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Abstract. Deep learning has shown great promise in the ability to au-
tomatically annotate organs in magnetic resonance imaging (MRI) scans,
for example, of the brain. However, despite advancements in the field, the
ability to accurately segment abdominal organs remains difficult across
MR. In part, this may be explained by the much greater variability in
image appearance and severely limited availability of training labels. The
inherent nature of computed tomography (CT) scans makes it easier to
annotate, resulting in a larger availability of expert annotations for the
latter. We leverage a modality-agnostic domain randomization approach,
utilizing CT label maps to generate synthetic images on-the-fly during
training, further used to train a U-Net segmentation network for abdom-
inal organs segmentation. Our approach shows comparable results com-
pared to fully-supervised segmentation methods trained on MR data.
Our method results in Dice scores of 0.90 £ 0.08 and 0.91 + 0.08 for
the right and left kidney respectively, compared to a pretrained nnU-
Net model yielding 0.87 £ 0.20 and 0.91 %+ 0.03. We will make our code
publicly available.

Keywords: image segmentation - domain randomization - computed
tomography - magnetic resonance imaging - abdominal

1 Introduction

Accurate segmentation of abdominal organs in magnetic resonance (MR) im-
ages would be beneficial for many clinical tasks including liver volumetry [15],
kidney disease monitoring [24], adaptive radiotherapy [29]. However, manual
delineations of organs by experts are often time-consuming and tedious to per-
form [17]. The use of supervised convolutional neural network (CNN) methods
for segmentation help alleviate the aforementioned issues, being time-efficient
and robust to in-domain training data.

Popular supervised CNN methods for segmentation are the U-Net architec-
ture [27] and its variants, including V-Net [25], and others built on top such as
nnU-Net [19]. Specifically for abdominal segmentation, multiple approaches have
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been developed based on these architectures. A multi-2D slice input approach
was used to train a U-Net-based neural network, segmenting ten abdominal
organs [5], and others used a 3D U-Net based approach [2] for MR pancreas seg-
mentation. Going beyond the traditional encoder-decoder segmentation models,
others have integrated the use of conditional generative adversarial networks
(GAN) [8]. There has also been multiple challenges related to the development
of supervised algorithms for multi-modality abdominal segmentation, such as
AMOS [20] and CHAOS [21-23]. Most of the supervised methods can adapt well
to the domain of the training dataset, but can fail on out-of-distribution data [11].
This is a significant concern as MR imaging data is highly heterogeneous with
regards to resolution, orientation, and soft tissue contrast. Additionally, these
methods require the need for large training datasets, which may not be readily
available.

To rectify the need of large training datasets, techniques like data augmenta-
tion have been used to increase the heterogeneity of the data. Many techniques
have been developed, ranging from basic transforms, to deformable and other
learning-based methods [6,31]. Though they may work well on a downstream
segmentation task within a single modality, they may suffer when used in a
cross-modality setting. This has led to the development of data augmentation
techniques specifically for cross-modality use cases [4]. From that point, the field
of domain adaptation has expanded rapidly, with the development of methods to
account for domain shift between training and testing datasets [16]. For instance,
a cross-modality domain adaptation method such as SIFA [3], modifies the in-
put image domain to appear like the target domain using a GAN approach. Our
proposed method uses a domain randomization approach, alleviating the need
for defined source and target domain.

The proposed method implements a deep learning-based algorithm specif-
ically for modality agnostic abdominal organ segmentation. The method con-
tributes the following: 1) Leveraging publicly available computed tomography
(CT) label maps for synthesizing training data for primarily MR segmentation,
using a domain randomization approach 2) Extensive validation and testing of
our approach on publicly available datasets 3) Analyzing the effect of the num-
ber of labels for contextual information and the level of granularity of the labels
on the performance of the network 4) Comparison to multiple methods publicly
available in the literature.

2 Methods

2.1 Approach

We adopt the domain randomization strategy of SynthSeg [1] for the automatic
segmentation of abdominal structures in MR data. The method was originally
developed for the segmentation of brain structures in MR and CT volumes,
and was extended to the delineation of cardiac structures [1]. Using solely label
maps as an input, the method generates synthetic data which is then used to
train a U-Net model [27] for segmentation. Synthetic scans are generated by
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Fig. 1. Flowchart of the method for abdominal segmentation. The model requires as
an input training label maps as input which are used to create synthetically generated
images and corresponding label maps on the fly. These are used to train a U-Net
model using a soft Dice loss. The final segmentation map of the anatomical structures
of interests are obtained using the trained model.

sampling a Gaussian mixture model process conditioned on the expert annotated
label maps. These parameters include intensity, bias, resolution, and orientation.
During the training process, volumes are generated on the fly, where the network
sees randomized data at every step, thereby becoming agnostic to resolution
and contrast. Please refer to the paper [1] for further details of the adopted
domain randomization strategy. Figure 1 describes the overall methodology for
our proposed abdominal organ segmentation approach.

2.2 Datasets

Training We use the publicly available data (v1) provided from the TotalSeg-
mentator method for CT structure segmentation [30]. All of the data were re-
sampled to 1.5 mm, and includes 104 anatomical regions. The authors used a
semi-automatic process to generate ground-truth annotations, combining Al-
produced segmentations and expert feedback. For our study, we used 10 subjects
for training, as it has previously been shown that the generative model performs
well despite a low number of training subjects [1]. We randomly chose 10 patients
where the abdomen was present.

Table 1. Dataset split for validation and testing, for AMOS and CHAOS, in terms
of number of subjects (subjs). AMOS contains MR and CT modalities, and CHAOS
contains T1 in phase, T2 out phase and T2 along with CT.

Dataset # MR val subjs|# MR test subjs|# CT val subjs|# CT test subjs
AMOS [20] 10 20 25 12
CHAOS [21-23) 24 24 10 10

Validation and testing We used two publicly available collections for val-
idation and testing of our approach. The AMOS dataset [20] is a collection
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of patients with abdominal cancer or abnormalities, where both CT and MR
data were collected from two medical centers using eight different scanners. The
dataset includes labels for 15 abdominal organs. A coarse segmentation was first
performed using a model trained on a small sample of the data, and the output
of these models were refined by junior radiologists for the remaining data, and
reviewed by senior radiologists. We used a subset of this data for validation and
testing, as detailed in Table 1.

The second publicly available dataset we used was CHAOS [21-23], which
consists of CT and MR images from healthy patients at the Dokuz Eylul Uni-
versity Hospital, in Izmir, Turkey. MR sequences included T1 in phase, T1 out
phase and T2 SPIR, and includes labels for the liver, spleen, right kidney and
left kidney, while the CT dataset only includes labels for the liver. These images
were annotated from three radiologists with a majority voting procedure. We
used a subset of the provided training dataset for our validation, and the pro-
vided validation set for our testing. We split the data into validation and testing
cohorts as described in Table 1.

Pre-processing for target labels selection The original TotalSegmentator
training data contains whole-body CT images and label maps, with 104 struc-
tures segmented. In our study, we only focus on the abdominal organs, there-
fore we cropped and/or padded our images and label volumes to a fixed size of
300x300x250. The following organs were selected for segmentation: liver, spleen,
kidneys, stomach, duodenum, pancreas, gallbladder, small bowel, colon, adrenal
glands, sacrum, hip bone, gluteus maximus, gluteus medius, gluteus minimus,
autochthon, iliopsoas. We combined the vertebrae present in the abdominal re-
gion into a single segment for prediction. This yielded a total of 26 predicted
labels (including left and right separately).

Pre-processing for synthetic data generation Our U-Net segmentation
network is trained on synthetic scans generated from our training label maps. In
order to diversify the appearance of our synthetic images, we applied a number of
additional processing steps to increase the variety of details generated. From the
original 10 label maps, we removed the CT table from 50% of the subjects using
a 3DSlicer extension [13]. To further enhance the appearance of fine structures
in CT scans later used for clustering, pre-processing steps including Gaussian
filter blurring (https://docs.scipy.org/doc/scipy/reference/generated/
scipy.ndimage.gaussian_filter.html) and gamma-based contrast-stretching
was applied to the CT images used to generate synthetic data during training.
Additional labels only used during synthetic data generation were added, to add
more randomization to our training images. These labels were obtained by per-
forming intensity clustering on the background and the foreground of our CT
training scans. A Gaussian Mixture Model (GMM) with Kpsckground € [3,4, 5]
components was fitted on the background voxels of our training CT scans.
This GMM was then optimized using the Expectation-Maximization (EM) algo-
rithm [9], providing K clusters assignments for all of our background CT images
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Algorithm 1 Background and foreground labels clustering used for synthetic
image generation
for BG in [3,/4,5] do
P(a) = 32 N |, of)me
Optimise Opc = {px, 03, Tk, k = 1,..., BG} using EM algorithm
for FG in [1,2,3] do
for segment in [1,...,Nseq] do

P(irsegnwnt) - ::Gl N(xsegnwnt | Mk, U]%)ﬂ-k
Optimise rg = {px, 02, 7, k =1, ..., FG} using EM algorithm
end for
end for

end for
Nseg refers the total number of labels present in a particular CT scan and corre-
sponding label map

voxels. These additional background clusters were used during our synthetic data
generation step. The same approach was used to produce additional foreground
label clusters, for Kyoreground € [1,2,3] for each available segment from the
TotalSegmentator label maps. Algorithm 1 describes the process of background
and foreground clustering GMM process used to generate additional labels for
synthetic data generation. Using this process, we obtained 180 training label
maps from the original 10 selected label maps.

2.3 Training procedure and evaluation

Following the published method developed by [1] from here (https://github.
com/BBillot/SynthSeg), we trained the U-Net segmentation network on our
synthetic images using the default parameters. We trained our network for two
weeks using an NVIDIA A100 GPU with 40 GB RAM [28] for 100 epochs with
5000 steps per epoch. Epoch 10 was chosen for testing. Overlap metrics and
distance-based metrics were computed for testing and validation of our methods,
namely Dice score [10] and Hausdorff distance [18].

3 Results and Discussion

3.1 Experimental Results

We performed inference on the external testing collections outlined in Table 1.
Table 2 provides the quantitative results for the same collections for the liver,
spleen and kidneys. We observe high Dice scores for AMOS MR and CT modal-
ities. However, CHAOS MR yields relatively lower results than AMOS. This
could be partly due to the differences between the ground truth segmentations,
as both the TotalSegmentator and AMOS collections did not contain the renal
cavity of the kidney, while CHAOS did. Figure 2 displays our qualitative results
on one sample subject, showing the ground truth segments vs predictions from
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Table 2. Quantitative results for inference on two collections AMOS and CHAOS
for each modality (MR and CT) in terms of mean Dice score (Dice) and mean Haus-
dorff distance (95th percentile) (HD95) in mm. The standard deviation values are also

provided.

Dataset| Segment MR MR CT CT
Dice HD95 Dice HD95

AMOS Liver 0.90 + 0.04| 25.13 £+ 26.0 [0.91 4+ 0.05| 13.15 4+ 15.4
AMOS Spleen  |0.86 + 0.15| 5.34 £+ 6.37 |0.78 4+ 0.22|19.37 + 26.20
AMOS |[Right kidney|0.90 £+ 0.08| 4.24 4+ 5.50 [0.91 + 0.05| 2.83 + 1.84
AMOS | Left kidney |0.91 £ 0.08| 2.92 4+ 2.04 [0.92 4+ 0.03| 3.55 + 2.84
CHAOS Liver 0.87 +£ 0.05| 5.77 + 3.27 |0.91 + 0.10{21.08 + 23.95
CHAOS| Spleen |0.78 £ 0.13]10.46 + 15.06 — —
CHAOS|Right kidney|0.80 £ 0.14| 3.53 + 2.29 — —
CHAOS| Left kidney |0.68 £+ 0.31| 7.79 4+ 11.19 — —

Fig. 2. Qualitative results of the proposed method on a subject from AMOS MR. The
left view shows the expert radiologist annotations, and the right one shows the results
from our baseline method. Here we have high agreement between many abdominal
regions, including the liver in red, spleen in green, kidneys in yellow and brown. Our
method segments 26 structures in the abdominal area.

our proposed method. Please refer to the supplementary material for additional
box plots results.

3.2 Ablation study results

In order to assess the performance of the model and to understand the effect
of the synthetic generation process, we performed a number of ablation studies.
We studied the effect of foreground labels clustering and the effect of segmenting
one label versus all abdominal labels. The three studies we performed were 1)
No foreground clustering and segmenting all original abdominal labels, 2) In-
clude foreground clustering and predict a single label (left and right kidneys),
3) No foreground clustering and predict a single label (left and right kidneys).

After examining the validation curves, epoch 5 was chosen for both A. and
B. The last epoch was chosen for C. Please refer to the supplementary material
for analysis of the validation loss curves. Overall our baseline method performed
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Table 3. Dice score and HD95 quantitative testing results for inference on AMOS
and CHAOS for MR and CT modalities. The last four rows are our baseline method.
Subjects with undefined Hausdorff distance values were removed for the overall metrics
calculation. Values in bold are the best performing. Kruskal-Wallis statistical testing
was performed comparing our baseline approach to the three ablation studies. Values
with an asterisk indicate a significant difference of p<0.01. C for the first column refers
to clusters (Yes/No). The L column refers to the the number of labels, all or 1, RK
refers to right kidney segmentation, LK refers to left kidney segmentation.

C|L| Dataset RK Dice RK HD95 LK Dice LK HD95
N|[1|AMOS MR | 0.58 + 0.34 |162.87 + 42.94| 0.25 4+ 0.15 |203.44 £+ 59.35
N|l1| AMOS CT 0.0 £ 0.0 |250.08 & 31.09] 0.02 £ 0.06 |285.07 £+ 19.28
N|1|CHAOS MR| 0.29 £ 0.36 |94.12 £ 36.03 | 0.14 £ 0.16 |111.78 £ 15.88
Y| 1|AMOS MR | 0.82 £ 0.22 5.46 £ 6.68 | 0.85 £0.19 | 5.06 £ 6.90
Y[1| AMOS CT | 0.81 £0.21 5.55 £ 8.12 0.84 £0.23 | 4.82 £ 7.36
Y| 1|CHAOS MR| 0.51 £0.30 |12.48 & 10.73| 0.76 & 0.27 | 5.98 £ 7.20
Nlalll AMOS MR | 0.81 £0.27 | 8.05+9.89 | 0.87 £ 0.08 | 6.65 &+ 4.79
Nlalll AMOS CT | 0.76 £ 0.26 |10.69 £ 16.03| 0.68 = 0.28 | 37.75 &+ 97.07
N|alll CHAOS MR| 0.63 + 0.25 7.88 £ 6.75 0.62 £ 0.26 | 6.73 + 4.90
Y|alll AMOS MR |0.90 + 0.08*(4.24 £ 5.50*|0.91 4 0.08%|2.92 + 2.04*
Ylalll AMOS CT |0.91 4+ 0.05*|2.83 + 1.84*|0.92 + 0.03*|3.55 + 2.84%
Y|all| CHAOS MR|0.80 + 0.14*|3.53 £+ 2.29*|0.68 *+ 0.31%*| 7.79 + 11.19*

the best compared to the three ablation studies. Table 3 shows that our baseline
experiment including all abdominal organs and the additional clustering method
for the synthetic generation step is significantly better than the ablation meth-
ods, across all collections. One could argue that the clustering step adds more
diversity to the synthesized images used for training, and including more seg-
mentation labels during training helps to add contextual information. Please
refer to the supplementary material for qualitative results.

3.3 Comparison to publicly available methods

We also compare our baseline method to two other publicly available abdominal
segmentation methods. We use data from 23 patients from the TCGA-LIHC
collection [7,12] as part of NCI Imaging Data Commons (IDC) [14], which have
Al-generated annotations of the liver from BAMF Health (Grand Rapids, MI)
[26] that were assessed by a radiologist to be reasonable. We computed the same
overlap and distance metrics between our baseline method segmentations and
the ones available in IDC [14]. For the second comparison, we used a pre-trained
model available from the nnU-Net [19]. The nnU-Net framework provides a large
number of pre-trained models, including a model trained on CHAOS MR data
for segmentation of the liver, spleen, left and right kidneys. We compare the
performance of our method to the nnU-Net model on the AMOS MR dataset,
using expert annotated ground-truth segmentations available for AMOS MR.
Table 4 displays the quantitative results between our baseline approach
and the BAMF method on IDC data. AMOS MR results are also shown for
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Table 4. Quantitative results comparing publicly available methods to our approach
using the Dice score and HD95.

Method Dataset Segment Dice HD95
BAMF [26]  |TCGA-LIHC (MR)|  Liver  |0.92 £ 0.02| 7.30 £ 2.67
nnU-Net model [19] AMOS MR Liver 0.83 £ 0.23]31.04 £ 57.29
nnU-Net model [19] AMOS MR Spleen  |0.88 + 0.20{14.99 + 52.49
nnU-Net model [19] AMOS MR Right kidney|0.87 £ 0.20{16.04 £ 40.12
nnU-Net model [19] AMOS MR Left kidney {0.91 + 0.03| 7.62 £ 1.82

the evaluated nnU-Net model and our baseline method, compared to expert
annotations. We observe a high overlap between the liver segmentations from
BAMF and our baseline segmentations, on IDC MR TCGA-LIHC data (0.92 +
0.02 DSC). On AMOS MR, we can observe comparable results to the nnU-Net
pre-trained model, when evaluated against expert annotations (0.91 £ 0.08 vs
0.91 £ 0.03 DSC for the left kidney, ours and nnU-Net, respectively). Please refer
to the supplementary material for qualitative results of the evaluated methods.

4 Conclusion

We proposed a modality-agnostic deep learning method for abdominal organ
segmentation using a domain randomization strategy trained on CT label maps.
Our method shows promising results when validating and testing on publicly
available datasets, as well as a comparison to publicly available fully-supervised
segmentation methods. Additionally, we performed an ablation study to under-
stand the effect of prediction of multiple labels and the addition of clustering.
Our baseline method, including additional labels and generation-only foreground
and background clustering labels, performed the best for both the overlap and
distance metrics, namely Dice score and Hausdorff distance (95th percentile),
compared to the ablation studies methods. Our study presents a few limitations,
as abdominal structures outside of the liver, spleen and kidneys did not perform
well. This could be due to the higher heterogeneity in those regions with regards
to texture, appearance and location, and requires further investigation. Future
work includes modification of the training data to better represent MR-specific
features, and refinement of the ground truth labels in order to offer a better label
anatomical consensus between collections.

References

1. Billot, B., Greve, D., Puonti, O., Thielscher, A., Van Leemput, K., Fischl, B.,
Dalca, A., Iglesias, J.: Synthseg: Segmentation of brain mri scans of any contrast
and resolution without retraining. Medical image analysis 86, 102789 (2023)

2. Bobo, M., Bao, S., Huo, Y., Yao, Y., Virostko, J., Plassard, A., Lyu, I., Assad, A.,
Abramson, R., Hilmes, M., Landman, B.: Fully convolutional neural networks im-
prove abdominal organ segmentation. In Medical Imaging 2018: Image Processing,
SPIE 10574, 750-757 (2018)



10.

11.

12.

13.

14.

15.

16.

17.

Title Suppressed Due to Excessive Length 9

. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.: Synergistic image and feature

adaptation: Towards cross-modality domain adaptation for medical image seg-
mentation. InProceedings of the AAAI conference on artificial intelligence 33(1),
865-872 (2019)

Chen, X., Lian, C., Wang, L., Deng, H., Kuang, T., Fung, S., Gateno, J., Shen, D.,
Xia, J., Yap, P.: Diverse data augmentation for learning image segmentation with
cross-modality annotations. Medical image analysis 71, 102060 (2021)

Chen, Y., Ruan, D., Xiao, J., Wang, L., Sun, B., Saouaf, R., Yang, W., Li, D., Fan,
Z.: Fully automated multiorgan segmentation in abdominal magnetic resonance
imaging with deep neural networks. Medical physics 47(10), 4971-82 (2020)
Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A.: A re-
view of medical image data augmentation techniques for deep learning applications.
Journal of Medical Imaging and Radiation Oncology 65(5), 545-63 (2021)

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S.,
Phillips, S., Maffitt, D., Pringle, M., Tarbox, L.: The cancer imaging archive (tcia):
maintaining and operating a public information repository. Journal of digital imag-
ing 26, 1045-57 (2013)

Conze, P., Kavur, A., Cornec-Le Gall, E., Gezer, N., Le Meur, Y., Selver, M.,
Rousseau, F.: Abdominal multi-organ segmentation with cascaded convolutional
and adversarial deep networks. Artificial Intelligence in Medicine 117, 102109
(2021)

Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the em algorithm. Journal of the royal statistical society: series B (methodological)
39(1), 1-22 (1977)

Dice, L.: Measures of the amount of ecologic association between species. Ecology
26(3), 297-302 (1945)

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
Decaf: A deep convolutional activation feature for generic visual recognition. In
International conference on machine learning pp. 647655 (2014)

Erickson, B., Kirk, S., Lee, Y., Bathe, O., Kearns, M., Gerdes, C., Rieger-
Christ, K., Lemmerman, J.: The cancer genome atlas liver hepatocellu-
lar carcinoma collection (tcga-lihc) (version 5) [data set] (2016). https:
//doi.org/https://doi.org/10.7937/K9/TCIA.2016.IMMQW8UQ, https://wiki.
cancerimagingarchive.net/pages/viewpage.action?pageId=6885436

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J., Pujol,
S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J.: 3d slicer as an im-
age computing platform for the quantitative imaging network. Magnetic resonance
imaging 30(9), 323-41 (2012)

Fedorov, A., Longabaugh, W., Pot, D., Clunie, D., Pieper, S., Gibbs, D., Bridge,
C., Herrmann, M., Homeyer, A., Lewis, R., Aerts, H.: National cancer institute
imaging data commons: Toward transparency, reproducibility, and scalability in
imaging artificial intelligence. Radiographics 43(12), €230180 (2023)

Gotra, A., Sivakumaran, L., Chartrand, G., Vu, K., Vandenbroucke-Menu, F.,
Kauffmann, C., Kadoury, S., Gallix, B., de Guise, J., Tang, A.: Liver segmen-
tation: indications, techniques and future directions. Insights into imaging 8(4),
377-392 (2017)

Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE
Transactions on Biomedical Engineering 69(3), 1173-85 (2021)

Heerkens, H., Hall, W., Li, X., Knechtges, P., Dalah, E., Paulson, E., van den
Berg, C., Meijer, G., Koay, E., Crane, C., Aitken, K.: Recommendations for mri-



10

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

C. Ciausu et al.

based contouring of gross tumor volume and organs at risk for radiation therapy
of pancreatic cancer. Practical radiation oncology 7(2), 126-36 (2017)
Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the
hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence
15(9), 850-63 (1993)

Isensee, F., Jaeger, P., Kohl, S., Petersen, J., Maier-Hein, K.: nnu-net: a self-
configuring method for deep learning-based biomedical image segmentation. Nature
methods 18(2), 203-11 (2021)

Ji, Y., Bai, H., Ge, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhanng, L., Ma,
W., Wan, X., Luo, P.: Amos: A large-scale abdominal multi-organ benchmark for
versatile medical image segmentation. Advances in Neural Information Processing
Systems 35, 36722-32 (2022)

Kavur, A., Gezer, N., Baris, M., Sahin, Y., Ozkan, S., Baydar, B., Yiiksel, U.,
Kilikgier, c., Olut, c., Akar, G., Unal, G.: Comparison of semi-automatic and deep
learning-based automatic methods for liver segmentation in living liver transplant
donors. Diagnostic and Interventional Radiology 26(1), 11 (2020)

Kavur, A., Gezer, N., Barig, M., Aslan, S., Conze, P., Groza, V., Pham, D., Chatter-
jee, S., Ernst, P., Ozkan, S., Baydar, B.: Chaos challenge-combined (ct-mr) healthy
abdominal organ segmentation. Medical Image Analysis 69, 101950 (2021)
Kavur, A., Selver, A., Dicle, O., Barig, M., Gezer, N.: Chaos - combined (ct-mr)
healthy abdominal organ segmentation challenge data (2019). https://doi.org/
doi:10.5281/zenodo.3431873, https://zenodo.org/records/3431873

Kline, T., Edwards, M., Garg, 1., Irazabal, M., Korfiatis, P., Harris, P., King, B.,
Torres, V., Venkatesh, S., Erickson, B.: Quantitative mri of kidneys in renal disease.
Abdominal Radiology 43, 629-38 (2018)

Milletari F, Navab N, A.S.: Fully convolutional neural networks for volumetric
medical image segmentation. In 2016 fourth international conference on 3D vision
(3DV) pp. 65-571 (2016)

Murugesan, G., McCrumb, D.; Aboian, M., Verma, T., Soni, R., Memon, F.,
Van Oss, J.: The aimi initiative: Ai-generated annotations for imaging data com-
mons collections (2023). https://doi.org/arXiv:2310.14897, https://arxiv.
org/abs/2310.14897

Ronneberger, O., Fischer, P., Brox, T.: -net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Inter-
vention—-MICCAI 2015: 18th International Conference, Munich, Germany, Proceed-
ings, Part 111 18 pp. 234-241 (2015)

Stewart, C., Cockerill, T., Foster, 1., Hancock, D., Merchant, N., Skidmore, E.,
Stanzione, D., Taylor, J., Tuecke, S., Turner, G., Vaughn, M.: Jetstream: a self-
provisioned, scalable science and engineering cloud environment. InProceedings
of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced
Cyberinfrastructure pp. 1-8 (2015)

Tetar, S., Bruynzeel, A., Lagerwaard, F., Slotman, B., Bohoudi, O., Palacios, M.:
Clinical implementation of magnetic resonance imaging guided adaptive radio-
therapy for localized prostate cancer. Physics and imaging in radiation oncology
9, 69-76 (2019)

Wasserthal, J., Breit, H., Meyer, M., Pradella, M., Hinck, D., Sauter, A., Heye, T.,
Boll, D., Cyriac, J., Yang, S., Bach, M.: Totalsegmentator: Robust segmentation
of 104 anatomic structures in ct images. Radiology: Artificial Intelligence 5(5),
102789 (2023)



Title Suppressed Due to Excessive Length 11

31. Yun, S., Han, D., Oh, S., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization
strategy to train strong classifiers with localizable features. In Proceedings of the
IEEE/CVF international conference on computer vision pp. 6023-6032 (2019)



2403.15600v1 [eess.IV] 22 Mar 2024

arxXiv

TR =

Fig. 1. Boxplots for the distribution of Dice scores (left) and the distribution of Haus-
dorff distance values (95th percentile) for all segments, between our proposed method
and the expert annotations for the AMOS and CHAOS collections. Note the high
agreement for the liver, spleen and kidneys, and the low agreement for the others. This
may be due to the reduced ability of the network to capture variable appearance of
those regions. Predicted segments with undefined Hausdorff distance values (due to
empty segmentation sets) were removed from all of the metrics calculation. 9 segment
predictions for AMOS MR/CT.

Table 1. Table for the distribution of Dice scores (left) and the distribution of Haus-
dorff distance values (95th percentile) for all segments, for the AMOS and CHAOS
collections. Subjects with undefined Hausdorff distance values were removed for the
overall metrics calculation. Predicted segments with undefined Hausdorff distance val-
ues (due to empty segmentation sets) were removed from all of the metrics calculation.

9 segment predictions for AMOS MR and 9 segments for AMOS CT were removed.

Dataset Segment MR MR cT cT
Dice HD95 Dice HD95

AMOS Liver 0.90 £ 0.04(25.13 &+ 26.05|0.91 £ 0.05|13.15 £ 15.43
AMOS Spleen 0.86 + 0.15| 5.34 4+ 6.37 |0.78 £+ 0.22(19.37 £ 26.20
AMOS Right kidney 0.90 + 0.08| 4.24 + 5.50 [0.91 £ 0.05| 2.83 £ 1.84
AMOS Left kidney 0.91 £ 0.08| 2.92 4+ 2.04 [0.92 £ 0.03| 3.55 £ 2.84
AMOS Stomach 0.68 + 0.24|25.38 4+ 39.55|0.64 + 0.24(34.06 + 30.26
AMOS Pancreas 0.46 + 0.23|30.62 + 34.36]0.44 £ 0.21|27.97 £+ 25.82
AMOS Duodenum 0.27 £ 0.21{31.32 £+ 15.53|0.30 £ 0.22(37.88 £+ 25.63
AMOS Gallbladder 0.34 4+ 0.33| 33.66 £38.24|0.46 £+ 0.27(21.19 + 18.69
AMOS |Right adrenal gland|0.47 + 0.15| 4.21 £+ 1.42 |0.45 4+ 0.22| 9.89 4+ 7.04
AMOS | Left adrenal gland |0.36 £+ 0.27| 9.19 £+ 7.09 |0.31 £+ 0.23| 9.99 + 6.22
CHAOS Liver 0.87 & 0.05| 5.77 £ 3.27 [0.91 £ 0.10|21.08 £ 23.95
CHAOS Spleen 0.78 £ 0.13|10.46 &+ 15.06 — —
CHAOS Right kidney  [0.80 &+ 0.14| 3.53 4+ 2.29 — —
CHAOS Left kidney 0.68 + 0.31| 7.79 £ 11.19 — —




Fig. 2. Comparison of the segmentation results of the expert annotations to the pro-
posed method, for two sample subjects from AMOS MR. A: Expert annotations; B:
Proposed method on the subject as (A) with high agreement; C: Expert annotations;
D: Proposed method on the same subject as (C) with low agreement.

Clusters all labels No clusters all labels Clusters No clusters one
(baseline) one label label

Fig. 3. displays the qualitative results of the kidney segmentation for the baseline
method along with the three ablation studies models. The ground truth expert seg-
mentations are given by the thick segment boundary line, while the AI predictions are
filled. The right kidney is green, and the left kidney is purple. Yellow arrows indicate
missing segments or incorrect segmentations. Note the higher overlap of the expert
segmentations versus our Al models for methods that include all labels.

Fig. 4. Comparison of the proposed method with publicly available methods. A) Pro-
posed method (filled) vs results from the BAMF method for liver segmentation (bor-
der) for a subject with high agreement. B) Proposed method (filled) vs results from
the BAMF method for liver segmentation (border) for a subject with low agreement.
C) Results from the nnU-Net model (filled) vs the ground truth (border) for a subject
with high agreement. D) Results from the nnU-Net model (filled) vs the ground truth
(border) for a subject with low agreement. Note the model predicts the liver (red) as
the spleen (green) and vice versa.



