
Error Feedback under (L0, L1)-Smoothness:
Normalization and Momentum

Sarit Khirirat
KAUST∗

sarit.khirirat@kaust.edu.sa

Abdurakhmon Sadiev
KAUST

abdurakhmon.sadiev@kaust.edu.sa

Artem Riabinin
KAUST

artem.riabinin@kaust.edu.sa

Eduard Gorbunov
MBZUAI†

eduard.gorbunov@mbzuai.ac.ae

Peter Richtárik
KAUST

peter.richtarik@kaust.edu.sa

Abstract

We provide the first proof of convergence for normalized error feedback algorithms
across a wide range of machine learning problems. Despite their popularity and
efficiency in training deep neural networks, traditional analyses of error feedback
algorithms rely on the smoothness assumption that does not capture the properties
of objective functions in these problems. Rather, these problems have recently
been shown to satisfy generalized smoothness assumptions, and the theoretical un-
derstanding of error feedback algorithms under these assumptions remains largely
unexplored. Moreover, to the best of our knowledge, all existing analyses un-
der generalized smoothness either i) focus on single-node settings or ii) make
unrealistically strong assumptions for distributed settings, such as requiring data
heterogeneity, and almost surely bounded stochastic gradient noise variance. In this
paper, we propose distributed error feedback algorithms that utilize normalization to
achieve the O(1/

√
K) convergence rate for nonconvex problems under generalized

smoothness. Our analyses apply for distributed settings without data heterogeneity
conditions, and enable stepsize tuning that is independent of problem parameters.
Additionally, we provide strong convergence guarantees of normalized error feed-
back algorithms for stochastic settings. Finally, we show that due to their larger
allowable stepsizes, our new normalized error feedback algorithms outperform
their non-normalized counterparts on various tasks, including the minimization of
polynomial functions, logistic regression, and ResNet-20 training.

1 Introduction

Machine learning models achieve impressive prediction and classification power by employing
sophisticated architectures, comprising vast numbers of model parameters, and requiring training
on massive datasets. Distributed training has emerged as an important approach, where multiple
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machines with their own local training data collaborate to train a model efficiently within a reasonable
time. Many optimization algorithms can be easily adapted for distributed training frameworks.
For example, stochastic gradient descent (SGD) can be modified into distributed stochastic gradient
descent within a data parallelism framework, and into federated averaging algorithms [1] in a federated
learning framework. However, the communication overhead of running these distributed algorithms
poses a significant barrier to scaling up to large models. For example, training the VGG-16 model [2]
using distributed stochastic gradient descent involves communicating 138.34 million parameters,
thus consuming over 500MB of storage and posing an unmanageable burden on the communication
network between machines.

One approach to mitigate the communication burden is to apply compression. In this approach, the
information, such as gradients or model parameters, is compressed using sparsifiers or quantizers to
be transmitted with much lower communicated bits between machines. However, while this reduces
communication overhead, too coarse compression often brings substantial challenges in maintaining
high training performance due to information loss, and in extreme cases, it may potentially lead to
divergence. Therefore, error feedback mechanisms have been developed to improve the convergence
performance of compression algorithms, while ensuring high communication efficiency. Examples of
error feedback mechanisms include EF14 [3, 4, 5, 6, 7], EF21 [8, 9], EF21-SGDM [10], EF21-P [11],
and EControl [12]. Several studies developing error feedback algorithms often assume the smoothness
of an objective function, i.e., its gradient is Lipschitz continuous.

However, many modern learning problems, such as distributionally robust optimization [13] and
deep neural network training, are often non-smooth. For instance, the gradient of the loss computed
for deep neural networks, such as LSTM [14], ResNet20 [14], and transformer models [15], is not
Lipschitz continuous. These empirical findings highlight the need for a new smoothness assumption.
One such assumption is (L0, L1)-smoothness, originally introduced by Zhang et al. [14], for twice
differentiable functions, and later extended to differentiable functions by Chen et al. [16].

To solve generalized smooth problems, clipping and normalization have been widely utilized in
first-order algorithms. Gradient descent with gradient clipping was initially shown by Zhang et al.
[14] to achieve lower iteration complexity, i.e., fewer iterations needed to attain a target solution
accuracy, than classical gradient descent. Subsequent works have further refined the convergence
theory of clipped gradient descent [17], and improved its convergence performance by employing
momentum updates [18], variance reduction techniques [19], and adaptive step sizes [20, 21, 22].
Similar convergence results have been obtained for gradient descent using normalization [23], and its
momentum variants [24], including generalized SignSGD [15]. However, these first-order algorithms
have mostly been explored in training on a single machine. To the best of our knowledge, distributed
algorithms under generalized smoothness have been investigated in only a few works, e.g., by
Crawshaw et al. [25], Liu et al. [26]. Nonetheless, these works rely on assumptions limiting families
of optimization problems, including data heterogeneity, almost sure variance bounds, and symmetric
noise distributions around the mean assumptions. Furthermore, these first-order algorithms under
generalized smoothness do not incorporate compression techniques to improve communication
efficiency. These aspects motivate us to develop distributed communication-efficient algorithms for
solving nonconvex generalized smooth problems.

1.1 Contributions

In this paper, we develop distributed error feedback algorithms for communication-efficient optimiza-
tion under nonconvex, generalized smooth regimes. Our contributions are summarized below.

• Importance of normalization. Just as gradient clipping is crucial for gradient descent, we
empirically demonstrate that normalization stabilizes the convergence of error feedback algorithms
for minimizing nonconvex generalized smooth functions. In this paper, we introduce a variant of
EF21, a widely used error feedback algorithm by Richtárik et al. [8], which incorporates normalization
to guarantee convergence for nonconvex, generalized smooth problems. In a single-node setting, this
new method, which we call ||EF21-GD||, or more compactly as ||EF21||, provides larger stepsize, and
faster convergence rate than its non-normalized counterpart EF21 for minimizing simple nonconvex
polynomial functions that satisfy generalized smoothness, as shown by Figure 1.

• Convergence of normalized error feedback algorithms. We establish an O(1/
√
K) convergence

rate in the gradient norm for ||EF21|| on nonconvex generalized smooth problems. ||EF21|| achieves
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Figure 1: The minimization of polynomial functions using EF21 with γ = 1

L+L
√

β
θ

, and ||EF21||

with γ = γ̂√
K+1

, γ̂ = 1 (blue line) and γ = 1
2c1

(green line). Here, we ran both algorithms for (1)
L0 = 4, L1 = 1, and K = 2, 000 (left), (2) L0 = 4, L1 = 4, and K = 5, 000 (middle), and (3)
L0 = 4, L1 = 8, and K = 16, 000 (right).

the same rate as EF21 under L-smoothness by [8]. Our results are derived under standard assumptions,
i.e., generalized smoothness and the existence of lower bounds on the objective function, and are
applicable in distributed settings regardless of any data heterogeneity degree, unlike the results by
Crawshaw et al. [25], Liu et al. [26]. Additionally, our stepsize rules for ||EF21|| ensure convergence
without requiring knowledge of the generalized smoothness constants L0 or L1, in contrast to
Richtárik et al. [8], where the stepsize depends on the smoothness constant L (which is often
inaccessible).

• Extension to stochastic settings. Furthermore, we propose a variant of EF21-SGDM, an error
feedback algorithm with momentum updates by Fatkhullin et al. [10], that employs normalization for
solving nonconvex, stochastic optimization under generalized smoothness. Specifically, we prove
that ||EF21-SGDM|| with suitable stepsize choices attains the same O(1/K1/4) convergence rate in
the gradient norm as EF21-SGDM.

• Numerical evaluation. We implemented ||EF21|| using the stepsize rules derived from our theory,
and compared its performance against EF21. Both algorithms were evaluated on three learning
tasks: minimizing nonconvex polynomial functions, solving logistic regression with a nonconvex
regularizer, and training ResNet-20 on the CIFAR-10 dataset. Thanks to its larger stepsizes, ||EF21||
outperforms EF21, in terms of both convergence speed and solution accuracy across these tasks.

Methods Complexity Smoothness Variance bound Normalization
EF21

Richtárik et al. [8] O(1/ϵ2) L No No

EF21-SGDM
Fatkhullin et al. [10] O(1/ϵ4) L expectation No

||EF21||
NEW (Alg. 1) O(1/ϵ2) (L0, L1) No Yes

||EF21-SGDM||
NEW (Alg. 2) O(1/ϵ4) (L0, L1) Expectation Yes

Table 1: Comparisons of complexities and assumptions between known and our results for EF21
variants. The complexity is defined by the iteration count K required by the algorithms to attain

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ ϵ. (L0, L1)-smoothness refers to generalized smoothness in Assump-

tion 3. The variance bound in expectation is defined in Assumption 5.

2 Related Works

Error feedback. Error feedback mechanisms have been utilized in various algorithms with com-
munication compression, leading to significant improvements in solution accuracy, while reducing
communication. As the first version of these mechanisms, EF14 was introduced by Seide et al.
[3], and later analyzed for first-order algorithms in both single-node [4, 27] and distributed settings
[5, 6, 28, 29, 7, 30, 31, 32]. Next, EF21 is another error feedback variant proposed by Richtárik
et al. [8], which offers strong convergence guarantees for distributed gradient algorithms with any
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contractive compressors, without requiring bounded gradient norm or bounded data heterogeneity
assumptions. EF21 can also be adapted for stochastic optimization through sufficiently large mini-
batches [9] or momentum updates [10]. More recently, EControl was developed by Gao et al. [12]
to guarantee provably superior complexity results for distributed stochastic optimization compared
to prior error feedback mechanisms. To the best of our knowledge, these existing works on error
feedback have focused solely on optimization under traditional L-smoothness. In this paper, we
introduce a normalized variant of the EF21 methods [8] for solving nonconvex generalized smooth
problems. In particular, we prove that ||EF21|| under generalized smoothness achieves the same
O(1/

√
K) rate as EF21 under traditional smoothness, and demonstrate in experiments that ||EF21||

permits larger step sizes, and thus attains faster convergence than EF21.

Non-smoothness assumptions. Empirical findings suggest that the traditional smoothness used
for analyzing optimization algorithms does not capture the properties of objective functions in
many machine learning problems, especially deep neural network training problems. This motivates
researchers to consider different assumptions to replace this traditional smoothness condition. First
introduced by Zhang et al. [14], the (L0, L1)-smoothness condition on a twice differentiable function
f(x) is defined by

∥∥∇2f(x)
∥∥ ≤ L0 + L1 ∥∇f(x)∥ for x ∈ Rd. This (L0, L1)-smoothness has been

extended to differentiable functions without assuming the existence of the Hessian. For instance, the
smoothness with a differentiable function ℓ(x) [33], and symmetric generalized smoothness [16] cover
the (L0, L1)-smoothness when the Hessian exists, and includes many important machine learning
problems, such as phase retrieval problems [16], and distributionally robust optimization [34]. Other
classes of non-smoothness assumptions, which are not related to the generalized smoothness but
capture other optimization problems, include Hölder’s continuity of the gradient [35], the relative
smoothness [36], and the polynomial growth of the gradient norm [37]. In this paper, we impose the
generalized smoothness condition to establish the convergence of ||EF21|| for solving deterministic
and stochastic optimization.

Gradient clipping and normalization. Clipping and normalization are commonly employed in
gradient-based methods for solving generalized smooth problems. Clipped (stochastic) gradient
descent has been studied for both nonconvex and convex problems under (L0, L1)-smoothness
conditions by Zhang et al. [14], Koloskova et al. [17]. Extensions to clipped gradient algorithms have
been proposed, including momentum updates [18], variance reduction methods [19], and adaptive step
sizes [20, 21, 22, 38]. Comparable complexities have been achieved for normalized gradient descent
[23], and its momentum-based variants [24], including SignSGD [15] and its variance-reduction
variants [39]. Convergence properties of gradient-based algorithms have also been explored under
more generalized forms of non-uniform smoothness, extending beyond the (L0, L1)-smoothness
by Zhang et al. [14] to cover a wider range of optimization problems. For example, variants of
(stochastic) gradient descent have been analyzed under α-symmetric generalized smoothness by
Chen et al. [16], and under ℓ-smoothness involving certain differentiable functions ℓ(·) by Li et al.
[33, 21]. However, the majority of these analyses focus on the single-node setting. To the best of our
knowledge, only a limited number of works, such as those by Crawshaw et al. [25], Liu et al. [26],
have examined federated averaging algorithms for nonconvex problems under generalized smoothness.
These works, however, often rely on restrictive assumptions, including data heterogeneity, almost sure
variance bounds, and symmetric noise distributions centered around their means. In this paper, we
develop distributed error feedback algorithms, which eliminate the need for the restrictive assumptions
mentioned above, and rely on standard assumptions on objective functions and compressors.

3 Preliminaries

Notations. We use [n] to denote the set {1, 2, . . . , n}, and E [u] to represent the expectation of a
random variable u. Additionally, ∥·∥ indicates the Euclidean norm for vectors or the spectral norm
for matrices, and ∥·∥1 is the ℓ1-norm for vectors, while ⟨x, y⟩ denotes the inner product between x
and y in Rd. Lastly, for a square matrix A ∈ Rd×d, λmin(A) refers to its minimum eigenvalue, and
I ∈ Rd×d is the identity matrix.

Problem Formulation. We focus on the following distributed optimization problem:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)
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where n refers to the number of clients, and fi(x) is the loss of a model parameterized by vector
x ∈ Rd over its local data Di owned by client i ∈ [n].

Assumptions. To facilitate our convergence analysis, we make standard assumptions on objective
functions and compression operators.

Assumption 1 (Lower Boundedness of f ). The function f is bounded from below, i.e.,

f inf = inf
x∈Rd

f(x) > −∞.

Assumption 2 (Lower Boundedness of fi). For each i ∈ [n], the function fi is bounded from below,
i.e.,

f inf
i := inf

x∈Rd
fi(x) > −∞.

Assumptions 1 and 2 are standard for analyzing optimization algorithms for unconstrained problems.

Assumption 3 (Generalized Smoothness of fi). A function fi(x) is symmetrically generalized smooth
if there exists L0, L1 > 0 such that for uθ = θx+ (1− θ)y, and for all x, y ∈ Rd,

∥∇fi(x)−∇fi(y)∥ ≤

(
L0 + L1 sup

θ∈[0,1]

∥∇fi(uθ)∥

)
∥x− y∥ . (2)

Assumption 3 refers to symmetric generalized smoothness by Chen et al. [16], which covers asym-
metric generalized smoothness [17, 16], and the original (L0, L1)-smoothness by [14]. Moreover,
Assumption 3 covers the functions with unbounded classical smoothness constant, e.g., exponential
function. Additionally, Assumption 3 with L1 = 0 reduces to the traditional L0-smoothness [40, 41],
under which the convergence of optimization algorithms has been extensively studied.

Assumption 4 (Contractive Compressor). An operator Ck : Rd → Rd is an α-contractive compressor
if there exists α ∈ (0, 1] such that for k ≥ 0 and v ∈ Rd,

E
[∥∥Ck(v)− v

∥∥2] ≤ (1− α) ∥v∥2 . (3)

Furthermore, compressors defined by Assumption 4 cover top-k sparsifiers [5, 4], low-rank approxi-
mation [42, 43], and various other compressors described by Safaryan et al. [44], Beznosikov et al.
[45], Demidovich et al. [46].

Assumption 5 (Bounded Variance). A stochastic gradient ∇fi(x; ξi) with its sample ξi ∼ Di is an
unbiased estimator of ∇fi(x) with bounded variance, i.e., for all x ∈ Rd,

E [∇fi(x; ξi)] = ∇fi(x), and E
[
∥∇fi(x; ξi)−∇fi(x)∥2

]
≤ σ2. (4)

Assumption 5 is standard for stochastic optimization [47, 48, 49] that is only imposed on each local
stochastic gradient, and it does not imply data heterogeneity, i.e., the bounded difference between
each component function fi(x) and the global function f(x).

4 Normalized Error Feedback (||EF21||)

For nonconvex deterministic optimization under generalized smoothness, we develop a distributed
error feedback algorithm. One challenge is that the generalized smoothness parameter scales with the
gradient norm

∥∥∇f(xk)
∥∥. To resolve this issue, we apply gradient normalization to the algorithms.

In particular, we consider ||EF21||, the normalized version of EF21 [8] that updates the next iterates
xk+1 using the ||EF21|| update. The full description of ||EF21|| can be found in Algorithm 1.

Our new method ||EF21||, just like EF21 [8] under traditional smoothness, enjoys the O(1/
√
K)

convergence in the gradient norm under generalized smoothness, as shown below.
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Algorithm 1 Normalized Error Feedback (||EF21||)

1: Input: Stepsize γk > 0 for k = 0, 1, . . .; starting points x0, g−1
i ∈ Rd for i ∈ {1, 2, . . . , n}; and

α-contractive compressors Ck : Rd → Rd for k = 0, 1, . . ..
2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . , n in parallel do
4: Compute local gradient ∇fi(x

k)

5: Transmit ∆k
i = Ck(∇fi(x

k)− gk−1
i )

6: Update gki = gk−1
i +∆k

i
7: end for
8: Central server computes gk = 1

n

∑n
i=1 g

k
i via gki = gk−1

i +∆k
i

9: Central server updates xk+1 = xk − γk
gk

∥gk∥
10: end for
11: Output: xK+1

Theorem 1 (Convergence of ||EF21||). Consider Problem (1), where Assumption 1 (lower bound on
f ), Assumption 2 (lower bound on fi), Assumption 3 (generalized smoothness of fi), and Assumption 4
(contractive compressor) hold. Then, the iterates {xk} generated by ||EF21|| (Algorithm 1) with

γk =
γ√

K + 1

for K ≥ 0 and γ > 0 satify

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ V 0 exp(8c1L1 exp(L1γ)γ
2)

γ
√
K + 1

+B
γ exp(L1γ)√

K + 1
,

where V k := f(xk)−f inf+ 2γk

1−
√
1−α

1
n

∑n
i=1

∥∥∇fi(x
k)− gki

∥∥, B = 2c0+
8L1c1

n

∑n
i=1(f

inf−f inf
i ),

and ci =
(

1
2 + 2

√
1−α

1−
√
1−α

)
Li for i = 0, 1.

Theorem 1 establishes the O(1/
√
K) convergence in the expectation of gradient norms for ||EF21||

on nonconvex deterministic problems under generalized smoothness. This rate is the same as
Theorem 1 of Richtárik et al. [8] for EF21 under traditional smoothness, and does not depend on
data heterogeneity conditions in contrast to Crawshaw et al. [25], Liu et al. [26]. Also, our stepsize
depends on any positive constant γ0, and total iteration count K, without needing to know smoothness
constants L0, L1 in contrast to Richtárik et al. [8]. Additionally, if we choose γ0 = 1/(8cL1), then
our convergence bound from Theorem 1 becomes

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 32cL1V
0 + L0/L1 + 2L1δ

inf

√
K + 1

,

where c = 1
2 + 2

√
1−α

1−
√
1−α

, and δinf = 1
n

∑n
i=1(f

inf − f inf
i ).

Comparisons between ||EF21|| and EF21 under traditional smoothness. For nonconvex, traditional
smooth problems, ||EF21|| from Theorem 1 with L1 = 0 achieves the same O(1/

√
K) rate in the

expectation of gradient norms as EF21 analyzed by Richtárik et al. [8], but with a larger convergence
factor of 2

√
2. We refer to the derivation and discussion in details in Appendix C.

In the following section, we demonstrate how to integrate normalization into EF21-SGDM [10], an
error feedback algorithm that allows each node to compute its local stochastic gradient, for solving
nonconvex stochastic problems.

5 Normalized Error Feedback with Stochastic Gradients & Momentum
(||EF21-SGDM||)

Having established the convergence of ||EF21|| for deterministic optimization, we will next develop a
distributed error feedback algorithm that incorporate stochastic gradients and normalization to accom-
modate generalized smoothness conditions. In particular, we focus on ||EF21-SGDM|| (Algorithm 2),

6



Algorithm 2 Normalized Error Feedback with Stochastic Gradients & Momentum (||EF21-SGDM||)

1: Input: Stepsizes γk > 0 and ηk ∈ [0, 1] for k = 0, 1, . . .; starting points x0, g−1
i ∈ Rd

for i ∈ {1, 2, . . . , n}, and v−1
i = ∇fi(x

0
i ; ξ

0
i ) with independent random samples ξi for i ∈

{1, 2, . . . , n}; α-contractive compressors Ck : Rd → Rd for k = 0, 1, . . .
2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . , n in parallel do
4: Compute a local stochastic gradient ∇fi(x

k; ξki )

5: Update a momentum estimator vki = (1− ηk)v
k−1
i + ηk∇fi(x

k; ξki )

6: Transmit ∆k
i = Ck(vki − gk−1

i )

7: Update gki = gk−1
i +∆k

i
8: end for
9: Central server computes gk = 1

n

∑n
i=1 g

k
i via gki = gk−1

i +∆k
i

10: Central server updates xk+1 = xk − γk
gk

∥gk∥
11: end for
12: Output: xK+1

the normalized version of EF21-SGDM due to Fatkhullin et al. [10]. We also note that ||EF21-SGDM||
recovers many optimization algorithms of interest in the special cases. For instance, it reduces to

• normalized version of EF21 [8], which we call ||EF21||, when we let ηk = 1 and
∇fi(x

k; ξki ) = ∇fi(x
k),

• normalized version of EF21-SGD [9], which we call ||EF21-SGD||, when we let ηk = 1, and
• normalized version of SGDM [50], which we call ||SGDM||3, when we let ηk = 1− βk and
Ck(·) is the identity compressor/mapping.

In the next theorem, we demonstrate that ||EF21-SGDM|| attains the same O(1/K1/4) convergence
rate as both EF21-SGDM and ||SGDM||.
Theorem 2 (Convergence of ||EF21-SGDM||). Consider Problem (1), where Assumption 1 (lower
bound on f ), Assumption 2 (lower bound on fi), Assumption 3 (generalized smoothness of fi),
Assumption 4 (contractive compressor), and Assumption 5 (bounded variance) hold. If g−1

i = 0 for
i ∈ {1, . . . , n} and

γk ≡ γ =
γ

(K + 1)3/4
, with 0 < γ ≤ 1

16L1
min

{
(K + 1)

1/2Cα, 1
}
, and

ηk ≡ η =
1

(K + 1)1/2
,

where Cα := 1−
√
1− α, then the iterates {xk} generated by ||EF21-SGDM|| (Algorithm 2) satisfy

for K ≥ 0

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ O
(

δ0/γ + σ/
√
n + γ(L0 + L2

1δ
inf)

(K + 1)1/4

)
+O

(√
1− α

α

(
σ

(K + 1)1/2
+

γ(L0 + L2
1δ

inf)

(K + 1)3/4

))
,

where δ0 := f(x0)− f inf , and δinf := 1
n

∑n
i=1(f

inf − f inf
i ).

From Theorem 2, ||EF21-SGDM|| under generalized smoothness achieves the O(1/K1/4) conver-
gence rate in the expectation of gradient norms. This rate is the same as that of EF21-SGDM,
previously analyzed under traditional smoothness by Fatkhullin et al. [10, Theorem 3]. The result
holds regardless of the data heterogeneity degree and the mini-batch size. We also notice that the
stepsize γ0 for ||EF21-SGDM|| , unlike in the case of ||EF21||, depends on the generalized smoothness
constant L1, and the compression parameter α. However, the considered choice of stepsizes is
agnostic to σ and L0.

3This method is also known as NSGD-M.
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Furthermore, Theorem 2 with α = 1 (i.e., Ck is the identity compressor) implies the convergence
bound of the distributed version of normalized SGD with momentum (||SGDM||) [50] using β = 1−η:

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ O
(

(f(x0)−f inf )/γ + σ/
√
n + γL0 + γL2

1δ
inf

(K + 1)1/4

)
. (5)

For the single-node SGDM, where n = 1 and δinf = 0, our convergence bound in (5) with γ =

Θ(1/L1) achieves the O
(

L1(f(x
0)−f inf )+σ+L0/L1

(K+1)1/4

)
convergence, which matches the rate obtained by

Hübler et al. [24, Corollary 3]. Unlike the earlier results for single-node SGDM, our result holds for
the multi-node regime. The bound in (5) for multi-node SGDM includes the σ/

√
n-term indicating a√

n-fold reduction in the influence of stochastic variance noise σ, and the γL2
1δ

inf -term accounting
for the effect of data heterogeneity.

Novel proof techniques for ||EF21|| and ||EF21-SGDM|| under generalized smoothness. Our
analysis demonstrates that ||EF21|| achieves the convergence rate under generalized smooth-
ness equivalent to EF21 under traditional smoothness. However, our proof techniques differ
significantly from prior work. We employ different Lyapunov functions. For ||EF21||, we
use V k := f(xk) − f inf + A

n

∑n
i=1

∥∥∇fi(x
k)− gki

∥∥, in constrast to Richtárik et al. [8] that
uses V k := f(xk) − f inf + B

n

∑n
i=1

∥∥∇fi(x
k)− gki

∥∥2. For ||EF21-SGDM||, we use V k :=

f(xk) − f inf + C
n

∑n
i=1

∥∥vki − gki
∥∥ + D

n

∑n
i=1

∥∥vki −∇fi(x
k)
∥∥, unlike Fatkhullin et al. [10] that

uses V k := f(xk) − f inf + E
n

∑n
i=1

∥∥vki − gki
∥∥2 + F

n

∑n
i=1

∥∥vki −∇fi(x
k)
∥∥2. These new Lya-

punov functions necessitate the Lyapunov- based convergence analysis, distinct from standard tech-
niques for error feedback methods. Our analysis leverages Lemma 2 to handle generalized smooth-
ness. For ||EF21||, we rely on Lemma 4. For ||EF21-SGDM||, we derive a new upper-bound on
E
[∥∥vk −∇f(xk)

∥∥], unlike Fatkhullin et al. [10] to show the
√
n-speedup for the term proportional

to σ, and utilize non-uniform weights to obtain convergence in the gradient norm.

6 Experiments

In this section, we evaluate the performance of ||EF21||, and compare it against EF21 [8]. We test these
algorithms for three nonconvex, generalized smooth problems: the problem of minimizing polynomial
functions, the logistic regression problem with a nonconvex regularization term over synthetic and
benchmark datasets from LIBSVM [51], and the training of the ResNet-20 [52] model over the
CIFAR10 [53] dataset4. For all experiments, we use a top-k sparsifier, which is a k

d -contractive
compressor.

6.1 Logistic Regression with a Nonconvex Regularizer

First, we consider a logistic regression problem with a nonconvex regularizer, i.e., Problem (1) with

fi(x) = log(1 + exp(−bia
T
i x)) + λ

d∑
j=1

x2
j

1 + x2
j

,

where ai ∈ Rd is the ith feature vector of data matrix A ∈ Rn×d with its class label bi ∈ {−1, 1},
and λ > 0 is a regularization parameter. Here, f(x) is nonconvex, and L-smooth with L =

∥A∥2 /(4n) + 2λ. Also, each fi(x) is L̂i-smooth with L̂i = ∥ai∥2 /4 + 2λ, and generalized smooth
with L0 = 2λ+ λ

√
dmaxi ∥ai∥ and L1 = maxi ∥ai∥. The derivations of smoothness parameters

can be found in Appendix H.

In this experiment, we initialized x0 ∈ Rd, where each coordinate was drawn from a standard normal
distribution N (0, 1), and set λ = 0.1. Here, the condition λ > λmin

(
A⊤A

)
/(2n) ensures that f(x)

is nonconvex. We ran ||EF21|| and EF21 on the following datasets: (1) two from LIBSVM [51]:
Breast Cancer (n = 683, d = 10, and scaled to [−1, 1]), and a1a (n = 1605, d = 123); and (2)
a synthetically generated dataset (n = 20, d = 10), where the data matrix A ∈ Rn×d had entries
drawn from N (0, 1), and the class label bi was set to either −1 or 1 with equal probability. For

4We implemented EF21 and ||EF21|| on training the ResNet-20 model by using PyTorch. Our source codes can
be found in the link to error-feedback-generalized-smoothness-paper.
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EF21, we selected the stepsize γk = 1/
(
L+ L̃

√
β/θ

)
with L̃ =

√∑n
i=1 L̂

2
i /n, θ = 1−

√
1− α,

and β = (1− α)/(1−
√
1− α), given by Richtárik et al. [8, Theorem 1]. For ||EF21||, we chose

γk = γ/
√
K + 1 with γ > 0 from Theorem 1, by setting γ0 = 1, K = 100 for the generated data

and Breast Cancer, and K = 400 for a1a. We choose γ0 = 1, because ||EF21|| with γ0 ∈ [1, 10]
converges faster than that with small values of γ0 (e.g. 0.1), when we run the algorithm on a single
node (n = 1) for minimizing polynomial function and solving logistic regression. We determine K
as the smallest number of iterations required to achieve the desired accuracy by performing a grid
search with a stepsize of 50.

Figure 2 shows that ||EF21|| outperforms the traditional EF21 on all evaluated datasets, achieving
faster convergence and higher solution accuracy. This improvement results from the fact that the
theoretical stepsize for ||EF21||, as derived in Theorem 1, is larger than the stepsize for EF21 outlined
by Richtárik et al. [8, Theorem 1].
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10 1

100

||
f(x

)||
2

EF21
||EF21||

0 100 200 300 400 500
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||
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)||
2

EF21
||EF21||

0 10000 20000 30000 40000 50000
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2
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Figure 2: Logistic regression with a nonconvex regularizer using normalized ||EF21|| and EF21. We
reported

∥∥∇f(xk)
∥∥2 with respect to iteration count k. We used the constant stepsize γ = 1

L+L̃
√

β
θ

for EF21, and γ = γ̂√
K+1

, γ̂ = 1 for ||EF21||. Here, K = 100 for our generated data (left), and
Breast Cancer (middle), while K = 400 for a1a (right).

6.2 ResNet20 Training Over CIFAR-10

Next, we trained the ResNet20 [52] model on the CIFAR-10 [53] dataset, which was demonstrated
empirically by Zhang et al. [14] to satisfy the (L0, L1)-smoothness condition. In these experiments,
we used a top-k compressor over 50, 000 training images, with evaluation on 10, 000 test images. The
dataset was evenly distributed among 5 clients, each using a mini-batch size of 128. Both algorithms
were run for 100 epochs with a constant stepsize γ = 5. Here, one epoch refers to a full pass through
the entire dataset processed by all clients.

From Figure 3, under the same constant stepsize and the top-k sparsifier with k = 0.01d, ||EF21||
outperforms EF21, in terms of convergence speed (in gradient norms and losses) and accuracy,
relative to the number of bits communicated from each client to the server. Specifically, ||EF21||
achieved accuracy gains of up to 10% over EF21.
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Figure 3: ResNet20 training on CIFAR-10 by using EF21 and ||EF21|| under the same stepsize γ = 5
and k = 0.1d for a top-k sparsifier.

7 Conclusion and Future Works

In this paper, we have demonstrated that normalization can be effectively combined with EF21 to
develop distributed error feedback algorithms for solving nonconvex optimization problems under
generalized smoothness conditions. Specifically, ||EF21|| and ||EF21-SGDM|| achieve convergence

9



rates of O(1/K1/2) in deterministic settings and O(1/K1/4) in stochastic settings, respectively.
These convergence rates match those of the vanilla EF21 and EF21-SGDM algorithms. Unlike
previous works on distributed algorithms under generalized smoothness, our analysis does not assume
data heterogeneity or impose smoothness-dependent restrictions on the stepsize (in the deterministic
case). Finally, our experiments confirm that ||EF21|| exhibits stronger convergence performance
compared to the original EF21, due to its larger allowable stepsizes.

Our work implies many promising research directions. One interesting direction is to extend our
convergence results for ||EF21|| and ||EF21-SGDM|| to accommodate decreasing or adaptive stepsize
schedules, as the constant stepsizes required by our current analysis can become impractically
small when the total number of iterations is large. Another important direction is the development of
distributed and federated algorithms that leverage clipping or normalization for minimizing nonconvex
generalized smooth functions.
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A Lemmas

In this section, we introduce useful lemmas for our analysis. Lemmas 1 and 2 introduce inequalities
by generalized smoothness, while Lemmas 3 and 4 present the descent inequality and convergence
rate, respectively, when the normalized gradient descent update is applied.

Lemma 1. Let each fi(x) be generalized smooth with parameters L0, L1 > 0, and lower bounded
by f inf

i , and let f(x) = 1
n

∑n
i=1 fi(x). Then, for any x, y ∈ Rd

∥∇fi(x)−∇fi(y)∥ ≤ (L0 + L1 ∥∇fi(y)∥) exp (L1 ∥x− y∥) ∥x− y∥ , (6)

fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩+ L0 + L1 ∥∇fi(x)∥
2

exp (L1 ∥x− y∥) ∥y − x∥2 , (7)

∥∇fi(x)∥2

4(L0 + L1 ∥∇fi(x)∥)
≤ fi(x)− f inf

i , and (8)

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
L0 +

L1

n

∑n
i=1 ∥∇fi(x)∥
2

exp (L1 ∥x− y∥) ∥y − x∥2 .(9)

Proof. The first and second statements are derived in Chen et al. [16, Proposition 3.2]. Next, the
third inequality follows from [38, Lemma 2.2]. Finally, averaging (7) for i = 1, . . . , n and taking
into account that f(x) = 1

n

∑n
i=1 fi(x), we get (9).

Lemma 2. Let fi(x) be generalized smooth with parameters L0, L1 > 0, and lower bounded by f inf
i ,

and let f(x) be lower bounded by f inf . Then, for any x ∈ Rd

1

n

n∑
i=1

∥∇fi(x)∥ ≤ 8L1(f(x)− f inf) +
8L1

n

n∑
i=1

(f inf − f inf
i ) + L0/L1. (10)

Proof. By the (L0, L1)-smoothness of fi(x),

4(fi(x)− f inf
i )

(8)

≥ ∥∇fi(x)∥2

L0 + L1 ∥∇fi(x)∥
≥

{
∥∇fi(x)∥2

2L0
if ∥∇fi(x)∥ ≤ L0

L1
∥∇fi(x)∥

2L1
otherwise.
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This condition implies

∥∇fi(x)∥ ≤ max(8L1(fi(x)− f inf
i ), L0/L1)

≤ 8L1(fi(x)− f inf
i ) + L0/L1

≤ 8L1(fi(x)− f inf) + 8L1(f
inf − f inf

i ) + L0/L1.

Finally, by the fact that f(x) = 1
n

∑n
i=1 fi(x),

1

n

n∑
i=1

∥∇fi(x)∥ ≤ 8L1(f(x)− f inf) +
8L1

n

n∑
i=1

(f inf − f inf
i ) + L0/L1.

Lemma 3. Let f(x) = 1
n

∑n
i=1 fi(x), where each fi(x) is generalized smooth with parameters

L0, L1 > 0. Let xk+1 = xk − γk

∥vk∥v
k for γk > 0. Then,

f(xk+1) ≤ f(xk)− γk
∥∥∇f(xk)

∥∥+ 2γk
∥∥∇f(xk)− vk

∥∥
+
γ2
k

2
exp (γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥) .

Proof. Let each fi(x) be generalized smooth with L0, L1 > 0, and f(x) = 1
n

∑n
i=1 fi(x). By (9) of

Lemma 1, and by the fact that xk+1 = xk − γk

∥vk∥v
k for γk > 0,

f(xk+1) ≤ f(xk)− γk
∥vk∥

⟨∇f(xk), vk⟩+ γ2
k

2
exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥)

= f(xk)− γk
∥vk∥

⟨∇f(xk)− vk, vk⟩ − γk
∥∥vk∥∥

+
γ2
k

2
exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥)

≤ f(xk) + γk
∥∥∇f(xk)− vk

∥∥− γk
∥∥vk∥∥

+
γ2
k

2
exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥) ,

where we reach the last inequality by Cauchy-Schwarz inequality. Next, since

−
∥∥vk∥∥ triangle ineq.

≤ −
∥∥∇f(xk)

∥∥+ ∥∥∇f(xk)− vk
∥∥ ,

we get

f(xk+1) ≤ f(xk)− γk
∥∥∇f(xk)

∥∥+ 2γk
∥∥∇f(xk)− vk

∥∥
+
γ2
k

2
exp(γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥) .

Lemma 4. Let {V k}k≥0, {W k}k≥0 be non-negative sequences satisfying

V k+1 ≤ (1 + b1 exp(L1γ)γ
2)V k − b2γW

k + b3 exp(L1γ)γ
2,

for γ, b1, b2, b3 > 0. Then,

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.
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Proof. Define βk = βk−1

1+b1 exp(L1γ)γ2 for k = 0, 1, . . . and β−1 = 1. Then, we can show that
βk = 1

(1+b1 exp(L1γ)γ2)k+1 for k = 0, 1, . . ., and that

βkV
k+1 ≤ (1 + b1 exp(L1γ)γ

2)βkV
k − b2γβkW

k + b3 exp(L1γ)γ
2βk

= βk−1V
k − b2γβkW

k + b3 exp(L1γ)γ
2βk.

Therefore,

min
k=0,1,...,K

W k ≤ 1∑K
k=0 βk

K∑
k=0

βkW
k

≤
∑K

k=0(βk−1V
k − βkV

k+1)

b2γ
∑K

k=0 βk

+
b3
b2

exp(L1γ)γ

=
β−1V

0 − βKV k+1

b2γ
∑K

k=0 βk

+
b3
b2

exp(L1γ)γ.

By the fact that β−1 = 1, βK > 0, and V k+1 ≥ 0,

min
k=0,1,...,K

W k ≤ V 0

b2γ
∑K

k=0 βk

+
b3
b2

exp(L1γ)γ.

Next, since

K∑
k=0

βk ≥ (K + 1) min
k=0,1,...,K

βk =
K + 1

(1 + b1 exp(L1γ)γ2)K+1
,

we have

min
k=0,1,...,K

W k ≤ V 0(1 + b1 exp(L1γ)γ
2)K+1

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ

1+x≤exp(x)

≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.
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B Convergence Proof for ||EF21|| (Theorem 1)

In this section, we derive the convergence rate results of ||EF21||. We start with the following lemma
technical lemma.
Lemma 5. Let Assumptions 3 and 4 hold. Then, the iterates {xk} generated by ||EF21|| (Algorithm 1)
satisfy

E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥] ≤
√
1− αE

[∥∥∇fi(x
k)− gki

∥∥]
+
√
1− α exp(L1γk)γk(L0 + L1E

[∥∥∇fi(x
k)
∥∥]). (11)

Proof. From the definition of the Euclidean norm, and by taking the expectation conditioned on
xk+1, gki , and by the update of gki from Algorithm 1

E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥∣∣xk+1, gki
]

= E
[∥∥∇fi(x

k+1)− gki − Ck(∇fi(x
k+1)− gki )

∥∥∣∣xk+1, gki
]

≤
√
E
[∥∥∇fi(xk+1)− gki − C(∇fi(xk+1)− gki )

∥∥2∣∣∣xk+1, gki

]
,

where we use the concavity of the square root function, and Jensen’s inequality for the concave
function, i.e., E [f(x)] ≤ f(E [x]) if f(x) is concave. By the α-contractive property of compressors
in (3), by the fact that

∥∥∇fi(x
k+1)− gki

∥∥ is a constant conditioned on xk+1, gki , and then by the
triangle inequality, we have

E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥∣∣xk+1, gki
]

≤
√
(1− α)E

[∥∥∇fi(xk+1)− gki
∥∥2∣∣∣xk+1, gki

]
=

√
1− α

∥∥∇fi(x
k+1)− gki

∥∥
≤

√
1− α

∥∥∇fi(x
k)− gki

∥∥+√
1− α

∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥ .

By the generalized smoothness of fi(x) in (2), and by the fact that xk+1 = xk − γk
gk

∥gk∥ ,

E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥∣∣xk+1, gki
]

≤
√
1− α

∥∥∇fi(x
k)− gki

∥∥
+
√
1− α(L0 + L1

∥∥∇fi(x
k)
∥∥) exp(L1γk)γk.

Let γk > 0 be constants conditioned on xk+1, gki . Then, by the tower property, i.e.,

E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥] = E
[
E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥∣∣xk+1, gki
]]

,

we have

E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥] ≤
√
1− αE

[∥∥∇fi(x
k)− gki

∥∥]
+
√
1− α exp(L1γk)γk(L0 + L1E

[∥∥∇fi(x
k)
∥∥]).

This concludes the proof.

Next, we present the following descent lemma for ||EF21||.

Lemma 6. Let Assumptions 1-4 hold. Then, the iterates {xk} generated by ||EF21|| (Algorithm 1)
satisfy

E
[
V k+1

]
≤ E

[
V k
]
+ c1γ

2
k

1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]− γkE

[∥∥∇f(xk)
∥∥]+ c0γ

2
k,

where V k := f(xk) − f inf + 2γk

1−
√
1−α

1
n

∑n
i=1

∥∥∇fi(x
k)− gki

∥∥, and ci = Li

2 + 2
√
1−αLi

1−
√
1−α

for
i = 0, 1.
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Proof. For brevity, let Ak = 2γk

1−
√
1−α

. Then, we have V k := f(xk) − f inf +

Ak
1
n

∑n
i=1

∥∥∇fi(x
k)− vki

∥∥, and from Lemma 3, we derive

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∇f(xk)
∥∥]

+exp(L1γk)γ
2
k

L1

2n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]+ exp(L1γk)γ

2
k

L0

2

+2γkE
[∥∥∇f(xk)− gk

∥∥]+Ak+1
1

n

n∑
i=1

E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥] .
Identities ∇f(xk) = 1

n

∑n
i=1 ∇fi(x

k) and gk = 1
n

∑n
i=1 g

k
i and the triangle inequality imply

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∇f(xk)
∥∥]

+exp(L1γk)γ
2
k

L1

2n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]+ exp(L1γk)γ

2
k

L0

2

+2γk
1

n

n∑
i=1

E
[∥∥∇fi(x

k)− gki
∥∥]+Ak+1

1

n

n∑
i=1

E
[∥∥∇fi(x

k+1)− gk+1
i

∥∥] .
Next, we apply (11):

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
− γkE

[∥∥∇f(xk)
∥∥]+ (γ2

k

2
+Ak+1

√
1− αγk

)
exp(L1γk)L0

+

(
γ2
k

2
+Ak+1

√
1− αγk

)
exp(L1γk)L1

1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]

+
(
2γk +Ak+1

√
1− α

) 1
n

n∑
i=1

E
[∥∥∇fi(x

k)− gki
∥∥] .

If Ak = 2γk

1−
√
1−α

, and γk satisfies γk+1 ≤ γk, then

2γk +Ak+1

√
1− α ≤ 2γk +Ak

√
1− α = Ak.

Therefore,

E
[
V k+1

]
≤ E

[
V k
]
+ c1 exp(L1γk)γ

2
k

1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]

−γkE
[∥∥∇f(xk)

∥∥]+ c0 exp(L1γk)γ
2
k,

where ci =
Li

2 + 2
√
1−αLi

1−
√
1−α

for i = 0, 1.

B.1 Proof of Theorem 1

Now, we are ready to prove Theorem 1. From Lemma 6 and 2, and by the fact that c1L0/L1 = c0,
we have

E
[
V k+1

]
≤ E

[
V k
]
+ 8c1L1 exp(L1γk)γ

2
kE
[
f(xk)− f inf

]
−γkE

[∥∥∇f(xk)
∥∥]+B exp(L1γk)γ

2
k,

where B = 2c0 +
8c1L1

n

∑n
i=1(f

inf − f inf
i ). Using the fact that f(xk)− f inf ≤ V k, we derive

E
[
V k+1

]
≤ (1 + 8c1L1 exp(L1γk)γ

2
k)E

[
V k
]
− γkE

[∥∥∇f(xk)
∥∥]+B exp(L1γk)γ

2
k.

Applying Lemma 4 with V k = E
[
V k
]
, W k = E

[∥∥∇f(xk)
∥∥], b1 = 8c1L1, b2 = 1, and b3 = B,

we get

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ)γ
2(K + 1))

b2γ(K + 1)
+

b3
b2

exp(L1γ)γ.

Finally, if γ = γ0√
K+1

with γ0 > 0, then exp(L1γk) ≤ exp(L1γ0), and thus

min
k=0,1,...,K

W k ≤ V 0 exp(b1 exp(L1γ0)γ
2
0)

b2γ0
√
K + 1

+
b3
b2

γ0 exp(L1γ0)√
K + 1

.
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C Discussion on Theorem 1

In this section, we compare the convergence bound between ||EF21|| and EF21 under traditional
smoothness. For nonconvex, traditional smooth problems, ||EF21|| from Theorem 1 with L1 = 0
achieves the same O(1/

√
K) rate in the expectation of gradient norms as EF21 analyzed by Richtárik

et al. [8], but with a larger convergence factor. We prove this by assuming ∇fi(x
0) = g0i for all i.

That is, Theorem 1 with L0 = L, L1 = 0, γ0 =
√

(f(x0)− f inf)/(2b), and b = L
2 + 2

√
1−αL

1−
√
1−α

implies that ||EF21|| achieves

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 1√
K + 1

[
f(x0)− f inf

γ0
+ 2bγ0

]

≤ 2

√
L
(1 + 3

√
1− α)(1 +

√
1− α)

α

√
f(x0)− f inf

K + 1

α≥0

≤ 4
√
2

√
L

α

√
f(x0)− f inf

K + 1
.

On the other hand, EF21 attains from Theorem 1 of [8] with Li = L̃ = L (i.e., fi(x) has the same
smoothness constant as f(x)), and x̂K being chosen from the iterates x0, x1, . . . , xK uniformly at
random

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ E
[∥∥∇f(x̂K)

∥∥]
≤

√
E
[
∥∇f(x̂K)∥2

]
≤

√
2L(1 +

√
β/θ)

f(x0)− f inf

K + 1
√

β/θ≤2/α−1

≤ 2

√
L

α

√
f(x0)− f inf

K + 1
.

In conclusion, the convergence bound of ||EF21|| is slower by a factor of 2
√
2 than the original EF21

for nonconvex, L-smooth problems.
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D Convergence of ||EF21|| for a Single-node Case

In this section, we provide the convergence of ||EF21|| for a single-node case. In particular, the
algorithm enjoys the O(1/K) convergence up to the error of c0γ

1−c1 exp(L1γ)γ
. In contrast to Theorem 1

for multi-node ||EF21||, the next result for single-node ||EF21|| applies for any γk = γ ∈ (0, 1/(βc1))

with β ≥ 2, c1 = L1

2 + 2
√
1−αL1

1−
√
1−α

, and α ∈ (0, 1].

Theorem 3. Let Assumptions 1-4 hold. Then, the iterates {xk} generated by ||EF21|| (Algorithm 1)
with n = 1, γk = γ = 1/(βc1) and β ≥ 2 satisfy

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ E
[
V 0
]
− E

[
V K+1

]
γ(1− c1 exp(L1γ)γ)(K + 1)

+
c0γ

1− c1 exp(L1γ)γ
,

where V k = f(xk)− f inf + 2γ
1−

√
1−α

∥∥∇f(xk)− gk
∥∥, and ci =

Li

2 + 2
√
1−αLi

1−
√
1−α

for i = 0, 1.

Proof. In the single-node case, Lemma 5 implies

E
[∥∥∇f(xk+1)− gk+1

∥∥] ≤
√
1− αE

[∥∥∇f(xk)− gk
∥∥]

+
√
1− α exp(L1γk)γk(L0 + L1E

[∥∥∇f(xk)
∥∥]). (12)

Next, for brevity, let Ak = 2γk

1−
√
1−α

. Then, we have V k := f(xk) − f inf +

Ak
1
n

∑n
i=1

∥∥∇fi(x
k)− gki

∥∥, and from Lemma 3, we derive

E
[
V k+1

]
≤ E

[
f(xk)− f inf

]
−
(
γk − γ2

kL1

2
exp(L1γk)

)
E
[∥∥∇f(xk)

∥∥]+ γ2
kL0

2
exp(L1γk)

+2γkE
[∥∥∇f(xk)− gk

∥∥]+Ak+1E
[∥∥∇f(xk+1)− gk+1

∥∥]
(12)

≤ E
[
f(xk)− f inf

]
+
(
2γk +Ak+1

√
1− α

)
E
[∥∥∇f(xk)− gk

∥∥]
−
(
γk − γ2

kL1

2
exp(L1γk)−Ak+1

√
1− αL1γk exp(L1γk)

)
E
[∥∥∇f(xk)

∥∥]
+
γ2
kL0

2
exp(L1γk) +Ak+1

√
1− αL0γk exp(L1γk).

If Ak = 2γk

1−
√
1−α

and γk satisfies γk+1 ≤ γk, then

2γk +Ak+1

√
1− α ≤ 2γk +Ak

√
1− α = Ak.

Therefore,

E
[
V k+1

]
≤ E

[
V k
]
−
(
γk − c1 exp(L1γk)γ

2
k

)
E
[∥∥∇f(xk)

∥∥]+ c0 exp(L1γk)γ
2
k,

where ci =
Li

2 + 2
√
1−αLi

1−
√
1−α

for i = 0, 1.

Finally, taking γk = γ = 1/(βc1) for β ≥ 2, we get c1 exp(L1γ)γ = exp(L1/(βc1))/β ≤
exp(2/β)/β ≤ 0.7 < 1, and

E
[
V k+1

]
≤ E

[
V k
]
− γ (1− c1 exp(L1γ)γ) E

[∥∥∇f(xk)
∥∥]+ c0γ

2.

Rearranging the terms, we derive

min
k=0,1,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 1

K + 1

K∑
k=0

E
[∥∥∇f(xk)

∥∥]
≤

E
[
V 0
]
− E

[
V K+1

]
γ(1− c1 exp(L1γ)γ)(K + 1)

+
c0γ

1− c1 exp(L1γ)γ
.

Noticing that V k ≥ 0, we complete the proof.
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E Convergence of ||EF21-SGDM|| (Theorem 2)

In this section, we derive the convergence rate results of ||EF21-SGDM|| . We first introduce auxiliary
lemmas in Section E.1, and later prove the convergence theorem (Theorem 2) in Section E.2.

E.1 Auxiliary Lemmas

Now, we provide useful lemmas for analyzing ||EF21-SGDM||. First, Lemma 7 shows the descent
inequality of the normalized gradient descent update under Assumption 3 (generalized smoothness of
fi). Second, Lemmas 8 and 9 provide the upper-bound of the Euclidean distance between vki and gki ,
and of the Euclidean distance between vki and ∇fi(x

k), respectively.

Lemma 7. Consider the iterates {xk} generated by Algorithm 2. If Assumption 3 holds, then for any
γk > 0, ηk ∈ [0, 1],

f(xk+1) ≤ f(xk)− γk
∥∥∇f(xk)

∥∥+ 2γk
∥∥∇f(xk)− vk

∥∥+ 2γk
∥∥vk − gk

∥∥
+L0γ

2
k exp(γkL1) + 4L2

1γ
2
k exp(γkL1)

(
f(xk)− f inf

)
+
4L2

1γ
2
k exp(γkL1)

n

n∑
i=1

(
f inf − f inf

i

)
.

Proof. Applying the triangle inequality in Lemma 3, i.e.,
∥∥∇f(xk)− gk

∥∥ ≤
∥∥∇f(xk)− vk

∥∥ +∥∥vk − gk
∥∥, we get

f(xk+1) ≤ f(xk)− γk
∥∥∇f(xk)

∥∥+ 2γk
∥∥∇f(xk)− vk

∥∥+ 2γk
∥∥vk − gk

∥∥
+
γ2
k

2
exp (γkL1)

(
L0 +

L1

n

n∑
i=1

∥∥∇fi(x
k)
∥∥)

(10)

≤ f(xk)− γk
∥∥∇f(xk)

∥∥+ 2γk
∥∥∇f(xk)− vk

∥∥+ 2γk
∥∥vk − gk

∥∥
+L0γ

2
k exp(γkL1) + 4L2

1γ
2
k exp(γkL1)

(
f(xk)− f inf

)
+
4L2

1γ
2
k exp(γkL1)

n

n∑
i=1

(
f inf − f inf

i

)
,

which concludes the proof.

Lemma 8. Consider the iterates {xk} generated by Algorithm 2. If Assumptions 3, 4, and 5 hold,
then for γk > 0, ηk ∈ [0, 1], and k ≥ 0,

1

n

n∑
i=1

E
[∥∥vk+1

i − gk+1
i

∥∥] ≤√
1− α

n

n∑
i=1

E
[∥∥vki − gki

∥∥]+ √
1− αηk+1

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥]

+8L2
1

√
1− αηk+1γk exp (γkL1) E

[
f(xk)− f inf

]
+
8L2

1

√
1− αηk+1γk exp (γkL1)

n

n∑
i=1

(f inf − f inf
i )

+2L0

√
1− αηk+1γk exp (γkL1) +

√
1− αηk+1σ.
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Proof. Taking conditional expectation with fixed Fk+1 = {vk+1
i , xk+1, gki }, using the concavity of

the squared root of the function, and applying the definition of gki in Algorithm 2, we have

E
[∥∥vk+1

i − gk+1
i

∥∥∣∣Fk+1

]
≤

√
E
[∥∥vk+1

i − gk+1
i

∥∥2∣∣∣Fk+1

]
=

√
E
[∥∥vk+1

i − gki − Ck
(
vk+1
i − gki

)∥∥2∣∣∣Fk+1

]
(3)

≤
√
E
[
(1− α)

∥∥vk+1
i − gki

∥∥2∣∣∣Fk+1

]
.

Next, let γk = γ > 0, and ηk = η ∈ [0, 1]. By the fact that vk+1
i , gki are constants being conditioned

on Fk+1, and by the triangle inequality,

E
[∥∥vk+1

i − gk+1
i

∥∥∣∣Fk+1

]
≤

√
1− α

∥∥vki − gki
∥∥+√

1− α
∥∥vk+1

i − vki
∥∥

=
√
1− α

∥∥vki − gki
∥∥+√

1− αηk+1

∥∥∇f(xk+1; ξk+1
i )− vki

∥∥ .
Here, the equality comes from the definition of vk+1

i in Algorithm 2. Next, by the triangle inequality,

E
[∥∥vk+1

i − gk+1
i

∥∥∣∣Fk+1

]
≤

√
1− α

∥∥vki − gki
∥∥+√

1− αηk+1∥vki −∇fi(x
k)∥

+
√
1− αηk+1

∥∥∇fi(x
k)−∇fi(x

k+1)
∥∥

+
√
1− αηk+1

∥∥∇fi(x
k+1; ξk+1

i )−∇fi(x
k+1)

∥∥
(6)

≤
√
1− α

∥∥vki − gki
∥∥+√

1− αηk+1∥vki −∇fi(x
k)∥

+
√
1− αηk+1

(
L0 + L1

∥∥∇fi(x
k)
∥∥) exp (L1

∥∥xk+1 − xk
∥∥) ∥∥xk+1 − xk

∥∥
+
√
1− αηk+1

∥∥∇f(xk+1; ξk+1
i )−∇f(xk+1)

∥∥ .
Next, using xk+1 − xk = −γk

gk

∥gk∥ , and taking the expectation, we obtain

E
[∥∥vk+1

i − gk+1
i

∥∥] ≤
√
1− αE

[∥∥vki − gki
∥∥]+√

1− αηk+1E
[∥∥vki −∇fi(x

k)
∥∥]

+
√
1− αηk+1γk exp (γkL1)

(
L0 + L1E

[∥∥∇fi(x
k)
∥∥])

+
√
1− αηk+1E

[∥∥∇fi(x
k+1; ξk+1

i )−∇fi(x
k+1)

∥∥] .
Finally, since

E
[∥∥∇fi(x

k+1; ξk+1
i )−∇fi(x

k+1)
∥∥] ≤

√
E
[∥∥∇fi(xk+1; ξk+1

i )−∇fi(xk+1)
∥∥2]

(4)

≤ σ,
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we derive

1

n

n∑
i=1

E
[∥∥vk+1

i − gk+1
i

∥∥] ≤
√
1− α

n

n∑
i=1

E
[∥∥vki − gki

∥∥]
+

√
1− αηk+1

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥]

+
√
1− αηk+1γk exp (γkL1)

(
L0 + L1

1

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥])

+
√
1− αηk+1σ

(10)

≤
√
1− α

n

n∑
i=1

E
[∥∥vki − gki

∥∥]
+

√
1− αηk+1

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥]

+8L2
1

√
1− αηk+1γk exp (γkL1) E

[
f(xk)− f inf

]
+
8L2

1

√
1− αηk+1γk exp (γkL1)

n

n∑
i=1

(f inf − f inf
i )

+2L0

√
1− αηk+1γk exp (γkL1) +

√
1− αηk+1σ.

This concludes the proof.

Lemma 9. Consider the iterates {xk} generated by Algorithm 2. If Assumptions 3, and 5 hold, then
for any γk ≡ γ > 0, ηk ≡ η, and k ≥ 0,

E
[∥∥vk −∇f(xk)

∥∥] ≤ (1− η)kE
[∥∥v0 −∇f(x0)

∥∥]+ √
ησ

√
n

+
2L0γ exp (γL1)

η

+8L2
1γ exp (γL1)

k−1∑
t=0

(1− η)k−tE
[
f(xt)− f inf

]
+
8L2

1γ exp (γL1)

ηn

n∑
i=1

(
f inf − f inf

i

)
. (13)

In addition, for any k ≥ 0,

1

n

n∑
i=1

E
[∥∥vk+1

i −∇fi(x
k+1)

∥∥] ≤ 1− η

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥]+ ησ + 2L0γ exp (γL1)

+8L2
1γ exp(γL1)E

[
f(xk)− f inf

]
+
8L2

1γ exp(γL1)

n

n∑
i=1

(
f inf − f inf

i

)
. (14)

Proof. We prove the result using the arguments similar to those given in the proof of Theorem 1
from Cutkosky and Mehta [50]. From the definition of vk+1

i , we have the following recursion for any
k ≥ 0:

vk+1
i = (1− η)vki + η∇fi(x

k+1; ξk+1
i )

= ∇fi(x
k+1) + (1− η)(vki −∇fi(x

k)) + (1− η)(∇fi(x
k)−∇fi(x

k+1))

+η(∇fi(x
k+1; ξk+1

i )−∇fi(x
k+1)).

Next, from the recursion of vk+1
i , we obtain the following recursion for k ≥ 0:

Hk+1
i = (1− η)Hk

i + (1− η)Gk
i + ηUk+1

i , (15)
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where
Uk+1
i = ∇fi(x

k+1; ξk+1
i )−∇fi(x

k+1), Gk
i = ∇fi(x

k)−∇fi(x
k+1), Hk

i = vki −∇fi(x
k),

Uk+1 =
1

n

n∑
i=1

Uk+1
i , Gk =

1

n

n∑
i=1

Gk
i , and Hk =

1

n

n∑
i=1

Hk
i .

Unrolling the recursion for Hk
i , we derive

Hk+1
i =(1− η)k+1H0

i +

k∑
t=0

(1− η)k−t+1Gt
i + η

k∑
t=0

(1− η)k−tU t+1
i .

Averaging the above inequality, we get

Hk+1 = (1− η)k+1H0 +

k∑
t=0

(1− η)k−t+1Gt + η

k∑
t=0

(1− η)k−tU t+1.

Next, taking the Euclidean norm, using the triangle inequality, and then taking the expectation, we
obtain

E
[∥∥Hk+1

∥∥] ≤ (1− η)k+1E
[∥∥H0

∥∥]+ k∑
t=0

(1− η)k−t+1E
[∥∥Gt

∥∥]
︸ ︷︷ ︸

=:A1

+ηE

[∥∥∥∥∥
k∑

t=0

(1− η)k−tU t+1

∥∥∥∥∥
]

︸ ︷︷ ︸
=:A2

. (16)

To bound E
[∥∥Hk+1

∥∥], we need to bound the expectation of the last two terms. First, we bound term
A1. Using the fact that ∥Gt∥ ≤ 1

n

∑n
i=1 ∥Gt

i∥, and the definition of Gt
i, we obtain

A1 ≤ 1

n

n∑
i=1

k∑
t=0

(1− η)k−t+1E
[∥∥∇fi(x

t)−∇fi(x
t+1)

∥∥]
(6)

≤ 1

n

n∑
i=1

k∑
t=0

(1− η)k−t+1E
[
L0 exp

(
L1

∥∥xt+1 − xt
∥∥) ∥∥xt+1 − xt

∥∥]
+
1

n

n∑
i=1

k∑
t=0

(1− η)k−t+1E
[
L1

∥∥∇fi(x
t)
∥∥ exp (L1

∥∥xt+1 − xt
∥∥) ∥∥xt+1 − xt

∥∥]
=

k∑
t=0

(1− η)k−t+1γexp(γL1)L0 +
L1

n

n∑
i=1

k∑
t=0

(1− η)k−t+1γ exp (γL1) E
[∥∥∇fi(x

t)
∥∥]

(10)

≤ 2L0γ exp (γL1)

k∑
t=0

(1− η)k−t+1 + 8L2
1γ exp (γL1)

k∑
t=0

(1− η)k−t+1E
[
f(xt)− f inf

]
+
8L2

1γ exp (γL1)

n

n∑
i=1

k∑
t=0

(1− η)k−t+1
(
f inf − f inf

i

)
≤ 2L0γ exp (γL1)

∞∑
t=0

(1− η)t + 8L2
1γ exp (γL1)

k∑
t=0

(1− η)k−t+1E
[
f(xt)− f inf

]
+
8L2

1γ exp (γL1)

n

n∑
i=1

(
f inf − f inf

i

) ∞∑
t=0

(1− η)t

=
2L0γ exp (γL1)

η
+ 8L2

1γ exp (γL1)

k∑
t=0

(1− η)k−t+1E
[
f(xt)− f inf

]
+
8L2

1γ exp (γL1)

ηn

n∑
i=1

(
f inf − f inf

i

)
.
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Next, we bound term A2. Jensen’s inequality and the tower property of the conditional expectation
imply

A2 ≤

√√√√√E

∥∥∥∥∥
k∑

t=0

(1− η)k−tU t+1

∥∥∥∥∥
2
 =

√√√√ k∑
t=0

(1− η)2(k−t)E
[
∥U t+1∥2

]
.

Moreover, due to independence of {ξti}ni=1, we have

A2 ≤

√√√√ k∑
t=0

(1− η)2(k−t)

n2

n∑
i=1

E
[∥∥U t+1

i

∥∥2] (4)

≤

√√√√ k∑
t=0

(1− η)2(k−t)
σ2

n

≤ σ√
n

√√√√ ∞∑
t=0

(1− η)2t =
σ√

nη(2− η)

η∈[0,1]

≤ σ
√
nη

.

Therefore, plugging the derived upper-bounds for A1, and for A2 into (16), we obtain

E
[∥∥Hk+1

∥∥] ≤ (1− η)k+1E
[∥∥H0

∥∥]+ 2L0γ exp (γL1)

η

+8L2
1γ exp (γL1)

k∑
t=0

(1− η)k−t+1E
[
f(xt)− f inf

]
+
8L2

1γ exp (γL1)

ηn

n∑
i=1

(
f inf − f inf

i

)
+

√
ησ

√
n
,

which is equivalent to (13).

To derive (14), we make a step back to the recursion from (15), which implies

1

n

n∑
i=1

E
[∥∥Hk+1

i

∥∥] ≤ 1− η

n

n∑
i=1

E
[∥∥Hk

i

∥∥]+ 1− η

n

n∑
i=1

E
[∥∥Gk

i

∥∥]
︸ ︷︷ ︸

=:B1

+
η

n

n∑
i=1

E
[∥∥Uk+1

i

∥∥]
︸ ︷︷ ︸

=:B2

. (17)

Next, we derive the upper bounds for B1 and B2. For B1, we have

B1 =
1− η

n

n∑
i=1

E
[∥∥∇fi(x

k)−∇fi(x
k+1)

∥∥]
(6)

≤ 1− η

n

n∑
i=1

E
[
(L0 + L1

∥∥∇fi(x
k)
∥∥) exp (L1

∥∥xk − xk+1
∥∥) ∥∥xk − xk+1

∥∥]
= (1− η)L0γ exp(γL1) +

(1− η)L1γ exp(γL1)

n

n∑
i=1

E
[∥∥∇fi(x

k)
∥∥]

(10)

≤ 2(1− η)L0γ exp(γL1) + 8(1− η)L2
1γ exp(γL1)E

[
f(xk)− f inf

]
+
8(1− η)L2

1γ exp(γL1)

n

n∑
i=1

(
f inf − f inf

i

)
,

and for B2, we obtain

B2 =
η

n

n∑
i=1

E
[∥∥∇fi(x

k+1; ξk+1
i )−∇fi(x

k+1)
∥∥] (4)

≤ ησ.
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Plugging the derived upper bounds for B1 and B2 into (17) and using 1− η ≤ 1, we get

1

n

n∑
i=1

E
[∥∥Hk+1

i

∥∥] ≤ 1− η

n

n∑
i=1

E
[∥∥Hk

i

∥∥]+ 2L0γ exp(γL1)

+8L2
1γ exp(γL1)E

[
f(xk)− f inf

]
+
8L2

1γ exp(γL1)

n

n∑
i=1

(
f inf − f inf

i

)
+ ησ,

which is equivalent to (14).

E.2 Proof of Theorem 2

Now, we are ready to prove Theorem 2. For convenience, we introduce new notation:

δk := E
[
f(xk)− f inf

]
, Ak :=

1

n

n∑
i=1

E
[∥∥vki − gki

∥∥] , Bk := E
[∥∥vk −∇f(xk)

∥∥] ,
Ck :=

1

n

n∑
i=1

E
[∥∥vki −∇fi(x

k)
∥∥] , δinf :=

1

n

n∑
i=1

(f inf − f inf
i ).

Using the new notation and noticing that E
[
∥vk − gk∥

]
≤ Ak, we rewrite the results of Lemmas 7,

8, and 9 as
δk+1 ≤

(
1 + 4L2

1γ
2 exp(L1γ)

)
δk + 2γAk + 2γBk − γE

[∥∥∇f(xk)
∥∥]

+γ2 exp(L1γ)
(
L0 + 4L2

1δ
inf
)
,

Ak+1 ≤
√
1− αAk + η

√
1− αCk + 8L2

1

√
1− αηγ exp (γL1) δ

k

+2
√
1− αηγ exp (γL1)

(
L0 + 4L2

1δ
inf
)
+

√
1− αησ,

Bk ≤ (1− η)kB0 +

√
ησ

√
n

+
2γ exp (L1γ)

η

(
L0 + 4L2

1δ
inf
)

+8L2
1γ exp (L1γ)

k−1∑
t=0

(1− η)k−tδt,

Ck+1 ≤ (1− η)Ck + 8L2
1γ exp (L1γ) δ

k + ησ + 2γ exp (γL1)
(
L0 + 4L2

1δ
inf
)
.

Moreover, since γ = γ0

(K+1)3/4
with γ0 ≤ 1

2L1
, we have exp(L1γ) ≤ exp(L1γ0) ≤ 2 and the above

inequalities can be further simplified as

δk+1 ≤
(
1 + 8L2

1γ
2
)
δk + 2γAk + 2γBk − γE

[∥∥∇f(xk)
∥∥]+ 2γ2

(
L0 + 4L2

1δ
inf
)
, (18)

Ak+1 ≤
√
1− αAk + η

√
1− αCk + 16L2

1

√
1− αηγδk

+4
√
1− αηγ

(
L0 + 4L2

1δ
inf
)
+

√
1− αησ, (19)

Bk ≤ (1− η)kB0 +

√
ησ

√
n

+
4γ

η

(
L0 + 4L2

1δ
inf
)
+ 16L2

1γ

k−1∑
t=0

(1− η)k−tδt, (20)

Ck+1 ≤ (1− η)Ck + 16L2
1γδ

k + ησ + 4γ
(
L0 + 4L2

1δ
inf
)
. (21)

Next, we introduce the Lyapunov function Vk defined for any k ≥ 0 as

Vk = δk + aAk + cCk,

where a := 2γ
1−

√
1−α

and c := a
√
1− α. Then, using (18), (19), (21), we get

Vk+1 ≤
(
1 + 8L2

1γ
2
)
δk + 2γAk + 2γBk − γE

[∥∥∇f(xk)
∥∥]+ 2γ2

(
L0 + 4L2

1δ
inf
)

+a
(√

1− αAk + η
√
1− αCk + 16L2

1

√
1− αηγδk

)
+a
(
4
√
1− αηγ

(
L0 + 4L2

1δ
inf
)
+

√
1− αησ

)
+c
(
(1− η)Ck + 16L2

1γδ
k + ησ + 4γ

(
L0 + 4L2

1δ
inf
))

.
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To proceed, we rearrange the terms:

Vk+1 ≤
(
1 + 8L2

1γ
2 + 16aL2

1

√
1− αηγ + 16cL2

1γ
)
δk +

(
2γ

a
+
√
1− α

)
aAk

+

(
aη

√
1− α

c
+ 1− η

)
cCk + 2γBk − γE

[∥∥∇f(xk)
∥∥]

+
(
2γ2 + 4a

√
1− αηγ + 4cγ

) (
L0 + 4L2

1δ
inf
)
+ η

(
a
√
1− α+ c

)
σ

c=a
√

1−α,

η≤1

≤
(
1 + 8L2

1γ
2 + 32aL2

1

√
1− αγ

)
δk +

(
2γ

a
+

√
1− α

)
aAk + cCk

+2γBk − γE
[∥∥∇f(xk)

∥∥]
+
(
2γ2 + 8a

√
1− αγ

) (
L0 + 4L2

1δ
inf
)
+ 2ηa

√
1− ασ.

Since a = 2γ
1−

√
1−α

, we have 2γ
a +

√
1− α = 1 and

Vk+1 ≤
(
1 + 8L2

1γ
2 +

64L2
1γ

2
√
1− α

1−
√
1− α

)
δk + aAk + cCk + 2γBk − γE

[∥∥∇f(xk)
∥∥]

+

(
2γ2 +

16γ2
√
1− α

1−
√
1− α

)(
L0 + 4L2

1δ
inf
)
+

4γη
√
1− ασ

1−
√
1− α

≤
(
1 +

64L2
1γ

2

1−
√
1− α

)
Vk + 2γBk − γE

[∥∥∇f(xk)
∥∥]

+
16γ2

(
L0 + 4L2

1δ
inf
)

1−
√
1− α

+
4γη

√
1− ασ

1−
√
1− α

.

Next, we bound Bk using (20) and δk ≤ Vk:

Vk+1 ≤
(
1 +

64L2
1γ

2

1−
√
1− α

)
Vk + 32L2

1γ
2
k−1∑
t=0

(1− η)k−tVt + 2γ(1− η)kB0 − γE
[∥∥∇f(xk)

∥∥]
+

(
16γ2

1−
√
1− α

+
8γ2

η

)(
L0 + 4L2

1δ
inf
)
+

(
4γη

√
1− α

1−
√
1− α

+
2γ

√
η

√
n

)
σ.

Summing up the above inequality with weights βk :=
(
1 +

64L2
1γ

2

1−
√
1−α

+
32L2

1γ
2

η

)−(k+1)

for k =

0, . . . ,K and denoting SK :=
∑K

k=0 βk and β−1 := 1, we get

K∑
k=0

βkVk+1 ≤
K∑

k=0

(
1 +

64L2
1γ

2

1−
√
1− α

)
βkVk + 32L2

1γ
2

K∑
k=0

βk

k−1∑
t=0

(1− η)k−tVt

+2γB0

K∑
k=0

(1− η)kβk − γ

K∑
k=0

βkE
[∥∥∇f(xk)

∥∥]
+SK

(
16γ2

1−
√
1− α

+
8γ2

η

)(
L0 + 4L2

1δ
inf
)
+ SK

(
4γη

√
1− α

1−
√
1− α

+
2γ

√
η

√
n

)
σ.
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By definition of βk, we have βk ≤ βk−1 and, in particular, βk ≤ 1 for all k ≥ 0. Using these
inequalities, we continue the derivation as follows:

K∑
k=0

βkVk+1 ≤
K∑

k=0

(
1 +

64L2
1γ

2

1−
√
1− α

)
βkVk + 32L2

1γ
2

K∑
k=0

k−1∑
t=0

(1− η)k−tβtVt

+2γB0

K∑
k=0

(1− η)k − γ

K∑
k=0

βkE
[∥∥∇f(xk)

∥∥]
+SK

(
16γ2

1−
√
1− α

+
8γ2

η

)(
L0 + 4L2

1δ
inf
)
+ SK

(
4γη

√
1− α

1−
√
1− α

+
2γ

√
η

√
n

)
σ

≤
K∑

k=0

(
1 +

64L2
1γ

2

1−
√
1− α

)
βkVk + 32L2

1γ
2

( ∞∑
t=0

(1− η)t

)(
K∑

k=0

βkVk

)

+2γB0

∞∑
k=0

(1− η)k − γSK min
k=0,...,K

E
[∥∥∇f(xk)

∥∥]
+SK

(
16γ2

1−
√
1− α

+
8γ2

η

)(
L0 + 4L2

1δ
inf
)
+ SK

(
4γη

√
1− α

1−
√
1− α

+
2γ

√
η

√
n

)
σ

=

K∑
k=0

(
1 +

64L2
1γ

2

1−
√
1− α

+
32L2

1γ
2

η

)
βk︸ ︷︷ ︸

=βk−1

Vk +
2γB0

η
− γSK min

k=0,...,K
E
[∥∥∇f(xk)

∥∥]

+SK

(
16γ2

1−
√
1− α

+
8γ2

η

)(
L0 + 4L2

1δ
inf
)
+ SK

(
4γη

√
1− α

1−
√
1− α

+
2γ

√
η

√
n

)
σ.

Rearranging the terms and dividing both sides of the above inequality by γSK , we obtain

min
k=0,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 1

γSK

K∑
k=0

(βk−1Vk − βkVk+1) +
2B0

ηSK

+

(
16γ

1−
√
1− α

+
8γ

η

)(
L0 + 4L2

1δ
inf
)
+

(
4η

√
1− α

1−
√
1− α

+
2
√
η

√
n

)
σ

≤ V0

γSK
+

2B0

ηSK
+

(
16γ

1−
√
1− α

+
8γ

η

)(
L0 + 4L2

1δ
inf
)

+

(
4η

√
1− α

1−
√
1− α

+
2
√
η

√
n

)
σ, (22)

where in the last inequality we use VK+1 ≥ 0 and β−1 = 1. Next, we estimate SK :

SK =

K∑
k=0

βk ≥ (K + 1)βK =
K + 1(

1 +
64L2

1γ
2

1−
√
1−α

+
32L2

1γ
2

η

)K+1

≥ K + 1

exp
(

64L2
1γ

2(K+1)

1−
√
1−α

+
32L2

1γ
2(K+1)
η

) . (23)

Since η = 1
(K+1)1/2

and γ = γ0

(K+1)3/4
with γ0 ≤ 1

16L1
min

{
(K + 1)1/2(1−

√
1− α), 1

}
, we

have 32L2
1γ

2(K+1)
η ≤ 1

4 and 64L2
1γ

2(K+1)

1−
√
1−α

≤ 1
4 . Plugging these inequalities into (23), we get

SK ≥ (K+1)/exp(1/2) ≥ (K+1)/2. Using this lower bound for SK and η = 1
(K+1)1/2

, γ = γ0

(K+1)3/4
in
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(22) , we get

min
k=0,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 2V0

γ0(K + 1)1/4
+

4B0

(K + 1)1/2

+

(
16γ0

(1−
√
1− α)(K + 1)3/4

+
8γ0

(K + 1)1/4

)(
L0 + 4L2

1δ
inf
)

+

(
4
√
1− α

(1−
√
1− α)(K + 1)1/2

+
2√

n(K + 1)1/4

)
σ.

For the convenience, we define Cα := 1−
√
1− α. Then, by definition of V0, we have

2V0

γ0(K + 1)1/4
=

2δ0

γ0(K + 1)1/4
+

2A0

Cα(K + 1)
+

2(1− Cα)C0

Cα(K + 1)
.

Moreover, since g−1
i = 0 and v−1

i = ∇fi(x
0
i ; ξ

0
i ) for all i = 1, . . . , n with independent {ξ0i }ni=1, we

have v0i = ∇fi(x
0
i ; ξ

0
i ) and g0i = C0(∇fi(x

0
i ; ξ

0
i )) for all i = 1, . . . , n and

A0 =
1

n

n∑
i=1

E
[∥∥∇fi(x

0
i ; ξ

0
i )− C0(∇fi(x

0
i ; ξ

0
i ))
∥∥]

(3)

≤
√
1− α

n

n∑
i=1

E
[∥∥∇fi(x

0
i ; ξ

0
i )−∇fi(x

0
i )
∥∥] (4)

≤ (1− Cα)σ,

C0 =
1

n

n∑
i=1

E
[∥∥∇fi(x

0
i ; ξ

0
i )−∇fi(x

0
i )
∥∥] (4)

≤ σ,

B0 = E

[∥∥∥∥∥ 1n
n∑

i=1

(
∇fi(x

0
i ; ξ

0
i )−∇fi(x

0
i )
)∥∥∥∥∥
]

=

√√√√ 1

n2

n∑
i=1

E
[
∥∇fi(x0

i ; ξ
0
i )−∇fi(x0

i )∥
2
] (4)

≤ σ√
n
.

Using these inequalities, we get

min
k=0,...,K

E
[∥∥∇f(xk)

∥∥] ≤ 2δ0

γ0(K + 1)1/4
+

2A0

Cα(K + 1)
+

2(1− Cα)C0

Cα(K + 1)
+

4B0

(K + 1)1/2

+

(
16γ0

Cα(K + 1)3/4
+

8γ0
(K + 1)1/4

)(
L0 + 4L2

1δ
inf
)

+
4(1− Cα)σ

Cα(K + 1)1/2
+

2σ√
n(K + 1)1/4

≤ 2δ0

γ0(K + 1)1/4
+

4(1− Cα)σ

Cα(K + 1)
+

4σ√
n(K + 1)1/2

+

(
16γ0

Cα(K + 1)3/4
+

8γ0
(K + 1)1/4

)(
L0 + 4L2

1δ
inf
)

+
4(1− Cα)σ

Cα(K + 1)1/2
+

2σ√
n(K + 1)1/4

≤ 2δ0

γ0(K + 1)1/4
+

(
16γ0

Cα(K + 1)3/4
+

8γ0
(K + 1)1/4

)(
L0 + 4L2

1δ
inf
)

+
8(1− Cα)σ

Cα(K + 1)1/2
+

6σ√
n(K + 1)1/4

,

which concludes the proof since 1−Cα

Cα
≤ 2

√
1−α
α and 1

Cα
≤ 1

α
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F Extension to Strongly Convex and Convex Problems

Our current analysis for ||EF21|| and ||EF21-SGDM||, which are initially developed for minimizing
non-convex functions, can be extended to strongly convex and convex functions.

Strongly convex problems. We can extend the convergence for ||EF21|| and ||EF21-SGDM|| to
minimize strongly convex functions. Applying the µ-strong convexity condition of the function f , i.e.∥∥∇f(xk)

∥∥2 ≥ 2µ(f(xk)− f(x⋆)), where x⋆ = argminx∈Rd f(x), into the convergence bounds in

Theorems 1 and 2 yields the convergence results in mink=0,1,...,K E
[√

f(xk)− f(x⋆)
]
. However,

these results do not imply the standard exponential convergence typically expected in strongly convex
problems. This theoretical gap suggests a need for new analytical techniques, which involves tighter
Lyapunov functions or more refined descent inequalities tailored to strongly convex functions.

Convex problems. We can extend the convergence for minimizing convex functions. This can be
achieved by assuming that there exists the iterates {xk} satisfying

∥∥xk − x⋆
∥∥ ≤ R for some R > 0.

Hence, the convexity of the function f implies that

f(xk)− f(x⋆) ≤
∥∥∇f(xk)

∥∥ ∥∥xk − x⋆
∥∥ ≤ R

∥∥∇f(xk)
∥∥ .

Applying the above inequality to Theorems 1 and 2 yields the convergence bounds in
mink=0,1,...,K E

[
f(xk)− f(x⋆)

]
.
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G Additional Experimental Results

In this section, we provide additional results for minimizing nonconvex polynomial functions, and
for training the ResNet-20 model over the CIFAR-10 dataset.

G.1 Minimization of Nonconvex Polynomial Functions

We ran ||EF21|| and EF21 in a single-node setting (n = 1) for solving the following problem:

min
x∈Rd

{
f(x) :=

d∑
i=1

aix
4
i︸ ︷︷ ︸

=:g(x)

+λ

d∑
i=1

x2
i

1 + x2
i︸ ︷︷ ︸

=:h(x)

}
, (24)

where ai > 0, i = 1, . . . , d, λ > 0.

Let us show that f(x) is non-convex (for the specific choice of ai) and (L0, L1)-smooth. First, we
prove that f(x) is non-convex. Indeed,

∇2f(x) = ∇2g(x) +∇2h(x)

= 12 diag
{
a1x

2
1, . . . , adx

2
d

}
+ 2λ diag

{
1− 3x2

1

(1 + x2
1)

3 , . . . ,
1− 3x2

d

(1 + x2
d)

3

}
,

is not positive definite matrix if we choose ai =
λ
24 , xi = ±1 for i = 1, . . . , d.

Second, we find L0, L1 > 0 such that∥∥∇2f(x)
∥∥ ≤ L0 + L1 ∥∇f(x)∥ , ∀x ∈ Rd.

This condition is equivalent to Assumption 3 (generalized smoothness) with L0, L1 [16, Theorem 1].
Let us fix some L1 > 0 and choose L0 = 9λd2

2L2
1
+ 2λ. Since ∇2h(x) ≼ 2λI ,∥∥∇2f(x)

∥∥ =
∥∥∇2g(x) +∇2h(x)

∥∥ ≤
∥∥∇2g(x)

∥∥+ ∥∥∇2h(x)
∥∥

≤ 12
√

a21x
4
1 + . . .+ a2dx

4
d + 2λ

≤ 12
(
a1x

2
1 + . . .+ adx

2
d

)
+ 2λ.

Also, notice that

∥∇f(x)∥ = ∥∇g(x) +∇h(x)∥ =

√(
4a1x2

1 +
2λ

(1 + x2
1)

2

)2

x2
1 + . . .+

(
4adx2

d +
2λ

(1 + x2
d)

2

)2

x2
d

≥ 4
√

a21x
6
1 + . . .+ a2dx

6
d

(∗)
≥ 4√

d

(
a1 |x1|3 + . . .+ ad |xd|3

)
,

where (*) results from the fact that ∥x∥1 ≤
√
d ∥x∥ for x ∈ Rd. Our goal is to show that

12
(
a1x

2
1 + . . .+ adx

2
d

)
≤ L̃0 +

4L1√
d

(
a1 |x1|3 + . . .+ ad |xd|3

)
, L̃0 = L0 − 2λ.

To show this, we consider two cases: if |xi| ≤ 3
√
d

L1
, and otherwise.

1. If |xi| ≤ 3
√
d

L1
for all i = 1, . . . , d, then 12aix

2
i ≤ 108aid

L2
1

. Thus, 12
(
a1x

2
1 + . . .+ adx

2
d

)
≤

108λd2

24L2
1

= L̃0.

2. If |xj | > 3
√
d

L1
for some j = 1, . . . , d, then 12ajx

2
j < 4L1√

d
aj |xj |3, and the sum of the

remaining terms (such that |xi| ≤ 3
√
d

L1
) in 12

(
a1x

2
1 + . . .+ adx

2
d

)
can be upper bounded

by L̃0.
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In conclusion, f(x) is (L0, L1)-smooth, where L1 is any positive constant and L0 = 9λd2

2L2
1
+ 2λ.

Additionally, we can show that under certain additional constraints, f(x) is L-smooth with L =
λ
√
dD2

2 + 2λ. If |xi| ≤ D for all i = 1, . . . , d, then∥∥∇2f(x)
∥∥ ≤ 12

√
a21x

4
1 + . . .+ a2dx

4
d + 2λ ≤ λ

√
dD2

2
+ 2λ = L,

In the experiments, we estimate D based on the initial point x0 ∈ Rd.

In the following experiments, we used a top-k sparsifier with k = 1 and α = k/d, setting d = 4,
L1 = {1, 4, 8}, and L0 = 4 (adjusting λ to maintain a constant L0). The initial values x0 were drawn
from a normal distribution, x0

i ∼ N (20, 1) for i = 1, . . . , d, with D estimated as 20. For EF21, we
set γk = 1

L+L
√

β
θ

, using θ = 1 −
√
1− α and β = 1−α

1−
√
1−α

, according to Theorem 1 of [8]. For

||EF21||, we chose γk = 1
2c1

with c1 = L1

2 + 2
√
1−αL1

1−
√
1−α

from Theorem 3, and γk = γ0√
K+1

with
γ0 > 0, as specified in Theorem 1 with n = 1.

The impact of γ0 and K on the convergence of ||EF21||. First, we investigate the impact of γ0 and
K on the convergence of ||EF21||. We evaluated γ0 from the set {0.1, 1, 10}, and plotted the histogram
representing the number of iterations required to achieve the target accuracy of ∥∇f(x)∥2 < ϵ with
ϵ = 10−4, using the stepsize rule γ = γ0√

K+1
. For each γ0, we determined K as the minimum

number of iterations required to achieve the desired accuracy, found through a grid search with step
sizes of 500 for γ0 = 1, 10 and 5000 for γ0 = 0.1. From Figure 4, for small values of γ0, such as

L0 = 4, L1 = 1 L0 = 4, L1 = 4 L0 = 4, L1 = 8
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Figure 4: Number of iterations required to achieve the desired accuracy, ∥∇f(x)∥2 < ϵ, ϵ = 10−4,
using ||EF21|| with γ = γ0√

K+1
for different values of L0 and L1.

0.1, significantly more iterations are required to reach convergence compared to γ0 values of 1 and
10, which show similar performance (with the exception of the L0 = 4, L1 = 1 case, where γ0 = 10
converges faster). Based on this observation, we use γ0 = 1 in all subsequent experiments and adjust
only K to achieve convergence, identifying the minimum number of iterations needed to reach the
target accuracy through a grid search with a step size of 500.

Comparisons between EF21 and ||EF21||. Next, we evaluate the performance of EF21 and ||EF21||
for a fixed L0 = 4 and varying L1 values of {1, 4, 8}. From Figure 1, ||EF21||, regardless of
the chosen stepsize γ, achieves the desired accuracy ∥∇f(x)∥2 < ϵ with ϵ = 10−4 faster than
EF21. Initially, however, EF21 converges more quickly, likely because ||EF21|| employs normalized
gradients, which can be slower at the start due to the large gradients when the initial point is far from
the stationary point. Moreover, as L1 increases, both methods show slower convergence.

G.2 ResNet20 Training over CIFAR-10

We included additional experimental results from running EF21 and ||EF21|| for training the ResNet20
model over the CIFAR-10 dataset. The parameter details were set to be the same as those in
Section 6.2, with the exception that we vary k = 0.01d, 0.5d for a top-k sparsifier. From Figures 5
and 6, ||EF21|| attains a higher accuracy improvement than EF21, across different sparsification levels
k.
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Figure 5: ResNet20 training on CIFAR-10 by using EF21 and ||EF21|| under the same stepsize γ = 5
and k = 0.01d for a top-k sparsifier.
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Figure 6: ResNet20 training on CIFAR-10 by using EF21 and ||EF21|| under the same stepsize γ = 5
and k = 0.05d for a top-k sparsifier.
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H Omitted Proof for Smoothness Parameters of Logistic Regression

In this section, we prove the generalized smoothness parameters L0, L1 for logistic regression
problems with a nonconvex regularizer, which are the following problems

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x) :=
1

n

n∑
i=1

log(1 + exp(−bia
T
i x))︸ ︷︷ ︸

=:f̃i(x)

+λ

d∑
j=1

x2
j

1 + x2
j︸ ︷︷ ︸

=:h(x)

}
,

where ai ∈ Rd is the ith feature vector of matrix A with its class label bi ∈ {−1, 1}, λ > 0.

First, we can prove that f(x) is L-smooth with L = 1
4n∥A∥2 + 2λ, and that each fi(x) is L̂i-smooth

with L̂i =
1
4∥ai∥

2 + 2λ.

Next, we show that each fi(x) is generalized smooth with L0 = 2λ + λ
√
dmaxi ∥ai∥ and L1 =

maxi ∥ai∥, when the Hessian exists. By the fact that

∇f̃i(x) = − exp(−bia
T
i x)

1 + exp(−biaTi x)
biai, and ∇2f̃i(x) =

exp(−bia
T
i x)

(1 + exp(−biaTi x))
2
b2i aia

T
i ,

we have ∥∥∥∇2f̃i(x)
∥∥∥ bi∈{−1,1}

=
exp(−bia

T
i x)

(1 + exp(−biaTi x))
2
λmax(aia

T
i )

=
exp(−bia

T
i x)

(1 + exp(−biaTi x))
2
∥ai∥2

=
∥ai∥

1 + exp(−biaTi x)

∥∥∥∇f̃i(x)
∥∥∥

≤ ∥ai∥
∥∥∥∇f̃i(x)

∥∥∥ . (25)

After adding the nonconvex regularizer h(x), we can show the following inequalities:∥∥∇2fi(x)
∥∥ ≤

∥∥∥∇2f̃i(x)
∥∥∥+ ∥∥∇2h(x)

∥∥
≤

∥∥∥∇2f̃i(x)
∥∥∥+ 2λ, (26)

and

∥∇fi(x)∥ ≥
∥∥∥∇f̃i(x)

∥∥∥− ∥∇h(x)∥ =
∥∥∥∇f̃i(x)

∥∥∥−
√(

2λx1

(1 + x2
1)

2

)2

+ . . .+

(
2λxd

(1 + x2
d)

2

)2

≥
∥∥∥∇f̃i(x)

∥∥∥−√λ2 + . . .+ λ2

=
∥∥∥∇f̃i(x)

∥∥∥− λ
√
d. (27)

By combining inequalities (25), (26), and (27), we obtain∥∥∇2fi(x)
∥∥ ≤

∥∥∥∇2f̃i(x)
∥∥∥+ 2λ

≤ ∥ai∥
∥∥∥∇f̃i(x)

∥∥∥+ 2λ

≤ 2λ+ λ
√
d∥ai∥+ ∥ai∥ ∥∇fi(x)∥ .

In conclusion,
∥∥∇2fi(x)

∥∥ ≤ L0 + L1 ∥∇fi(x)∥ with L0 ≤ 2λ + λ
√
d∥ai∥, and L1 ≤ ∥ai∥. This

condition is equivalent to Assumption 3 (generalized smoothness) with L0, L1 [16, Theorem 1].
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The data and model sources are open and cited. We provide necessary details
for reproducibility.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so âCśNoâCt’ is an acceptable answer. Papers cannot be rejected simply for
not including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details regarding training and testing procedures, including data splits and
hyperparameter settings, are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive
to run all the experiments multiple times.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Our experiments on (1) minimizing simple functions and logistic functions,
and on (2) ResNet20 training can be run on a machine with a single GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The contribution of this paper is to provide the first convergence guarantee
of error feedback algorithms for problems under generalized smoothness for deep neu-
ral network training. We ensure full reproducibility and fair comparisons by providing
comprehensive experimental details in the appendix.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper introduces distributed error feedback methods for training deep
neural networks. These methods utilize normalization to stabilize convergence under
generalized smoothness conditions, which effectively model the challenges of neural network
training. Crucially, they maintain the convergence rates of their standard smoothness
counterparts without requiring unrealistic assumptions, such as bounded data heterogeneity
or smoothness-dependent stepsize restrictions (in the deterministic setting).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The data and models utilized in this work are publicly available, aligning with
open-access principles.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We acknowledge the sources of our datasets, the ResNet models, and the
ResNet training implementation by citing the creators’ respective publications. Furthermore,
any modifications made to the software for our specific research investigation were done in
accordance with the software’s license and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce entirely new datasets or models as assets.
Instead, we provide a detailed description of our novel algorithms, along with the specific
datasets and model architectures used (which are publicly available). Our comprehensive
implementation details should be sufficient for others to reproduce and modify our algorithms
for implementation and testing.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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