥2)

dx

=
Zp

Z ′

∫
Rk

∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
p

e−
c
2 (∥x∥

2− 2
cx

⊤µ+ 1
c ∥µ∥

2)dx (for c = 2p

β
√
k
+ 1)

=
Zp

Z ′

∫
Rk

∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
p

e−
c
2 (∥x−

1
cµ∥

2+( 1
c−

1
c2

)∥µ∥2)dx

=
Zpe−

1
2 (1−

1
c )∥µ∥

2

Z ′

∫
Rk

∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
p

e−
c
2∥x−

1
cµ∥

2

dx

=
Zpe

− p

2p+β
√

k
∥µ∥2

Z ′′

Z ′ E
x∼N ( 1

cµ,
1
c I)

[∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
p]

(for Z ′′ = (2π)k/2
√

1
ck

)

=
Zpe

− p

2p+β
√

k
∥µ∥2

(1 + 2p

β
√
k
)k/2

E
x∼N ( 1

cµ,
1
c I)

[∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
p]

.

For p = 2, this becomes

E[|Y |2] ≲
(1 + 2

β
√
k
)k+4e

− 2∥µ∥2

4+β
√

k

(1 + 4/(β
√
k))k/2

E
x∼N ( 1

cµ,
1
c I)

∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
2


≲ e4/β
2

e
− 2∥µ∥2

4+β
√

k E
x∼N ( 1

cµ,
1
c I)

∣∣∣∣∣(v⊤x)(u⊤x)− β
√
k

2 + β
√
k
v⊤u

∣∣∣∣∣
2
 (explained below)

≲ e4/β
2

e
− 2∥µ∥2

4+β
√

k E
x∼N ( 1

cµ,
1
c I)

[∣∣(v⊤x)(u⊤x)
∣∣2 + β

√
k

2 + β
√
k
|v⊤u|2

]
(using (a+ b)2 ≤ 2a2 + 2b2)

≲ e4/β
2

e
− 2∥µ∥2

4+β
√

k

(
E

x∼N ( 1
cµ,

1
c I)

[∣∣(v⊤x)(u⊤x)
∣∣2]+ β

√
k

2 + β
√
k

)

= e4/β
2

e
− 2∥µ∥2

4+β
√

k

(
E

x∼N ( 1
cµ,

1
c I)

[∣∣(v⊤x)(av⊤x+ bz⊤x)
∣∣2]+ 1

)
(u=av+bz for z⊥v, a:=u⊤v, b:=

√
1−a2)
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= e4/β
2

e
− 2∥µ∥2

4+β
√

k

(
E

x∼N ( 1
cµ,

1
c I)

[a2(v⊤x)4 + 2ab(v⊤x)3(z⊤x) + b2(v⊤x)2(z⊤x)2] + 1

)

= e4/β
2

e
− 2∥µ∥2

4+β
√

k
(
a2 E[x4] + 2abE[x3]E[y] + b2 E[x2]E[y2] + 1

)
(x ∼ N ( 1cv

⊤µ, 1
c ) and y ∼ N ( 1c z

⊤µ, 1
c ))

≲ e4/β
2

e
− 2∥µ∥2

4+β
√

k

(
∥µ∥4

c4
+
∥µ∥3

c3
+
∥µ∥2

c2
+

1

c4
+ 1

)
(using |a| ≤ 1, |b| ≤ 1 and Ey∼N (z,σ2)[x

4] = z4 + 6z2σ2 + 3σ4)

≲ e4/β
2

e
− 2∥µ∥2

4+β
√

k
(
∥µ∥4 + 1

)
(using c = 2p

β
√
k
+ 1 ≥ 1)

≲ e4/β
2

β2k . (using the fact supx∈R x4e−x2/γ ≤ γ2)

We now explain the second step above, which claims that (1 + 2
β
√
k
)k+4/(1 + 4

β
√
k
)k/2 ≲ e4/β

2

: First note that since

k ≥ 1/β2 we have that (1+ 2
β
√
k
)4 ≤ 34 = O(1), thus it suffices to prove that (1+ 2

β
√
k
)k/(1+ 4

β
√
k
)k/2 ≲ e4/β

2

. Towards

this end, we will use the fact that ex ≤ (1 + x/n)n+x/2 for all x, n > 0. Applying this with n = k/2 and x = 2
√
k/β, we

have that

e
2
√

k
β ≤

(
1 +

4

β
√
k

) k
2+

√
k

β

.

Rearranging, this gives that (
1 +

4

β
√
k

)k/2

≥ e
2
√

k
β /

(
1 +

4

β
√
k

)√
k/β

. (10)

Finally, using that, we obtain:(
1 + 2

β
√
k

)k
(
1 + 4

β
√
k

)k/2 ≤
(
1 + 4

β
√
k

)√k/β (
1 + 2

β
√
k

)k
e

2
√

k
β

≤
e4/β

2
(
1 + 2

β
√
k

)k
e

2
√

k
β

≤ e
4
β2 + 2

√
k

β − 2
√

k
β ≤ e4/β

2

.

Claim D.7. Let Ei denote the event from (5). Then,

exp

(
−∥xi∥2 − k√

klog(k)

)
1(Ei) ≤ exp

(
− ∥zi∥2√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

))
(1/η)o(1) .

Proof. Let τ := 1/n4, then, by the definition of the event Ei in (5):

exp

(
−∥xi∥2 − k√

klog(k)

)
1(Ei) ≤ exp

−∥zi∥2 +O
(
log 1

τ +
(√

k + ∥zi∥
)√

log(1/τ)
)

√
klog(k)


≤ exp

[
− ∥zi∥2√

klog(k)
+O

(
log(1/τ)√
klog(k)

+

√
log(1/τ)√
log(k)

+
∥zi∥

√
log(1/τ)√

klog(k)

)]

≤ exp

[
− ∥zi∥2√

klog(k)
+O

(
log(k/η)√
klog(k)

+

√
log(k/η)√
log(k)

+
∥zi∥

√
log(k/η)√

klog(k)

)]

≤ exp

[
− ∥zi∥2√

klog(k)
+O

(
log(k) + log(1/η)√

klog(k)
+

√
log(k/η)√
log(k)

+
∥zi∥

√
log(k/η)√

klog(k)

)]
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≤ exp

[
− ∥zi∥2√

klog(k)
+O

(
log(1/η)√
klog(k)

+

√
log(k/η)√
log(k)

+
∥zi∥

√
log(k/η)√

klog(k)

)]

≤ exp

[
− ∥zi∥2√

klog(k)
+O

(
log(1/η)√
klog(k)

+
√
log(1/η) +

∥zi∥
√
log(k/η)√

klog(k)

)]

≤ exp

[
− ∥zi∥2√

klog(k)
+O

(
∥zi∥

√
log(k/η)√

klog(k)

)]
(1/η)o(1) .

In the above, we first used that τ = (1/n)O(1) and n = (k/η)O(1), then we used that log(k)/
√
k = o(1). We have also

used that e
√

log(1/η) = (1/η)o(1) and e
log(1/η)√

k log k = (1/η)o(1).

Claim D.8. Fix a k > 10, 0 < η < 1 and C > 8. The following inequalities hold:

i. − x2√
klog(k)

+ C
x
√

log( k
η )√

klog(k)
≤ C2 log( k

η )√
klog(k)

for all x > 0.

ii. x2e
− x2√

klog(k)
+C

x
√

log k
η√

klog(k) ≲ C2
√
klog k log

(
k
η

)
e
C2

log ( k
η )√

klog(k) for all x > 0.

iii. x4e
− 2x2√

klog(k)
+C

x
√

log(k/η)√
klog(k) ≲ C4klog(k) log2

(
k
η

)
e
C2

log ( k
η )√

klog(k) for all x > 0.

Proof. We prove each item in turn.

Proof of i Let f(x) = − x2√
klog(k)

+ C
x
√

log( k
η )√

klog(k)
as limx→+∞ f(x) = −∞ and f(0) = 0 and f continuous on (0,+∞)

we have that the maximum must occur on a point in (0,+∞) where the derivative is 0 either it is upper bounded than 0.
Also

f ′(x) = 0

⇒x =
C

2

√
log

(
k

η

)
.

Thus, as f ′(x) ≤ C2

2

log( k
η )√

klog(k)
, we get the result.

Proof of ii Let f(x) = x2e
− x2√

klog(k)
+C

x

√
log( k

η )√
klog(k) . As limx→+∞ f(x) = 0 and f(0) = 0 and f continuous on (0,+∞),

we have that the maximum must occur on a point in (0,+∞) where the derivative is 0. We have

f ′(x) = 2xe
− x2√

klog(k)
+C

x

√
log( k

η )√
klog(k) +

C

x2

√
log
(

k
η

)
√
klog(k)

− 2x3√
klog(k)

 e
− x2√

klog(k)
+C

x

√
log( k

η )√
klog(k) ,

so solving for x > 0 we get x = 1
4

(
C

√
log
(

k
η

)
+

√
16
√
klog(k) + C2 log

(
k
η

))
. Hence, it suffices to compute

f

C

√
log
(

k
η

)
+

√
C2 log

(
k
η

)
+ 16

√
klog(k)

4


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≤ 1

16
e

C

√
log ( k

η )
(
C

√
log ( k

η )+
√

16
√

klog(k)+C2 log ( k
η )

)
4
√

klog(k)

(
C

√
log

(
k

η

)
+

√
16
√
klog(k) + C2 log

(
k

η

))2

≲ C2
√

klog(k) log

(
k

η

)
e
C2

log ( k
η )√

klog(k) .

Hence, x2e
− x2√

klog(k)
+C

x
√

log(k/η)√
klog(k) ≲ C2

√
klog(k) log

(
k
η

)
e
3C2

log ( k
η )√

klog(k) .

Proof of iii Similarly to the previous inequality, let

f(x) = x4e
− x2√

klog(k)
+C

x

√
log( k

η )√
klog(k) .

As limx→+∞ f(x) = −∞ and f(0) = 0 and f continuous on (0,+∞), we have that the maximum must occur on a point
in (0,+∞) where the derivative is 0 either it is upper bounded than 0. Also, we have that

f ′(x) = 0

⇒

4x3 − 2x5√
klog(k)

+ C

x4

√
log
(

k
η

)
√
klog(k)

 e
− x2√

klog(k)
+C

x

√
log( k

η )√
klog(k) = 0

⇒x =
1

8

(
C

√
log

(
k

η

)
+

√
64
√
klog(k) + C2 log

(
k

η

))
. (for x > 0)

Moreover,

f

(
1

8

(
C

√
log

(
k

η

)
+

√
64
√
klog(k) + C2 log

(
k

η

)))

≲ C4klog(k) log2
(
k

η

)
e
C2

log ( k
η )√

klog(k) .

E. Full Proof of Theorem 1.2
We now combine everything to prove the main theorem, which we restate below:

Theorem 1.2. (Main Algorithmic Result) Let d ∈ Z+ denote the dimension, µ ∈ Rd be an unknown mean vector, ϵ ∈ (0, 1)
be an accuracy parameter, and α ≤ 0.49 be a contamination parameter. There exists an algorithm that takes as input ϵ,
draws n = Õ(d/ϵ2+o(1) + 2O(1/ϵ2)) α-corrupted samples from N (µ, I) under the mean-shift model (Definition 1.1), runs
in poly(n, d) time, and outputs µ̂ such that with probability at least 0.99 it holds ∥µ̂− µ∥ ≤ ϵ.

Proof. The main while loop of the algorithm maintains a subspace Vt whose dimension, denoted by k in the pseudocode,
starts from d and can only decrease from a round to the next one. We will examine two distinct “phases” (or parts) of
this while loop: Phase 1 will refer to all the iterations during which C log4(d)/ϵ5 ≤ k ≤ d, and phase 2 will refer to all
the iterations with 1/ϵ2 ≤ k ≤ C log4(d)/ϵ5. The algorithm and the analysis will be slightly different for each phase.
Regarding notation, let us denote by T1 the number of rounds of phase 1 and by T2 the number of rounds of phase 2 (i.e.,
phase 1 consists of all the iterations for t = 1, . . . , T1 and phase 2 consists of the iterations for t = T1 + 1, . . . , T1 + T2).
The proof of correctness relies on the following claims regarding each part of the algorithm. We first state the claims, we
then show how we can prove the theorem using the claims, and we finally prove each claim individually.
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1. Warm start: If µ̂0 denotes the estimator from line 1 of the algorithm, it holds ∥µ̂0 − µ∥ = O(1) with probability 0.999.

2. Phase 1 (C log4(d)/ϵ5 ≤ k ≤ d):

(a) Let Et for t ∈ 1, 2, . . . be the event that the set Tt from line 1, after the transformation of line 1 is (ηt,
√

log(k))-good
(cf. Definition 2.6) with respect to µ̃t, z̃

(t)
1 , . . . , z̃

(t)
α , where ηt is the parameter set in line 1, µ̃t = ProjVt

(µ− µ̂0)

and z̃
(t)
1 , . . . , z̃

(t)
α are some vectors in Vt. Then, with probability at least 0.999, the events Et for t = 0, 1, . . . , log d

are all true.
(b) Assuming Et hold for t = 1, . . . , T1, Phase 1 terminates after at most T1 ≤ log d iterations.
(c) Let C be a sufficiently large absolute constant. Denote by Vt+1 the same subspace as in line 1 of the algorithm and

by V⊥
t+1 its orthogonal complement. During the t-th iteration of the while loop, when the execution reaches line 1, it

holds ∥ProjV⊥
t+1

(µ̂0 − µ)∥ ≤ C
∑t

t′=1

√
ηt′ , where ηt′ is the value set in line 1.

3. Phase 2 (1/ϵ2 ≤ k ≤ C log4(d)/ϵ5):

(a) Let E ′t be the event that the set Tt from line 1, after the transformation of line 1 is (ηt, ϵ)-good (cf. Definition 2.6)
with respect to µ̃t, z̃

(t)
1 , . . . , z̃

(t)
α , where ηt is the parameter set in 1, µ̃ = ProjVt

(µ− µ̂0) and z̃
(t)
1 , . . . , z̃

(t)
α are some

vectors in Vt. Then, with probability at least 0.999, the events E ′t for t = T1 + 1, . . . , T1 + 100 log(log(d)/ϵ) are
all true.

(b) Assuming the events E ′t from above hold, in every iteration of Phase 2 the dimension k gets halved. As a
corollary, the number of iterations of Phase 2 (i.e., number of iterations for which 1/ϵ2 ≤ k ≤ C log4(d)/ϵ5) is
T2 ≤ 100 log(log(d)/ϵ).

(c) Let C be a sufficiently large absolute constant. Denote by Vt+1 the same subspace as in line 1 of the algorithm
and by V⊥

t+1 its orthogonal complement. Assume that the events Et for t ∈ [tmax] are all true. Then, the following
holds for any t ∈ [tmax]: During the t-th iteration of the while loop, when the execution reaches line 1, it holds
∥ProjV⊥

t+1
(µ̂0 − µ)∥ ≤ C

∑t
t′=1

√
ηt′ , where ηt′ are the values set in lines 1 and 1.

4. Estimator for remaining subspace: With probability at least 0.999, the lines 1-1 of the algorithm find a vector µ̂1 ∈ Vt
such that ∥µ̂1 − ProjVt

(µ)∥ ≤ ϵ.

We now show how given the claims above it follows that, with probability at least 0.99, the output of the algorithm
µ̂ := µ̂0 + µ̂1 satisfies ∥µ̂− µ∥ ≤ ϵ. Without loss of generality, it suffices to show ∥µ̂− µ∥ = O(ϵ) as, if this is true, then
one can also obtain error exactly ϵ by running the algorithm with cϵ in place of ϵ, for c being a sufficiently small constant.
Let t = T1 + T2, so that Vt denotes the subspace after exiting the while loop. By decomposing the true mean into the
projections onto the two orthogonal subspaces we have that µ̂ = ProjV⊥

t
(µ) + ProjVt

(µ): By the Pythagorean theorem:

∥µ̂− µ∥2 =
∥∥∥ProjV⊥

t
(µ̂0 − µ) + ProjVt

(µ̂1 − µ)
∥∥∥2 =

∥∥∥ProjV⊥
t
(µ̂0 − µ)

∥∥∥2 + ∥∥ProjVt
(µ̂1 − µ)

∥∥2 .

The last term is
∥∥ProjVt

(µ̂1 − µ)
∥∥ ≤ ϵ by Item 4. It suffices to bound the first term. Towards this end, denote D :=

C log4(d)/ϵ5, which is the dimension during the first iteration of phase 2. Item 2c for t = T1 + T2 (which according to our
notation denotes the last iteration of Phase 2) yields the following (we explain the derivations below):

∥∥∥ProjV⊥
t
(µ̂0 − µ)

∥∥∥ ≲
T1+T2∑
t′=1

√
ηt′ (11)

≤
T1∑

t′=1

√
ηt′ +

T1+T2∑
t′=T1+1

√
ηt′ (12)

≤ T1
ϵ

log d
+

T1+T2∑
t′=T1+1

√
ηt′ (13)
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≤ ϵ+

T1+T2∑
t′=T1+1

√
ηt′ (T1 ≤ log d by Item 2b)

≤ ϵ+

(√
36ϵ√
D

+

√
36ϵ√
D/2

+ · · ·+
√

36ϵ√
1/ϵ2

)
(14)

≤ ϵ+
6
√
ϵ

D1/4

lg(Dϵ2)∑
i=0

2i/4 (15)

≤ ϵ+
6
√
ϵ

(21/4 − 1)D1/4
2

lg(Dϵ2)
4 (16)

= ϵ+
6
√
ϵ

(21/4 − 1)D1/4
(Dϵ2)1/4 ≲ ϵ . (17)

We proceed to explain the steps above: (14) uses the definition of ηt := 36ϵ/
√
k. The dimension k for the first round of

Phase 2 is D and in every subsequent round it gets divided by 2 (by the claim of Item 3b). Phase 2 ends when the dimension
becomes 1/ϵ2, which corresponds to the last term in the series. (15) is a rewriting. The summation goes from i = 0 to
lg(Dϵ2) because lg(Dϵ2) is the solution to the equation D/2x = 1/ϵ2 which seeks to determine after how many rounds of
halving the dimension becomes 1/ϵ2. The next line, (16) uses the closed form formula for that series.

We now prove all the individual claims.

Proof of Item 1 This holds with probability at least 0.999 by an application of Corollary 2.12 in Diakonikolas & Kane
(2023). Without loss of generality, we apply this corollary with the fraction of outliers being α = Ω(1) since we can always
treat some of the inliers as outliers in the model of Definition 1.1. That corollary yields that n0 = O(d) samples suffice.

Proof of Item 2b We claim that each iteration of Phase 1 of the while loop decreases the dimension from k to k′ :=
18
√
klog(k)/ηt. This is because Ei hold for i = 1, . . . , t, and Item 3 of Definition 1.1 states that tr(Â) ≤ 18

√
klog(k).

This means that in line 1 of the algorithm, the number of eigenvectors with eigenvalue greater than ηt can be at most
tr(Ât)/ηt ≤ 18

√
klog(k)/ηt.

The dimension thus gets divided by 2 whenever 18
√
klog(k)/ηt < k/2. By plugging in the value ηt := (ϵ/ log d)2 we

obtain that the dimension gets halved whenever k > 362 · log5(d)/ϵ4. This indeed holds because of line 1. Hence the
number of iterations is at most log(d).

Proof of Item 2a During the t-th round of our algorithm let z(t)i denote the outlier centers that the adversary chooses for
the samples, in the model of Definition 1.1. Note that performing the mean shift x̃i = xi − µ̂0, means that the shifted points
x̃i effectively come from the model described in Definition 1.1 with shifted mean µ̃ = µ− µ̂0 and shifted outlier centers
z̃
(t)
i = z

(t)
i − µ̂0. Similarly, the projection operation of line 1 makes the points essentially come from a model that uses

mean µ̃t = ProjVt
(µ− µ̂0).

Now by a union bound over all of the log d iterations of Phase 1 and Lemma 2.7 with η = ηt = (ϵ/ log d)2 and
δ = 10−3/ log d, we have that all of the sets Tt of points drawn in line 1 will be (ηt,

√
log(k))-good with probability at least

0.999. Note that the condition ∥µ̃t∥ ≤ ∥µ− µ̂0∥ = O(1) that this lemma requires has already been established in Item 1,
thus the lemma is indeed applicable. The sample complexity that this lemma yields is k log3 k(1/η)2+o(1)/δ. By using
η = ηt = (ϵ/ log d)2 and δ = 10−3/ log d this becomes k(log(d)/ϵ)2+o(1) which is smaller than the number of samples n1

that we use in our algorithm (cf. line 1).

Proof of Item 2c Proof by induction. Denote by C the constant in the statement of Lemma 2.9. The base case t = 1
follows immediately by Lemma 2.9 applied with U = Rd and V = V⊥

2 . For the induction step, assume that the claim
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holds for t and we will show it for t + 1. Let Vt+1 denote the subspace maintained by the algorithm at the end of (line
1) the t-th iteration. By inductive hypothesis, we know that ∥ProjV⊥

t+1
(µ̂0 − µ)∥ ≤ C

∑t
τ=1

√
ητ . The goal is to show

the bound for the end of the next iteration, i.e., show that ∥ProjV⊥
t+2

(µ̂0 − µ)∥ ≤ C
∑t+1

τ=1

√
ητ . We split V⊥

t+2 into two

parts: V⊥
t+2 ∩ Vt+1 and V⊥

t+2 ∩ V⊥
t+1. We now apply Lemma 2.9 with U = Vt+1, β =

√
log(d) and V = V⊥

t+2 ∩ Vt+1.
The lemma is indeed applicable because the set Tt of points are (ηt,

√
log(k))-good. The application of the lemma

yields that ∥ProjV⊥
t+2∩Vt+1

(µ̂0 − µ)∥ ≤ C
√
ηt+1. Also, the inductive hypothesis that we mentioned earlier implies that

∥ProjV⊥
t+2∩V⊥

t+1
(µ̂0−µ)∥ ≤ C

∑t
τ=1

√
ητ . Combining the previous two we have that ∥ProjV⊥

t+2
(µ̂0−µ)∥ ≤ C

∑t+1
τ=1

√
ητ .

Proof of Item 3a This follows by an application of Lemma 2.8 with probability of failure δ = 10−5/ log(log(d)/ϵ). Note
that the requirement of that lemma that k > 1/ϵ2 holds since the algorithm would exit entirely the while loop of line 1
otherwise. Since the dimension is k ≤ C log4(d)/ϵ5 during this phase of the algorithm, and ηt = O(ϵ/

√
k), the sample

complexity n = k5

η2
t δ
2O(1/ϵ2) mentioned in that lemma is overall 2O(1/ϵ2) polylog(d) . By a union bound over the iterations

of the algorithm, we have that all the sets Tt during the first 100 log(log(d)/ϵ) rounds of Phase 2 will be (ηt, ϵ)-good (and
as we will show below, Phase 2 will not have more than 100 log(log(d)/ϵ)-many rounds).

Proof of Item 3b Consider a single iteration of Phase 2 of the algorithm, and let Ât be the matrix from line 1. Since the set
of points on which Ât is computed is (ηt, ϵ)-good, we have that tr(Â) is at most 18ϵ

√
k (cf. Item 3 of Definition 2.6). If k′

denotes the number of eigenvalues larger than ηt then we have k′ ≤ 18ϵ
√
k/ηt. Note that, by definition of ηt := 36ϵ/

√
k,

18ϵ
√
k

ηt
=

18ϵ
√
k
√
k

36ϵ
≤ k/2.

The dimension in each round is therefore being halved.

Proof of Item 3c This follows by the same argument we used for Phase 1, but applying Lemma 2.9 with β = ϵ instead of
β =
√
log k.

Proof of Item 4 This follows by an application of Proposition 2.1.

Runtime and Sample Complexity of Algorithm 1 Let n0, n1, n2 be as defined in line Algorithm 1 of the algorithm. Recall
that we denote by T1 the number of iterations of the first phase of the while loop (interactions for which C log4(d)/ϵ5 ≤
k ≤ d) and by T2 the number of the remaining iterations of the while loop. The sample complexity of the algorithm is the
following:

n = n0 + n1 · T1 + n2 · (T2 + 1)

= O(d) +
dpolylog(d)

ϵ2+o(1)
+ 2O(1/ϵ2) polylog(d)

=
dpolylog(d)

ϵ2+o(1)
+ 2O(1/ϵ2) polylog(d).

Regarding runtime: The runtime of the warm-start step is τ1 = poly(n0d). The runtime of the while-loop part of the
algorithm is τ2 = poly(n1d) because each iteration runs in polynomial time and we have at most T1 + T2 = O(log d)
iterations. The runtime of the last step of the algorithm (1) is τ3 = 2O(k) poly(n2d), where k = 1/ϵ2 here denotes the
dimension of the subspace Vt for t = T1 + T2, i.e., the dimension that we end up after the while loop finishes. Since
n2 = 2Θ(1/ϵ2), that runtime is overall τ3 = poly(n2d). Thus, the overall runtime of the algorithm is polynomial in the size
of the input.
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F. Higher Breakdown Point and Adaptivity
In this section, we use Lepskii’s method (Lepskii, 1991; Birgé, 2001) to prove Theorem F.1 (stated below), a generalization
of Theorem 1.2 which provides similar guarantees as Theorem 1.2 but works for any contamination parameter α, and does
not require a priori knowledge of α. Specifically, we can generalize the algorithm to work for α ∈ (0, 1/2 − c) for any
c < 1/2, which is unknown to the algorithm. The price that we pay for that is a slightly larger dependence on ϵ in the
sample complexity and the fact that the error becomes Oc(ϵ) instead of ϵ, where the Oc notation hides factors that depend
on c (i.e., if c is a constant, the error increases only by a constant factor). Moreover, even in one dimension, Kotekal & Gao
(2025) has shown that consistent estimation with arbitrarily small error ϵ using the information theoretic optimal of 2Θ(1/ϵ2)

samples is only possible when c > 2−Θ(1/ϵ2), thus we only consider that regime in this section.

Theorem F.1. (Higher breakdown point) Let d ∈ Z+ denote the dimension, µ ∈ Rd be an unknown mean vector, ϵ ∈ (0, 1)

be an accuracy parameter. Fix n = (d · (1/ϵ)C + 2C/ϵ2) logC(d), for a sufficiently large constant C. Suppose that we
have sample access to α-corrupted samples from N (µ, I) under the mean-shift model (Definition 1.1) with contamination
parameter α ∈ (0, 1/2− c) where 2−1/(2ϵ2) < c ≤ 1/2. There exists an algorithm that takes as input ϵ, draws n samples,
runs in poly(n, d) time, and outputs µ̂ such that with probability at least 0.99 it holds ∥µ̂− µ∥ ≤ Oc(ϵ).

The first step towards proving Theorem F.1 is to show that there exists an estimator that, having γ as input achieves error
Oγ(ϵ), i.e., an estimator that requires knowledge of γ but γ can be arbitrary. We show this in Claim F.2. Then, we can use
Lepskii’s method to obtain an estimator with the same error, but without knowledge of γ.

Claim F.2. Let d ∈ Z+ denote the dimension, µ ∈ Rd be an unknown mean vector and ϵ ∈ (0, 1) be an accuracy parameter.
Let α be a contamination parameter. There exists an algorithm that takes as input ϵ, α, draws n = Õ(d/(δϵ2+o(1)) +

2O(1/ϵ2)/δ) α-corrupted samples from N (µ, I) under the mean-shift model (Definition 1.1), runs in poly(n, d) time, and
outputs µ̂ such that, if α ≤ 1/2− 2−1/(2ϵ2), then with probability at least 1− δ it holds ∥µ̂− µ∥ ≤ eO(1/(1−2α)2)ϵ.

Proof. For notational convenience, instead of working with the contamination parameter α from Definition 1.1, we will use
the reparameterization γ = 1

1−2α . We now describe the modifications that we need to do to Algorithm 1 and its analysis in
order to obtain Claim F.2

First, we replace the rough estimation step of line 1 in Algorithm 1 with an estimator that takes α in its input and achieves
error O(γ) instead of an O(1) (e.g., Dalalyan & Minasyan (2022), Exercise 2.10 Diakonikolas & Kane (2023)).

This change affects the error given by the analysis of the dimensionality reduction, Lemma 2.9. It is easy to see that
the conclusion of that lemma will now become ∥ProjU (µ)∥ = O(eγ

2√
η) instead of ∥ProjU (µ)∥ = O(eγ

2√
η). This is

because in the last line of the proof of Lemma 2.9 we have that for any v such that v⊤Âv ≤ η

(v⊤µ)2 ≤ 2η e
∥µ∥2

β
√

k+2 ≲ eγ
2

η.

As a result, we have that ∥ProjU (µ)∥ = eO(γ2)√η for U the subspace of Vt such that v⊤Âv ≤ η for all unit vectors
v ∈ U . So propagating this change in the analysis of Algorithm 1 in Appendix E we get the eO(γ2)ϵ error will appear as the
contribution to the error by the subspace V⊥

t .

For the error on the orthogonal subspace, we need to calculate the error that our inefficient estimator in the final step
of our algorithm will attain. Note that from Kotekal & Gao (2025) we have that when using 2O(1/ϵ2) samples the one
dimensional estimator achieves error 1√

log(1+2−O(ϵ2)/γ2)
≤ eO(γ2)ϵ when γ ≤ 21/(2ϵ

2)/2. As a result, a more refined

version of Proposition 2.1 exists error µ̂ is ∥µ̂− µ∥ ≤ eO(γ2)ϵ with probability 0.99.

Finally, although our analysis in Theorem 1.2 provides a result that holds with a constant probability, this was done only for
simplicity. It is easy to verify that because the conclusion of Lemmas 2.7 and 2.8 holds with probability 1− δ with 1/δ
blowup in the sample complexity, we can follow the analysis done in Appendix E to obtain a high probability conclusion for
the final error of the algorithm.
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Now we will use Claim F.2 along with Lepskii’s method to get an error guarantee that depends on the true parameter γ
without it being known to the algorithm. We state Lepskii’s method guarantee below and then prove Theorem F.1.

Fact F.3 (Lepskii’s Method). Let µ ∈ Rd, A,B > 0, γ ∈ [A,B], and a non-decreasing function r : R+ → R+. Suppose
Alg(γ′) is a black-box algorithm that is guaranteed to return a vector µ̂ such that ∥µ̂−µ∥2 ≤ r(γ′), with probability at least
1−δ, whenever γ′ ≥ γ. Then, there exists an algorithm that returns µ̂′ such that, with probability at least 1−O(log(B/A))δ,
it holds ∥µ̂′ − µ∥2 ≤ 3r(2γ). Moreover, this algorithm calls Alg at most O(log(B/A)) times.

Proof of Theorem F.1. We will apply Lepskii’s method (cf. Fact F.3), while using the algorithm of Claim F.2 with δ =

0.01ϵ2/ log(d) for Alg and r(γ) := eO(γ2)ϵ. By assumption α ≤ 1/2− 1/
√
n (and α ≥ 1/n otherwise we can treat one of

the samples as outlier to make it at least 1/n) thus γ will belong in the interval [n/(n− 2),
√
n/2) thus Lepskii’s method

will search over the interval [A,B] where A = n/(n− 2) and B =
√
n/2.

Now if we use the algorithm from Claim F.2 for this fixed n in Lepskii’s method the number of calls to our algorithm
will be at most log(

√
n/(n/(n − 2))) ≤ log(

√
n) ≤ log(d2O(1/ϵ2)) ≤ log(d)/ϵ2 (this is why we used Claim F.2 with

δ = 0.01ϵ2/ log(d) in the beginning). Hence by the union bound, the probability of failure of any call of the algorithm in
Lepskii’s method is at most log(d)/ϵ2δ ≤ 0.01. Therefore, by Fact F.3, we obtain that there exists an algorithm that returns
an estimate µ̂′ such that ∥µ̂′ − µ∥2 ≤ 3r(2γ) ≤ eO(γ2)ϵ = Oγ(ϵ) with probability at least 0.99.

Regarding the sample complexity of our algorithm, as at each call we use the same number of samples n and the number
of such calls is at most log(d)/ϵ2, we have that the total number of samples is at most (log(d)/ϵ2)n ≤ Õ(dpoly(1/ϵ) +

2O(1/ϵ2)). Furthermore, the runtime of the algorithm is (log(d)/ϵ2) poly(n, d) = poly(n, d), as Lepskii’s method consists
of log(d)/ϵ2 calls to the algorithm of Claim F.2.
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