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Abstract

Spectral Embedding (SE) is a popular method for dimensionality reduction, applicable
across diverse domains. Nevertheless, its current implementations face three prominent
drawbacks which curtail its broader applicability: generalizability (i.e., out-of-sample exten-
sion), scalability, and eigenvectors separation. In this paper, we introduce sep-SpectralNet
(eigenvector-separated SpectralNet), a novel deep-learning approach for generalizable and

efficient approximate spectral embedding, designed to address these limitations. sep-
SpectralNet incorporates an efficient post-processing step to achieve eigenvectors separa-
tion, while ensuring both generalizability and scalability, allowing for the computation of
the Laplacian’s eigenvectors on unseen data. This method expands the applicability of SE
to a wider range of tasks and can enhance its performance in existing applications. We em-
pirically demonstrate sep-SpectralNet’s ability to consistently approximate and generalize
SE, while ensuring scalability. Additionally, we show how sep-SpectralNet can be leveraged
to enhance existing methods. Specifically, we focus on UMAP, a leading visualization tech-
nique, and introduce NUMAP, a generalizable version of UMAP powered by sep-SpectralNet
. Our code will be publicly available upon acceptance.

1 Introduction

Spectral Embedding (SE) is a popular non-linear dimensionality reduction method (Belkin & Niyogi, 2003;
Coifman & Lafon, 2006b), finding extensive utilization across diverse domains in recent literature. Notable
applications include UMAP (McInnes et al., 2018) (the current state-of-the-art visualization method), Graph
Neural Networks (GNNs) (Zhang et al., 2021; Beaini et al., 2021) and Graph Convolutional Neural Networks
(GCNs) (Defferrard et al., 2016), positional encoding for Graph Transformers (Dwivedi & Bresson, 2020;
Kreuzer et al., 2021) and analysis of proteins (Campbell et al., 2015; Kundu et al., 2004; Shepherd et al.,
2007; Zhu & Schlick, 2021). The core of SE involves a projection of the samples into the space spanned by the
leading eigenvectors of the Laplacian matrix (i.e., those corresponding to the smallest eigenvalues), derived
from the pairwise similarities between the samples. It is an expressive method which is able to preserve the
global structure of high-dimensional input data, underpinned by robust mathematical foundations (Belkin
& Niyogi, 2003; Katz et al., 2019; Lederman & Talmon, 2018; Ortega et al., 2018).

Despite the popularity and significance of SE, current implementations suffer from three main drawbacks: (1)
Generalizability - the ability to directly embed a new set of test points after completing the computation on
a training set (i.e., out-of-sample extension); (2) Scalability - the ability to handle a large number of samples
within a reasonable time-frame; (3) Eigenvectors separation - the ability to output the basis of the leading
eigenvectors (v2, . . . , vk+1), rather than only the space spanned by them. These three properties are crucial
for modern applications of SE in machine learning. Notably, the last property has attracted considerable
attention in recent years (Pfau et al., 2018; Gemp et al., 2020; Deng et al., 2022; Lim et al., 2022). While
most SE implementations address two of these three limitations, they often fall short in addressing the
remaining one (see Tab. 1 and Sec. 2).

This paper extends the work by Shaham et al. (2018), known as SpectralNet. SpectralNet tackles the scala-
bility and generalizability limitations of Spectral Clustering (SC), a key application of SE. However, we prove
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Method Generalizability Scalability Eigenvector Separation

LOBPCG ✗ ✓ ✓

SpectralNet ✓ ✓ ✗

DiffusionNet ✓ ✗ ✓

sep-SpectralNet (ours) ✓ ✓ ✓

Table 1: sep-SpectralNet is the only method to have the three desired properties of SE imple-
mentation. Comparison between key SE methods via their ability to generalize to unseen samples, scale
to large datasets and separate the eigenvectors.

that due to a rotation and reflection ambiguity in its loss function, SpectralNet cannot directly be adapted
for SE (i.e., it cannot separate the eigenvectors). In this paper, we first present a post-processing procedure
to resolve the eigenvectors separation issue in SpectralNet, thereby, creating a scalable and generalizable
implementation of SE, which we call sep-SpectralNet : a generalizable and efficient approximate spectral
embedding method.

sep-SpectralNet’s ability to separate the eigenvectors, while maintaining generalizability and scalability offers
a pathway to enhance numerous existing applications of SE, that require eigenvector separation (e.g., Glielmo
et al. (2021); Ghamari et al. (2024); Hardin et al. (2024)), and provides a foundation for developing new
applications. A notable example is UMAP (McInnes et al., 2018), the current state-of-the-art visualization
method. A recent work by Sainburg et al. (2021) proposed Parametric UMAP (P. UMAP) to address UMAP’s
lack of generalizability. However, UMAP’s global structure preservation and consistency largely stem from
the use of SE for initialization (Kobak & Linderman, 2021), a step absent in P. UMAP. Consequently,
P. UMAP lacks a crucial component to fully replicate the performance of UMAP, especially in terms of
global structure preservation. Nonetheless, a series of studies have incorporated P. UMAP, underscoring the
significant impact of a generalizable version of UMAP (Xu & Zhang, 2023; Eckelt et al., 2023; Leon-Medina
et al., 2021; Xie et al., 2023; Yoo et al., 2022).

In this paper, we also introduce a novel application of sep-SpectralNet for generalizable UMAP, which
we term NUMAP. NUMAP integrates the UMAP loss with SE initialization, similar to the original non-
parametric UMAP. As shown in Sec. 5, this procedure requires eigenvector separation. As a result, NUMAP
achieves comparable results to UMAP, while also offering generalization capabilities. This extends UMAP
applicability, for instance, to the online learning regime and visualization of time-series data.

Our contributions can be summarized as follows: (1) We introduce sep-SpectralNet , a novel approach
for generalizable approximate SE; (2) We establish a foundation for a range of new SE applications and
enhancements to existing methods; (3) We present NUMAP: a novel application of sep-SpectralNet for
generalizable UMAP; (4) We propose a new evaluation method for dimensionality reduction methods, which
enables quantification of global structure preservation.

2 Related Work

Current SE implementations typically address two out of its three primary limitations: generalizability,
scalability, and eigenvector separation (Tab. 1). Below, we outline key implementations that tackle each
pair of these challenges. Following this, we discuss recent works related to eigenvectors separation and
generalizable visualizations techniques.

Scalable with eigenvectors separation. Popular implementations of SE are mostly based on sparse ma-
trix decomposition techniques (e.g., ARPACK (Lehoucq et al., 1998), AMG (Brandt et al., 1984), LOBPCG
(Benner & Mach, 2011)). These methods are relatively scalable, as they are almost linear in the number of
samples. Nevertheless, their out-of-sample extension is far from trivial. Usually, it is done by out-of-sample
extension (OOSE) methods such as Nyström (Nyström, 1930) or Geometric Harmonics (Coifman & Lafon,
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2006a; Lafon et al., 2006). However, these methods provide only local extension (i.e., near existing training
points), and are both computationally and memory restrictive, as they rely on computing the distances
between every new test point and all training points.

Scalable and generalizable. Several approaches to spectral clustering (SC) approximate the space
spanned by the first eigenvectors of the Laplacian matrix, which is sufficient for clustering purposes, and
can also benefit other specific applications. For example, SpectralNet (Shaham et al., 2018) leverages deep
neural networks to approximate the first eigenfunctions of the Laplace-Beltrami operator in a scalable man-
ner, thus also enabling fast inference of new unseen samples. BASiS (Streicher et al., 2023) achieves these
goals using affine registration techniques to align batches. However, these methods’ inability to separate the
eigenvectors prevents their use in many modern applications.

Generalizable with eigenvectors separation. Another proposed approach to SE is DiffusionNet
(Mishne et al., 2019), a deep-learning framework for generalizable Diffusion Maps embedding (Coifman
& Lafon, 2006b), which is similar to SE. However, the training procedure of the network is computationally
expensive, therefore restricting its usage for large datasets.

In contrast, we introduce sep-SpectralNet , which generalizes the separated eigenvectors to unseen points
with a single feed-forward operation, while maintaining scalability.

Eigenvectors separation. Extensive research has been conducted on the eigenvectors separation problem,
both within and beyond the spectral domain (Lim et al., 2022; Ma et al., 2024). Some rotation criteria such
as ICA and VARIMAX are well known, but regarding the spectral domain, they do not yield the natural
separation, i.e., the true eigenvectors. Recent spectral approaches remain constrained computationally, both
by extensive run-time and memory consumption. For example, Pfau et al. (2018) proposed a solution to this
issue by masking the gradient information from the loss function. However, this approach necessitates the
computation of full Jacobians at each time step, which is highly computationally intensive. Gemp et al. (2020)
employs an iterative method to learn each eigenvector sequentially. Namely, they learn an eigenvector while
keeping the others frozen. This process has to be repeated k times (where k is the embedding dimension),
which makes this approach also computationally expensive. Deng et al. (2022) proposed an improvement
of the latter, by parallel training of k NNs. However, as discussed in their paper, this approach becomes
costly for large values of k. Furthermore, it necessitates retaining k trained networks in memory, which
leads to significant memory consumption. Chen et al. (2022) proposed a post-processing solution to this
problem using the Rayleigh-Ritz method. However, this approach involves the storage and multiplication of
very large dense matrices, rendering it impractical for large datasets. In contrast, sep-SpectralNet offers an
efficient one-shot post-processing solution to the eigenvectors separation problem.

Generalizable visualization. Several works have attempted to develop parametric approximations for
non-parametric visualization methods, in addition to Parametric UMAP (P. UMAP) (Sainburg et al., 2021).
Notable examples include (Van Der Maaten, 2009), (Kawase et al., 2022) and (Damrich et al., 2022), which
use NNs to make t-SNE generalizable, and (Schofield & Lensen, 2021), which aims to make UMAP more
interpretable. However, P. UMAP has demonstrated superior performance. NUMAP presents a method to
surpass P. UMAP in terms of global structure preservation.

3 Preliminaries

In this section, we begin by providing the fundamental definitions that will be used throughout this work.
Additionally, we briefly outline the key components of UMAP and P. UMAP.

3.1 Spectral Embedding

Let X = {x1, . . . , xn} ⊆ Rd denote a collection of unlabeled data points drawn from some unknown distri-
bution D. Let W ∈ Rn×n be a positive symmetric graph affinity matrix, with nodes corresponding to X ,
and let D be the corresponding diagonal degree matrix (i.e. Dii =

∑n
j=1 Wij). The Unnormalized Graph
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Laplacian is defined as L = D − W . Other normalized Laplacian versions are the Symmetric Laplacian
Lsym = D− 1

2 LD− 1
2 and the Random-Walk (RW) Laplacian Lrw = D−1L. sep-SpectralNet is applicable to

all of these Laplacian versions. The eigenvalues of L can be sorted to satisfy 0 = λ1 ≤ λ2 ≤ · · · ≤ λn with
corresponding eigenvectors v1, . . . , vn (Von Luxburg, 2007). It is important to note that the first pair (i.e.,
λ1, v1) is trivial - for every Laplacian matrix λ1 = 0, and for the unnormalized and RW Laplacians v1 = 1√

n
1⃗,

namely the constant vector.

For a given target dimension k, the first non-trivial k eigenvectors provide a natural non-linear low-
dimensional embedding of the graph which is known as Spectral Embedding (SE). In practice, we denote
by V ∈ Rn×k the matrix containing the first non-trivial k eigenvectors of the Laplacian matrix as its
columns (i.e., v2, . . . , vk+1). The SE representation of each sample xi ∈ Rd is the ith row of V , i.e.,
yi = (v2(i), . . . , vk+1(i)).

3.2 SpectralNet

A prominent method for addressing scalability and generalizability in Spectral Clustering (SC) is using deep
neural networks, for example SpectralNet (Shaham et al., 2018). SpectralNet follows a common methodology
for transferring the problem of matrix decomposition to its smallest eigenvectors to an optimization problem,
through minimization of the Rayleigh Quotient (RQ).
Definition 1. The Rayleigh quotient (RQ) of a Laplacian matrix L ∈ Rn×n is a function RL : Rn×k → R
defined by

RL(A) = Tr(AT LA).

SpectralNet first minimizes the RQ on small batches, while enforcing orthogonality. Namely, it approximates
θ∗ which minimizes

Lspectralnet(θ) = 1
m2 RL

(
fθ(X)

)
s.t.

1
m

fθ(X)T fθ(X) = Ik×k. (1)

Thereby, it learns a map f : Rd → Rk (where d is the input dimension) which approximates the space
spanned by the first k eigenfunctions of the Laplace-Beltrami operator on the underlying manifold D (Belkin
& Niyogi, 2006; Shi, 2015). Following this, it clusters the representations via KMeans. These eigenfunctions
are a natural generalization of the SE to unseen points, enabling both scalable and generalizable spectral
clustering.

3.3 UMAP and Parametric UMAP

UMAP (McInnes et al., 2018) is the current state-of-the-art visualization method. It presented a significant
advancement over previous methods, primarily due to its enhanced scalability and superior ability to preserve
global structure. This approach involves the construction of a graph from the input high-dimensional data
and the learning of a low-dimensional representation. The objective is to minimize the KL-divergence between
the input data graph and the representations graph.

However, as discussed in (Kobak & Linderman, 2021), UMAP primarily derives its global preservation abili-
ties, as well as its consistency, from initializing the representations using SE. Therefore, the SE initialization
serves as a critical step for UMAP to uphold the global structure (see a demonstration in Fig. 1). Global
preservation, in this context, refers to the separation of different classes, and avoiding the separation of
existing classes. We refer the reader to (Kobak & Linderman, 2021) for a more comprehensive discussion
about the effects of informative initialization on UMAP’s performance.

UMAP method can be divided into three components (summarized in Fig. 3): (1) constructing a graph
which best captures the global structure of the input data; (2) initializing the representations via SE; (3)
Learning the representations, via SGD, which best capture the original graph. This setup does not facilitate
generalization, as both steps (2) and (3) lack generalizability.

Recently, a generalizable version of UMAP, known as Parametric UMAP (P. UMAP), was introduced (Sain-
burg et al., 2021). P. UMAP replaces step (3) with the training of a neural network. Importantly, it overlooks
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Figure 1: NUMAP preserves global structure while enabling generalizability. A comparison be-
tween non-parametric UMAP (with SE or PCA initialization), P. UMAP, and NUMAP on three non-linear
yet simple 3-dimensional toy datasets. NUMAP global structure abilities over P. UMAP are evident.

step (2), the SE initialization. Consequently, P. UMAP struggles to preserve global structure, particularly
when dealing with non-linear structures. Fig. 1 illustrates this phenomenon with several non-linear yet
simple structures. Noticeably, P. UMAP fails to preserve global structure (e.g., it does not separate different
clusters).

4 Method

4.1 Motivation

It is well known that the matrix V ∈ Rn×k, containing the first k eigenvectors of L (i.e., those corresponding
to the k smallest eigenvalues) as its columns, minimizes RL(A) under orthogonality constraint (i.e. AT A = I)
(Li, 2015).

However, a rotation and reflection ambiguity of the RQ prohibits a trivial adaptation of this concept to
SE. Basic properties of trace imply that for any orthogonal matrix Q ∈ Rk×k the matrix U := V Q satisfies
RL(U) = RL(V ). Thus, every such U also minimizes RL under the orthogonality constraint, and therefore
this kind of minimization solely is missing eigenvectors separation, which is crucial for many applications.

In fact, as stated in Lemma 1, the aforementioned form V Q is the only form of a minimizer of RL under the
orthogonality constraint. For conciseness, we provide our proof to the lemma in App. A.
Lemma 1. Every minimizer of RL under the orthogonality constraint, is of the form V Q, where V is the
first k eigenvectors matrix of L and Q is an arbitrary squared orthogonal matrix.

An immediate result of Lemma 1 is that SpectralNet’s method, using a deep neural network for RQ minimiza-
tion (while enforcing orthogonality), does not lead to the SE. However, it only leads to the space spanned by
the constant vector and the leading k − 1 eigenvectors of L, with different rotations and reflections for each
run. Therefore, each time the RQ is minimized, it results in a different linear combination of the smallest
eigenvectors. Although this is sufficient for clustering purposes, as we search for reproducibility, consistency,
and separation of the eigenvectors, the RQ cannot solely provide the SE, necessitating the development of
new techniques in sep-SpectralNet .

5



Under review as submission to TMLR

4.2 sep-SpectralNet

Setup. Here we present the two key components of sep-SpectralNet , a scalable and generalizable SE
method. We consider the following setup: Given a training set X ⊆ Rd and a target dimension k, we
construct an affinity matrix W , and compute an approximation of the leading eigenvectors of its corre-
sponding Laplacian. In practice, we first utilize SpectralNet (Shaham et al., 2018) to approximate the space
spanned by the first k +1 eigenfunctions of the corresponding Laplace-Beltrami operator, and then find each
of the k leading eigenfunctions within this space (i.e. the SE). Namely, sep-SpectralNet computes a map
Fθ : Rd → Rk, which approximates the map f̄ = (f2, . . . , fk+1), where fi is the ith eigenfunction of the
Laplace-Beltrami operator on the underlying manifold D.

Eigenspace approximation. As empirically showed in (Shaham et al., 2018), and motivated from Lemma
1, SpectralNet loss is minimized when Fθ = T ◦ (f1, . . . , fk+1), where T : Rk+1 → Rk+1 is an arbitrary
isometry. That is, Fθ approximates the space spanned by the first k + 1 eigenfunctions. However, the
SE (i.e. each of the leading eigenfunctions) is poorly approximated. Each time the RQ is minimized, the
eigenfunctions are approximated up to a different isometry T . Fig. 2a demonstrates this phenomenon on
the toy moon dataset - a noisy half circle linearly embedded into 10-dimension input space (see Sec. 5.1).
Employing SpectralNet approach indeed enables us to consistently achieve a perfect approximation of the
space (i.e., the errors at the left histograms are accumulated around 0). However, when comparing vector to
vector, it becomes apparent that the SE was seldom attained. That is, the distances are spread across the
entire range from 0 to 1.

SE approximation. To get the SE consistently (i.e., to separate the eigenvectors), we suggest a simple use
of Lemma 1. Notice that based on Lemma 1 we can compute a rotated version of the diagonal eigenvalues
matrix. Namely,

(V Q)T L(V Q) = QT V T LV Q = QT ΛQ =: Λ̃,

where Λ is the diagonal eigenvalues matrix. Due to the uniqueness of eigendecomposition, the eigenvectors
and eigenvalues of the small matrix Λ̃ ∈ Rk+1×k+1 are QT and diag(Λ), respectively. Hence, by diagonalizing
Λ̃ we get the eigenvalues and are also able to separate the eigenvectors (i.e., approximate the SE).

In practice, as Q is a property of SpectralNet optimization (manifested by the parameters), we compute the
matrix Λ̃ by averaging over a few random minibatches and diagonalize it. Thereby, making this addition very
cheap computationally. The eigenvectors matrix of Λ̃ is the inverse of the orthogonal matrix Q, and hence
by multiplying the output of the learned map Fθ by this matrix, the SE is retained. Also, the eigenvalues of
Λ̃ are the eigenvalues of L.

The effect of this intentional rotation is represented in the Fig. 2a. sep-SpectralNet was not only able to
consistently approximate the space, but also approximate each eigenvector. While SpectralNet errors are
distributed over a large range of values, sep-SpectralNet errors are small, capturing only the smallest error
bin in the figure.

Algorithms Layout. Our end-to-end training approach is summarized in Algorithms 1 and 2 in Appendix
B. We run them consecutively: First, we train Fθ to approximate the first eigenfunctions up to isometry
(Algorithm 1) (Shaham et al., 2018). Second, we find the matrices QT and Λ to separate the eigenvectors and
retrieve the SE and its corresponding eigenvalues (Algorithm 2). App. C details additional considerations
about the implementation.

Once we have Fθ and QT , computing the embeddings of the train set or of new test points (i.e., out-of-sample
extension) is straightforward: we simply propagate each test point xi through the network Fθ to obtain their
embeddings ỹi, and use QT to get the SE embeddings yi = ỹiQ

T .

Time and Space complexity. As the network iterates over small batches, and the post-processing oper-
ation is much cheaper, sep-SpectralNet’s time complexity is approximately linear in the number of samples.
This is also demonstrated in Fig. 2b, where the continuous red line, representing linear regression, aligns
with our empirical results. App. C provides a discussion about the complexity of sep-SpectralNet . Note also
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(a) (b)

Figure 2: (a) sep-SpectralNet separates the eigenvectors. Approximation of the 2-dimensional SE
of the moon dataset using SpectralNet (in blue) and sep-SpectralNet (in green) over 100 runs, on train
(top row) and test (bottom row). Left column: distribution of the Grassmann distance between the output
and true subspace. Second to Fourth columns: distribution of the sin2 distance between each output and
true eigenvector separately. Evidently, sep-SpectralNet is able to separate the eigenvectors. (b) sep-
SpectralNet is scalable. Running times of SE using sep-SpectralNet vs. other methods on the Moon
dataset (a 2D moon linearly embedded into 10D input space), relative to the number of samples, and with
standard deviation confidence intervals. Evidently, sep-SpectralNet is the fastest asymptotically.

that sep-SpectralNet is much more memory-efficient than existing methods, as it does not require storing
the full graph, or any large matrix, in the memory, but rather one small graph or matrix (of a minibatch)
at a time.

4.3 NUMAP

We focus on sep-SpectralNet application to UMAP, one of many methods that can benefit from a gener-
alizable SE. As discussed in Sec. 3.3, the SE initialization is crucial for the global preservation abilities of
UMAP. Therefore, we seek a method to incorporate SE into a generalizable version of UMAP. It is important
to note that a naive approach would be to fine-tune sep-SpectralNet using UMAP loss. However, during this
implementation, we encountered the phenomenon of catastrophic forgetting (see App. F).

The core of our idea is illustrated in Fig. 3. Initially, we use sep-SpectralNet to learn a parametric repre-
sentation of the k-dimensional SE of the input data. Subsequently, we train an NN to map from the SE
to the UMAP embedding space, utilizing UMAP contrastive loss. The objective of the second NN is to
identify representations that best capture the local structure of the input data graph. SE transforms com-
plex non-linear structures into simpler linear structures, allowing the second NN to preserve both local and
global structures effectively. To enhance this capability, we incorporate residual connections in the second
NN, Gθ, which link the first ℓ components of the input (the SE) directly to the output. Thus, the NUMAP
embedding is given by Y = SE(X) + Gθ(X), that minimizes the UMAP’s loss

∑
e∈E

wh(e) log
(

wh(e)
wl(e)

)
+ (1− wh(e)) log

(
1− wh(e)
1− wl(e)

)
,

where wh(e), wl(e) are the corresponding weights of the edge e in the high-dimensional input (X) graph and
the low-dimensional output (Y ) graph, respectively. It should be noted that this could not have been possible
without sep-SpectralNet’s ability to separate the eigenvectors, as the first ℓ components of SpectralNet’s
output are merely arbitrary linear combinations of the k-dimensional SE. Also, it would not be practical
without sep-SpectralNet’s inherent generalizability and scalability. Fig. 1 demonstrates this capability with
several simple structures.
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Figure 3: Incorporating sep-SpectralNet for generalizable UMAP. UMAP vs. NUMAP vs. P.
UMAP overview. A green arrow represents a non-parametric step. NUMAP integrates SE, as in UMAP,
while enabling generalization.

4.4 Additional Applications

In this section we seek to highlight sep-SpectralNet’s potential impact on important tasks and applications
(besides UMAP), as it integrates generalizability, scalability and eigenvectors separation. As discussed in
Sec. 1, SE is applied across various domains, many of which can benefit generalizability capabilities by
simply replacing the current SE implementation with sep-SpectralNet . We therefore elaborate herein the
significance of SE in selected applications, and discuss how sep-SpectralNet , as a generalizable approximation
of it, can enhance their effectiveness and applicability.

Fiedler vector and value. A special case of SE is the Fiedler vector and value (Fiedler, 1973; 1975).
The Fiedler value, also known as algebraic connectivity, refers to the second eigenvalue of the Laplacian
matrix, while the Fiedler vector refers to the associated eigenvector. This value quantifies the connectivity
of a graph, increasing as the graph becomes more connected. Specifically, if a graph is not connected, its
Fiedler value is 0. The Fiedler vector and value are a main topic of many works (Andersen et al., 2006;
Barnard et al., 1993; Kundu et al., 2004; Shepherd et al., 2007; Cai et al., 2018; Zhu & Schlick, 2021; Tam
& Dunson, 2020).

As sep-SpectralNet is able to distinguish between the eigenvectors and approximate the eigenvalues, it has
the capability to approximate both the Fiedler vector and value, while also generalizing the vector to unseen
samples (see Sec. 5.1).

Diffusion Maps. A popular method which incorporates SE, alongside the eigenvalues of the Laplacian
matrix, is Diffusion Maps (Coifman & Lafon, 2006b). Diffusion Maps embeds a graph (or a manifold) into a
space where the pairwise Euclidean distances are equivalent to the pairwise Diffusion distances on the graph.

In practice, for an k-dimensional embedding space and a given t ∈ N, Diffusion Maps maps the points to the
leading eigenvectors of the RW-Laplacian matrix of the data as follows:

X →
(
(1− λ2)tv2 · · · (1− λk+1)tvk+1

)
= Y,

where X ∈ Rn×d is a matrix containing each input point as a row, and Y ∈ Rn×k is a matrix containing
each of the representations as a row. As sep-SpectralNet is able to approximate both the eigenvectors and
eigenvalues of the Laplacian matrix, it is able to make Diffusion Maps generalizable and efficient (Sec. 5.1).

4.5 Evaluating UMAP embedding - Grassmann Score

Common evaluation methods for dimensionality reduction, particularly for visualization, are predominantly
focused on local structures. For instance, McInnes et al. (2018); Kawase et al. (2022) use kNN accuracy
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Figure 4: Grassmann Score (GS) captures global structure preservation. A demonstration of the
alignment between the intuitive expectation and the GS results on a toy dataset of two 3-dimensional tangent
spheres. Four possible 2-dimensional embeddings of this dataset are provided, along with their corresponding
GS, kNN accuracy and Silhouette score. Unlike kNN and Silhouette, GS effectively captures the preservation
of global structure.

and Trustworthiness, which only account for the local neighborhoods of each point while overlooking global
structures such as cluster separation. One global evaluation method is the Silhouette score, which measures
the clustering quality of the classes within the embedding space. However, this score does not capture the
preservation of the overall global structure.

To address this gap, we propose a new evaluation method, specifically appropriate for assessing global
structure preservation in graph-based dimensionality reduction methods (e.g., UMAP, t-SNE). The leading
eigenvectors of the Laplacian matrix are known to encode crucial global information about the graph (Belkin
& Niyogi, 2003). Thus, we measure the distance between the global structures of the original and embedding
manifolds using the Grassmann distance between the first eigenvectors of their respective Laplacian matrices.
We refer to this method as the Grassmann Score (GS).

It is important to note that GS includes a hyper-parameter - the number of eigenvectors considered. Increas-
ing the number of eigenvectors incorporates more local structure into the evaluation. A natural choice for
this hyperparameter is 2, which corresponds to comparing the Fiedler vectors (i.e., the second eigenvectors of
the Laplacian). The Fiedler vector is well known for encapsulating the global information of a graph (Fiedler,
1973; 1975). Unless stated otherwise, we use two eigenvectors for computing the GS. Fig. 4 demonstrates
GS (alongside Silhouette and kNN scores for comparison) on a few embeddings of two tangent spheres, in-
dependently to the embedding methods. Notably, the embedding on the right appears to best preserve the
global structure, as indicated by the smallest GS value. In contrast, the kNN scores are comparable across
all embeddings (e.g., kNN ignores separation of an existing class), and the Silhouette score even favors other
embeddings. In App. D we mathematically formalize GS and provide additional examples of embeddings
and their corresponding GS. These examples further support the intuition that GS effectively captures global
structure preservation better than previous measures.

5 Experiments

5.1 Eigenvectors Separation - Generalizable SE

In this section, we demonstrate sep-SpectralNet’s ability to approximate and generalize the SE using four real-
world datasets: CIFAR10 (via their CLIP embedding); Appliances Energy Prediction dataset (Candanedo,
2017); Kuzushiji-MNIST (KMNIST) dataset (Clanuwat et al., 2018); Parkinsons Telemonitoring dataset
(Tsanas & Little, 2009). Particularly, we compare our results with SpectralNet, which has been empirically
shown to approximate the SE space. However, as our results demonstrate, SpectralNet is insufficient for
accurately approximating SE. For additional technical details regarding the datasets, architectures and
training procedures, we refer the reader to Appendix G.

Evaluation Metrics. To assess the approximation of each eigenvector (i.e., the SE), we compute the sin2

of the angle between each predicted and ground truth vector. This can be viewed as the 1-dimensional
case of the Grassmann distance, a well-known metric for comparing equidimensional linear subspaces (see
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Figure 5: sep-SpectralNet successfully approximates the SE of real-world datasets. A comparison
between sep-SpectralNet and SpectralNet SE and Fiedler Vector (FV) approximation on real-world datasets.
The values are the mean and standard deviation of the sin2 distance between the predicted and true eigen-
vector of the test set, over 10 runs. Lower is better. sep-SpectralNet ability to separate the eigenvectors is
evident.

formalization in App. D). Concerning the eigenvalues approximation evaluation, we measure the Pearson
Correlation between the predicted and true eigenvalues (computed via SVD).

Fig. 5 presents our results on the real-world datasets. sep-SpectralNet ’s output is used directly, while
SpectralNet’s predicted eigenvectors are resorted to minimize the mean sin2 distance. The results clearly
show that sep-SpectralNet consistently produces significantly more accurate SE approximations compared
to SpectralNet, due to the improved separation of the eigenvectors.

Additionaly, note the sep-SpectralNet approximates the eigenvalues as well. When concerning a series of
Laplacian eigenvalues, the most important property is the relative increase of the eigenvalues (Coifman &
Lafon, 2006b). sep-SpectralNet demonstrates a strong ability to approximate this property. To see this,
we repeated sep-SpectralNet’s eigenvalue approximation (10 times) and calculated the Pearson correlation
between the predicted and accurate eigenvalues vector. We compared the first 10 eigenvalues. The resulting
mean correlation and standard deviation are: Parkinsons Telemonitoring: 0.917±0.0381; Appliances Energy
Prediction: 0.839±0.0342;

5.2 Scalability

Noteworthy, sep-SpectralNet not only generalizes effectively but also does so more quickly than the most
scalable (yet non-generalizable) existing methods. Fig. 2b demonstrates this point on the toy moon dataset
- a 2D moon linearly embedded into 10D input space. To evaluate scalability, we measured the computation
time required for SE approximation, for an increasing number of samples. We compared the results with the
three most popular methods for sparse matrix decomposition, which are currently the fastest implementa-
tions: ARPACK (Lehoucq et al., 1998), LOBPCG (Benner & Mach, 2011), and AMG (Brandt et al., 1984).
For each number of samples, we calculated the Laplacian matrix that is 99% sparse. Each method was
executed five times, initialized with different seeds. As discussed in Sec. 4, sep-SpectralNet demonstrates
approximately linear time complexity, and indeed, for higher numbers of samples, sep-SpectralNet converges
significantly faster.

5.3 NUMAP - generalizable UMAP

In this section, we demonstrate NUMAP’s ability to preserve global structure, while enabling fast inference
of test points, and it’s ability to enable time-series UMAP visualization. We compare our results with P.
UMAP and NUMAP-SN (NUMAP architecture using SpectralNet instead of sep-SpectralNet ), with the
target dimensionality set to 2. We consider six real-world datasets: CIFAR10 (via their CLIP embedding);
Appliances Energy Prediction dataset; Wine (Aeberhard & Forina, 1992); Banknote Authentication (Lohweg,

10



Under review as submission to TMLR

Metric Method Cifar10 Appliances Wine Banknote Mnist FashionMnist

kNN ↑
P. UMAP 0.908±0.004 - 0.953±0.033 0.927±0.023 0.801±0.010 0.717±0.006
NUMAP-SN 0.903±0.002 - 0.956±0.028 0.963±0.032 0.750±0.010 0.695±0.006
NUMAP (ours) 0.905±0.004 - 0.950±0.024 0.986±0.004 0.758±0.009 0.695±0.003

GS ↓
P. UMAP 0.133±0.069 0.710±0.293 0.549±0.180 0.722±0.079 0.311±0.059 0.029±0.006
NUMAP-SN 0.281±0.357 0.262±0.038 0.441±0.182 0.780±0.197 0.405±0.199 0.036±0.016
NUMAP (ours) 0.054±0.021 0.261±0.020 0.429±0.124 0.618±0.131 0.304±0.042 0.032±0.022

Table 2: NUMAP preserves global structure of real-world datasets. A comparison between NUMAP
and P. UMAP visualization on real-world datasets. The values are the mean and standard deviation of the
measures on the test set, over 10 runs. NUMAP is superior in preserving global structure.

Figure 6: Test set Visualizations of NUMAP, NUMAP-SN and P. UMAP on the datasets corresponding to
Tab. 2.

2012); MNIST (Deng, 2012); and Fashion MNIST (Xiao et al., 2017). For additional technical details
regarding the datasets, architectures and training procedures, we refer the reader to Appendix G.

Evaluation Metrics. To evaluate and compare the embeddings, we employed both local and global eval-
uation metrics. For local evaluation, we used the well-established accuracy of a kNN classifier on the
embeddings (McInnes et al., 2018; Sainburg et al., 2021), which is applicable only on classed data. For
global evaluation, we use GS (see discussion in Sec. 4.5).

Tab. 2 presents our results on the real-world datasets. The local (i.e., kNN) results are comparable across
the three methods. However, NUMAP consistently better captures the global structure (based on the lower
GS). In other words, NUMAP achieves comparable local preservation results with P. UMAP, while possessing
more global structure expressivity. Also, the table shows that sep-SpectralNet is necessary to achieve these
results, which are not reproduced with SpectralNet.

In Fig. 1 and Fig. 6, we supplement the empirical results with qualitative examples. Fig. 1 presents three
simple non-linear synthetic 3-dimensional structures and their 2-dimensional visualizations using UMAP
(non-parametric), P. UMAP and NUMAP. UMAP (using its default configuration, SE initialization) accu-
rately preserves the global structure in its 2-dimensional representations, but lack the ability to generalize to
unseen points. Among the generalizable methods (i.e., P. UMAP and NUMAP), P. UMAP fails to preserve
the global structure: in the top two rows, it does not separate the clusters, while in the bottom row, it intro-
duces undesired color overlaps. In contrast, NUMAP effectively preserves these separations and avoids the
unnecessary overlapping. These examples are particularly insightful, as P. UMAP fails to visualize correctly
even these simple datasets. Fig. 6 further demonstrates NUMAP’s ability to preserve global structure, as
evidenced by the improved class separation in the Banknote dataset, for instance.

11
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Figure 7: Time-series data visualization using NUMAP. Visualization of a dynamical system using
UMAP and NUMAP. NUMAP is both consistent and does not require training after the first two time-steps.

Time-series data visualization. Fig. 7 shows a simulation time-series data, which can be viewed as a
simulation of cellular differentiation. Specifically, we may consider differentiation of hematopoietic stem cells
(also known as blood stem cells), which are known to differentiate into many types of blood cells, to T-cells.
The process involves two kinds of cells (represented by their gene expressions; red and blue samples in the
figure). One represents stem cells, while the other T-cells. A group of cells (colored in pink in the figure)
then gradually transitions from stem cells to T-cells. At the top row we use UMAP to visualize each time
step, while at the bottom we train NUMAP on the first two time-steps and only inference the rest. UMAP
is inconsistent over time-steps, which makes it impractical for understanding change and progression. It
also has to train the embeddings each time-step separately. In contrast, NUMAP only trains on the first
two time-steps and the embeddings of the later time-steps are immediate from inference. This also enables
consistency over time, and makes the trend and process visible and understandable.

6 Conclusions

We first introduced sep-SpectralNet , a deep-learning approach for approximate SE. sep-SpectralNet ad-
dresses the three primary drawbacks of current SE implementation: generalizability, scalability and eigen-
vectors separation. By incorporating a post-processing diagonalization step, sep-SpectralNet enables eigen-
vectors separation without compromising generalizability or scalability. Remarkably, this one-shoot post-
processing operation lays the groundwork for a wide range of new applications of SE, which would not have
been possible without its scalable and generalizable implementation. It also presents a promising pathway
to enhance current applications of SE.

In particular, we presented NUMAP, a novel application of sep-SpectralNet for generalizable UMAP visual-
ization. We believe the integration of SE with deep learning can have a significant impact on unsupervised
learning methods. Further research should delve into exploring the applications of SE across various fields.
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A Proof of Lemma 1

First, we remind an important property of the Rayleigh Quotient.

Remark 1. The Rayleigh Quotient of a positive semi-definite matrix L ∈ Rn×n with eigenvectors v1, . . . , vn

corresponding to the eigenvalues λ1 ≤ · · · ≤ λn, RL satisfies arg min||v||=1 RL(v) = v1 and for each i > 1
arg min||v||=1 RL(v) = vi for v ⊥ v1, . . . , vi−1 (Li, 2015).

Lemma 1. Let L ∈ Rn×n be an Unnormalized Laplacian matrix and RL : O(n, k) → R its corresponding
RQ, and Let A be a minimizer of RL. Denote V ∈ Rn×k as the matrix containing the first k eigenvectors
of L as its columns, and Λ the corresponding diagonal eigenvalues matrix. Then, there exists an orthogonal
matrix Q ∈ Rk×k such that A = V Q.

Proof. As V minimizes RL, we get that minU RL(U) = RL(V ) =
∑k

i=1 λi, where 0 = λ1 ≤ λ2 ≤ · · · ≤ λn

are the eigenvalues of L. This yields

RL(A) = Tr(AT LA) =
k∑

i=1
λi

AT LA is symmetric, and hence orthogonally diagonalizable, which means there exists an orthogonal matrix
Q ∈ Rk×k and a diagonal matrix D ∈ Rk×k s.t.

AT LA = QT DQ

Which can be written as

(AQT )T L(AQT ) = D

Denoting by d1, . . . , dk the diagonal values of D, the last equation yields

k∑
i=1

di = RL(AQT ) = RL(A) =
k∑

i=1
λi

Note that based on Remark 1 λi ≤ di for each i, as AQT ∈ O(n, k). Hence, di = λi, i.e.,

(AQT )T L(AQT ) = Λ

As the eigendecomposition of a matrix is unique, this yields AQT = V , which means A = V Q.
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B Algorithm Layouts

Algorithm 1: SpectralNet training (Shaham et al., 2018)
Input: X ⊆ Rd, number of dimensions k, batch size m
Output: Trained Fθ which approximates the first k + 1 eigenfunctions up to isometry

1 Randomly initialize the network weights θ
2 while L(θ) not converged do
3 Orthogonalization step:
4 Sample a random minibatch X of size m

5 Forward propagate X and compute inputs to orthogonalization layer Ỹ

6 Compute the QR factorization QR = Ỹ
7 Set the weights of the orthogonalization layer to be

√
mR−1

8 Gradient step:
9 Sample a random minibatch x1, . . . , xm

10 Compute the m×m affinity matrix W
11 Forward propagate x1, . . . , xm to get y1, . . . , ym

12 Compute the loss L(θ)(Sec. 3.2)
13 Use the gradient of L(θ) to tune all Fθ weights, except those of the output layer;

Algorithm 2: Eigenvectors separation
Input: X ⊆ Rd, batch size m, Trained Fθ which approximates the first k + 1 eigenfunctions

up to isometry
Output: Fθ which approximates the leading eigenfunctions

1 T ← ⌊ |X |
m ⌋

2 sample T minibatches Xi ∈ Rm×d

3 Forward propogate all Xi and obtain Fθ outputs Yi ∈ Rm×k+1

4 Compute the m×m affinity matrices Wi

5 compute all corresponding RW-Laplacians Li

6 Λ̃← 1
T

∑
i Y T

i LiYi

7 Diagonalize Λ̃ to get Q̃T and the leading eigenvalues
8 Sort the leading eigenvalues, and the columns of Q̃T correspondingly
9 QT ← last k columns of Q̃T

10 To obtain the representation of a new test sample xi, compute yi = Fθ(xi)QT

C Implementation’s Additional Considerations

C.1 Time and Space Complexity

Specifying the exact complexity of the method is difficult, As this is a non-convex optimization problem,
However, we can discuss the following approximate complexity analysis. Assuming constant input and output
dimensions and a given network architecture, we can take a general view on the complexity of each iteration
by the batch size m. The heaviest computational operations at each iteration are the nearest-neighbors
search, the QR decomposition and the loss computation (i.e., computation of the Rayleigh Quotient). For
the nearest-neighbor search, we can use approximation techniques (e.g, LSH Gionis et al. (1999)) which work
in almost linear complexity by m. A naive implementation of the QR decomposition would lead to an O(m2)
time complexity. The loss computation also takes O(m2) due to the required matrix multiplication. Thereby,
the complexity of each iteration is quadratic by the batch size. This is comparable to other approximation
techniques such as LOBPCG Benner & Mach (2011) (which also utilizes sparse matrix operations techniques
for faster implementation). However, sep-SpectralNet leverages stochastic training, allowing each iteration
to consider only a batch of the data, rather than the entire dataset.
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Assessing the complexity of each epoch is now straightforward, and results a time complexity of O(nm),
where n, the number of samples, satisfies n≫ m. This indicates an almost-linear complexity.

C.2 Graph Construction

To best capture the structure of the input manifold D, given by a finite number of samples X , we use a
similar graph construction method used by Gomez et al. in UMAP (McInnes et al., 2018), proven to capture
the local topology of the manifold at each point. However, as opposed to the method in (McInnes et al.,
2018), sep-SpectralNet does not compute the graph of all points, which can lead to scalability hurdles and
impose significant memory demands. Instead, sep-SpectralNet either computes small graphs on each batch,
or can be provided by the user with an affinity matrix W corresponding to X . Our practical construction of
the graph affinity matrix W is as follows:

Given a distance measure δ between points, we first compute the k-nearest neighbors of each point xi under
δ, {xi1 , . . . , xik

}, and denote

ρi = min
j

δ(xi, xij
), σi = median{δ(xi, xij

)|1 ≤ j ≤ k}

Second, we compute the affinity matrix using the Laplace kernel

Wij =
{

exp
( ρi−δ(xi,xj)

σi

)
xj ∈ {xi1 , . . . , xik

}
0 otherwise

Third, we symmetries W simply by taking W +W T

2 .

We refer the reader to McInnes et al. (2018) for further discussion about the graph construction.

D Grassmann Score

In this section, we provide the formulation for the Grassmann Score (GS) evaluation method, and present
simple examples to visualize its meaning.

D.1 Formalization of GS

Grassmann distance (see Def. 1) is a metric function between equidimensional linear subspaces, where each
is represented by an orthogonal matrix containing the basis as its columns. In other words, this is a metric
which is invariant under multiplication by an orthogonal matrix.
Definition 1. Given two orthogonal matrices A, B ∈ Rn×k, the Grassmann Distance between them is defined
as:

dGr(A, B) =
k∑

i=1
sin2θi

where θi = arccos σi(AT B) is the ith principal angle between A and B, and σi is the ith smallest singular
value of AT B.

Assuming we are given a dataset X = {x1, . . . , xn} ⊆ Rd and a corresponding low-dimensional representation
Y = {y1, . . . , yn} ⊆ Rk. We want to evaluate the dissimilarity between the global structures of X and Y.
We build graphs from X and Y, saved as affinity matrices WX and WY , respectively. We construct the
corresponding Unnormalized Laplacians (see Sec. 3.1) LX and LY . We define the matrices VX , VY ∈ Rn×t

so that their columns are the first t eigenvectors of LX , LY , respectively.

Finally, we define the GS of Y (w.r.t X ) as follows:
Definition 2. GSX (Y) = dGr(VX , VY)
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t is a hyper-parameter of GS. A reasonable choice would be to take t = 2, which is equivalent to measure
the Grassmann distance between the Fiedler vectors of the Laplacians. The Fiedler vector is known for its
hold of the most important global properties. The larger t, the more complicated structures are taken into
consideration in the GS computation (which is not necceray desired).

Note that for the construction of the affinity matrices WX , WY we use the same construction scheme detailed
in App. C.2. This construction method is similar to the one presented by McInnes et al. (2018), and proved
to capture the local topology of the underlying manifold.

It is important to note that GS might ignore the local structures, while concentrating on the global structures
(especially for smaller values of t). The ultimate goal in visualization is to find a balance between the global
and local structure.

D.2 Additional GS examples

(a)

(b)

Figure 8: Additional demonstrations of the alignment between the intuitive expectation and the GS results
on two toy dataset. Four possible 2-dimensional embeddings of these dataset are provided, along with their
corresponding GS, kNN accuracy and Silhouette score. Unlike kNN and Silhouette, GS effectively captures
the preservation of global structure.

Fig. 8 depicts two additional demonstrations of the alignment between the intuitive expectation and the
GS results on two toy dataset. The basic global structure of both of these datasets is two distinct clusters.
This structure is indeed captured by GS. However, kNN gives perfect score also when the one of the clusters
is separated. Silhouette score favourites the 2-points embedding. Namely, it trade-offs local structure (i.e.,
giving lower score for preserving local structure, even when the global properties are the same).

E Additional results

The full results of Fig. 5 are summarized in Tab. 3.

F Fine-Tuning sep-SpectralNet with UMAP loss

One way to get a generalizable version of UMAP may be an extension of sep-SpectralNet by fine-tuning the
network with UMAP loss. We tried that idea, but were forced to stop this direction, as we stumbled upon
the well-known catastrophic forgetting case.
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Table 3: A comparison between sep-SpectralNet and SpectralNet dimensional SE and Fiedler Vector (FV)
approximation on real-world datasets. The values are the mean and standard deviation of the sin2 distance
between the predicted and true eigenvector, over 10 runs. Lower is better. sep-SpectralNet ability to separate
the eigenvectors is evident.

Dataset Method v2 v3 v4 v5

Cifar10 sep-SpectralNet 0.016±0.004 0.052±0.008 0.069±0.034 0.106±0.037
SpectralNet 0.449±0.199 0.325±0.148 0.399±0.194 0.414±0.17

Appliances GrEASE 0.063±0.002 0.094±0.007 0.109±0.001 -
SpectralNet 0.307±0.047 0.530±0.114 0.401±0.106 -

KMNIST sep-SpectralNet 0.0.044±0.002 0.101±0.010 - -
SpectralNet 0.372±0.174 0.396±0.137 - -

Parkinsons sep-SpectralNet 0.056±0.006 - - -
SpectralNet 0.229±0.138 - - -

Figure 9: Fig. 7 extension with P. UMAP.

Figure 10 presents an experiment on the simple 2circles dataset. Each row is represented the same experiment,
run with a different seed. We trained sep-SpectralNet to output the 2D SE of the 2circles dataset, as shown
in the left column. Then, we initialized a new network, with the same architecture, with the pre-trained
weights from sep-SpectralNet . This network was trained with UMAP loss, as in (Sainburg et al., 2021).
We tried different learning-rates for fine-tuning, to best match the desired UMAP embedding (i.e. retaining
the local structure), without losing the global structure (e.g., separation of the two clusters). Unfortunately,
there was no learning-rate that matched our goals.

Tab. 5 extends Tab. 2 and Tab. 4 with the results of NUMAP-FT (fine-tuning sep-SpectralNet with UMAP
loss). It can be seen that except one dataset, NUMAP-FT consistently fails in both global and local structure
preservation.
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Metric Method Cifar10 Appliances Wine Banknote Mnist FashionMnist

kNN ↑

P. UMAP 0.908±0.004 - 0.953±0.033 0.927±0.023 0.801±0.010 0.717±0.006
NUMAP-SN 0.903±0.002 - 0.956±0.028 0.963±0.032 0.750±0.010 0.695±0.006
NUMAP (ours) 0.905±0.004 - 0.950±0.024 0.986±0.004 0.758±0.009 0.695±0.003

GS ↓

P. UMAP 0.133±0.069 0.710±0.293 0.549±0.180 0.722±0.079 0.311±0.059 0.029±0.006
NUMAP-SN 0.281±0.357 0.262±0.038 0.441±0.182 0.780±0.197 0.405±0.199 0.036±0.016
NUMAP (ours) 0.054±0.021 0.261±0.020 0.429±0.124 0.618±0.131 0.304±0.042 0.032±0.022

Table 4: An extension of Tab. 2 with the MNIST and Fashion MNIST datasets.

Figure 10: The catastrophic forgetting phenomenon when fine-tuning sep-SpectralNet to match UMAP
performance on the 2circles dataset. Each column represents a fine-tuning using a different learning-rate.
Each row is a repetition, initialized with a different seed.

G Technical Details

To compute the ground truth SE on the train set and its corresponding eigenvalues, we constructed an
affinity matrix W from the train set (as detailed in Appendix C.2), with a number of neighbors detailed in
Table 7. After constructing W , we computed the leading k eigenvectors of its corresponding Unnormalized
Laplacian L = D −W via Python’s Numpy SVD or SciPy LOBPCG SVD (depending on the size). To get
the generalization ground truth, we constructed an affinity matrix W from the train and test sets combined,
computed the leading k eigenvectors of its corresponding Unnormalized Laplacian L = D−W , and extracted
the representations corresponding to the test samples. We used a train-test split of 80-20 for all datasets.

For the SE implementation via sparse matrix decomposition techniques, we used Python’s
sklearn.manifold.SpectralEmbedding, using a default configuration (in particular, 10 jobs, 1% neighbors).

Metric Method Cifar10 Appliances Wine Banknote Mnist FashionMnist

kNN ↑

NUMAP-FT 0.577±0.081 - 0.364±0.053 0.686±0.046 0.329±0.103 0.153±0.035
P. UMAP 0.908±0.004 - 0.953±0.033 0.927±0.023 0.801±0.010 0.717±0.006
NUMAP-SN 0.903±0.002 - 0.956±0.028 0.963±0.032 0.750±0.010 0.695±0.006
NUMAP (ours) 0.905±0.004 - 0.950±0.024 0.986±0.004 0.758±0.009 0.695±0.003

GS ↓

NUMAP-FT 0.680±0.334 0.348±0.292 0.002±0.001 0.635±0.141 0.411±0.153 0.272±0.146
P. UMAP 0.133±0.069 0.710±0.293 0.549±0.180 0.722±0.079 0.311±0.059 0.029±0.006
NUMAP-SN 0.281±0.357 0.262±0.038 0.441±0.182 0.780±0.197 0.405±0.199 0.036±0.016
NUMAP (ours) 0.054±0.021 0.261±0.020 0.429±0.124 0.618±0.131 0.304±0.042 0.032±0.022

Table 5: An extension of Tab. 2 and Tab. 4 with NUMAP-FT.
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Table 6: Technical details of the real-world datasets used for sep-SpectralNet and NUMAP ex-
periments.

Cifar10 Appliances KMNIST Parkinsons Wine Banknote MNIST FashionMNIST
#samples 60,000 19735 70,000 5875 178 1372 60,000 60,000
#features 500 28 784 19 13 4 784 784

Table 7: Technical details in the sep-SpectralNet experiments for all datasets.

Moon Cifar10 Appliances KMNIST Parkinsons
Batch size 2048 2048 2048 2048 512

n_neighbors 20 20 20 20 5
Initial LR 10−2 10−2 10−3 10−3 10−2

Optimizer ADAM ADAM ADAM ADAM ADAM

The architectures of sep-SpectralNet’s and SpectralNet’s networks in all of the experiments were as follows:
size = 256; ReLU, size = 256; ReLU, size = 512; ReLU, size = k + 1; orthonorm. NUMAP’s second NN and
PUMAP’s NN architectures for all datasets was: size = 200; ReLU, size = 200; ReLU, size = 200; ReLU,
size = 2; The SE dimensions for NUMAP were: Cifar10 - 10; Appliances - 5; Wine - 10; Banknote - 3; Mnist
- 10, FashionMnist - 10. For the datasets in Fig. 1, from top to bottom: Circles - 5, Cylinders - 11, Line - 2.

The learning rate policy for sep-SpectralNet and SpectralNet is determined by monitoring the loss on a
validation set (a random subset of the training set); once the validation loss did not improve for a specified
number of epochs, we divided the learning rate by 10. Training stopped once the learning rate reached 10−7.
In particular, we used the following approximation to determine the patience epochs, where n is the number
of samples and m is the batch size: if n

m ≤ 25, we chose the patience to be 10; otherwise, the patience
decreases as max (1, 250m

n ) (i.e., the number of iterations is the deciding feature).

To run UMAP, we used Python’s umap-learn implementation (UMAP’s formal implementation). We used
the built-in initialization option "spectral" (i.e., SE), and initialized contumely with PCA (implemented via
Python’s sklearn.decomposition.PCA) and sep-SpectralNet . For Parametric UMAP we used the Pytorch
implementaion (Liu, 2024). For all methods we used a default choice of 10 neighbors.

As for the evaluation methods, we used a default choice of 5 neighbors to compute the kNN accuracy. The
graph construction for GS is as detailed in App. C.2, using 50 neighbors to ensure connectivity.

Time-series simulation. We simulated two complex distributions in a 10-dimensional space. At each of
the ten time steps, we sample a total of 5000 data points, 25% of which belong to the dynamic distribution
(visualized by the pink dots in Fig. 7), while the other two distributions are kept the same. The dynamic
distribution starts at the first (red) distribution, and linearly transitions into the other (blue). We used
UMAP default parameters settings to visualize each time-step separately. As for NUMAP, we trained only
on the first two time-steps, and obtained the others using a simple feed-forward operation.

We ran the experiments using GPU: NVIDIA A100 80GB PCIe; CPU: Intel(R) Xeon(R) Gold 6338 CPU @
2.00GHz;
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