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Abstract

Reinforcement Learning with Human Feedback
(RLHF) and its variants have made huge strides
toward the effective alignment of large language
models (LLMs) to follow instructions and reflect
human values. More recently, Direct Alignment
Algorithms (DAAs) have emerged in which the
reward modeling stage of RLHF is skipped by
characterizing the reward directly as a function
of the policy being learned. Some popular ex-
amples of DAAs include Direct Preference Op-
timization (DPO) and Simple Preference Opti-
mization (SimPO). These methods often suffer
from likelihood displacement, a phenomenon by
which the probabilities of preferred responses are
often reduced undesirably. In this paper, we argue
that, for DAAs the reward (function) shape mat-
ters. We introduce AlphaPQO, a new DAA method
that leverages an a-parameter to help change the
shape of the reward function beyond the standard
log reward. AlphaPO helps maintain fine-grained
control over likelihood displacement and over-
optimization. Compared to SimPO, one of the
best performing DAAs, AlphaPO leads to about
7% to 10% relative improvement in alignment per-
formance for the instruct versions of Mistral-7B
and Llama3-8B while achieving 15% to 50% rela-
tive improvement over DPO on the same models.
The analysis and results presented highlight the
importance of the reward shape and how one can
systematically change it to affect training dynam-
ics, as well as improve alignment performance.
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1. Introduction

Large language models (LLMs) (Vaswani, 2017; Brown
et al., 2020; Dubey et al., 2024) have ushered in a new era
for artificial intelligence. LLM training can be broadly split
into two stages - pre- and post-training. An important step
in the post-training stage is “alignment” - which involves
improving the model’s ability to follow instructions, human
values and style. This step is crucial in helping bridge the
gap between the raw ability of pre-trained models and the
immense utility of post-trained models.

To this end, researchers have developed several techniques
under the umbrella of Reinforcement Learning with Human
Feedback (RLHF) (Ouyang et al., 2022; Ziegler et al., 2020).
RLHF involves a three stage process - supervised fine-tuning
(SFT), reward modeling and reinforcement learning (RL)-
based fine-tuning to learn the optimal policy. Learning is
typically performed on preference data, which include pre-
ferred and dispreferred responses to the same input prompt.
While achieving impressive results, RLHF involves several
stages and can be cumbersome to train (Casper et al., 2023).

To simplify the alignment process, methods such as Di-
rect Preference Optimization (DPO) (Rafailov et al., 2023)
and Simple Preference Optimization (SimPO) (Meng et al.,
2024) have been developed. DPO optimizes directly for the
optimal policy, bypassing the reward modeling step. The
optimal policy is identified as the solution to an expected
reward maximization problem while ensuring that the policy
does not diverge too much from a reference policy. SimPO
achieves the same goal with a different reward function nor-
malized by the length of the generation, and also introduces
a margin term to better separate preferred and dispreferred
responses. Both belong to a class of methods known as Di-
rect Alignment Algorithms (DAAs) (Rafailov et al., 2024a).
DAAs include DPO and its variants (Rafailov et al., 2023;
Park et al., 2024a), SimPO (Meng et al., 2024) and methods
like CPO (Xu et al., 2024) and ORPO (Hong et al., 2024)
among others.

Several studies have shown that DAAs tend to widen the
margin between preferred and dispreferred responses while
simultaneously reducing the probabilities of preferred re-
sponses. Although slightly lower completion likelihood is
known to improve output diversity and generalization, ex-
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Generalized Reward Shaping with AlphaPO
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Figure 1. The generalized reward shaping paradigm of AlphaPO. By adjusting the parameter « in the reward function 7 (y; x), AlphaPO
induces various reward shapes, leading to different preference optimization dynamics and downstream performances.

cessive focus on increasing the reward margin can degrade
actual performance, as measured by human evaluations.
This is known as reward over-optimization (Shi et al., 2024).
Similarly, the reduction in preferred response probabilities,
known as likelihood displacement (Razin et al., 2024), has
been linked to unintended misalignment, further harming
performance. Extended training exacerbates both issues,
leading to deterioration in the overall effectiveness of pref-
erence optimization.

Although the aforementioned issues may be concerning, in
practice, there are typically model checkpoints along the
training trajectory that demonstrate strong alignment perfor-
mance. These checkpoints can be identified through early
stopping. SimPO, known for its strong alignment capabil-
ities, uses just one epoch of training (Meng et al., 2024).
By varying three hyperparameters—Ilearning rate, 5 (reward
scaling), and v (reward margin shift)—SimPO generates a
three-dimensional manifold of trajectories. These hyperpa-
rameters are fine-tuned to enhance alignment performance
on benchmarks such as AlpacaEval 2.0 (Dubois et al., 2024),
optimizing the win rate to select the final model of choice.

In this paper, we introduce a new method AlphaPO based
on a fourth important dimension - the reward function shape.
Most DAAs, including SimPO, are based on the log reward
function. We point out that changing this reward shape
yields new types of trajectories with distinctly different mar-
gin and preferred-likelihood behaviors. We take inspiration
from Wang et al. (2024a), use the reward function arising
from the a-divergence idea and apply length-normalization
to it to generate an interesting class of reward shapes that are
parameterized by « as depicted in Figure 1 (o = 0 yields the
log reward shape for SimPO, making it a special case. More
details are provided later.). By choosing an « value different
from zero, alignment performance can be significantly im-

proved. We note that although AlphaPO’s « reward shapes
are inspired by f-DPO(Wang et al., 2024a), they are dis-
tinctly different since we use length normalization in the
reward and f-DPO does not. Moreover, we demonstrate that
non-zero values of o improve generalization performance
while f-DPO fails to demonstrate that for any value of «
except 0 (which is standard DPO).

Through gradient analysis and experiments, we show how
the shape of the newly introduced reward function affects
the aggressive or conservative nature of likelihood displace-
ment. For varying values of «, we then demonstrate how
AlphaPO’s performance evolves on evaluation benchmarks
such as AlpacaEval 2.0 and ArenaHard (Li et al., 2024). The
critical factor is the combination of the a-parameterized
scoring function with length normalization. We demon-
strate that AlphaPO comprehensively outperforms SimPO
and DPO across models such as Mistral-7B Instruct (Jiang
et al., 2023a) and Llama3-8B Instruct (Dubey et al., 2024),
while remaining competitive for models like Gemma2-9B
Instruct (Team et al., 2024). In particular, AlphaPO achieves
a relative improvement of 7% to 10% over SimPO (and
15% to 50% over DPO) on AlpacaEval 2 for Llama3-8B
and Mistral-7B. Additionally, integrating AlphaPO with
the SPPO method (Wu et al., 2024) yields strong improve-
ments on AlpacaEval 2.0 with a length controlled win rate of
47.42% for PairRM-based regeneration (Jiang et al., 2023b)
of the UltraFeedback dataset (Cui et al., 2024), bettering the
results of SimPO with SPPO applied on top.

2. Preliminaries

Let us consider the setup of alignment training. x
[x1, 22, x3,....] denotes a single input prompt with a se-
quence of tokens. The objective of an LLM is to generate
a relevant and consistent response y = [yl, Y2, Y3, ] to x.



AlphaPO: Reward Shape Matters for LLM Alignment

LLM learns a policy 7g parameterized by 6 where 7g(y|x)
denotes the probability assigned to y.

RLHF aims to fine-tune the policy mg to maximize the re-
ward r(-) without excessively diverging from the initial
policy 7t (Christiano et al., 2017; Ouyang et al., 2022).

In the offline alignment learning scenario, the data consist
of the prompt x and a pair of (preferred, dispreferred) re-
sponses (¥, ;)" of sequences, with preference denoted
by y» > y:; (Rafailov et al., 2023). This triplet is often
denoted as (X,yw,y:). RLHF-based methods consist of
using supervised fine-tuning (SFT) on a dataset, reward
modeling and then reinforcement learning to finally learn
an aligned model. Methods such as Direct Preference Op-
timization (DPO) (Rafailov et al., 2023) , SimPO (Meng
et al., 2024), CPO (Xu et al., 2024), and ORPO (Hong
et al., 2024) use the Bradley-Terry (BT) (Bradley & Terry,
1952) setup: p(yw > y1) = 0(r(yw; X) — 7(¥1; X)), where
o(z) = 1/(1 4 exp(—z)) is the sigmoid function. These
method directly specify the reward function as a function
of the optimal policy, as described in the subsequent sec-
tion. These methods are also known as Direct Alignment
Algorithms (DAAs) (Rafailov et al., 2024a). DAAs have
achieved immense popularity recently for their simplic-
ity and effectiveness at achieving strong alignment perfor-
mance (Lambert et al., 2024).

2.1. Direct Preference Optimization (DPO)

DPO (Rafailov et al., 2023) is a recent popular method
that solves the problem of maximizing the expected reward
with an added KL penalty between the sequence probabili-
ties of the model being trained and a reference model 7t
(trained using SFT). DPO uses a closed-form expression
for the reward r by leveraging the optimality conditions of
the problem: rppo(y;x) = Blog (me(y[x) / mer(y|x)) +
Blog(Z(x)), where mg refers to the policy being trained
and Z(x) is the partition function. Plugging this into the
BT model, we get the following loss function for DPO:

o (Y [X)
7Tref(yw |X)

. m(ylx)) ]

Wref(yl |X)

Loro = ~Exy, y)~p l logo (6 log
9]

where D denotes the preference dataset.

2.2. Simple Preference Optimization (SimPO)

SimPO (Meng et al., 2024) is a modification of DAAs like
DPO. SimPO scales the reward by the length of the output’:

'Some papers refer to this as the (chosen, reject) pair.
The idea of using average log probability for reward was
originally proposed in Hong et al. (2024, ORPO).

rsimpo (¥;X) = % log g (y|x), where |y| is the length of

y. SimPO also introduces an additional margin term in the
BT objective: p(yw > yi) = 0(r(yuw;x) — 7(y1;X) — 7).
This results in the following loss for SimPO:

Yl

LSimPO = - IE()gyw,yl)ND [log a (yﬂ 1Og o (Y’w |X)

—ilogﬂe(}’z\x)—ﬁ : 2
|Yl|

While the parameter ~y influences the size of margin values,
the parameter /3 determines how close — log o(3z)/0 is to
the hinge loss, i.e., max{—z,0}. SimPO demonstrates its
effectiveness as a robust and efficient alignment method
for LLMs due to several key innovations. Unlike DPO,
SimPO eliminates the reliance on a reference model dur-
ing training, reducing memory and computational overhead
while ensuring reward maximization aligns with inference.
Furthermore, SimPO establishes length normalization, first
introduced by ORPO, as a critical factor for alignment
performance. This technique enables SimPO to outper-
form DPO and other methods on benchmarks like AlpacaE-
val2.0 (Dubois et al., 2024), achieving superior results with-
out increasing response length. Notably, SimPO’s length
normalization has inspired enhancements in other methods,
such as Tulu (Lambert et al., 2024), underscoring its impact.

By fixing training epochs to one and carefully tuning 8 and
v, SimPO achieves strong alignment performance. A key
aspect of its robustness lies in its constant penalization 7,
which addresses limitations in DPO. While DPO parame-
terizes the optimal human preference distribution under the
BT model with a maximum likelihood objective, it relies
on divergence penalties from a reference policy ¢, which
can be suboptimal when preference samples are sampled
from arbitrary policies (Tunstall et al., 2024) or ¢ itself
(Meng et al., 2024; Lambert et al., 2024). SimPO miti-
gates this issue by replacing the variable divergence penalty
—fBlog (ﬂ'ref(yw |x) /et (¥ |x)) in Lppo with a constant -y,
thereby improving robustness under noisy preference sam-
ples.

3. Reward Function Matters

In this section, we dive deep into the shape of reward func-
tions and its relationship with likelihood displacement. The
main premise of this paper is that by systematically mod-
ifying the log reward function, it is possible to adjust the
intensity of the likelihood displacement and, in particular,
improve the alignment performance of SimPO.
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3.1. Likelihood displacement

define the length normalized margin as

(1/|ywl) log myw — (1/|y:1]) log 7;, where 7, 2 o (Yw|x),
m 2 7o (yw|x). Clearly, minimization of the preference
loss in (2) would (in expectation) lead to an increase in
the length normalized margin. Although this seems to
imply that training decreases log m; and increases log 7y,
usually log m; rapidly decreases while also dragging the
preferred likelihood logm, down. This phenomenon
is called likelihood displacement (Razin et al., 2024).
Although several recent papers (Pal et al., 2024; Liu et al.,
2024; Pang et al., 2024; Yuan et al., 2024; Rafailov et al.,
2024b; Tajwar et al., 2024) mention this behavior and
discuss its ramifications, (Razin et al., 2024) dissect
this in detail. They make a key observation - since both
log T, and logm; decrease, other responses (denoted
by 2) increase in likelihood. If z is as preferable as y,,
(e.g., z is similar in meaning to y,,), then the likelihood
displacement is benign. However, if z is a poor response,
then likelihood displacement is labeled as catastrophic and
leads to unintentional consequences.

Let us

A closely related idea is discussed in (Shi et al., 2024), where
the authors note that high likelihood of preferred responses
and big gaps between the likelihood of preferred and dis-
preferred responses can lead to reward over-optimization
- resulting in a better margin but worse generalization. A
controlled lowering of completion likelihood is shown to be
beneficial for output diversity and generalization.

The ideas listed above indicate the importance of balancing
the optimization of the reward margin with the likelihood
of the preferred and dispreferred responses. To avoid confu-
sion, we use the phrase “likelihood displacement” to refer
to all the related ideas described above.

While excessive likelihood displacement (over-
optimization) is detrimental, controlled likelihood
displacement offers clear benefits, as demonstrated by
methods like SimPO, which employ early stopping and
limit training to one or a few epochs. Building on these
insights, we explore how DAAs can be designed to shape
the margin and preferred/dispreferred likelihoods.

3.2. The AlphaPO reward function

Most DAAs are based on the log reward function. We begin
by discussing f-DPO (Wang et al., 2024a) where the authors
point out that standard DPO corresponds to using reverse
KL as the divergence and that other divergences can lead
to improvement in properties like generation diversity. One
parametric divergence proposed by them is the a-divergence.
This divergence has the reverse Kullback—Leibler (KL) di-
vergence as a limiting case when oo — 0, and the forward
KL divergence as a limiting case when o — 1 (Cichocki

et al., 2008). However, in the DPO context, the paper does
not find much benefit from this extension since standard
DPO (a = 0) yields the best alignment performance.

f-DPO operates by allowing alignment to incorporate vari-
ous divergences, which determines the implicit base reward
function. We consider a similar idea in the context of SimPO
- we use the reward function corresponding to a-divergence,
but crucially modify it with length-normalization:

- we<y|x>a/'y'>

3

[e%

ra(y;x) =8 (

This yields the following preference loss in the context of
the margin-based BT model:

_B —_
Laphapo = = E(xy, y)~D [IOgU <a7ﬂ9(}’w|x) el

+ Dong i) - 7)1 : 4)
(0%

We refer to this new method, derived from utilizing the
new reward function, as AlphaPO. In the limit o — 0,
the AlphaPO reward function yields SimPO’s log reward.
Specific choices & = 1 and o = —1 yield the inverse-linear
and linear reward functions, respectively: 7inyjin(y;X) =
B(—1/7e(yx) + 1) and rin(y;x) = B (Ta(y|x) — 1),
where 7o (y|x) = 7o (y|x)Y/1¥].

AlphaPO differs from f-DPO in the following ways:

(1) Length normalization - AlphaPO uses length normal-
ization - a crucial element in improving SimPO’s perfor-
mance over DPO.

(2) Fewer restrictions on the value of « - f-DPO requires
the estimation of the normalization constant Z(x) for some
divergences. Specifically for a-divergence, f-DPO restricts
the value of a € (0, 1) for the normalization constant to
cancel out. No such restrictions are required for AlphaPO.

(3) Improved generalization with tuning of o - While
f-DPO fails to demonstrate that any value of « except 0
(which is standard DPO) yields improved generalization,
we demonstrate in the experiments section that non-zero
values of « actually improve generalization performance.

It turns out that a simple condition on « yields reward func-
tion shapes that encourage likelihood displacement. For de-
tails, please see Lemma A.1 and Figure 4 in Appendix A.S.

3.3. Understanding AlphaPO using gradient analysis
and experiments

We now perform gradient analysis and conduct experiments
to study the three key length-normalized quantities: pre-
ferred likelihood (1/]y ) log 7y, dispreferred likelihood
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(1/y:]) log m and margin (1/]y. ) log 7w —(1/]yu]) log m.
This will help us understand the degree of likelihood dis-
placement that happens across methods, the role of o and
the effect on alignment performance.

Let us begin with a gradient analysis of AlphaPO for a single
training example. For y, x such that g (y|x) > 0, we have

! (To(y|x)) A Ora(y;x) 5exp< %)
o\ = e (ylx) o (y[X)|y]

where the last expression on the right hand side has been
written with the purpose of clearly separating out the role
of a. Let v be a generic weight parameter. Define non-
negative parameters c,, = — 8% ¢ = — lng'le . Define
Or = ro(mw) —7o(m;). Based on (3) and (5), the magnitude
of the gradient of per-sample loss ¢ with respect to v is:

Yuwl

(6)

OTw or
‘ |€/ or — )| T;W—Tgaivl

where the reward derivatives for the dispreferred and pre-

= Bexp(ac)/(m |yil)
and 7}, 2 rl(my) = Bexp(acy)/(my [yw|) and dr =
8 = [exp(acy) — exp(acy)]. Substituting these quantities
into Equation (6), we obtain |0¢/0v| = T («)- T (c) where

B

A
ol =
ferred responses are: r; = 17, (m)

Ti(a) = , (D
1+ exp( [exp(acl) - exp(acw)} - 'y)
_ |exp(acy) Omw  exp(ac) Om
o) = Tw|Yw| Ov mly:| Ov ®)

We are interested in studying how « affects |0¢/0v|. It turns
out that T («) and T () exhibit markedly different behav-
iors as functions of a.. This discrepancy leads to |9¢/0v|
behaving in a non-monotonic fashion with respect to a.
The limiting behavior is established in Theorem 3.1, whose
proof is deferred to Appendix A.1.

Theorem 3.1. Let 5 > 0 and v > 0 be fixed constants. Let

A = 1 Omw 1 87rl Then:
Tw |[Yw| OV m lyi| Ov

2. As o — 400, the limit 0f| 35 | depends on the sign of

the margin:
.o .. . 0|
— If the margin is positive, then QEIEDQ 3¢ = 0.
— If the margin is non-positive, hm ‘— =+

except when the margin is zero and A=03

3If the margin is zero and A = 0, 1% is identically zero, i.e.,
T5(a) = 0 and thus |9¢/0v| = 0.

As a consequence, large |a| values impose a regularization
effect on alignment training due to the vanishing gradi-
ent for samples with positive length-normalized margins.
The regularization effects are stronger for positive « values
(super-exponential) compared to negative o values (expo-
nential); see the proof for details. The following numerical
illustration adequately demonstrates the limiting behavior
in Theorem 3.1.

Illustration 1 - Positive margin. Consider a toy exam-
ple with 8 = 1, v = 0, ‘Yw| = |YZ‘ =1 aﬂ-w/av =
om/ov = 1, logm, = —1, and logm, = —2. Substi-
tuting these values, we find [0¢/9v| = (1 + exp((e?® —
e®)/a))~ |e®t! — e22F2|. For the values of « = —2, 0,
0.25, 1, and 2, the corresponding magnitudes of the deriva-
tive |0¢/dv| are 0.11, 1.26, 1.63, 0.44, and 2.15 x 1078,
respectively. The associated values for 73 are 0.49, 0.27,
0.19, 0.01, and 5.60 x 1011, while the T} values are 0.23,
4.67, 8.69, 47.21, and 383.34.

Illustration 2 - Negative margin. Consider the toy

example, where logm,, = —2 and logm = -1, the
magnitude of the derivative is given by: [9¢/0v]
(1 + exp ((e* — 620‘)/a))_1 |e? 2 — e Using the

same « values, the computed |0¢/0v| values are 0.12, 3.41,
7.05, 46.77, and 383.34, respectively. The corresponding
values for T3 are 0.51, 0.73, 0.81, 0.99, and 1.00, while the
T5 values remain identical to those in Illustration 1.

These results demonstrate non-monotonic behavior in the
relationship between |0¢/0v| and « (see Appendix A.10 for
a holistic illustration).

The key takeaways from the analysis are: (a) reward func-
tions significantly impact preference-based alignment learn-
ing, and (b) changes in « notably influence the training
process by altering gradients and modifying the relative im-
portance assigned to preferred and dispreferred responses.
To gain a deeper understanding, we examine the evolution
of mg(+)(Yw|x) during training under gradient flow. Specifi-
cally, we formalize how this relative importance influences
the dynamics of 7g(;)(y.w|X) over training time ¢ > 0,
where 6(t) denotes the model parameters at time ¢. For
brevity, we define m,, = Wg(t)(yw|x) m £ T (yilx)
and V?Tw = Vg(t)ﬂ'w, V?Tl Vg(t)ﬂl

Theorem 3.2 (Evolution of 7,,). Consider a single training
example (X,y,¥1), where y,, and y; are the preferred
and dispreferred responses, respectively. Consider ,,, T €

(0,1).

r’(/;-(w) > <V7Tw7V7Tl>
r'(m) — [Vl

then under gradient-flow dynamics, the probability of the
preferred response T, increases over time, i.e. %ﬂ'w > 0.

&)

The proof is in Appendix A.2.
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If (Vmy,, V) <0, then (9) holds trivially for all a, and 7,
increases. A more interesting case is where (Vy,, V) >
0, i.e., the gradient step will increase or decrease the prob-
abilities for both 7, and 7;. In this senario, we have the
following Corollary (proof in Appendix A.3).

Corollary 3.3. Under the conditions of Theorem 3.2, sup-
pose that (N7, V) > 0. If the margin is negative, then
for a > v, the probability T, increases over time. Con-
versely, if the margin is positive, then for o < «, the
probability T, increases over time, where oy is defined as

IVrull® mwlywl
. log ((Vﬂ‘w,V7U> |yl ) (10)
| 1 :
Vol log 7y — i log m;

As pointed out by (Fisch et al., 2024), methods such as DPO
have global optima that include policies capable of shifting
nearly all probability mass to responses that never appear in
the training set—and even assigning near-zero probability to
all training data responses that correspond to winning gen-
erations. In Theorem 3.2 and Corollary 3.3, we demonstrate
that such likelihood displacement can be mitigated by en-
suring a sufficiently large ratio of 7/ () /r’ (), controlled
by selecting appropriate values of a.

The above analysis is at the level of a single example. A
detailed analysis of the interaction of many examples is
hard. Therefore, we conduct training experiments using the
instruct versions of the Mistral-7B and Gemma-2-9B mod-
els on the UltraFeedback dataset with 1 epoch of training
(detailed setup in Section 4). Specifically, we vary a from
—2.0 to 2.0, while keeping other hyperparameters fixed.

Line plots for the length-normalized quantities of the Mistral
model can be found in Figure 2 (a similar figure for Gemma
2 (Figure 7) and the corresponding box plots Figures 15
and 16 are in Appendix A.11). As shown in the figure,
the influence of « on dynamics is indeed non-monotonic.
Specifically, there are larger displacements for o values
close to 0 and smaller displacements for larger |«| values.
In particular, larger |«|s lead to smaller quartile values of
margin toward the end of training, which could help mitigate
the over-optimization. Scatter plots of preferred likelihood
vs. margin in Figures 13 and 14 tell a similar story. For
large absolute values of o (—2 and 2), we notice a clear reg-
ularization effect for both margin and preferred likelihood.

During the initial phase of training, many samples exhibit
an undesired ordering, characterized by a negative margin.
According to Corollary 3.3, selecting a sufficiently large o
should lead to an increase in 7,,. This behavior is evident
in epochs 0 to 0.1 in Figures 2 and 7 (for v > —2).

Additionally, we explore in Appendix A.4 what happens
when a reference model is included in the SimPO and Al-
phaPO training objectives.

4. Experiments
4.1. Experimental setup

Models We conduct all our experiments using the in-
struct versions of three popular families of models - Llama
3(Dubey et al., 2024), Mistral (Jiang et al., 2023a) and
Gemma 2 (Team et al., 2024). We make this choice for
two reasons - (1) The aforementioned models represent the
state-of-the-art and (2) they have been used in several recent
works, making comparisons with baselines easier.

Datasets We chose the UltraFeedback (UF) dataset (Cui
et al., 2024) for all experiments. Previous works (Meng
et al., 2024; Wu et al., 2024; Zhao et al., 2024) have demon-
strated that using an on-policy setting for the instruct setup
helps mitigate the distribution shift between off-the-shelf
instruct variants of these models and the preference opti-
mization process. Following (Meng et al., 2024), specifi-
cally, we regenerate five responses for every prompt in the
UF dataset using a sampling temperature of 0.8. We then
use two reward models - PairRM (Jiang et al., 2023b) and
ArmoRM (Wang et al., 2024b) to rank the 5 responses. The
highest scoring response is labeled y,, and the lowest scor-
ing response is labeled y;. We use the PairRM-based dataset
to conduct experiments for Llama 3 and Mistral, and lever-
age the ArmoRM-based dataset for Llama 3 and Gemma
2-based experiments.

Hyperparameter tuning AlphaPO introduces a new pa-
rameter « as described in equation (3). We tune « for each
different LLM and note the effect of tuning alpha in sec-
tion 4.2. The exact values of learning rate, «, 3, v and
other hyperparameters used in the experiment iterations are
detailed in Appendix A.6.

Baselines We compare AlphaPO primarily against SimPO
and DPO since they represent the state-of-the-art.

Evaluation. We evaluate trained models using two popu-
lar benchmarks - AlpacaEval 2.0 (Dubois et al., 2024) and
Arena-Hard (Wang et al., 2024b) (referred to as AE2 and
AH, respectively, hereinafter). AE2 consists of 805 prompts
sourced from a variety of datasets, gearing it towards mea-
suring the ability of models to follow diverse and complex
instructions. For AE2, we report WR (win rate) and LC
(Iength-controlled win rate). LC is specifically designed
to discourage models from using verbose answers, since
GPT4 is known to favor longer responses when judging for
instruction following (Wang et al., 2023; Park et al., 2024b).
For AH, we only report WR since it doesn’t offer LC.

4.2. Results

AlphaPO outperforms SimPO and DPO on most bench-
marks as demonstrated in Table 1. Focusing on PairRM-
based results, AlphaPO outperforms SimPO and DPO across
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Figure 2. Tracking various statistics for length-normalized preferred likelihood, dispreferred likelihood and margin over an epoch for the
Mistral instruct model. The min and max are computed after removing outliers.

Table 1. Comparison of DPO, SimPO, and AlphaPO for on-policy data created using PairRM and ArmoRM.

PairRM ArmoRM
Llama-3-8B-Instruct Mistral-7B-Instruct Llama-3-8B-Instruct Gemma-2-9B-Instruct
Method AE2 AH AE2 AH AE2 AH AE2 AH
LC (%) WR (%) WR (%) LC(%) WR (%) WR (%) LC(%) WR (%) WR(%) LC(%) WR (%) WR (%)
DPO 39.18 36.84 34.1 21.96 22.16 14.8 47.19 45.61 35.5 67.83 65.77 60.7
SimPO 42.05 36.90 32.8 29.71 31.12 21.5 51.66 46.54 354 73.72 67.36 59.0
AlphaPO  45.37 40.97 34.6 33.03 34.12 21.7 53.01 47.64 36.0 74.13 65.89 57.7

both AE2 and AH for the instruct versions of the Llama 3
and Mistral models. The results are especially pronounced
for AE2 where AlphaPO relatively improves over SimPO
by 7% to 10% for LC, and over DPO by 15% for Llama 3
and 50% for Mistral. Notably, AlphaPO doesn’t increase
the generation length significantly for all the models when
compared to SimPO and DPO (more in Appendix A.7).

For ArmoRM-based results, Llama 3 AlphaPO outperforms
both DPO and SimPO. For Gemma 2, we note that AlphaPO
has a better LC and a slightly lower or comparable WR for
AE2 when compared to SimPO and DPO. The lower WR for
AE2 is also mirrored by AH results where SimPO and DPO
are slightly better. This is consistent with the observation
that GPT as a judge has a bias towards longer responses,
and AH doesn’t have a way to control for length when mea-
suring rewards (Wang et al., 2023; Park et al., 2024b). More
detailed results can be found in Appendix A.7. From Fig-
ure 5 in Appendix A.8, we demonstrate that the number of
AE2 samples where AlphaPO outperforms SimPO is higher
than the number of samples where SimPO does better.

Effect of o on generalization performance To under-
stand the effect of o on model generalization, we mea-
sure the AE2 performance of various models with changing
a. Results for the Mistral model are in Figure 3 (results
for other models are similar and are in Figure 8 in Ap-
pendix A.11). A slightly positive value of « achieves the
best AE2 performance, with a drop-off on either side of

Table 2. Language modeling benchmark evaluation results for
SimPO and AlphaPO. We evaluated in 10-shot setting for Hel-
laSwag.

‘ Llama-3-8B-Instruct | Mistral-7B-Instruct

SimPO  AlphaPO | SimPO  AlphaPO
HellaSwag | 0.7576 0.7694 0.8610 0.8638
TruthfulQA | 0.6078 0.6142 0.7061 0.7127

the peak value. The drop-off is less steep on the positive
side. This is not surprising, since a positive « results in
less aggressive likelihood displacement when compared to
SimPO (which lowers both preferred and dispreferred likeli-
hoods) and subsequently achieves higher AE2 performance.
A negative « results in more aggressive likelihood place-
ment compared to positive values of «.. See section 3.3 for
more discussion.

Effect of tuning v on generalization performance We
examine the impact of the margin parameter v on AE2
performance. To this end, we tune v while keeping other
hyperparameters fixed at the optimal settings reported in
Table 3. We use PairRM-based data for all models, except
for Gemma 2, which employs ArmoRM-based data.

Results for the Mistral model appear in Figure 3 (findings
for other models are in Figure 9 in Appendix A.11). Consis-
tent with the findings of (Meng et al., 2024), increasing -y



AlphaPO: Reward Shape Matters for LLM Alignment

improves AE2 performance to a certain level, beyond which
larger values hurt performance. This indicates that there
exists an optimal gamma that has to be tuned depending on
the model family and the quality of response generation (de-
termined by AE2 evaluation) is not determined by the mar-
gin alone. On the other hand, increasing v leads to longer
response lengths, as it dominates the length-normalized
quantities r(y.,; x) — 7(y;; X) in the loss function.

Effect on reward scores To better understand the quali-
tative impact of various alignment methods, we look at the
reward distribution for the test set of UltraFeedback using
PairRM. We compare AlphaPO to SimPO and SFT for the
Mistral in Figure 3. It is evident that AlphaPO yields a
reward distribution that is better or on par with SimPO (the
strongest baseline in our experiments). Since the intent of
alignment methods is to match human preferences, this test
is a good proxy for measuring the performance (see the right
plot in Figure 12 in Appendix A.11 for the Llama 3 result).

Evolution of KL Divergence with training In Figures 10
and 11 of the Appendix A.11, we present the evolution
of KL divergence (relative to the SFT checkpoint) and the
AE2 LC during training for AlphaPO and SimPO applied to
both Mistral and Llama 3 instruct models. We observe that
both methods remain close to the instruct model, exhibit-
ing minimal divergence even without explicit regularization
to the reference policy. Notably, AlphaPO achieves a KL
divergence comparable to that of SimPO while attaining
better LC values, suggesting that excessively high or low
KL divergence can impede generalization. Furthermore, al-
though KL divergence continues to increase and eventually
plateaus, a larger KL does not necessarily lead to improved
LC. These findings highlight the importance of early stop-
ping and careful tuning of the total number of training steps
to enhance preference generalization performance.

Combining SimPQ/AlphaPO and SPPO  SimPO and Al-
phaPO use BT modeling to diverge from a reference model,
achieving strong alignment through optimal hyperparame-
ters. In contrast, SPPO (Wu et al., 2024) cautiously moves
toward a Nash equilibrium. For the PairRM-based (Jiang
et al., 2023b) experiments, we select the best performing
checkpoints for SimPO and AlphaPO and train both further
using SPPO (see Appendix A.9 for details). Without exten-
sive tuning, SPPO improves the AE2 LC of both SimPO
(from 42.05 to 45.06) and AlphaPO (from 45.37 to 47.42).
This demonstrates that methods like SPPO can be orthogo-
nally used to improve these methods.

Additional experiments on other datasets To under-
stand the impact of AlphaPO on datasets other than those
used traditionally for alignment, we compare AlphaPO
and SimPO-based checkpoints of the Mistral and Llama

models on HellaSwag (Zellers et al., 2019) and Truth-
fulQA (Lin et al., 2021). HellaSwag is a multiple-choice
commonsense reasoning benchmark whereas Truthful QA
is a question-answering benchmark designed to evaluate a
model’s propensity to generate truthful versus misleading
or false answers. Results are presented in Table 2. AlphaPO
outperforms SimPO across all settings.

5. Related work

Reinforcement learning with human feedback RLHF
aligns language models to human preferences by leveraging
parameterized reward models as proxies and reinforcement
learning (RL) algorithms (Christiano et al., 2017; Ziegler
et al., 2019). Having parameterized reward models trained
with the Bradley-Terry model (Bradley & Terry, 1952), al-
gorithms like proximal policy optimization (Schulman et al.,
2017) and REINFORCE (Williams, 1992) are applied for
language models to maximize the reward with online gener-
ations (Ziegler et al., 2020; Ouyang et al., 2022; Ahmadian
et al., 2024; Kazemnejad et al., 2024). While typically being
used to align the style of generations to human preferences
(Ziegler et al., 2020; Ouyang et al., 2022), the paradigm of
RLHEF is being applied to specialized tasks like complex
mathematical reasoning (Kazemnejad et al., 2024; Lambert
et al., 2024) and coding (Gehring et al., 2024).

Direct alignment algorithms Direct alignment algo-
rithms (Rafailov et al., 2024a, DAAs) as methods for di-
rectly aligning the language models to human preferences
bypass RL in RLHF (Yuan et al., 2023; Zhao et al., 2023;
Rafailov et al., 2023; Wang et al., 2024a; Xu et al., 2024;
Gheshlaghi Azar et al., 2024; Ethayarajh et al., 2024; Wu
et al., 2024; Hong et al., 2024; Meng et al., 2024) either
through optimizing expected rewards penalized by diver-
gence from a reference policy (e.g., DPO (Rafailov et al.,
2023), SPPO (Wu et al., 2024)) or directly as a function of
the policy (e.g., ORPO (Hong et al., 2024), SimPO (Meng
et al., 2024)).

While these score functions effectively guide fine-tuning
with alignment data, they often exhibit over-optimization,
excessively widening the margin between chosen and re-
jected outputs, sometimes lowering the quality of chosen
responses. Recent research like f-divergence Preference Op-
timization (Han et al., 2024, {-PO) offers theoretical insights
addressing over-optimization by minimizing f-divergences.

6. Conclusion

Altering the reward function shape to enhance the alignment
performance of SimPO is a novel insight introduced and
demonstrated in this paper. Since reward function (via the
choice of divergence measure) occurs in other methods such
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as DPO and RLHF, whether it is possible that changing its
shape can provide value for them too is a worthwhile future
research direction.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Proof of Theorem 3.1
Proof. For m,,, m € (0,1), recall ¢, = —1“)5”[” >0,¢ = —kl’ifl” > 0.

Part1l: ¢ — —cc.

Since ¢; > 0 and ¢,, > 0, both exp(a ¢;) and exp(a ¢,,) go to 0. Hence

exp(ac) — exp(acy,) — 0, g [exp(a ¢) —exp(a cw)} — 0.
Therefore 5 5
Ti(a) = 5 A pp—
1+ exp(g[exp(oz cr) —exp(acy)] — 7) te
a finite and positive constant.
For Ty (a):
1 9my, 1 0Om
To(a) = . — any
2(0) = [exp(arey) —= O explae) = OF

Each term contains a factor exp(« ¢;) which goes to 0, so T5(«) — 0. Thus the product satisfies

lim ’% = lim Ti(a)Tz(a) = 0.

a—r—00 a—r—00

Part 2: o« — +oc.

Case 2(a), Positive margin: ¢; > c¢,,. Since ¢; > ¢y, exp(ac;) > exp(ac,,) as @ — +oo. Thus:

B

o [exp(acy) — exp(acy)] ~ o exp(ac;).

The denominator of 77 («) satisfies:

exp (i [exp(ac)) — exp(acy)] — 7) ~ exp (ﬁ exp(acl)> .

Since exp(ac;) > exp(acy ), the term exp(ac;) dominates:

Ta(a) ~ exp(acy) | Om

7Tl|yl| %

Combining the asymptotics of T3 («) and T»(«x), we find:

Ty (o) To(a) B exp(acy) |Om ‘
1 2(a) ~ -
exp (g exp(acl)) mlyil | dv
Bexp(ac) om

B ov

exp (E eXp(acl)) |y

Thus, we conclude:
. or
lim

—1| =0, whenc¢ > cy.
oo | v ) 1 w

Case 2(b), Negative Margin: ¢; < ¢,,. Then exp(« ¢,,) dominates exp(« ¢;), and
exp(ac) —exp(acy) = — exp(acy).
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Hence
g [exp(acl) —exp(acw)] ~ - exp(acy,) = —oo,

S0
exp(fgexp(acw)ffy) — 0, Ti(a) — B.

In T5(«), the exp(a ¢,,) term dominates, so T5(«) grows on the order of exp(a ¢,,). Thus
To(a) = +oo, Ti(a)Te(a) ~ B exp(acy) — +oo,
implying lima_)+oo‘%‘ = 400 when ¢; < ¢y,

Case 2(c), Zero Margin: ¢; = c,,. Then

B
exp(ac) —explacy,) = 0, Ti(a) =
p( l) p( ’LU) 1( ) 1 _i_exp(_,y)
which is a positive constant. In T (),
1 Omy 1 om
Th(a) = |exp(ac — exp(ac -
2(a) place) = yul Bo place) il B
exp(ac) 1 0w 1 oOm
= ex — — .
P Tw |Yw‘ ov T |yl‘ v
IfA = m Orw - |1}'z| 97 £ 0, then T»(r) grows exponentially since exp(a ¢) — -+o00. Hence the product with
the finite positive 77 () diverges to 4oo.
Thus
; ae| _
agrfw‘%‘ = +oo when A #0.
O
A.2. Proof of Theorem 3.2
Proof. As the model parameters evolve according to gradient flow:
d
—-0(t) = —VL(6(1)), (17)
dt
where £(6) is a differentiable loss function. By the chain rule, the time derivative of 7, is
e = (V. L0(8) = — (T, VE(O(1))) (18)
dt w woy dt - wo M
Recall the loss gradient
VUO(t)) = £'(r =) [ (7o) Vi — 7' (m) V] (19)
where ¢'(§r — ) is negative. Applying the condition Substituting into the expression for %ﬂ'w gives
d
2w = —0' (67 — ) [r' (7o) || V7w || = v/ (m) (Vw, V)] - (20)
Factoring out ’(7;), we obtain
d ' (Tw) 9
P =0 (6r — ~)r'(m) () V7wl = (Vmy, V)| . 1)
Recall (5), 7' (m;) > 0. Since —¢'(67 — 7) > 0, the sign of 4, is determined by
(7w
(1) [Vwl|> = (Viw, V). (22)

()
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Rearranging the inequality condition, we require

' () S (Vw, V)
r(m) T I Vml?

to ensure that the bracketed term is nonnegative. Under this condition, it follows that

d
dtﬂw >0

Thus, the probability 7, of the preferred response increases over time.

A.3. Proof of Corollary 3.3

(23)

(24)

Proof. Under the assumption that (V,,, V;) > 0, the condition in Theorem 3.2 can be satisfied by appropriately choosing

the ratio cv. The ratio is parameterized by «

7 (Tw) |y ( (1og Tw logm ))
T = exp | —a - .
r (771) 7wa’w| |yw‘ |yl|

Substituting (25) into the inequality (9), we obtain

I w I ws
|yl exp (—a ( og ogm>> S (Vm V7n>.

T | Y| Yol |yl V|2

Rearranging terms, we have

( (logﬂw logm)) IVTull? Twlywl
exp | —« - > ( . .

[yl lyi| V7w, V) mlyil

Taking the natural logarithm of both sides yields

log my, log m; ||V7Tw||2 7rw|Yw‘
—a — > log : .
[Ywl lyil (Vmw, V) mlyil

Solving for a,

logmy, 1
ogm - 0g T

a<aqp if (positive margin),
Yl vl
and ) )
og T, og T . .
a>ap it —2Tw o BT (esative margin),
|Vl il
where « is defined as
”v”'wl‘z . ”'w‘yu)l
_ 10g(<V7fw,V7Tz> |yl
Qo = — logmy, _ logm
[¥wl [yl

A 4. AlphaPO with Reference Policy

(25)

(26)

27

(28)

(29)

(30)

3D

Another interesting observation is what happens when a reference model is included in the SimPO and AlphaPO training
objectives. Interestingly, the SimPO variant reduces to SimPO with a per-response-pair margin, whereas the AlphaPO

variant reduces to AlphaPO with per-response weights for the preferred and dispreferred responses.

The inclusion of the reference policy in SimPO (2) results in the loss

Lsimpo wret = —E(x,y,,y,)~D [loga <|yﬁ ‘ log (

7Tref(yw |X) - m

B B
= —E(x,yu.y1)~D [loga < log 7 (yw|x) — i log mo (yi[x) — ¥ (Yw.¥1,%) | | -

[Vl
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Therefore, Lsimpo w ref reduces to SimPO with the per-response-pair margin v/ (y.,, yi, X)

’Y,(ywayhx) =7+ yi 10g7rref(Yw|X) - |yﬂl| 1Og ’/Tref(yl|x)-

Y

In contrast, with the reference policy, the AlphaPO (4) becomes

—a/|ywl —a/lyil
- T w|X T X
Laprapowret = ~Eegn g llogg <ﬂ <e<yl>) LB <e<wl>) _ 7)]

« 71-ref<}’w |X) @ 7Tref(y1 |X)

B (Y, X . !y, X »
= —Exy,.y)~D [loga (g) 7o (Yw|X) Myl 4 %l) 7o (yi|x) /lyil _ 1,
where

B (Y, X) = B res(yu|x)*/ Vel
B (y1,%) = B er(yi]x) /1.

Therefore, Lajphapo w re reduces to AlphaPO with per-response weight 3’ (y.,,x) and 3’ (y;, x).

16



AlphaPO: Reward Shape Matters for LLM Alignment

A.5. Likelihood displacement with AlphaPO

It turns out that a simple condition on « yields reward function shapes that encourage likelihood displacement (and
subsequent decrease in the likelihood of both, preferred and dispreferred responses). The following lemma describes this.
Lemma A.1 (Monotonically decreasing derivative of 7 (7)). Let w € (0, 1] be the probability of a response 'y for parameters
0, and let o, 8 € R with 8 > 0. Also, let |y| > 1. Then r.,(w) is monotonically decreasing in 7 if and only if o > —|y|.

We relegate the proof to Appendix A. In Lemma A.1, we use a slight abuse of notation where we refer to the reward function
as 1o (mg(y|x)) instead of r,(y|x). Since in general, [y| > 1 (and potentially much larger than 1) for responses, most
practical values of « will satisfy & > —|y|. Thus, by Lemma A.1, lower likelihood values will have higher derivative values
for the reward function. This encourages preference optimization to move the likelihood of preferred and dispreferred
responses to lower values.

Figure 4 illustrates this for the log reward function (o« = 0). Notice that for the same difference in likelihood, one can
achieve a much higher reward difference if the likelihood of preferred and dispreferred responses are both reduced.

The log reward function

1

Lo 02 .03 04 05 Y
- Rewa.rcll valiue (0-60,-0.51) (0.65,—0.43)

b Likelihood

g kmmnads 0.15,-1.90)

77777 (0.10, -2.30)
-3
4

—y = log(x)
.

Figure 4. The log reward function (y) as a function of the completion likelihood (x). From the plot, it is evident that for a similar change
in likelihood, the difference in reward is much higher when the likelihood changes from 0.1 to 0.15 (~0.40), rather than from 0.6 to 0.65
(~0.08).

A.5.1. PROOF OF LEMMA A.1

Proof. The derivative of the reward function with respect to 7 is given by

B

= (5. (32)
y

ro ()

To determine when 7/, () is monotonically decreasing, we compute its derivative with respect to 7:

dr, () _4d (B .77—(|§?+1)> __B (a T 1) o (57+2) (33)
dm dr \ |yl Iyl \|y|

Since 5 > 0, |y| > 1, and 7 (5172 > 0 for e (0, 1], the sign of % is determined by the term — (ﬁ + 1).

For r/ () to be monotonically decreasing in 7, we require:

drg, ()
dm

<0.

This inequality holds if and only if
2 >0 <= a>-ly|

lyl
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A.6. Implementation Details

Training hyper-parameter tuning Following the recommendations of SimPO, we adopt a global batch size of 128, a
maximum sequence length of 2048, and a cosine learning rate schedule with a warmup ratio of 0.1 for one epoch across all
training settings. For DPO, we use the best S and learning rate values reported in SimPO github.

Although AlphaPO introduces an additional hyperparameter, c, compared to SimPO, the need for extensive grid searches
can be mitigated if the optimal parameters for SimPO have already been determined. Instead of performing a full grid
search, we can leverage the best parameters identified for SimPO and conduct a coordinate-wise hyperparameter search in
a greedy manner. This approach allows us to achieve improved performance rapidly, often within a few search iterations.
Notably, the optimal parameters of 3, v and learning rate for AlphaPO show only minor deviations from those of SimPO.
The hyperparameters that differ from the SimPO settings are highlighted in bold in Table 3. Follow the practice from the
SimPO repo, we report v/ (instead of +) in Table 3 .

Table 3. Best hyperparameters for training.

Method Model Q B /B Learning Rate
DPO Mistral-Instruct - 001 - 5x 1077
Llama-3-Instruct - 0.01 - 7x 1077
Llama-3-Instruct (ArmoRM) - 0.01 - 3x 107
Gemma-2-Instruct - 0.01 - 5% 1077
SimPO Mistral-Instruct - 25 0.1 5x 1077
Llama-3-Instruct - 25 0.5 1x 10~
Llama-3-Instruct (ArmoRM) - 100 0.3 1x1076
Gemma-2-Instruct - 10 05 8x 1077
AlphaPO Mistral-Instruct 025 25 0. 7x10°7
Llama-3-Instruct 025 25 1.0 1x 106
Llama-3-Instruct (ArmoRM) 0.25 10.0 0.3 1.1 x10°°
Gemma-2-Instruct 0.1 10 05 8x 1077

Decoding hyperparameters For AlpacaEval 2.0, we adopt the default settings for AlpacaEval 2.0 with
weighted._alpaca_eval_gpt4_turbo as the annotator and use gpt4_turbo as the reference model. We use a
sampling decoding strategy to generate responses, with a temperature of 0.5 for the Mistral-Instruct setting and a temperature
of 0.9 for Llama-3-Instruct settings following from the SimPO configs. We use a tempreture of 0.7 following from the
WPO-HB config for better reproducibility. For Arena-Hard, we use the default greedy decoding for all settings and methods.

Computation All the training experiments in this paper were conducted on 8xA100 GPUs with the adamw_torch
optimizer based on the alignment-handbook. The training time for Mistral-Instruct and Llama-3-Instruct is around 2.3 hours,
while Gemma-2-Instruct requires 3 hours.

Open Sourced Models used in Experiments The list of open-sourced LLMs used in our experiments and their Hugging-
face IDs are listed in Table 4.

Model Huggingface ID

Mistral-Instruct SFT mistralai/Mistral-7B-Instruct-v(.2
Llama-3-Instruct SFT meta-llama/Meta-Llama-3-8B-Instruct
Gemma-2-Instruct SFT  google/gemma-2-9b-it

Table 4. List of open-source models used in experiments.
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A.7. Detailed results for AlphaPO and SimPO

The full results of the best runs are reported in Table 5.

Table 5. Detailed results of AlpacaEval 2 and Arena-Hard for the best run. LC means length-controlled win rate, WR means raw win rate,
and STD means standard deviation of win rate over different instructions. Length is the average generation length. For Arena-Hard, we
report the win rate and 95% confidence interval.

AlpacaEval 2 Arena-Hard
Models LC (%) WR (%) STD (%) Length WR 95CIhigh 95CIlow Length
Mistral-7B-Instruct

DPO 21.96 22.16 1.25 2034 14.8 16.4 13.1 667

SimPO 29.71 31.12 1.37 2330 21.5 23.6 19.8 551

AlphaPO 33.03 34.12 1.40 2097 21.7 24.0 19.9 503
Llama-3-8B-Instruct

DPO 39.18 36.84 1.40 1885 34.1 35.9 31.5 539

SimPO 42.05 36.90 1.42 1759 32.8 34.9 30.5 485

AlphaPO 45.37 40.97 1.45 1820 34.6 37.1 32.9 508

Llama-3-8B-Instruct (ArmoRM)

DPO 47.19 45.61 1.47 1974 33.4 38.0 35.5 587

SimPO 51.66 46.54 1.47 1806 354 37.8 333 515

AlphaPO 53.01 47.64 1.47 1794 36.0 38.7 33.9 507
Gemma 2-9B-Instruct

DPO 67.83 65.77 1.39 2042 60.7 63.3 58.3 729

SimPO 73.72 67.36 1.37 1832 59.0 61.5 56.7 720

AlphaPO 74.13 65.89 1.41 1802 57.7 60.4 55.6 689

A.8. Win Rate Heatmap

In Figure 5, we create AE2 win rate heatmaps of AlphaPO and SimPO for the Mistral instruct and Llama 3 instruct models.

Observations on Win Rate: It is observed that the percentage of instances where AlphaPO outperforms the base GPT
model, but SimPO does not, is significantly higher compared to the percentage of instances where SimPO outperforms the
base GPT model, but AlphaPO does not.

100 100
12.3% S A<B{ 517% 12.9%
S
50 R n 50 X
<I‘I< A=B 8.2% 22.0% <"( A= B- 8.1% 27.3%
T T O T T 0
A<B A=B A<B A=B
A = AlphaPO A = AlphaPO
(a) Mistral-Instruct. (b) Llama-3-Instruct.

Figure 5. Win rate heatmap of Mistral-Instruct and Llama-3-Instruct on AlpacaEval 2. B represents the reference model (i.e.,
gpt4_turbo).
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A.9. Training Details of SPPO

We use a 20k sampled subset from the UltraFeedback dataset (Cui et al., 2024) and follow the same hyper parameter setting
in the SPPO except for changing the learning rate and number of epochs. We set the learning rate to be 10~ with linear
warm up and decay and beta to 0.001 for both methods. We use 6 epochs for SPPO and 4 epochs for AlphaPO.

A.10. Tllustration of the Non-Monotonicity of |0¢/0v|

To illustrate the non-monotonic behavior of the gradient magnitude |8€ /Ov

0w 0
B=5 =0, |yol=lyi, =2=2"L=1 logm =-5 logm=—10.
ov ov

, we examine a simple example with

Gradient

PRCAY

. L.ﬂﬂ\“‘v

Figure 6. Surface plot of the gradient magnitude ’8@ / 81}‘ (z-axis, log scale) as a function of the parameter « (z-axis) and the common

norm |y| = |yw| = |y1] (y-axis).

A.11. Extra plots
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Figure 7. Tracking various statistics for length-normalized preferred likelihood, dispreferred likelihood and margin over an epoch for the
Gemma 2 instruct model. The min and max are computed after removing outliers.
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Figure 8. Effect of tuning o for AlphaPO. The highest AE2 length-controlled win rate is achieved for o« > 0: 0.1 for Gemma?2 and 0.25
for the other two models.
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Figure 9. Effect of margin parameter v on AE2 length-controlled win rate and response length.

21



AlphaPO: Reward Shape Matters for LLM Alignment
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(a) KL Divergence evolution during training compared to orig-
inal reference Mistral instruct model.
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Figure 10. Side-by-side comparison of two metrics for Mistral 7B Instruct Model: KL Divergence (left) and AE (right).
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Figure 11. Side-by-side comparison of two metrics for Llama3 8B Instruct Model: KL Divergence (left) and AE (right).
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Figure 12. Comparison of reward distributions for PairRM for Mistral (left) and Llama 3 (right). AlphaPO yields a reward distribution
that is either on par or better (i.e., right-shifted) when compared to strong baselines like SimPO.
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Figure 13. Scatter plot of length normalized preferred likelihood (y-axis) vs. length normalized margin (x-axis) for varying values of
alpha for the Mistral instruct model. « is the alpha parameter, epo is epoch number. Outliers were moved before plotting. Clearly
noticeable is the regularization effect of large absolute values of a.
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Figure 14. Scatter plot of length normalized preferred likelihood (y-axis) vs. length normalized margin (x-axis) for varying values of
alpha for the Gemma 2 instruct model. « is the alpha parameter, epo is epoch number. Outliers were moved before plotting. Clearly
noticeable is the regularization effect of large absolute values of a.
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Figure 15. Mistral: Box plots illustrating the distribution of length-normalized preferred (dispreferred) likelihood and length-normalized
margin across different o values. The plot provides a detailed view of variations in scatter intensity and performance metrics as a function
of .
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Figure 16. Gemma 2: Box plots illustrating the distribution of length-normalized preferred (dispreferred) likelihood and length-normalized
margin across different o values. The plot provides a detailed view of variations in scatter intensity and performance metrics as a function
of .
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