
Published as a conference paper at ICLR 2021

WINNING THE L2RPN CHALLENGE:
POWER GRID MANAGEMENT VIA
SEMI-MARKOV AFTERSTATE ACTOR-CRITIC

Deunsol Yoon∗1, Sunghoon Hong∗1, Byung-Jun Lee2,3, Kee-Eung Kim1,2

1Graduate School of AI, KAIST, Daejeon, Republic of Korea
2School of Computing, KAIST, Daejeon, Republic of Korea
3Gauss Labs Inc., Seoul, Republic of Korea
{dsyoon,shhong,bjlee}@ai.kaist.ac.kr, kekim@kaist.ac.kr

ABSTRACT

Safe and reliable electricity transmission in power grids is crucial for modern
society. It is thus quite natural that there has been a growing interest in the
automatic management of power grids, exemplified by the Learning to Run a
Power Network Challenge (L2RPN), modeling the problem as a reinforcement
learning (RL) task. However, it is highly challenging to manage a real-world scale
power grid, mostly due to the massive scale of its state and action space. In this
paper, we present an off-policy actor-critic approach that effectively tackles the
unique challenges in power grid management by RL, adopting the hierarchical
policy together with the afterstate representation. Our agent ranked first in the
latest challenge (L2RPN WCCI 2020), being able to avoid disastrous situations
while maintaining the highest level of operational efficiency in every test scenario.
This paper provides a formal description of the algorithmic aspect of our approach,
as well as further experimental studies on diverse power grids.

1 INTRODUCTION

The power grid, an interconnected network for delivering electricity from producers to consumers,
has become an essential component of modern society. For a safe and reliable transmission of
electricity, it is constantly monitored and managed by human experts in the control room. Therefore,
there has been growing interest in automatically controlling and managing the power grid. As we
make the transition to sustainable power sources such as solar, wind, and hydro (Rolnick et al.,
2019), power grid management is becoming a very complex task beyond human expertise, calling
for data-driven optimization.

Yet, automatic control of a large-scale power grid is a challenging task since it requires complex yet
reliable decision-making. While most approaches have focused on controlling the generation or the
load of electricity (Venkat et al., 2008; Zhao et al., 2014; Huang et al., 2020), managing the power
grid through the topology control (changing the connection of power lines and bus assignments in
substations) would be the ultimate goal. By reconfiguring the topology of the power grid, it can
reroute the flow of electricity, which enables the transmission of electricity from the producers to
consumers efficiently and thus prevent surplus production. There are preliminary studies of the
grid topology control in the power systems literature (Fisher et al., 2008; Khodaei & Shahidehpour,
2010), but due to its large, combinatorial, and non-linear nature, these methods do not provide a
practical solution to be deployed to the real-world.

On the other hand, deep Reinforcement Learning (RL) has shown significant progress in complex
sequential decision-making tasks, such as Go (Silver et al., 2016) and arcade video games (Mnih
et al., 2015), purely from data. RL is also perceived as a promising candidate to address the
challenges of power grid management (Ernst et al., 2004; Dimeas & Hatziargyriou, 2010; Duan
et al., 2020; Zhang et al., 2020; Hua et al., 2019). In this regard, we present Semi-Markov

∗ : Equal contribution

1

Published as a conference paper at ICLR 2021

Figure 1: An example of a power grid with 4 substations, 2 generators, 2 loads, and 5 lines. Starting
from the left, a bus assignment action at reconfigures the grid and then the next state st+1 is
determined by exogenous event et+1, such as the change of power demands in loads. The diagonal
line was experiencing overflow, but the action at is shown to revert the overflow. The power loss
also reduced from 15 to 13.

Afterstate Actor-Critic (SMAAC), an RL algorithm that effectively tackles the challenges in power
grid management.

One of the main challenges in RL for the real-world scale power grid management lies in its
massive state and action space. We address the problem by adopting a goal-conditioned hierarchical
policy with the afterstate representation. First, we represent state-action pairs as afterstates (Sutton
& Barto, 2018), the state after the agent has made its decision but before the environment has
responded, to efficiently cover the large state-action space. The afterstate representation can be
much more succinct than the state-action pair representation when multiple state-action pairs are
leading to an identical afterstate. For example, in the case of controlling the topology of the power
grid, a pair of a current topology and an action of topology modification can be represented as a
reconfigured topology, since the topology is deterministically reconfigured by the action. Then the
next state is determined by random external factors, such as the change of power demands in load.
Second, we extend this idea to a hierarchical framework, where the high-level policy produces a
desirable topology under the current situation, and the low-level policy takes care of figuring out
an appropriate sequence of primitive topology changes. Combined together, our hierarchical policy
architecture with afterstates facilitates effective exploration for good topology during training.

Our algorithm ranked first in the latest international competition on training RL agents to manage
power grids, Learning To Run a Power Network (L2RPN) WCCI 2020. In this paper, we further
evaluate our approach using Grid2Op, the open-source power grid simulation platform used in the
competition, by training and testing the agent in 3 different sizes of power grids. We show that the
agent significantly outperforms all of the baselines in all grids except for the small grid where the
task was easy for all algorithms.

2 BACKGROUND

2.1 GRID2OP ENVIRONMENT

We briefly overview Grid2Op, the open-source simulation platform for power grid operation
used in the L2RPN WCCI 2020 challenge. Grid2Op models realistic concepts found in real-
world operations used to test advanced control algorithms, which follow real-world power system
operational constraints and distributions (Kelly et al., 2020).

The power grid is essentially a graph composed of nodes corresponding to substations that are
connected to loads, generators, and power lines. The generator produces electricity, the load
consumes electricity, and the power line transmits electricity between substations. The substation
can be regarded as a router in the network, which determines where to transmit electricity. Grid2Op
considers 2 conductors per substation, known as the double busbar system. This means that the
elements connected to a substation, i.e. loads, generators, and power lines, can be assigned to one
of the two busbars, and the power travels only over the elements on the same busbar. Thus, each
substation can be regarded as being split into two nodes.

2

Published as a conference paper at ICLR 2021

The state of the power grid consists of various features such as a topology configuration (the
connectivity of each power line and the bus assignment in each substation), as well as the amount of
power provided by each generator, required by each load, transmitted in each line, and so on. The
power supplied by generators and demanded by loads changes over time, and the power transmitted
in lines also changes according to the current topology configuration together with supply and
demand. In addition, each line has its own capacity to transmit electricity and can be automatically
disconnected when there is an overflow of electricity.

The agent can apply actions on substations and lines to managing the power grid. The action on
a substation, called bus assignment, assigns the elements in the substation to a busbar. The action
on a line, called line switch, disconnects (both ends of the line is assigned to neither bus) a line
or reconnects a disconnected line. The agent is allowed to perform one line switch or one bus
assignment action per step, and cannot successively perform actions on the same line or substation.

The power grid is simulated for a given period, typically for several days at a 5-minute interval. The
simulation can terminate prematurely when the agent fails to manage the grid, i.e. (1) the amount
of power required by loads are not delivered, which can happen if there are too many disconnected
lines, or (2) a disconnected subgraph is formed as a result of applying an action. This is reflected in
the failure penalty when measuring the performance of the agent, given by the number of remaining
simulation time steps upon termination. Another important performance metric is the power loss
penalty, given by the amount of power that disappeared during transmitting due to resistive loss.
Thus, the goal of the agent is to operate the power grid both safely and efficiently by minimizing the
failure penalty and the power loss penalty.

Figure 1 illustrates how the actions affect the state of the power grid using the bus assignment action
as an example. The simulator provides 3 different sizes of power grids, (1) IEEE-5 is the power grid
with 5 substations, (2) IEEE-14 is the power grid with 14 substations, and (3) L2RPN WCCI 2020
is the power grid with 36 substations. See Appendix A.1 for more details on the environment.

2.2 AFTERSTATES IN RL

Grid2Op provides a natural framework to use RL for operating power grids: we assume a Markov
decision process (MDP) defined by (S,A, p, r, γ) to represent the RL task, where S is the state
space, A is the action space, and p(st+1|st, at) is the (unknown) state transition probability, rt =
r(st, at) ∈ R is the immediate reward, and γ ∈ (0, 1) is the discount factor. We assume learning
a stochastic policy π(at|st), which is a probability distribution over actions conditioned on states.
The state and action value functions under π are V π(s) = Eπ[

∑
l≥0 γ

lrt+l|st = s] and Qπ(s, a) =
Eπ[
∑
l≥0 γ

lrt+l|st = s, at = a] respectively.

As shown in Figure 1 in the previous section, the transition in Grid2Op comprises two steps: the
topological change that results directly from the action, and then the rest of the state changes that
arise from exogenous events. This motivates the use of the afterstate (Sutton & Barto, 2018),
also known as the post-decision state in Approximate Dynamic Programming (ADP) (Powell,
2007), which refers to the state after the agent has made its decision but before the arrival of new
information.

Let us define the state S as (T , X) where T is the part of the state that is deterministically changed
by an action, and X as independent or affected indirectly from an action. Following the modeling
in (Powell, 2007), the transition is decomposed into two parts using fA and fE :

st+1 = [τt+1, xt+1] = fE ([τt+1, xt], et+1) , satt = [τt+1, xt] = fA ([τt, xt], at) , (1)
where τt+1, the deterministic part of st+1, is given by the the function fA(st, at), and xt+1, the
stochastic part, is given by the function fE(sat , et+1) where et+1 is the source of the randomness in
the transition sampled from some unknown distribution pE . Note that et+1 itself can be included as
a part in xt+1.

Using the afterstate has a number of advantages. For example, if the state and the action spaces
are very large but the set of unique afterstates is relatively small, learning the value function of
afterstates would be much more efficient. The value of an afterstate sa under policy π is defined as
V π(sa) = Eπ[

∑
l≥0 γ

lrt+l|sa = fA(st, at)] and its recursive form can be written as :

V π(satt) = Eet+1∼pE ,at+1∼π
[
r(st, at) + γV π(fA (st+1, at+1))|st+1 = fE(satt , et+1)

]
(2)

3

Published as a conference paper at ICLR 2021

The optimal afterstate value function and the optimal policy can be obtained by iteratively alternating
between the policy evaluation by Eq. (2) and policy improvement :

πnew(st) = argmax
at

[
V πold

(
fA(st, at)

)]
(3)

Note that we cannot gain much from the afterstate representation when using the individual power
grid operations as actions since they result in unique changes in the grid topology. However, we shall
see that the afterstate becomes very powerful when we consider the sequences of grid operations as
the action space, where their permutations result in identical changes in the final topology.

3 APPROACH

We first present the state space, the action space, and the reward function modeled in our approach.
Then we briefly explain the unique challenge in Grid2Op and describe our approach to tackle the
challenge. Finally, we will describe the overall architecture of the RL agent.

3.1 MODELING STATES, ACTIONS AND REWARDS

State We also define the state S in the Grid2Op environment as (T , X) where T is set of topology
configuration (deterministically changed by action) and X as various features as power demands
and supplies (independent of the action), power being transmitted in each line (affected indirectly
from the action) and so on. The detail about the features of states used in this work is provided in
Appendix A.1.

Action We only consider bus assignment actions in our agent: we assume that it is desirable to
have as many lines connected as possible since the overflow is less likely to occur when there are
many routes for the power delivery. Thus, for line switch actions, we simply follow the rule of
always reconnecting the power lines whenever they get disconnected due to the overflow.

Let us define the number of the substation as Nsub and elements in ith substation as Sub(i). Each
end of lines, generators, and loads in the substation can be assigned to one of two busbars, so the
total number of actions is |A| =

∑Nsub
i=0 2Sub(i) (i.e. each action chooses one of the substations

and perform a bus assignment therein). Following the approach taken by the winner of the previous
challenge L2RPN 2019 (Lan et al., 2019), we made our agent act (i.e. intervene) only in hazardous
situations. The condition for being hazardous is determined by the existence of a line in which the
power flow is larger than the threshold hyperparameter. This naturally yields a semi-MDP setting
for RL (Sutton et al., 1999).

Reward We define the reward in intermediate time steps to be the efficiency of the power grid,
defined by the ratio of the total load to the total production, i.e. loadt

prodt
. Note that if the ratio becomes

greater than 1, the episode terminates with a large penalty for the failure since the production does
not meet the demand.

3.2 ACTOR-CRITIC ALGORITHM WITH AFTERSTATES

The main challenge of the Grid2Op environment is the large state and action spaces. For the power
grid with 36 substations used in the L2RPN WCCI 2020 competition, there are about 70,000 actions
that yield unique changes to the topology. We address this problem by adopting the actor-critic
architecture, where the policy and the value function are represented by function approximators.
In addition, we use the afterstate representation to capture many state-action pairs being led to
an identical afterstate by leveraging the transition structure, shown in Figure 1. For notational
simplicity, all the derivations assume MDP in this section, which shall be extended to the semi-
MDP setting in the next section.

We use function approximators for the afterstate value function Vψ(s
at
t) and policy πθ(at|st)

parameterized byψ and θ respectively. The actor is trained to maximize Jπ and the critic to minimize
LV :

Jπ(θ) = Est∼D,at∼πθ(·|st)
[
Vψ(f

A(st, at))
]

(4)

4

Published as a conference paper at ICLR 2021

LV (ψ) = E(s
at
t ,st+1)∼D

[(
Vψ(s

at
t)− r(st, at)− γEat+1∼πθ(·|st+1)

[
Vψ(f

A(st+1, at+1))
])2]

(5)

where the replay buffer D stores the transition tuple [st, s
at
t , r(st, at), st+1] for off-policy learning.

The actor and the critic are trained using Soft Actor-Critic (SAC) (Haarnoja et al., 2018). Note that
it learns a value function over an afterstate with a reconfigured topology, rather than a state-action
pair, which is more succinct. Although the above equation defines a state-value critic, we can still
train off-policy since it is essentially an action-value critic (i.e. an afterstate is defined by a state and
an action).

Furthermore, we aim to apply the gradient estimator through a reparameterization trick similar to
Haarnoja et al. (2018), since it is known to have lower variance than the likelihood ratio gradient
estimator, resulting in stable learning. In order to update the actor via reparameterization trick, the
transition fA must be differentiable, but it is not straightforward to define fA, which maps from
the bus assignment actions to the topology configurations, as a differentiable formula. In the next
section, we will mitigate the problem by re-defining the action space.

3.3 EXTENSION TO GOAL-CONDITIONED HIERARCHICAL FRAMEWORK

It is very challenging to take exploratory actions in the Grid2Op environment: if the agent takes
random actions, the power grid would fail in a few time steps. For example, the agent with
the random policy would mostly fail in less than 10 time steps, whereas the agent with the no-
op policy (naively maintaining the initial grid topology throughout time steps) would survive
approximately 500 time steps on average. Thus, it is very difficult for the agent to explore diverse
grid topology configurations that are significantly different from the initial ones, and thereby the
random exploration policy (e.g. ε-greedy) would be often stuck at bad local optima that executes
only one or two actions. Therefore, a more structured exploration is a key to successful training.

To this end, we extend the afterstate actor-critic algorithm to a two-level hierarchical decision model
by defining the goal topology configuration as the high-level action. Specifically, we define the high-
level actions as the goal topology configuration g ∈ {0, 1}n where n =

∑Nsub
i=0 Sub(i), which is

learned by the high-level policy πh. This leads to the temporally extended afterstate representation,
given by sgtt = [τt+d = gt, xt] = fA([τt, xt], gt) where t denotes the time a hazard occurs and
d denotes the time interval next hazard occurs. Note that we can now take full advantage of the
afterstate representation since the equivalence of many different sequences of primitive actions (i.e.
individual bus assignment actions) that lead to the identical topology are now captured by the goal
topology configuration.

In addition, exploration with goal topology is more effective than with primitive actions since the
policy only needs to focus on where to go, i.e. the desirable topology under the current situation,
without needing to care about how to get there, i.e. figuring out a suitable primitive action sequence
that would yield the goal topology, with the help from an appropriate low-level policy. Finally, we
can now use the reparameterization trick for the actor update in a straightforward manner since the
result of fA is merely a copy of the action gt.

The replay buffer D stores the transition tuple, [st, gt, rt:t+d, st+d] where rt:t+d =
∑t+d
t′=t γ

t′−trt′ .
The high-level policy can be trained through the objective function of the actor and the critic written
as:

Jπ(θ) = Egt∼πhθ [Vψ ([gt, xt])] (6)

JV (ψ) = ED
[(
Vψ(s

gt
t)− rt:t+d − γdEgt+d∼πhθ [Vψ([gt+d, xt+d])]

)2]
(7)

As for the low-level policy, it is relatively simple to find the action sequence that changes the
current topology into the goal topology: we just need to identify the set of substations that requires
changes in the bus assignment and make appropriate reassignments therein. Thus, we take a rule-
based approach for the low-level policy, at = πlrule(st, gt) where the rule determines the order
of substations to execute bus assignment actions. For example, we could impose a priority on
substations such that the substations with the least room in the capacity make their bus reassignment
first because they are the ones requiring the most urgent interventions. In the experiments section,
we compare the results using various rules including a learning-based approach.

5

Published as a conference paper at ICLR 2021

Figure 2: Overview of our model. The shared layer encodes xt, the actor layer outputs the desirable
topology gt given the current state st = [τt, xt], and the critic layer outputs the afterstate value given
the afterstate sgtt = [gt, xt].

3.4 IMPLEMENTATION

In order to leverage the interconnection structure of the power grid, we apply graph neural networks
(GNN) (Scarselli et al., 2008). As illustrated in Figure 2, given the power grid with n substations,
we reshape xt in the state st = [τt, xt], given as a flat vector in Grid2Op, into (M, x̃t), where
M ∈ {0, 1}n×n is the adjacency matrix, and x̃t ∈ Rn×k is the node matrix with k features. We
adopted the transformer (Vaswani et al., 2017) as the GNN block, where the adjacency matrix M is
used for masking out the attention weights of nodes, following the architecture proposed by Parisotto
et al. (2020). The actor and the critic share the lower layers, consisting of GNN blocks and linear
layers. Additionally, we add an entropy of policy to the objective function of the actor and the critic,
following the SAC formulation. Details of the architecture are provided in Appendix A.2.

4 RELATED WORKS

The topology control of the power grid through line switch has been previously studied in the power
systems literature. Previous works, Fisher et al. (2008) and Khodaei & Shahidehpour (2010), solve
the optimal transmission switching problem by mixed-integer programming. Since then, several
heuristics have been introduced to tackle the computational cost (Fuller et al., 2012; Dehghanian
et al., 2015; Alhazmi et al., 2019). Recently, Marot et al. (2018) explores bus assignment, more
complex than the line switch, and presents an algorithm based on expert knowledge, which shows
the utility of bus assignment. Their algorithm can find remedial bus assignment action that can
revert overflow with a high probability of success and acceptable computational time. Han (2020)
explores bus and line separation to solve the problem of short circuit current reduction in power
systems through RL. Marot et al. (2020) models the power grid management through line switch
and bus assignment as a RL task and releases an open-source simulation called Grid2Op for power
grid management in multi-step time horizons. Additionally, they held the international power grid
management competition, L2RPN 2019 challenge, where IEEE-14 is chosen for the competition
environment, and Subramanian et al. (2020) present a simple deep RL approach for IEEE-14.

The winner of the L2RPN 2019 challenge (Lan et al., 2019) tackles the problem through pre-
training and guided exploration. They collect massive data sets from the simulator which can restore
particular states, and pre-train an agent to generate a good initial policy. For exploration in the large
action space, they use guided exploration instead of random exploration, where the agent simulates
the top few actions with high action values before performs its action to the environment at every
time step. They also design the agent to act only in hazardous situations, and they train it using
dueling Deep Q-Networks (DQN) (Wang et al., 2016) and prioritized replay buffer (Schaul et al.,
2016).

6

Published as a conference paper at ICLR 2021

Grid Nsub Nline Ngen Nload |S| |A| n

IEEE-5 5 8 2 3 74 58 21
IEEE-14 14 20 6 11 194 160 57

L2RPN WCCI 2020 36 59 22 37 590 66810 177

Table 1: Characteristics of the grids. Nsub, Nline, Ngen, Nload is the total number of substations,
lines, generators, and loads. |S| is the dimension of state, |A| is the number of unitary bus
assignment actions, n is the dimension of topology configuration.

The afterstate representation has been applied to address the resource allocation problems and
dynamic routing problems. Singh & Bertsekas (1996) formulate the dynamic channel allocation
problem in the cellular network as a dynamic programming problem using the afterstate value
function. More recently, there has been research on utilizing the afterstate representation combined
with ADP in a dynamic vehicle routing problem (Agussurja et al., 2019; Ulmer et al., 2019). Shah
et al. (2020) also apply an afterstate-based deep RL method in a ride-pool matching problem. The
hierarchical framework has long held the promise to tackle complex RL tasks (Dayan & Hinton,
1992; Parr & Russell, 1998; Barto & Mahadevan, 2003), and especially one of the prevailing
approaches, the goal-conditioned hierarchical framework has recently achieved significant success
in various tasks, such as simulated and real-world quadrupedal manipulation (Nachum et al., 2018a;
2020) and complex navigation (Levy et al., 2019; Zhang et al., 2020). However, to the best of our
knowledge, none of the works combines the afterstate representation with a hierarchical framework.

GNN has been widely used in deep RL to directly tackle graph-structured problems or to represent
the interaction between entities in a state. You et al. (2018) formulates goal-directed graph
generation as MDP and solves designing a molecular structure with specific desired properties
problem through an RL algorithm. Wang et al. (2018) apply GNN for continuous control by
modeling controllable joints as nodes for a graph, and the physical dependencies between joints
as edges to capture underlying graph structure. Zambaldi et al. (2019) adopt GNN for a navigation
and planning task where complex relational reasoning is required to represent pairwise interactions
between objects in a state, and Jiang et al. (2020) adopt it for learning cooperation in multi-agent
environments by modeling agents as nodes in a graph where they communicate through GNN.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Our experiments are conducted on the 3 power grids, IEEE-5 (smallest), IEEE-14, and L2RPN
WCCI 2020 (largest, used in the challenge), provided by Grid2Op. Details of each grid are provided
in Table 1. Each grid has a set of scenarios, and each scenario specifies the variations in the
simulation such as the power supplies and demands at each time step. The length of each scenario
is 864 time steps, which corresponds to 3 days at 5 minute time-resolution.

Since Grid2Op is relatively new to the research community, there are few RL methods applied to
the grid topology control. Therefore we implement 3 baselines for performance comparison to
verify the effectiveness of our method: (1) DDQN (Dueling DQN) has similar architecture as the
last winner of the challenge, which learns the action-value function with the primitive action space
(2) SAC is similar to DDQN but utilizes maximum entropy exploration following SAC algorithm.
(3) SMAAC\AS is SMAAC without the afterstate representation, where we use action-value critic
Qπ(s, g). Thus, DDQN and SAC assume the MDP setting with primitive actions, SMAAC\AS
assumes the goal-conditioned semi-MDP setting but without the afterstate representation. We
additionally compare our approach with the 3rd placed participant in the L2RPN WCCI 2020
grid,1 (4) YZM, the only agent with publicly available code. This agent heuristically selects 596
actions among the primitive actions in prior and trains the agent with the reduced action space using
Asynchronous Advantage Actor-Critic (Mnih et al., 2016). YZM additionally trains a backup agent

1Their algorithm is designed specifically for L2RPN WCCI 2020 grid and cannot be applied to other grids.

7

Published as a conference paper at ICLR 2021

0 1 2 3 4 5
environment interactions (1e4)

0

20

40

60

80

100

sc
al

ed
 sc

or
e

IEEE-5

SMAAC
DDQN
SAC
SMAAC\AS

0 2 4 6 8 10
environment interactions (1e4)

100

50

0

50

100
IEEE-14

SMAAC
DDQN
SAC
SMAAC\AS

0 2 4 6 8 10
environment interactions (1e4)

100

80

60

40

20

0

20

40
L2RPN WCCI 2020

SMAAC
DDQN
SAC
SMAAC\AS
YZM

Figure 3: Training curves on 3 grids. Evaluation rollouts are performed every 1000 steps, and the
shaded area represents the standard error.

IEEE-5 IEEE-14 L2RPN WCCI 2020
SMAAC 98.18± 0.31 69.66 ± 10.62 55.26 ± 5.82
DDQN 97.66 ± 1.04 29.11 ± 16.00 26.22 ± 7.39
SAC 98.26 ± 0.06 43.93 ± 0.02 39.1 ± 2.94

SMAAC\AS 93.79 ± 0.58 14.91 ± 14.08 11.58 ± 2.74
YZM - - 28.34 ± 4.31

Table 2: Performance measured by the scaled score on the 10 test scenarios averaged over 3 instances
with standard error. Each the best policy is obtained from the one with the highest performance in
the validation scenarios during training.

with another set of actions and invokes the backup agent when the base agent can lead to overflow
or termination by using the simulation function.2

For a fair comparison, all baselines except for YZM encode the input state through the same GNN
architecture, and the agents get activated only in hazardous situations. The detail of implementation
is provided in Appendix A.3 and the code is provided in https://github.com/sunghoonhong/SMAAC.

5.2 RESULTS

Figure 3 shows the total average scaled score of evaluation rollouts on the 10 validation scenario
set during training: the scores are scaled in the range [-100,100], with the return of the no-op agent
scaled and translated to 0, indicating how better the agent manages the power grid than the no-op
agent in terms of safety and power efficiency. Each algorithm was trained and evaluated for 3 runs
for averaging the scores.

As shown in Figure 3, all algorithms easily solve the smallest grid (IEEE-5). In the medium (IEEE-
14) and the large (L2RPN WCCI 2020) grids, both DDQN and SAC perform poorly. DDQN
performs slightly better than the no-op agent in the medium grid and worse than the no-op agent
in the largest grid. Exploring with primitive actions is extremely difficult since most actions can
lead to disastrous termination, and thereby it cannot find grids other than the initial one. This yields
the DDQN to be stuck at bad local optima, not much better than the no-op agent. SAC performs
slightly better than DDQN in the larger grids. This is due to the sophisticated optimization scheme
in SAC that is shown to affect a number of other RL benchmark tasks. However, in Grid2Op, the
performance was barely better than the no-op agent due to the same challenge faced by DDQN.

Perhaps surprisingly, the performance of SMAAC\AS is no better than using primitive actions,
although the hierarchical decision encourages deviating from the initial topology. Without the
afterstate representation, the critic was not able to learn a good action-value function due to the
massive state and action spaces. YZM uniquely leverages the simulation function and can show
good performance from the beginning. However, exploring primitive actions is still hard even with

2The simulation function is a predefined method in Grid2Op, which returns a next state given an action
through an approximate simulation.

8

Published as a conference paper at ICLR 2021

1 (ours) 2 3 4 5 6 7
Scaled score 75.72 66.21 48.62 26.60 17.98 4.31 0.07

CPU time (sec) 812.49 1406.45 1233.08 1322.02 116.43 96.56 118.58

Table 3: The top 7 leaderboard of the L2RPN WCCI 2020 Challenge among 50 participants.

the reduced set of actions, and it can be observed that YZM struggles to improve its performance.
The performance on the test scenarios is provided in Table 2. We provide a qualitative analysis of
how each agent behaves differently and how SMAAC remedies the hazardous power grid with a
detailed example in Appendix A.4.

On the contrary, our method learns significantly fast and outperforms all the baselines, effectively
combining the benefits of the hierarchical decision model and the afterstate representation. Finally,
Table 3 shows the leaderboard in the L2RPN WCCI 2020 challenge.

5.3 LOW-LEVEL RULE DESIGN

0 2 4 6 8 10
environment interactions (1e4)

100

50

0

50

100

sc
al

ed
 sc

or
e

Rules in IEEE-14

FIXED
CAPA
DESC
OPTI

Figure 4: Comparison of 4 rules.

In this section, we examine how the low-level policy affects the
overall performance. (1) FIXED gives priority to substations
randomly that are predefined and fixed during training. We
implement this low-level agent to find out whether our high-
level agent can manage the power network on the poor low-
level agent. (2) CAPA gives high priority to substations with
lines under high utilization of their capacity, which applies an
action to substations that require urgent care. (3) DESC imposes
a priority on large substations, i.e. many connected elements. A
change to a large substation can be seen as making a large change
in the overall topology with a single action. (4) OPTI optimizes
execution order by training, making the actor additionally output
Nsub values that represents the priority of substations. All rules
achieve similar performance with overlapped confidence intervals except for FIXED.

As shown in Figure 4, especially, CAPA converges fast compared to OPTI and DESC, hence we
use this low-level agent in Section 5.2. We assume that most of the rules could achieve similar final
performances since SMAAC is resilient to suboptimal low-level rules. By generating subgoals that
include a subset of intended topology reconfiguration, the high-level policy can adapt to suboptimal
low-level rules to form an optimal policy overall. However, as the result of FIXED suggests, a very
poorly designed low-level policy can lead to instability and degrade the performance.

6 CONCLUSION

In this paper, we presented SMAAC, a deep RL approach demonstrated to be very effective for power
grid management. SMAAC is an actor-critic algorithm that combines the afterstate representation
with a hierarchical decision model. This is very important for power grid management modeled
by Grid2Op, where actions are too primitive for effective exploration and many permutations of
action sequences lead to identical changes in the power grid topology. Besides, naive explorations
with primitive actions are subject to immediate failure due to the unique nature of power grid
management. We empirically demonstrated that the presented method significantly outperforms
several baselines in the real-world scale power grids, and ranked first in the latest international
competition, L2RPN WCCI 2020 challenge. Our work shows the possibility of an intelligent agent
that automatically operates the power grid for several days without expert help.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation (NRF) of Korea (NRF-
2019M3F2A1072238 and NRF-2019R1A2C1087634), and the Ministry of Science and Information
communication Technology (MSIT) of Korea (IITP No. 2019-0-00075, IITP No. 2020-0-00940 and
IITP No. 2017-0-01779 XAI).

9

Published as a conference paper at ICLR 2021

REFERENCES

Lucas Agussurja, Shih-Fen Cheng, and Hoong Chuin Lau. A state aggregation approach for
stochastic multiperiod last-mile ride-sharing problems. Transp. Sci., 53(1):148–166, 2019. doi:
10.1287/trsc.2018.0840. URL https://doi.org/10.1287/trsc.2018.0840.

M. Alhazmi, P. Dehghanian, S. Wang, and B. Shinde. Power grid optimal topology control
considering correlations of system uncertainties. In 2019 IEEE/IAS 55th Industrial and
Commercial Power Systems Technical Conference (I CPS), pp. 1–7, 2019.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13(1–2):41–77, January 2003. ISSN 0924-6703. doi: 10.1023/
A:1022140919877. URL https://doi.org/10.1023/A:1022140919877.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Advances in Neural
Information Processing Systems 5, [NIPS Conference], pp. 271–278, San Francisco, CA, USA,
1992. Morgan Kaufmann Publishers Inc. ISBN 1558602747.

Payman Dehghanian, Yaping Wang, Gurunath Gurrala, Erick Moreno-Centeno, and Mladen
Kezunovic. Flexible implementation of power system corrective topology control. Electric Power
Systems Research, 128:79–89, 11 2015.

A. L. Dimeas and N. D. Hatziargyriou. Multi-agent reinforcement learning for microgrids. In IEEE
PES General Meeting, pp. 1–8, 2010. doi: 10.1109/PES.2010.5589633.

J. Duan, D. Shi, R. Diao, H. Li, Z. Wang, B. Zhang, D. Bian, and Z. Yi. Deep-reinforcement-
learning-based autonomous voltage control for power grid operations. IEEE Transactions on
Power Systems, 35(1):814–817, 2020. doi: 10.1109/TPWRS.2019.2941134.

D. Ernst, M. Glavic, and L. Wehenkel. Power systems stability control: reinforcement learning
framework. IEEE Transactions on Power Systems, 19(1):427–435, 2004. doi: 10.1109/TPWRS.
2003.821457.

E. B. Fisher, R. P. O’Neill, and M. C. Ferris. Optimal transmission switching. IEEE Transactions
on Power Systems, 23(3):1346–1355, 2008.

J. D. Fuller, R. Ramasra, and A. Cha. Fast heuristics for transmission-line switching. IEEE
Transactions on Power Systems, 27(3):1377–1386, 2012.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

Sangwook Han. Control Method of Buses and Lines Using Reinforcement Learning for Short Circuit
Current Reduction. Sustainability, 12(22):1–18, November 2020. URL https://ideas.
repec.org/a/gam/jsusta/v12y2020i22p9333-d442736.html.

Haochen Hua, Yuchao Qin, Chuantong Hao, and Junwei Cao. Optimal energy management
strategies for energy Internet via deep reinforcement learning approach. Applied Energy, 239
(C):598–609, 2019. doi: 10.1016/j.apenergy.2019.0. URL https://ideas.repec.org/
a/eee/appene/v239y2019icp598-609.html.

Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and Z. Huang. Adaptive power system emergency
control using deep reinforcement learning. IEEE Transactions on Smart Grid, 11(2):1171–1182,
2020. doi: 10.1109/TSG.2019.2933191.

Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. Graph convolutional reinforcement
learning. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=HkxdQkSYDB.

Adrian Kelly, Aidan O’Sullivan, Patrick de Mars, and Antoine Marot. Reinforcement learning for
electricity network operation. ArXiv, abs/2003.07339, 2020.

10

https://doi.org/10.1287/trsc.2018.0840
https://doi.org/10.1023/A:1022140919877
https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9333-d442736.html
https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9333-d442736.html
https://ideas.repec.org/a/eee/appene/v239y2019icp598-609.html
https://ideas.repec.org/a/eee/appene/v239y2019icp598-609.html
https://openreview.net/forum?id=HkxdQkSYDB
https://openreview.net/forum?id=HkxdQkSYDB

Published as a conference paper at ICLR 2021

A. Khodaei and M. Shahidehpour. Transmission switching in security-constrained unit commitment.
IEEE Transactions on Power Systems, 25(4):1937–1945, 2010.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), International Conference on Learning Representations, 2015.

Tu Lan, Jiajun Duan, Bei Zhang, Di Shi, Zhiwei Wang, Ruisheng Diao, and Xiaohu Zhang. Ai-
based autonomous line flow control via topology adjustment for maximizing time-series atcs.
arXiv preprint arXiv:1911.04263, 2019.

Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical reinforcement learning with hindsight. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ryzECoAcY7.

A. Marot, B. Donnot, S. Tazi, and P. Panciatici. Expert system for topological remedial action
discovery in smart grids. IET Conference Proceedings, pp. 43 (6 pp.)–43 (6 pp.)(1), January
2018. URL https://digital-library.theiet.org/content/conferences/
10.1049/cp.2018.1875.

Antoine Marot, Benjamin Donnot, Camilo Romero, Luca Veyrin-Forrer, Marvin Lerousseau,
Balthazar Donon, and Isabelle Guyon. Learning to run a power network challenge for training
topology controllers. The Power Systems Computation Conference, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33th
International Conference on Machine Learning, pp. 1928–1937, 2016.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, pp. 3307–3317, Red Hook, NY, USA, 2018a. Curran
Associates Inc.

Ofir Nachum, Shixiang (Shane) Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp. 3303–3313.
2018b.

Ofir Nachum, Michael Ahn, Hugo Ponte, Shixiang (Shane) Gu, and Vikash Kumar. Multi-agent
manipulation via locomotion using hierarchical sim2real. In Leslie Pack Kaelbling, Danica
Kragic, and Komei Sugiura (eds.), Proceedings of the Conference on Robot Learning, volume
100 of Proceedings of Machine Learning Research, pp. 110–121. PMLR, 30 Oct–01 Nov 2020.
URL http://proceedings.mlr.press/v100/nachum20a.html.

Emilio Parisotto, H Francis Song, Jack W Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant M
Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing
transformers for reinforcement learning. In Proceedings of The 37th International Conference on
Machine Learning, 2020.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In
Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems 10,
NIPS ’97, pp. 1043–1049, Cambridge, MA, USA, 1998. MIT Press. ISBN 0262100762.

Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality
(Wiley Series in Probability and Statistics). Wiley-Interscience, USA, 2007.

11

https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7
https://digital-library.theiet.org/content/conferences/10.1049/cp.2018.1875
https://digital-library.theiet.org/content/conferences/10.1049/cp.2018.1875
http://proceedings.mlr.press/v100/nachum20a.html

Published as a conference paper at ICLR 2021

David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris
Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-
Brown, Alexandra Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P.
Körding, Carla Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer
Chayes, and Yoshua Bengio. Tackling climate change with machine learning. CoRR,
abs/1906.05433, 2019. URL http://arxiv.org/abs/1906.05433.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
International Conference on Learning Representations, 2016.

Sanket Shah, Meghna Lowalekar, and Pradeep Varakantham. Neural approximate dynamic
programming for on-demand ride-pooling. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 507–515. AAAI Press,
2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/5388.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Satinder Singh and Dimitri Bertsekas. Reinforcement learning for dynamic channel allocation
in cellular telephone systems. In Proceedings of the 9th International Conference on Neural
Information Processing Systems, NIPS’96, pp. 974–980, Cambridge, MA, USA, 1996. MIT Press.

Medha Subramanian, Jan Viebahn, Simon Tindemans, Benjamin Donnot, and Antoine Marot.
Exploring grid topology reconfiguration using a simple deep reinforcement learning approach.
CoRR, abs/2011.13465, 2020. URL https://arxiv.org/abs/2011.13465.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1–2):181–211,
1999.

Marlin W. Ulmer, Barrett W. Thomas, and Dirk C. Mattfeld. Preemptive depot returns for
dynamic same-day delivery. EURO Journal on Transportation and Logistics, 8(4):327 – 361,
2019. ISSN 2192-4376. doi: https://doi.org/10.1007/s13676-018-0124-0. URL http://www.
sciencedirect.com/science/article/pii/S2192437620300479.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30, pp. 5998–6008, 2017.

A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright. Distributed mpc strategies with
application to power system automatic generation control. IEEE Transactions on Control Systems
Technology, 16(6):1192–1206, 2008.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=S1sqHMZCb.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. In Proceedings of the 33th
International Conference on Machine Learning, pp. 1995–2003, 2016.

12

http://arxiv.org/abs/1906.05433
https://aaai.org/ojs/index.php/AAAI/article/view/5388
https://arxiv.org/abs/2011.13465
http://www.sciencedirect.com/science/article/pii/S2192437620300479
http://www.sciencedirect.com/science/article/pii/S2192437620300479
https://openreview.net/forum?id=S1sqHMZCb

Published as a conference paper at ICLR 2021

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph
convolutional policy network for goal-directed molecular graph generation. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31, pp. 6410–6421. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/
file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf.

Vinícius Flores Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,
Karl Tuyls, David P. Reichert, Timothy P. Lillicrap, Edward Lockhart, Murray Shanahan, Victoria
Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and Peter W. Battaglia. Deep
reinforcement learning with relational inductive biases. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=HkxaFoC9KQ.

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. NeurIPS 2020, 2020.

Z. Zhang, D. Zhang, and R. C. Qiu. Deep reinforcement learning for power system applications: An
overview. CSEE Journal of Power and Energy Systems, 6(1):213–225, 2020.

C. Zhao, U. Topcu, N. Li, and S. Low. Design and stability of load-side primary frequency control
in power systems. IEEE Transactions on Automatic Control, 59(5):1177–1189, 2014.

13

https://proceedings.neurips.cc/paper/2018/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf
https://openreview.net/forum?id=HkxaFoC9KQ

Published as a conference paper at ICLR 2021

A APPENDIX

A.1 ENVIRONMENT DETAIL

Grid2Op provides a simulation for power grid operation in real-time over several days at a 5-minute
time-resolution. There are 3 power grids, IEEE-5, IEEE-14, and L2RPN WCCI 2020 (a subgraph
of IEEE-118), where each has different size.

State Space The state of the power grid consists of 12 features presented in Table 4. We use
5 features provided by the environment and 1 feature defined by us, which we consider enough
to represent the current state of the grid; Active power, rho, topology configuration, time step
overflow, maintenance, hazard. The maintenance is a boolean vector representing whether a line
is in maintenance, and the hazard represent is also a boolean vector representing whether electricity
flows of a line is larger than a predefined threshold δh. We use 0.9 for the threshold, and this
threshold is same as the one we used for the hazardous state. Further details are provided in
grid2op.readthedocs.io/en/latest/observation.html

Action Space The agent can apply actions on substations and lines to manage the power grid. The
action on a substation, called bus assignment, assigns the elements in the substation to a busbar. The
action on a line, called line switch, disconnects (both ends of line is assigned to neither bus) a line
or reconnects a disconnected line. Let us define the number of lines in the power grid as Nline, the
number of substations as Nsub, and the number of elements in ith substation as Sub(i). Then at
each time step the agent selects an action at from the action space A where |A| = Nline + 22 ×
Nline +

∑Nsub
i=0 2Sub(i). 3

Rule There are some rules that make the task more realistic and challenging in Grid2Op. Lines
can be automatically disconnected due to overflow of current, i.e. if more current flows than a
line can hold for 3 time steps, a line is automatically disconnected. There is cooldown time for
each component, i.e. the agent cannot apply its action to the same component successively and it
is reactivated after 3 time steps later. There is a stochastic event called maintenance that happens
intermittently. During maintenance, a line is disconnected by force and it cannot be reconnected.

Score The performance of an agent can be evaluated by a score which consists of power loss
penalty, failure penalty, and redispatching penalty. It is defined as :

Score =

tover∑
t=0

(prodt − loadt) +
tend∑

t=tover

penalty +

tover∑
t=0

redispatcht (8)

where tover is the time game over occurs, prodt is total amount of power supply by all generators,
loadt is total amount of power demand by loads. prodt−loadt stands for total amount of power loss.
The failure penalty is given by the sum over the large constant penalty for the remaining simulation
time steps upon termination. The redispatching penalty is incurred when the agent do redispatching
action, which controls generators to produce more or less electricity. Since redispatching action
always incurs the additional penalty, we do not consider this action, so the redispatching penalty is
always 0 in our case. Therefore, the goal of the agent is to operate the power grid both safely and
efficiently by minimizing the failure penalty and the power loss penalty.

A.2 MODEL ARCHITECTURE

Given the state s = [τ, x], we reshape x into (M, x̃), where M ∈ {0, 1}n×n is the adjacency matrix,
and x̃ ∈ Rn×k is the node matrix with k features. The shared layers consisted of Ls GNN blocks
that computes the node embedding of an input graph through transformer layers at their beginning.
Given input nodes matrix x̃, a linear layer with ReLU activation increases input dimension k to
embedding dimension ks, which maps x̃ ∈ Rn×d to H0 ∈ Rn×ks . After the linear layer, Ls

3Both ends of the line can be assigned to one of two buses in the substation, so 22 × Nline is the number
of reconnection. Each end of the line, generator, and load in the substation also can be assigned to one of two
buses in the substation, so bus switching actions are

∑Nsub
i=0 2Sub(i)

14

grid2op.readthedocs.io/en/latest/observation.html

Published as a conference paper at ICLR 2021

Name Type Size Description
Date int 6 The current year, month, day, hour of day,

minute of hour, day of week.
Active power float Ngen +Nload Active power magnitude.

+2×Nline
Reactive power float Ngen +Nload Reactive power magnitude.

+2×Nline
Voltage float Ngen +Nload Voltage magnitude.

+2×Nline
Rho float Nline The capacity of each power line, which is

defined as ratio between current flow and
thermal limit.

Topology int Ngen +Nload For each element (load, generator, ends
Configuration +2×Nline of a line), it gives on which bus these

elements is connected in its substation.
Line status bool Nline The status of each line, whether it is

connected or disconnected.
Time step overflow int Nline The number of time steps each line is

overflowed.
Time before int Nline How much cooldown time for each line is
cooldown line left. An agent cannot perform its action on

lines with cooldown.
Time before int Nsub How much cooldown time for each
cooldown sub substation is left. An agent cannot perform

its action on substations with cooldown.
Time next int Nline The time of the planned maintenance.
maintenance An agent cannot act on the lines with

maintenance.
Duration int Nline The number of time steps that the
next maintenance maintenance will last.

Table 4: Details of features in the state

transformer layers follow. The input of the transformer block at the lth block is an embedding from
the previous layer H l−1 and the adjacency matrix A, H l = Transformer(H l−1, A).

The actor’s head consists of La transformer blocks and 2 linear layers. Given the final node
embedding HLe from the shared layers, the transformer layers in actor’s head takes it as the input
and outputs node embedding HLa ∈ Rn×ka . The first linear layer transforms 2D node embedding
HLa to a vector node embedding Rn by reducing the embedding dimension ka to 1, which is then
concatenated with the current topology τ to form the state s and the next linear layers outputs
mean and standard deviation of the normal distribution. We sample continuous values g′ ∈ Rn
from the normal distribution followed by tanh non-linearity and the desirable topology g ∈ {0, 1}n
is constructed by assigning 1 to values in g′ larger than predefined topology threshold δτ and 0
otherwise. We empirically find out that an agent without the threshold has difficulty learning in the
large grid. However, an appropriate threshold helps stable learning and fast convergence.

The critic’s head has a similar structure except for linear layers. There are Lc GNN blocks in the
critic that also takes HLe and outputs HLc ∈ Rn×kc . After transforming it into a vector node
embedding Rn by a linear layer, g′ is concatenated to HLc , and the following two linear layers take
it as the input and outputs a scalar value. The overall architecture is shown in the Figure 2.

Although the agent observes all substations, we reduce the goal dimension n to ñ by restricting
controllable substation. As we mentioned in subsection 3.1, we do not consider disconnection or
reconnection. Therefore, the agent only controls substations that have more than 2 elements since
there are only two possible cases, elements on a same bus (connection) or elements on a different
bus (disconnection). For L2RPN WCCI 2020 grid, the agent acts on substations that have more than
5 elements in order for fast convergence. As a result, the goal dimension is reduced from 21 to 16
in IEEE-5, from 57 to 42 in IEEE-14, and from 177 to 79 in L2RPN WCCI 2020.

15

Published as a conference paper at ICLR 2021

0 200 400 600 800
steps

0

1

2

3

4

5

6

7

L1
 d

ist
an

ce

Scenario1 of IEEE-14

SMAAC
SMAAC\AS
SAC
DDQN

0 200 400 600 800
steps

0

1

2

3

4

5
Scenario2 of IEEE-14

0 200 400 600 800
steps

0

5

10

15

20

Scenario1 of L2RPN WCCI 2020

0 200 400 600 800
steps

0

5

10

15

20

25
Scenario2 of L2RPN WCCI 2020

Figure 5: Deviation from the initial grid. We measure L1 distance between the initial topology and
the current topology during rollout in 2 test scenarios for each grids.

A.3 IMPLEMENTATION DETAILS

For all models, we use 6 state features, active power, rho, topology configuration, time step overflow,
maintenance, and hazard, where δh = 0.9. All the agent acts only when there is a rho of a line,
ratio between current flow and thermal limit that is capacity of a line, is larger than the δh = 0.9.
Additionally the last 6 states of a history are stacked to represent the input state, since the difference
between the state at time step t and t + 1 is not significantly different in Grid2Op. Since the first
decimal place of reward does not change significantly (loadtprodt

varies from 0.85 to 0.99 most of time),
we transform it as (loadtprodt

×10−9)×0.1 to use the second decimal place. Adam optimizer (Kingma
& Ba, 2015) is used for training with 5e−5 learning rate and 128 batch size. We perform grid search
to find the best hyperparameters for each model.

SMAAC SMAAC is our proposed model, which learns the afterstate value function on the goal
space, namely topology configuration space. We use Ls = 6 GNN blocks with embedding
dimension ks = 64/128 for shared layers. For actor’s head, we use La = 3 GNN blocks with
embedding dimension ka = 64/128. For critic’s head, we use Lc = 1 GNN block with embedding
dimension kc = 64/128 followed by linear layers with kc+ñ

4 hidden units. We use δτ = 0/0.1/0.15.
In practice, the reward for the high-level policy in Equation 6 is not discounted, rt:t+d =

∑t+d
t′=t rt′

and γ is used instead of γd following Nachum et al. (2018b). For the competition, we use ks = 128,
kc = 128, ka = 128, δτ = 0.35, and τ is used as an extra input feature for the shared layers.

SMAAC\AS SMAAC\AS is a baseline, which learns the action-value function of desired relative
change in hierarchical framework. The overall architecture is similar to SMAAC, but the critic
takes both desired relative change and topology configuration to learn on state-action pairs. We use
δτ = 0/0.1/0.15.

SAC SAC is a baseline, which learns the action-value function on the primitive bus assignment
action space. We use Ls = 6 GNN blocks with embedding dimension ks = 64/128 for shared
layers. For actor’s head, we useLa = 3 GNN blocks with embedding dimension ka = 64/128. And,
we use softmax to output categorical distribution while utilize relaxed categorical distribution in
training. For critic’s head, we use Lc = 1 GNN block with embedding dimension kc = 32/64/128
followed by concatenation with one-hot encoded action and one linear layer.

DDQN DDQN is a baseline, which learns the action-value function on the primitive bus
assignment action space. It does not have separate actor but critic outputs |A| action-values. We
use Ls = 6 GNN blocks with embedding dimension ks = 64/128 for embedding layers. Following
it, the critic has Lc = 1 GNN blocks with embedding dimension ks = 64/128. Then, it utilizes the
technique used by dueling DQN, namely we compute action-values through both value network and
advantage network.

16

Published as a conference paper at ICLR 2021

0.16 0.79

0.42

0.41

0.96

L

L
L

L

L

L

L

L

L

GG

G

0

1

2

3

4
5

6

7

8

9

10

11

12

13

Time step t

0.20 0.53

0.85

0.00

0.89

L

L
L

L

L

L

L

L

L

GG

G

0

1

2

3

4
5

6

7

8

9

10

11

12

13

Time step t+1

0.26 0.53

0.83

0.00

0.86

L

L
L

L

L

L

L

L

L

GG

G

0

1

2

3

4
5

6

7

8

9

10

11

12

13

Time step t+2

Figure 6: Illustration of a part of IEEE-14 managed by our agent. Large circle refers to a substation,
small circle with G or L refers to a generator or load, and dots in green or yellow on a substation
refers 2 busbars. The numbers beside lines are line usage ratio of current to line capacity and the
darker color of the line means large ratio.

Threshold δh Average scaled score
1.1 46.67 ± 5.92
1.0 52.11 ± 6.91
0.9 55.26 ± 5.82
0.8 36.08± 16.53

Table 5: Performance measured by the scaled score on the 10 test scenarios of L2RPN WCCI 2020
averaged over 3 instances with standard error. Each the best policy is obtained from the one with the
highest performance in the validation scenarios during training.

A.4 QUALITATIVE ANALYSIS

In this section, we present qualitative analysis based on example behaviors of agents. Figure 5
indirectly shows how each agent behaves in 2 grids. In the medium grid, after our agent reaches
to the certain grid, it keeps staying in that grid. We speculate that the agent finds the optimal grid
during training where electricity could distribute evenly all the time so no further actions required. It
is reasonable in Grid2Op where a single action can potentially destroy the grid. On the other hand, it
shows different behavior in the large grid. It changes the topology configuration diversely to revert
the hazardous situations since the agent cannot find the grid such as the one in the medium grid.

SAC, which shows the best performance among the baselines, only changes a few of the topology
configuration by executing only one or two actions in both grids, since the initial topology is strong
local optima in Grid2Op. DDQN also shows similar behavior, but it shows worse performance than
the SAC, since it changes the initial grid more. Likewise, SMAAC\AS that changes the topology
the most shows the worst performance. It is extremely difficult to find the better topology than the
initial one in Grid2Op without the effective exploration. The efficient learning together with the
effective exploration is the key to successful management.

We further examine how SMAAC learned to revert a hazardous state back to the safe state. As
shown in Figure 6, the line 4-5 (between substation 4 and 5) in t is in the hazardous situation. At
time step t+1, our agent makes bus assignment change in the substation 12 by assigning line 12-13
to yellow busbar. As a result, some amount of electricity that flows in the line 4-5 moves to line 4-3
to meet the load demand in the substation 13 where electricity is supplied only from the line 8-13
due to the action in t+1. Then the last action at t+2 that changes the substation 3 further disperses
electricity from the substation 4. In the end, a more balanced distribution is achieved.

A.5 ACTIVATION OF THE AGENT

As we mentioned in subsection 3.1, the agent acts only in hazardous situations, i.e. there is a
line of which usage rate (ratio between current flow and thermal limit) is larger than the threshold
hyperparameter δh. Note that the usage rate larger than 1.0 implies that a line is overflowed.

17

Published as a conference paper at ICLR 2021

Table 5 shows how the final performance changes according to δh in the test scenarios. If δh is
too high, e.g. δh = 1.1, the agent may not be able to recover from the hazardous situation, and
show relatively worse performance. On the other hand, the agent with δh = 0.8 faces more diverse
situations, requiring far more samples to reach the performance of the other agents with higher δh.

18

	Introduction
	Background
	Grid2Op Environment
	Afterstates in RL

	Approach
	Modeling States, Actions and Rewards
	Actor-Critic Algorithm with Afterstates
	Extension to goal-conditioned hierarchical framework
	Implementation

	Related works
	Experiments
	Experimental Setup
	Results
	Low-level rule design

	Conclusion
	Appendix
	Environment Detail
	Model Architecture
	Implementation Details
	Qualitative Analysis
	Activation of the agent

