SENSEI: Semantic Exploration Guided by Foundation
Models to Learn Versatile World Models

Cansu Sancaktar!?* Christian Gumbsch?!-34*
Andrii Zadaianchuk'® Pavel Kolev! Georg Martius'-?
! Autonomous Learning, University of Tiibingen
2 Empirical Inference, Max Planck Institute for Intelligent Systems
3 Neuro-Cognitive Modeling, University of Tiibingen
4 Cognitive and Clinical Neuroscience, TU Dresden
5 Video & Image Sense Lab, University of Amsterdam
{cansu.sancaktar, georg.martius}@tue.mpg.de
{christian.gumbsch, pavel.kolev}@uni-tuebingen.de
a.zadaianchuk@uva.nl

Abstract

Exploration is a cornerstone of reinforcement learning (RL). Intrinsic motivation
attempts to decouple exploration from external, task-based rewards. However,
established approaches to intrinsic motivation that follow general principles such as
information gain, often only uncover low-level interactions. In contrast, children’s
play suggests that they engage in meaningful high-level behavior by imitating or
interacting with their caregivers. Recent work has focused on using foundation
models to inject these semantic biases into exploration. However, these methods
often rely on unrealistic assumptions, such as language-embedded environments
or access to high-level actions. We propose SEmaNtically Sensible Exploratlon
(SENSEI), a framework to equip model-based RL agents with an intrinsic mo-
tivation for semantically meaningful behavior. SENSEI distills a reward signal
of interestingness from Vision Language Model (VLM) annotations, enabling
an agent to predict these rewards through a world model. Using model-based
RL, SENSEI trains an exploration policy that jointly maximizes semantic rewards
and uncertainty. We show that in both robotic and video game-like simulations
SENSEI discovers a variety of meaningful behaviors from image observations and
low-level actions. SENSEI provides a general tool for learning from foundation
model feedback, a crucial research direction, as VLMs become more powerful.l

1 Introduction

Achieving intrinsically-motivated learning in artificial agents has been a long-standing dream, making
it possible to decouple agents’ learning from an experimenter manually crafting and setting up tasks.
Thus, the goal in intrinsically-motivated reinforcement learning (RL) is for agents to explore their
environment efficiently and autonomously, constituting a free play phase akin to children’s curious
play. Various intrinsic reward definitions have been proposed in the literature, such as aiming for state
space coverage (Bellemare et al., 2016; Tang et al., 2017; Burda et al., 2019), novelty or retrospective
surprise (Pathak et al., 2017; Schmidhuber, 1991), and information gain of a world model (Pathak
et al., 2019; Sekar et al., 2020; Sancaktar et al., 2022). However, when an agent starts learning from

18th European Workshop on Reinforcement Learning (EWRL 2025).

*Equal contribution.
"Project website with videos and code: https://sites.google.com/view/sensei-paper

https://sites.google.com/view/sensei-paper

You: Which of the following images is more

interesting for <environment description>?
i al‘
1

VLM: Image 1 is more interesting. distillation

b H

VLM: Image 2 is more interesting.

SENSEI environment world model

o, T A ase
\ T?““ y Of.Tf.T/”“

Figure 1: SENSEI overview: (a) During pre-training we prompt a VLM to compare observations
(e.g. images) from an environment with respect to their interestingness. We distill this ranking into a
reward function (SENSEI) for exploration. (b) An exploring agent not only receives observations (0;)
and rewards (r;) from interactions with the environment, but also a semantic exploration reward (r§*™)
from SENSEI (c) The agent learns a world model from its experience to judge the interestingness
(7£°™) of states without querying SENSEIL.

scratch, there is one fundamental problem: just because something is novel does not necessarily mean
that it contains useful or generalizable information for any sensible task (Dubey & Griffiths, 2017).

Imagine a robot facing a desk with several objects. The robot could explore by trying to move through
the entire manipulable space or hitting the desk at various speeds. In contrast, human common
sense would primarily focus on interacting with the objects or drawer of the desk since potential task
distributions likely revolve around those entities.

Agents exploring their environment with intrinsic motivations suffer from a chicken-or-egg problem:
how do you know something is interesting before you have tried it and experienced interesting
consequences? This is a bottleneck for the types of behavior that an agent can unlock during free play.
We argue that incorporating human priors into exploration could alleviate this roadblock. Similar
points have been raised for children’s play. During the first years of life, children are surrounded
by their caregivers who ideally encourage and reinforce them while they explore their environment.
Philosopher and psychologist Karl Groos has stipulated that there is “a strong drive in children to
observe the activities of their elders and incorporate those activities into their play" (Gray, 2017;
Groos & Baldwin, 1901).

A potential solution in the age of Large Language Models (LLMs), is to utilize language as a
cultural-transmitter to inject “human notions of interestingness" (Zhang et al., 2023a) into RL agents’
exploration. LLMs are trained on an immense amount of data produced mostly by humans. Thus,
their responses are likely to mirror human preferences. However, the most prominent works in
this domain assume (1) a language-grounded environment (Zhang et al., 2023b; Du et al., 2023;
Klissarov et al., 2023), (2) the availability of an offline dataset with exhaustive state-space coverage
(Klissarov et al., 2023), or (3) access to high-level actions (Zhang et al., 2023a; Du et al., 2023).
These assumptions are detached from the reality of embodied agents, e.g. in robotics, which don’t
come with perfect state or event captioners, pre-existing offline datasets nor with robust, high-level
actions. Furthermore, none of these approaches learn an internal model of “interestingness.” Thus,
they rely on the LLM, or a distilled module, to continuously guide their exploration.

In this work, we propose SEmaNtically Sensible Exploratlon (SENSEI), a framework for Vision
Language Model (VLM) guided exploration for model-based RL agents, illustrated in Fig. 1. SENSEI
starts with a short description of the environment and a dataset of observations (e.g. images) collected
through self-supervised exploration. A VLM is prompted to compare the observations pairwise with
respect to their interestingness and the resulting ranking is distilled into a reward function. When the
agent explores its environment, it receives semantically-grounded exploration rewards from SENSEI.
It learns to predict this exploration signal through its learned world model, corresponding to an
internal model of “interestingness”. The agent improves its exploration strategy by aiming for states
for which it predicts a high interestingness and then branching out to uncertain situations. Our main
contributions are as follows:

* We propose SENSEI, a framework for foundation model-guided exploration with world models.
* We show that SENSET can explore rich, semantically meaningful behaviors with few prerequisites.

self-supervised exploration data

n L™ N ~,
; o | < Al
‘“. < VLRI

pairwise comparison l

MOTIF

uninteresting ranked data interesting

l"“l | Sern
[% — R,;, — 7y

distilled reward function

(a) reward function distillation (b) world model

Figure 2: Intrinsic rewards in SENSEI: (a) Prior to exploration, we prompt GPT-4 to compare
images with respect to the interestingness for a certain environment. From the resulting ranking we
distill a reward function Ry, using VLM-MOTIF. (b) Later, an agent learns an RSSM world model
from exploration. From each state the agent predicts two intrinsic rewards, i.e., the distilled semantic

rewards r5°™ and uncertainty-based rewards s

* We demonstrate that the versatile world models learned through SENSEI enable fast learning of
downstream tasks.

2 Method

We consider the setup of an agent interacting with a Partially Observable Markov Decision Process.
At each time ¢, the agent performs an action a; € A and receives an observation o; € O, composed
of an image and potentially additional information. We assume that there exist one or more tasks
in the environment with corresponding rewards r* € R. However, during task-free exploration,

the agent should select its behavior agnostic to task rewards.

We assume that SENSET starts with a dataset D™t C O, collected from self-supervised exploration
with information gain as intrinsic reward (Sekar et al., 2020), thus not relying on a pre-existing expert
dataset. SENSEI has access to a pretrained VLM and is provided with a short description of the
environment, either from a human expert or generated by the VLM, based on some observations
from D™, Prior to task-free exploration, SENSEI distills a semantic exploration reward function
from VLM annotations (Sec. 2.1). During exploration, SENSEI learns a world model (Sec. 2.2) and
optimizes an exploration policy through model-based RL (Sec. 2.3).

2.1 Reward function distillation: MOTIFate SENSEI

Prior to task-free exploration, SENSEI needs to distill a semantically grounded intrinsic reward
function R, with learnable parameters) based on the preferences of a pretrained VLM. While
the overall framework of SENSEI is agnostic to the exact distillation method, we chose to use a
vision-based extension of MOTIF (Klissarov et al., 2023; illustrated in Fig. 2a), which we refer to as
VLM-MOTIF.?

MOTIF consists of two phases. In the first phase of dataset annotation, the pretrained foundation
model is used to compare pairs of observations, creating a dataset of preferences. For this, we
prompt the VLM with an environment description and pairs of observations from D"*, asking
the VLM which image it considers to be more interesting. The annotation function is given by the
VLM : O x O — Y, where O is the space of observations, and) = {1, 2, 0} is a space of choices
for the first, second or none of the observations. In the reward training phase, a reward function
is derived from the VLM preferences using standard techniques from preference-based RL (Wirth
etal., 2017). A cross-entropy loss function is minimized on the dataset of preference pairs to learn
a semantically grounded reward model R, : O — R. We use the final semantic reward function

2QOriginal MOTIF (Klissarov et al., 2023) assumes an environment where events are captioned in natural
language. Thus, they can use LLMs to annotate captions of observations.

Ry, whenever the agent interacts with its environment: the agent not only receives an observation
o; and reward 7, after executing an action a;, but also receives a semantically-grounded exploration
reward 75°™ < Ry (o) (see Fig. 1, center).

2.2 World model: Let your SENSEI dream

We assume a model-based setting, i.e., the agent learns a world model from its interactions. Following
DreamerV3 (Hafner et al., 2023), we implement the world model as a Recurrent State Space Model
(RssMm) (Hafner et al., 2019b). The RSSM with learnable parameters ¢ is computed by

Posterior: z; ~ q4(z; | by, 01) 1
Dynamics: hiy1 = folay, by, ;) 2)
Prior: 2t+1 ~ p¢(2t+1 | ht+1) (3)

In short, the RSSM encodes all interactions through two latent states, a stochastic state z; and a
deterministic memory h;. At each time ¢, the RSSM samples a new stochastic state z; from a posterior
distribution g4 computed from the current deterministic state h; and new observation o; (Eq. 1).
The RSSM updates its deterministic memory h, 1 based on the action a; and previous latent states
(Eq. 2). Then, the model predicts the next stochastic state 2,11 (Eq. 3). Once the new observation
041 is received, the next posterior g4 is computed and the process is repeated.

Besides encoding dynamics within its latent state, the RSSM is also trained to reconstruct external
quantities y; from its latent state via output heads oy:

Output heads: §; ~ 04(J: | he, 2t))

with y; € {oy, ct, 7, 5™ }. The RsSM of DreamerV3 (Hafner et al., 2023) reconstructs observations
o;, episode continuations c;, and rewards r;. For SENSEI, we additionally predict the semantic
exploration reward ™. The world model is trained end-to-end to jointly optimize the evidence
lower bound.

Thus, our world model learns to predict semantic interestingness 7™ of states (see Fig. I, right). We
could base exploration exclusively on this signal. However, we (1) expect to face many local optima
when optimizing for this signal and (2) we do not want to only explore a fixed set of behaviors, but
ensure that the agent goes for interesting and yet novel states. To overcome this limitation, Klissarov
et al. (2023) post-process ;" and normalize it by episodic event message counts. As we do not
assume ground-truth countable event captions, we instead combine our semantic reward signal
with epistemic uncertainty, a quantity that was shown to be an effective objective for model-based
exploration (Sekar et al., 2020; Pathak et al., 2017; Sancaktar et al., 2022). Following Plan2Explore
(Sekar et al., 2020), we train an ensemble of N models with weights {6',... 6™} to predict the next
stochastic latent states with

Ensemble predictor: 27" ~ ggn (27 | by, 21, ay). 5)
We quantify epistemic uncertainty as ensemble disagreement 7" by computing the variance over the
ensemble predictions averaged over latent state dimensions .J:

J
is 1 sn
rdis — i ZVar(zjyt), 6)
j=1

ssem

Thus, the model learns to predict two intrinsic rewards (#5°™, ri%) for a state-action-pair (Fig. 2b).

2.3 Exploration policy: Go and Explore with SENSEI

We could use a weighted sum of the two intrinsic reward signals, e.g. r5¢™ + 3rdi®_ as the overall

reward erpl for optimizing an exploration policy. However, ideally the weighting of the two
signals should depend on the situation. In uninteresting states, we want the agent to mostly pursue
interestingness (via r;°™). However, once the agent has found an interesting state, we would like
the agent to branch out and discover new behavior (via 7{%). This follows the principle of Go-

Explore (Ecoffet et al., 2021), where the agent should first go to a subgoal and explore from there

uninteresting uninteresting

interesting . interesting

(a) go: 7" < Qg (b) explore: 7:°™ > Qx

Figure 3: Switching exploration behavior in SENSEI: (a) When the agent is in an uninteresting
state it mainly strives to maximize “interestingness” (r7°™), e.g. by going to a key. (b) When in an
interesting state, the agent more strongly attempts to increase uncertainty (7§*) by trying new actions,
e.g. picking up the key.

(illustrated in Fig. 3). We implement this using an adaptive threshold parameter 3 € {38°, gexplore},
with gexplore . 380 whose value depends on the following switching criteria:

,rexpl _ psem ﬂexplo.rergls’ if ?ziem > Qk(fsem); (7)

¢ ¢ peordis, otherwise.

Here Q) denotes the k*" quantile of 75°™, which we estimate through a moving average. Thus, until
a certain level of #°°™ is reached, the exploration reward mainly aims to maximize interestingness.
After exceeding this threshold, exploration more strongly favors uncertainty-maximizing behaviors.
As soon as the agent enters a less interesting state with 75°™ < @)y, SENSEI switches back to focusing
on semantic interestingness. The two trade-off factors 38° and B<<P!°® as well as the quantile k are
hyperparameters. More details on this adaptation and hyperparameters can be found in Suppl. B. We

learn an exploration policy based on r£*P' using DreamerV3 (Hafner et al., 2023).

3 Related work

Intrinsic rewards are applied either to facilitate exploration in tasks where direct rewards are
sparse or in a task-agnostic setting where they help collect diverse data. Many different reward
signals have been proposed as exploration rewards (Baldassarre & Mirolli, 2013), such as prediction
error (Schmidhuber, 1991; Pathak et al., 2017; Kim et al., 2020), Bayesian surprise (Storck et al.,
1995; Blaes et al., 2019; Paolo et al., 2021), learning progress (Schmidhuber, 1991; Colas et al.,
2019; Blaes et al., 2019), empowerment (Klyubin et al., 2005; Mohamed & Jimenez Rezende, 2015),
metrics for state-space coverage (Bellemare et al., 2016; Tang et al., 2017; Burda et al., 2019) and
regularity (Sancaktar et al., 2024). While effective for low-dimensional observations, such objectives
are challenging to apply for high-dimensional image observations. Here, alternatives are employing
low-dimensional goal spaces (Colas et al., 2019; OpenAl et al., 2021; Nair et al., 2018; Pong et al.,
2019; Zadaianchuk et al., 2021; Mendonca et al., 2021) or learning latent world models (Hafner et al.,
2019a, 2023; Gumbsch et al., 2024) that can be employed for model-based exploration (Pathak et al.,
2019; Sekar et al., 2020). In particular, Plan2Explore (Sekar et al., 2020) uses ensemble disagreement
of latent space dynamics predictions as an intrinsic reward. While this is a very general strategy for
exploration, this could be limited in more challenging environments where semantically meaningful
or goal-directed behavior (Spelke, 1990) is needed for efficient exploration.

Exploration with foundation models: Recent improvements of in-context learning of LLMs open
additional ways to explore using human bias of interestingness during exploration (Klissarov et al.,
2023; Du et al., 2023; Zhang et al., 2023a) and skill learning (Colas et al., 2020, 2023; Zhang et al.,
2023b). MOTIF (Klissarov et al., 2023) leverages LLMs to derive intrinsic rewards by comparing
pairs of event captions, demonstrating its efficacy in the complex game of NetHack (Kiittler et al.,
2020). Similarly, ELLM (Du et al., 2023) uses LLMs to guide RL agents towards goals that are
meaningful, based on the agent’s current state represented by text. Furthermore, OMNI (Zhang et al.,
2023a) introduces a novel method to prioritize tasks using LLMs. Thereby, OMNI focuses on tasks
that are not only learnable but also generally interesting. LAMP (Adeniji et al., 2023) proposes to
use VLMs for reward modulation by first generating a set of potential tasks with an LLM and then
generating task-based rewards using VLMs.

[Ry, SENSEL |
e | —_
0 50 100 , 150 200 250
12 3 4 5

H Ry, SexsE -
0 20 40 60,80 100 120 140
123 4 5

Ry, SENSEI GENERAL

— Ry, SENSEI

(norm.)

-sem
t

0 50 100,150 200 250
1 2 3 4 5

Ry, SENSEI GENERAL

3™ (norm.)

0 50 100, 150 200 250
12 3 4 5

WeEDLE 0.5
35

S 5 7.

WEEDLE
AS

WEEDLE
1S

P PEN =1 : . : N

eoococ | = = = = = =) == =034 :/: : :

. 7/ : :

Wi ld WEEDLE GOt AAAALLAALNE Critical hit? gained A: 0 2 4 - - -
sppeared? hd hurt bu poizent vl |37 EXP. Pointst B = - == Ry, SENSEI

315 325,335 345
(a) screenshots (b) semantic exploration reward

Figure 4: Semantic exploration rewards for example trajectories: From top to bottom we show
example trajectories for MiniHack KeyRoom and KeyChest (see Fig. 10 for map view), Robodesk,
and Pokémon Red.We showcase rewards from VLM-MOTIF distilled from GPT-4 annotations. The
reward trajectories peak at the “interesting” moments of exploration, such as opening a drawer in
Robodesk, picking up the key in MiniHack, or landing a critical hit in Pokémon. For Robodesk
we show reward trajectories for both SENSEI and a version of SENSEI with a more general, zero
pre-knowledge prompting strategy (SENSEI GENERAL, see Sec. 4.2.2).

Reward-shaping through VLMs: Most works that rely on VLMs as reward sources try to solve
the reward specification problem in RL. In these works, a task is assumed to be described as a
language caption (Cui et al., 2022; Rocamonde et al., 2023; Baumli et al., 2023; Adeniji et al.,
2023), as a goal image (Cui et al., 2022), or as a video demonstration (Sontakke et al., 2023). In
particular, RL-VLM-F (Wang et al., 2024) uses a very similar setup to SENSEI. Pairs of images
from initial rollouts are compared using a VLM to distill a reward function via MOTIF (Klissarov
et al., 2023). However, we assume a model-based setup and do not explicitly prompt the task and
distill an environment-specific but general exploration reward.

4 Results

Our experiments set out to empirically evaluate the following questions:

1. Does the distilled reward function R,, from VLM annotations encourage interesting behavior?

2. Can SENSEI discover semantically meaningful behavior during task-free exploration?

3. Is the world model learned via exploration suitable for later learning to efficiently solve
downstream tasks?

4. Can SENSEI be combined with extrinsic rewards to solve tasks that require substantial exploration?

key agent key at chest
picked up opened door picked up without key

5004
400 60k
2004
40k 4
200

1004
00 20k

04
P2X SENsEr VLM P2X SeNsEr VLM P2X SENSEI VLM P2X SENSEI VLM
Motir MoTiF MoTIF MoTIF
agent next environment at chest environment
to exit reward with key reward
60— ———
80k 4 154
10k 60k 4
40 104
40k 1
5| 20 5
20k
0- 0
P2X SENSEI VLM P2X SENSEI VLM P2X SENSEr VLM P2X SeNsgr VLM
MorTir Morir MoTIr Mortir
(a) interactions and rewards in KeyRoom-S15 (b) interactions and rewards in KeyChest

Figure 5: Interactions in MiniHack: We plot the mean number of interactions with task-relevant
objects and the environment reward (unknown to the agents) collected by SENSEI, Plan2Explore
(P2X) and pure VLM-MOTIF (SENSEI with no information gain, i.e. 5 = 0) for KeyRoom-S15 (a)
and KeyChest (b). Error bars show the standard error (10 seeds).

We answer these questions by (1) illustrating that the semantic rewards obtained from VLM-MOTIF
reflect interesting events in the environment, (2) quantitatively showing that SENSEI leads to more
interaction-rich behavior during task-free exploration, (3) employing the learned world models to
successfully train task-based policies and (4) combining SENSEI’s exploration strategy with extrinsic
rewards to tackle a challenging environment that cannot be efficiently explored using rewards alone.
We use three fundamentally different types of environments:

MiniHack (Samvelyan et al., 2021) is a sandbox to design RL tasks based on NetHack (Kiittler
et al., 2020). In MiniHack, an agent needs to navigate dungeons by meaningfully interacting with
its environment, e.g. open a door with a key. We tested two tasks: fetching a key in a large room to
unlock a smaller room with an exit (KeyRoom-S15) or fetching a key to open a chest in a maze of
rooms (KeyChest). MiniHack uses discrete actions. As observations we use pixel-based, egocentric
views around the agent and a binary flag indicating key pick-ups (details in Suppl. C.2).

Robodesk (Kannan et al., 2021) is a multi-task RL benchmark in which a simulated robotic arm
can interact with various objects on a desk, including buttons, two types of blocks, a ball, a sliding
cabinet, a drawer, and a bin. For different objects, there exist different tasks, e.g. open_drawer.
Robodesk uses pixel-based observations and continuous actions. In order to deal with occlusions, we
use images from two camera angles for VLM annotations but only one camera angle as input to our
agents (details in Suppl. C.1).

Pokémon Red is a Game Boy role-playing game where players control a trainer exploring a world of
collectible creatures called Pokémon. Exploration is essential for progress, as players must navigate
a vast, interconnected world and master a semantic battle system (e.g. Water beats Rock) to defeat
Gym leaders and become Pokémon Champion. Our implementation Whidden (2023); Suarez (2024)
use the raw game screen as pixel-based observations and discrete actions corresponding to Game Boy
button presses (see Suppl. C.3).

We collect the initial dataset D™ with Plan2Explore (Sekar et al., 2020), the current state-of-the
art in exploration with pixel-based observations. We collect data from 500k steps in MiniHack and
Pokémon Red and 1M steps in Robodesk. For data annotation, we use GPT-4 (details in Suppl. D).

Upright block Flat block Ball

30k 121 I 20k I
15k 1 6k 10k
0 0
RND P2X SENSEI SENSEI RND P2X SENSEI SENSEI RND P2X SENSEI SENSEI
GENERAL CGENERAL GENERAL
Buttons Drawer Sliding cabinet
6k
8k = 10k I
4k - 20k

0

0 T 0 -
RND P2X SENSEI SENSEI RND P2X SENSEI SENSEI RND P2X SENSEI SENSEI
GENERAL GENERAL GENERAL

Figure 6: Interactions in Robodesk: We plot the mean number of object interactions during 1M
steps of exploration for SENSEI (environment description provided by us), a more general variant of
SENSEI with a VLM-generated environment description (SENSEI GENERAL), Plan2Explore (P2X),
and Random Network Distillation (RND). Error bars show the standard deviation (3 seeds).

4.1 Reward function of SENSEI

In Fig. 4 we illustrate how the distilled VLM-MOTIF reward function R, assigns semantic rewards
73" for exemplary sequences. In MiniHack, r™ clearly jumps for significant events. Frames 2
& 3 in KeyRoom-S15 and KeyChest respectively, are right before the key is picked up. Later, rj*™
increases further once the agent is at the door or chest with a key (Frame 3 in KeyRoom-S15 and
Frames 4&5 in KeyChest). For Robodesk, we see that as the robot is interacting with objects, 7™
increases, e.g., when opening the drawer or pushing the blocks. For Pokémon Red, r{°™ rises while
winning a battle, with surges for inflicting damage and drops for setbacks such as getting poisoned.
More examples of Robodesk are shown in Suppl. Fig. 17 and examples of Pokémon Red in Suppl.

Fig. 26.

4.2 Task-free exploration
4.2.1 MiniHack

We quantify the interactions uncovered by SENSEI during task-free exploration in two tasks of
MiniHack. For task-relevant events, the mean number of interactions are plotted in Fig. 5. SENSEI
focuses more on semantically interesting interactions compared to Plan2Explore, e.g. picking up a
key, opening a locked door, or finding the chest with a key. As a result, SENSEI completes both tasks
more frequently than Plan2Explore during task-free exploration, as evident by the higher number of
collected rewards. We believe this indicates that SENSEI is well suited for initial task-free exploration
in these environments, enabling the discovery of state-space regions crucial for solving downstream
tasks.

Is information gain crucial for SENSEI? We show results for exploration with pure semantic
reward 75°™, corresponding to SENSEI without an information gain reward r* (8 = 0). In this
VLM-MOTIF ablation, we emphasize the crucial role of the information gain objective. Optimizing
only for the semantic reward ;™ can cause the agent to get stuck in local optima and hinder further
exploration. For example in KeyRoom, the agent with VLM-MOTIF often picks up the key. However,
it fails to explore the room well enough after key pick-ups to find and open the door and reach the
exit, as reflected in the interaction metrics in Fig. 5. We observe a similar scenario for KeyChest:
although the pure VLM-MOTIF agent reaches the chest often after having picked up the key, it
collects substantially less rewards than SENSEI. For the episode to end, the agent needs to use the key
to open the chest. The VLM-MOTIF agent, however, simply hovers around the chest. As being at

the chest with a key is an "interesting" state and opening a chest immediately terminates the episode,

memmm== SENSEI === Plan2Explore ™= DreamerV3 === PPQ

0 05 1 0 05 1
1e6 steps 1e6 steps

(a) extrinsic phase in KeyRoom-S15 (b) extrinsic phase in KeyChest

Figure 7: Downstream task performance in MiniHack: We plot the mean of the episode score
obtained during evaluation for the MiniHack tasks (a) KeyRoom-S15 and (b) KeyChest, with world
models learned from SENSEI vs. Plan2Explore (P2X) exploration. We also show results for learning
a task policy from scratch with DreamerV3, and the model-free baseline PPO. Shaded areas depict
the standard error (10 seeds) and we apply smoothing over the score trajectories with window size 3.

there is no real incentive for the agent to explore chest openings. This ablation shows the importance
of combining novelty and usefulness in order to continually push the frontier of experience.

4.2.2 Robodesk

Next, we analyze exploration in the challenging visual control suite of Robodesk. Here we compare
IM steps of exploration in SENSEI with Plan2Explore and Random Network Distillation (RND,
Burda et al., 2019), a strong model-free exploration approach that uses prediction errors of random
image embeddings as intrinsic rewards to maximize state space coverage. Fig. 6 plots the mean
number of object interactions during exploration for the three methods. On average, SENSEI interacts
more with most available objects than the baselines. As a result, in a majority of tasks SENSEI
receives more task rewards during exploration than Plan2Explore or RND (shown in Suppl. E.3).
Qualitatively, we observe that Plan2Explore mostly performs arm stretches’, whereas RND mostly
moves the arm around in the center of the screen, mostly hitting buttons, as they are also centered on
the table, and occasionally hitting objects.

Thus, our semantic exploration scheme leads to more object interactions than uncertainty-based
exploration, even in a low-level motor control robotic environment.

Is an environment description by a human expert necessary for SENSEI? In the previous
SENSEI experiments, we provided a small environment description in the prompts for the VLM
annotations. We investigate whether SENSEI relies on this external description in Robodesk, and
compare against a version of SENSEI using a more general, zero-knowledge prompting strategy
(SENSEI GENERAL). SENSEI GENERAL first prompts the VLM for an environment description given
an image of the environment and uses the generated answer as context to annotate the dataset of
preferences (details in Suppl. D.2). As shown in Fig. 6, SENSEI GENERAL interacts roughly as often
with the relevant objects as SENSEI, outperforming both Plan2Explore and RND in terms of overall
number of object interactions. Thus, injecting external environment knowledge to the prompts is not
necessary and this step can be fully automated. This further cements the generality of our approach.

Ablations We perform ablations to see (1) how noisy annotations from VLMs affect SENSEI
compared to an oracle annotator, (2) how much the behavior richness of the initial dataset affects
SENSET’s performance (Suppl. Fig. 14), and (3) ablate our Go-explore switching strategy. We observe
that as VLMs get better, there is indeed more to gain from SENSEIL, and richer exploration data helps
SENSEI bootstrap faster. See Suppl. E.2 for more information. We further showcase the robustness of
our Go-Explore switching strategy in terms of hyperparameter sensitivity compared to a variant of
SENSEI where the semantic and disagreement rewards get fixed weights (Suppl. E.6).

4.3 Fast downstream task learning

We hypothesize that world models learned from richer exploration would enable model-based RL
agents to quickly learn to solve new downstream tasks. We investigate this in MiniHack by running
DreamerV3 (Hafner et al., 2023) using the previously explored world models to learn a novel task-
based policy. To this end, we initialize DreamerV3 with the pre-trained world models from the initial
500K steps of exploration (see Sec. 4.2). We compare world models from task-free exploration with
either SENSET or Plan2Explore. Additionally, we compare running DreamerV3 and training Proximal
Policy Optimization (PPO, Schulman et al. 2017), a state-of-the-art model-free baseline, from scratch.

Figure 7 shows the performance of task-based policies over training. A previously explored world
model from SENSET allows the agent to learn to solve the task faster than all other baselines. Com-
pared to Plan2Explore, SENSEI allocates more resources to explore the relevant dynamics in the
environment, e.g. opening the chest more, resulting in well-suited world model for policy optimiza-
tion. Unlike the clear improvements of SENSEI, task-free exploration with Plan2Explore does not
outperform learning a task policy from scratch with DreamerV3 consistently across environments. In
KeyRoom, the model-free baseline PPO takes more than 20M steps to consistently solve the task (full
PPO curves in Supp. Fig. 13). Thus, in this task SENSET outperforms PPO by roughly two orders
of magnitude. This shows the improved sample efficiency of our approach: combining foundation
model-guided exploration and model-based RL. In KeyChest, the model-free baseline PPO shows
the first successes in the tasks early during training, but on average takes longer to learn to reliably
solve the task.

In a supplementary experiment
(Suppl. E.7), we analyze fast
downstream task learning also
on representative Robodesk tasks,
and demonstrate more sample-
efficient policy learning compared to
exploration with Plan2Explore.

=== SENSEI GENERAL === Plan2Explore DreamerV3

segments

N = O

4.4 Task-based exploration |
400

T
300

T
200
episodes
(b) map segments explored

0 1(50
Some environments are so complex
that meaningful task progress is only
possible through effective exploration.
We investigate such task-based explo-
ration in Pokémon Red. We compare
750k steps of exploration with SEN-
SEI GENERAL (using ¢ + %) to
Plan2Explore (using 7; + Br¢) and LY 0 6)
DreamerV3 (using only r;). Thus, 1 a8 0 50 100 T ‘ ‘ ‘
all agents receive extrinsic task re- 9 O ds 0 100 200 ‘300 400
wards r; during exploration, but only 0 Seeds , episodes

Plan2Explore and SENSEI also utilize (a) map progress (c) highest level of Pokémon in party
intrinsic signals.

Pokémon level

map

Figure 8: Task-based exploration in Pokémon Red compar-
ing SENSEI GENERAL to Plan2Explore and DreamerV3 for
750k steps. We partition the overall game map into unique

Progress in the game requires navi-
gating a vast world to reach Poké-

mon Gyms, as well as assembling
and training a strong team to defeat
Gym Leaders. To evaluate spatial
exploration, we partition the game
world into distinct map segments, cor-
responding to towns, routes, forests,
or buildings (details in Suppl. C.3).
Over the course of exploration, SEN-
SEI consistently discovers new seg-

map segments for different routes, towns, or buildings (de-
tails and full map in Suppl. C.3). We sequentially numbered
segments that need to be traversed from game start (0) to the
first Gym (9) and plot the percentage of random seeds that
reach each segment (a). Temporal exploration trends are visu-
alized by plotting the mean number of unique map segments
visited (b) and the highest level of the agent’s Pokémon (c)
over episodes, smoothed with a moving average (window
size 5). Shaded areas indicate standard error (5 seeds).

3Interestingly, this can still lead to solving tasks. For example, stretching the arm against the sliding cabinet
can close it, and stretching the arm toward a block can push it off the table.

10

ments, outperforming baselines in terms of total map coverage (Fig. 8b). To assess whether this
exploration is goal-directed, Figure 8a labels the specific segments required to progress from the
game start (segment 0) to the first Gym (segment 9), and plots the segments reached per method (high-
resolution map in Fig. 12). Only SENSEI reaches the first Gym, demonstrating superior exploration
aligned with the game’s objectives.

To assess battle-related progress, we track the levels of the agent’s Pokémon (Fig. 8c), which serve
as a proxy for battle experience and overall strength. Dreamer fails to sufficiently explore the battle
system and does not manage to train its Pokémon. Its highest-level Pokémon remains at the same
level as at the start of the episode. In contrast, SENSEI begins leveling up its Pokémon early during
exploration, and from episode 100 onward, it consistently achieves higher levels than Plan2Explore.
From episode 390 onward, SENSEI, on average, obtains twice as many level-ups per episode as
Plan2Explore, indicating greater battle success and a higher potential for future encounters.

Together, these results highlight SENSETI’s ability to perform meaningful, goal-directed exploration in
rich, open-ended environments. We provide a more detailed analysis in Suppl. E.8.

Second generation of annotations With more exploration, and due to the vastness of the world
in Pokémon Red, SENSEI increasingly enters regions outside the distribution of its annotation data
(DY), This leads to degraded semantic rewards. In Suppl. E.9, we show how this limitation can be
addressed by refining the reward function through a second round of VLM annotations on SENSEI-
collected data. When continuing the SENSEI run used for annotation for 200 additional episodes, now
using the updated reward function, the agent is able to defeat the first Gym and obtain the Boulder
Badge. This marks a critical milestone, highlighting the strong potential of iterative semantic reward
refinement to unlock meaningful progress in complex environments.

5 Discussion

We have introduced SENSEI, a framework for guiding the exploration of model-based agents through
foundation models. SENSET bootstraps a model of interestingness from previously generated play
data. On this dataset, SENSEI prompts a VLM to compare images with respect to their interestingness
and distills a semantic reward function. SENSET learns an exploration policy via model-based RL
using two sources of intrinsic rewards: (1) trying to reach states with high semantic interestingness
and (2) branching out from these states to maximize epistemic uncertainty. We show that in the video
game environments of MiniHack and Pokémon Red and a robotic simulation, this strategy leads to
more meaningful interactions, e.g. opening a chest with a key or manipulating objects on a desk.

Internal model of interestingness Unlike prior work of foundation model-guided exploration (Klis-
sarov et al., 2023; Wang et al., 2024), SENSEI learns an internal model of interestingness. This is a
sensible design choice when working with world models (as detailed in Suppl. A.3), enabling SENSEI
to predict semantic rewards also while imagining states during policy training. We demonstrate that
this can lead to significantly faster learning, since both VLM guidance as well as model-based RL
improve sample efficiency.

Limitations SENSEI benefits from fully-observable observations, e.g. images that capture all
relevant aspects of the environment. The VLM annotations degrade when dealing with occlusions.
In Robodesk we mitigate this using multiple camera angles. In future work this could be remedied
further by annotating videos to better convey temporal or partially-observable information.

Future work One promising direction is to systematically investigate iterative refinement of the
semantic reward function. In Suppl. E.9, we show that incorporating SENSEI-collected data into a
second round of annotations reduces out-of-distribution errors for states not present in the initial
annotation set. We believe this iterative process can unlock increasingly complex behaviors with
each generation. Another avenue is to explore SENSEI in photorealistic or real-world environments.
Photorealism of observations are likely to help VLM annotations because a large portion of VLMs’
training data comes from real world photos or videos. Thus, SENSEI is likely to scale well to these
settings.

11

Impact Statement

This work introduces a framework for semantically meaningful exploration in reinforcement learning
(RL), guided by intrinsic rewards distilled from vision-language models (VLMs). The approach
enables agents to efficiently discover useful, high-level behaviors without relying on task-based
rewards. RL often suffers from computational inefficiencies due to extensive trial-and-error processes,
but effective exploration strategies can alleviate this by guiding agents towards more purposeful
behaviors. In real-world settings, exploration poses additional challenges due to safety concerns, as
aimless interactions can lead to damage or unsafe situations. By emphasizing semantically meaningful
exploration, our approach offers a step toward more energy-efficient and potentially safer exploration.
We have identified no significant ethical concerns beyond standard considerations for responsibly
deploying autonomous learning agents.

Acknowledgements

The authors thank Sebastian Blaes and Onno Eberhard for helpful discussions. The authors thank the
International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Cansu
Sancaktar and Christian Gumbsch. Georg Martius is a member of the Machine Learning Cluster
of Excellence, EXC number 2064/1 — Project number 390727645. We acknowledge the financial
support from the German Federal Ministry of Education and Research (BMBF) through the Tiibingen
Al Center (FKZ: 011S18039B). This work was supported by the Volkswagen Stiftung (No 98 571).

References

Adeniji, A., Xie, A., Sferrazza, C., Seo, Y., James, S., and Abbeel, P. Language reward modulation
for pretraining reinforcement learning. arXiv preprint arXiv:2308.12270, 2023.

Baldassarre, G. and Mirolli, M. Intrinsically Motivated Learning in Natural and Artificial Systems.
Springer Publishing Company, Incorporated, 2013. ISBN 364232374X.

Baumli, K., Baveja, S., Behbahani, F., Chan, H., Comanici, G., Flennerhag, S., Gazeau, M., Hol-
sheimer, K., Horgan, D., Laskin, M., et al. Vision-language models as a source of rewards. arXiv
preprint arXiv:2312.09187, 2023.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. Unifying
count-based exploration and intrinsic motivation. Advances in Neural Information Processing
Systems (NeurIPS), 2016.

Blaes, S., Vlastelica, M., Zhu, J.-J., and Martius, G. Control What You Can: Intrinsically motivated
task-planning agent. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Exploration by random network distillation. In
International Conference on Learning Representations (ICLR), 2019.

Chevalier-Boisvert, M., Dai, B., Towers, M., Perez-Vicente, R., Willems, L., Lahlou, S., Pal, S.,
Castro, P. S., and Terry, J. Minigrid & miniworld: Modular & customizable reinforcement learning
environments for goal-oriented tasks. Advances in Neural Information Processing Systems, 36,
2024.

Colas, C., Fournier, P., Chetouani, M., Sigaud, O., and Oudeyer, P.-Y. CURIOUS: Intrinsically
motivated modular multi-goal reinforcement learning. In International Conference on Machine
Learning (ICML), 2019.

Colas, C., Karch, T., Lair, N., Dussoux, J.-M., Moulin-Frier, C., Dominey, P., and Oudeyer, P.-Y.
Language as a cognitive tool to imagine goals in curiosity driven exploration. Advances in Neural
Information Processing Systems, 33:3761-3774, 2020.

Colas, C., Teodorescu, L., Oudeyer, P.-Y., Yuan, X., and C6té, M.-A. Augmenting autotelic agents

with large language models. In Conference on Lifelong Learning Agents, pp. 205-226. PMLR,
2023.

12

https://arxiv.org/abs/2308.12270
https://arxiv.org/abs/2308.12270
https://arxiv.org/abs/2312.09187
https://openreview.net/forum?id=H1lJJnR5Ym
https://proceedings.mlr.press/v97/colas19a.html
https://proceedings.mlr.press/v97/colas19a.html

Cui, Y., Niekum, S., Gupta, A., Kumar, V., and Rajeswaran, A. Can foundation models perform
zero-shot task specification for robot manipulation? In Learning for Dynamics and Control
Conference, pp. 893-905. PMLR, 2022.

Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T., Abbeel, P., Gupta, A., and Andreas, J. Guiding
pretraining in reinforcement learning with large language models. In International Conference on
Machine Learning, pp. 8657-8677. PMLR, 2023.

Dubey, R. and Griffiths, T. L. A rational analysis of curiosity. In Proceedings of the 39th Annual
Conference of the Cognitive Science Society, pp. 307-312, 2017.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. First return, then explore. Nature,
590(7847):580-586, 2021.

Gray, P. What exactly is play, and why is it such a powerful vehicle for learning? Topics in Language
Disorders, 37(3):217-228, 2017.

Groos, K. and Baldwin, E. The Play of Man. Appleton, 1901.

Gumbsch, C., Sajid, N., Martius, G., and Butz, M. V. Learning hierarchical world models with adap-
tive temporal abstractions from discrete latent dynamics. In The Twelfth International Conference
on Learning Representations, 2024.

Ha, D. and Schmidhuber, J. World models. arXiv preprint arXiv:1803.10122, 2018.
Hafner, D. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780, 2021.

Hafner, D. Embodied: Fast reinforcement learning research. https://github.com/danijar/
embodied, 2024.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to control: Learning behaviors by latent
imagination. In International Conference on Learning Representations, 2019a.

Hafner, D., Lillicrap, T., Fischer, 1., Villegas, R., Ha, D., Lee, H., and Davidson, J. Learning latent
dynamics for planning from pixels. In International conference on machine learning, 2019b.

Hafner, D., Lee, K.-H., Fischer, 1., and Abbeel, P. Deep hierarchical planning from pixels. In
Advances in Neural Information Processing Systems, volume 35, 2022.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104v1, 2023.

Hansen, N., Su, H., and Wang, X. TD-MPC2: Scalable, robust world models for continuous control.
In The Twelfth International Conference on Learning Representations, 2024.

Kannan, H., Hafner, D., Finn, C., and Erhan, D. Robodesk: A multi-task reinforcement learning
benchmark. https://github.com/google-research/robodesk, 2021.

Kim, K., Sano, M., De Freitas, J., Haber, N., and Yamins, D. Active world model learning with
progress curiosity. In International Conference on Machine Learning (ICML), 2020.

Klissarov, M., D’Oro, P., Sodhani, S., Raileanu, R., Bacon, P-L., Vincent, P., Zhang, A., and
Henaff, M. Motif: Intrinsic motivation from artificial intelligence feedback. arXiv preprint
arXiv:2310.00166, 9 2023.

Klyubin, A., Polani, D., and Nehaniv, C. Empowerment: a universal agent-centric measure of control.
In IEEE Congress on Evolutionary Computation, volume 1, pp. 128—135 Vol.1, 2005.

Kiittler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici, M., Grefenstette, E., and Rocktischel,
T. The nethack learning environment. In Advances in Neural Information Processing Systems,
volume 33, pp. 7671-7684, 2020.

Mendonca, R., Rybkin, O., Daniilidis, K., Hafner, D., and Pathak, D. Discovering and achieving
goals via world models. Advances in Neural Information Processing Systems, 34:24379-24391,
2021.

13

https://cogsci.mindmodeling.org/2017/papers/0068/index.html
https://openreview.net/forum?id=TjCDNssXKU
https://openreview.net/forum?id=TjCDNssXKU
https://github.com/danijar/embodied
https://github.com/danijar/embodied
https://openreview.net/forum?id=Oxh5CstDJU
https://github.com/google-research/robodesk
https://arxiv.org/abs/2007.07853
https://arxiv.org/abs/2007.07853
https://ieeexplore.ieee.org/document/1554676

Mohamed, S. and Jimenez Rezende, D. Variational information maximisation for intrinsically moti-
vated reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS),
2015.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine, S. Visual reinforcement learning with
imagined goals. Advances in neural information processing systems, 31, 2018.

OpenAl, Plappert, M., Sampedro, R., Xu, T., Akkaya, 1., Kosaraju, V., Welinder, P., D’Sa, R., Petron,
A., de Oliveira Pinto, H. P., Paino, A., Noh, H., Weng, L., Yuan, Q., Chu, C., and Zaremba, W.
Asymmetric self-play for automatic goal discovery in robotic manipulation. arXiv:2101.04882,
2021.

Paolo, G., Coninx, A., Doncieux, S., and Laflaquiere, A. Sparse reward exploration via novelty
search and emitters. In Proceedings of the Genetic and Evolutionary Computation Conference, pp.
154-162, 2021.

Pathak, D., Agrawal, P, Efros, A. A., and Darrell, T. Curiosity-driven exploration by self-supervised
prediction. In International Conference on Machine Learning (ICML), 2017.

Pathak, D., Gandhi, D., and Gupta, A. Self-supervised exploration via disagreement. In International
Conference on Machine Learning (ICML), 2019.

Pleines, M., Addis, D., Rubinstein, D., Zimmer, F., Preuss, M., and Whidden, P. Playing pokémon
red via deep reinforcement learning. arXiv preprint arXiv:2502.19920, 2025.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and Levine, S. Skew-fit: State-covering self-
supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Rocamonde, J., Montesinos, V., Nava, E., Perez, E., and Lindner, D. Vision-language models are
zero-shot reward models for reinforcement learning. arXiv preprint arXiv:2310.12921, 2023.

Samvelyan, M., Kirk, R., Kurin, V., Parker-Holder, J., Jiang, M., Hambro, E., Petroni, F., Kuttler, H.,
Grefenstette, E., and Rocktischel, T. Minihack the planet: A sandbox for open-ended reinforcement

learning research. In Neural Information Processing Systems Datasets and Benchmarks Track,
2021.

Sancaktar, C., Blaes, S., and Martius, G. Curious exploration via structured world models yields
zero-shot object manipulation. In Advances in Neural Information Processing Systems (NeurlPS),
2022.

Sancaktar, C., Piater, J., and Martius, G. Regularity as intrinsic reward for free play. Advances in
Neural Information Processing Systems, 36, 2024.

Schmidhuber, J. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proceedings of the International Conference on Simulation of Adaptive Behavior:
From Animals to Animats, 1991.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., and Pathak, D. Planning to explore via
self-supervised world models. In International Conference on Machine Learning (ICML), 2020.

Sontakke, S. A., Zhang, J., Arnold, S. M., Pertsch, K., Biyik, E., Sadigh, D., Finn, C., and Itti, L.
Roboclip: one demonstration is enough to learn robot policies. arXiv preprint arXiv:2310.07899,
2023.

Spelke, E. S. Principles of object perception. Cognitive science, 14(1):29-56, 1990.

Storck, J., Hochreiter, S., and Schmidhuber, J. Reinforcement driven information acquisition in
non-deterministic environments. In Proceedings of the International Conference on Artificial
Neural Networks, pp. 159-164, Paris, 1995. EC2 & Cie.

Suarez, J. Pokegym: Pokemon red gymnasium environment for reinforcement learning. https:
//pypi.org/project/pokegym/0.1.1/,2024. v0.1.1.

14

https://arxiv.org/abs/1509.08731
https://arxiv.org/abs/1509.08731
https://arxiv.org/abs/2101.04882
https://doi.org/10.1145/3449639.3459314
https://doi.org/10.1145/3449639.3459314
https://proceedings.mlr.press/v70/pathak17a.html
https://proceedings.mlr.press/v70/pathak17a.html
https://proceedings.mlr.press/v97/pathak19a.html
https://arxiv.org/abs/2310.12921
https://arxiv.org/abs/2310.12921
https://dl.acm.org/doi/10.5555/116517.116542
https://dl.acm.org/doi/10.5555/116517.116542
https://proceedings.mlr.press/v119/sekar20a.html
https://proceedings.mlr.press/v119/sekar20a.html
https://arxiv.org/abs/2310.07899
https://people.idsia.ch/~juergen/icann95new.pdf
https://people.idsia.ch/~juergen/icann95new.pdf
https://pypi.org/project/pokegym/0.1.1/
https://pypi.org/project/pokegym/0.1.1/

Tang, H., Houthooft, R., Foote, D., Stooke, A., Xi Chen, O., Duan, Y., Schulman, J., DeTurck, F.,
and Abbeel, P. # exploration: A study of count-based exploration for deep reinforcement learning.
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Wang, Y., Sun, Z., Zhang, J., Xian, Z., Biyik, E., Held, D., and Erickson, Z. Rl-vim-f: Reinforcement
learning from vision language foundation model feedback. arXiv preprint arXiv:2402.03681,
2024.

Whidden, P. Ai plays pokemon. https://github.com/PWhiddy/PokemonRedExperiments,
2023. YouTube video: https://youtu.be/DcYLT37ImBY.

Wirth, C., Akrour, R., Neumann, G., and Fiirnkranz, J. A survey of preference-based reinforcement
learning methods. Journal of Machine Learning Research, 2017.

Wu, P., Escontrela, A., Hafner, D., Abbeel, P., and Goldberg, K. Daydreamer: World models for
physical robot learning. In Conference on Robot Learning, pp. 2226-2240. PMLR, 2023.

Zadaianchuk, A., Seitzer, M., and Martius, G. Self-supervised visual reinforcement learning with
object-centric representations. In International Conference on Learning Representations, 2021.

Zhang, J., Lehman, J., Stanley, K., and Clune, J. Omni: Open-endedness via models of human
notions of interestingness. arXiv preprint arXiv:2306.01711, 2023a.

Zhang, J., Zhang, J., Pertsch, K., Liu, Z., Ren, X., Chang, M., Sun, S.-H., and Lim, J. J. Bootstrap
your own skills: Learning to solve new tasks with large language model guidance. In 7th Annual
Conference on Robot Learning, 2023b.

15

https://arxiv.org/abs/2402.03681
https://arxiv.org/abs/2402.03681
https://github.com/PWhiddy/PokemonRedExperiments
https://youtu.be/DcYLT37ImBY
https://openreview.net/forum?id=xppLmXCbOw1
https://openreview.net/forum?id=xppLmXCbOw1
https://arxiv.org/abs/2306.01711
https://arxiv.org/abs/2306.01711
https://openreview.net/forum?id=a0mFRgadGO
https://openreview.net/forum?id=a0mFRgadGO

Supplementary Material for:
SENSEI: Semantic Exploration Guided by Foundation Models to
Learn Versatile World Models

A SENSEI: Implementation Details

We provide code with VLM-MOTIF checkpoints at https://github.com/martius-lab/
sensei.

A.1 World model

RSSM We base our RSSM implementation on DreamerV3 (Hafner et al., 2023). For MiniHack we
use the small model size setting with roughly 18M parameters (h; dimensions: 512, CNN multiplier:
32, dense hidden units: 512, MLP layers: 2). For the more complicated Robodesk environment, we
use the medium model size with around 37M parameters (h; dimensions: 1024, CNN multiplier:
48, dense hidden units: 640, MLP layers: 3). By default, when the input observation o is only an
image, it is en- and decoded through CNNs. For MiniHack, we have an additional inventory flag that
is processed by a separate MLP, as is customary for the Dreamer line of work when dealing with
multimodal inputs (Wu et al., 2023). The MLP decoder outputs a Bernoulli distribution from which
we sample the decoded inventory flag.

Reward predictors To handle rewards of widely varying magnitudes, DreamerV3 uses twohot
codes predicted in symlog space when predicting rewards (Hafner et al., 2023). We use the same setup
for all reward prediction heads, i.e., for extrinsic rewards r! for task i or the semantic exploration
reward ™. During task-free exploration, the gradients from reward predictions are stopped to not
further affect world model training. We do this to keep the world model task-agnostic and to avoid
biasing task-free exploration. Similarly, to avoid overfitting to the exploration regime, we also stop
the gradients from the semantic reward prediction heads.

Plan2Explore Both our Plan2Explore baseline as well as our ensemble predictors (Eq. 5) are based
on the re-implementation on top of DreamerV3. The most notable difference is that in original
Plan2Explore the ensemble is trained to predict image encodings (Sekar et al., 2020), whereas the new
version is trained to predict stochastic states z;. Recent re-implementations (Hafner, 2021; Hafner
et al., 2022; Gumbsch et al., 2024) also used Plan2Explore with ensemble disagreement over z; as a
baseline and verified a strong exploration performance. For our experiments on task-based exploration
(Sec. 4.4), we use a weighted sum of extrinsic and intrinsic rewards, i.e. r; + ar?is. We determined
the best value o = 0.5 through a hyperparameter search, as for SENSEI’s hyperparameters.

Quantile estimation We update our estimate of the quantile Qy(7#°°™) whenever we train the
exploration policy. For this, we compute the k-th quantile of 7°™ in each training batch (16 x 16).
We keep an exponential moving average over these estimates with a smoothing factor of av = 0.99.

Reward weighting In practice, we compute exploration rewards (Eq. 7) overall five reward factors:

explore asem explore,.dis : Asem ssem.
QOXPIOTCPREIt GEXPIOTERIIS qf PO > Qp (P50

TeXpl = yre +
= XTt . ;)
t asopsem 4 geopdis, otherwise.

(®)

Asem

ie. x € {0,1} to scale extrinsic rewards r;, a to scale semantic rewards 7#;°™ and [to scale
uncertainty-based rewards 7', We set y = 0 for task-free exploration and y = 1 for task-based
exploration (Sec. 4.4). When training the value function with DreamerV3, the scale of the reward
sources are normalized. To compute this normalization for the exploration policy we use a®*Plore

and B¥Plore of the high percentile region of interestingness (> Q).

16

https://github.com/martius-lab/sensei
https://github.com/martius-lab/sensei

A.2 Semantic Reward Distillation: VLM-MOTIF

For the semantic reward function R, : O — R, we use a 2D-convolutional neural network to encode
the images. We use 3 convolutional layers, where we progressively increase the number of channels
to num_channels_max = 64. The output then gets downsampled via max pooling before going
into a two-layer MLP with hidden dimensions 256 & 512 and outputting the scalar reward value.
Additionally, in MiniHack we include inventory information via a separate multi-layer perceptron
(MLP) head, consisting of 2 layers with 512 hidden units. The extracted features are concatenated
with the image features and get further processed by the output MLP. The training hyperparameters
for all Ry, can be found in Suppl. B.

A.3 Design Choice: Semantic Reward Predictions

World models typically encode and predict dynamics fully in a self-learned latent state (Ha &
Schmidhuber, 2018; Hafner et al., 2023; Hansen et al., 2024). Thus, for a world model to predict
73" at any point in time ¢, we need a mapping from latent states to semantic rewards. We chose
to directly predict #{°™ using a reward prediction head of the RSSM. Another option would be to
decode the latent state to images and use those as inputs for MOTIF. However, we believe this has
several disadvantages: (1) Decoding latent states to images is a computationally costly step that
would significantly decrease computational efficiency. (2) We would use an indirect target (the image)
instead of the direct target (;*™") for training the semantic reward predictions. There would exist no
gradient signal to correct somewhat reasonable image predictions that lead to inconsistent reward
predictions at a given state. (3) The image predictions of the RSSM can contain artifacts, blurriness
or hallucinations. Since MOTIF is only trained on real images from the simulation, we will likely
encounter out-of-distribution errors.

17

B Hyperparameters

We provide the hyperparameters used for the world model, exploration policy, VLM-MOTIF annota-
tions & reward model training as well as the environment-specific settings.

Name Value

Robodesk KeyRoom KeyChest ~ Pokémon Red
World Model
RSSM size M S S L
Ensemble size NV 8 8 8 8
Train ratio 512 512 512 512
Exploration policy
Quantile 0.75-0.85-0.75 - 0.80 0.90 0.90 0.6
X 0-0-0-0 0 0 1
qexplore 0.1-0.1-0.05-0.01 0.3 0.25 0.025
[pexplore 1-1-1-1 1 1 0.5
as® 1-1-1-1 1 1 0.5
58 0-0-0-0 0.1 0.05 0.1
Annotations for MOTIF
VLM GPT-4 turbo (right) & GPT-4 omni (left) GPT-4 omni GPT-4 omni GPT-4 omni
Temperature 0.2 0.2 0.2 0.2
Dataset size 200K 100K 100K 100K
Image res. 224 %224 80x 80 80x 80 1202 x 1080
MOTIF Training
Batch size 32-64-32-32 32 32 32
Learning rate 107°-107°-3x107%-3x107° 1074 1074 1074
Weight decay 107°-0-0-0 107° 1074 10~
Environment
Action repeat 2 1 1 1
Episode length 250 600 800 1k/2k/4k
Steps of exploration IM 500K 500k 750k

For the exploration policy in Robodesk we use different values for the four different variants tested.
The values listed here stand for, from left to right: GPT-4 with Plan2Explore (P2X) data using two
camera angles for VLM annotations, GPT-4 with P2X data using only the right camera angle, Oracle
with P2X data, and Oracle with CEE-US data (corresponding to a more interaction-rich exploration
dataset D). The VLM-MOTIF hyperparameters are also listed in the same order.

Image resolution For the world model we use 64 x 64 pixel images for all environments. However,
for the GPT annotations we use higher resolution images, as shown in the table. Inside the environment
step function, the rendering is performed at these higher resolutions, and this image is input to the
semantic reward function R,,. The image is then scaled down to 64 x 64 as part of the observation
that the RSSM is trained on.

Baselines We run DreamerV3 with the same world model setup as SENSEI and Plan2Explore. We
use an open source PPO (Schulman et al., 2017) implementation of Hafner (2024)* optimized to work
well across multiple environments with a fixed set of hyperparameters (details in Hafner et al., 2023,
supplementary material). We build our RND (Burda et al., 2019) implementation on top of PPO. For
the predictor and target network we use a ResNet with 3 convolutional layers followed by 5 dense
layers. We only use the intrinsic reward to train a PPO agent. Intrinsic rewards are normalized as
outlined in Burda et al. (2019). While Burda et al. (2019) also normalize input observations through a
running statistics, we found that using LayerNorm at the input layer leads to slightly more interactions
in Robodesk.

“https://github.com/danijar/embodied, version v1.2

18

https://github.com/danijar/embodied

(a) Default observations (b) Our observations (¢) Left camera

Figure 9: Robodesk environment: We modify the default top-down camera view (a) to a side view
with less occlusion (b). For annotation with GPT-4 we also provide a left camera observation (c).

C Environment Details

C.1 Robodesk

Robodesk (Kannan et al., 2021) is a multi-task RL benchmark in which a robot can interact with
various objects on a desk. We use an episode length of 250 time steps.

Observations Robodesk uses only an image observation, depicting the current scene, which we
scale down (64 x 64 pixels). However, we found that the default top-down view often had occlusions
and was hard to interpret from a single image (Fig. 9a). Thus, we used a different camera angle
showing the robot from one side (Fig. 9c). With this view objects and the drawer were rarely occluded;
however, lights that turn on from button presses were not as visible anymore.

Actions The continuous 5-dimensional actions control the movement of the end effector. We use
an action repeat of 2 to speed up the simulation. Thus, 1M steps of exploration correspond to 2M
actions in the environment.

Interaction metrics We track how often the robot interacted with different objects to quantify the
behavior during exploration. Specifically, we track the velocity of joints and object positions. For
buttons, sliding cabinet, or drawer, we check if the joint position changes more than a fixed value
(0.02). For all other objects, we check if any of their x-y-z velocities exceed a threshold (0.02).

Tasks We use the sparse reward versions of all the tasks available in the environment. For some
tasks, we add easier versions. All tasks describe interactions with one or multiple objects:

* Buttons: Pushing the red (push_red), blue (push_blue), or green (push_green) button.

* Sliding cabinet: Opening the sliding cabinet fully (open_slide).

* Drawer: Opening the drawer fully (open_drawer), opening the drawer half-way

(open_drawer_medium), or opening it slightly (open_drawer_light). We introduced the latter
tasks.

» Upright Block: Lifting the upright block (1ift_upright_block), pushing it off the table
(upright_block_off_table) or putting it into the shelf (upright_block_in shelf).
* Flat Block: Lifting the flat block (lift_flat_block), pushing it off the ta-

ble (flat_block_off_table), into the bin (flat_block_in_bin), or into the shelf
(flat_block_in_shelf).

* Both blocks: Stacking both blocks (stack).

 Ball: Lifting the ball (1ift_ball), dropping it into the bin (ball_in_bin) or putting it into the
shelf (ball_in_shelf).

19

]

1]
Errssi e
e e T e I I e

(a) KeyRoom-S15 (b) KeyChest (c) egocentric view

Figure 10: MiniHack : We consider two tasks KeyRoom-S15 (a) and KeyChest (b). The agent
receives an egocentric view of the environment as its observation (c).

C.2 MiniHack

Observations In MiniHack multiple observation and action spaces are possible. We use egocentric,
pixel-based observations centered on the agent (2 grids, example in Fig. 10c). In addition to that,
we provide the agent’s inventory. By default, in MiniHack the inventory is given as an array of
strings (UTF8 encoded), and different player characters have different starting equipment based on
the character classes of NetHack. We simplify this by providing only a binary flag that indicates if the
agent has picked up a new item. This is sufficient for the problems we consider, in which maximally
one new item can be collected and starting equipment cannot be used.

Environments Here we detail the environments we tackle:

In the benchmark KeyRoom-S15 problem (Fig. 10a), the agent needs to fetch a key in a large room
(15 x 15 grids) to enter a smaller room and find a staircase to exit the dungeon. We use the default
action space but enable autopickup and therefore remove the PICKUP action. We use an episode
length of 600 time steps, which is 1.5 times longer than the default episode length.

KeyChest is a novel environment designed by us, based on KeyCorridorS4R3 from MiniGrid
(Chevalier-Boisvert et al., 2024) (see Fig. 10b). The agent starts in a corridor randomly connected to
different rooms. A key is hidden in one room and a chest in another room. The goal is to open the
chest with the key in the inventory. Object positions are randomized. The action space for this task
contains 5 discrete actions for moving the agent in 4 cardinal directions (UP, RIGHT, DOWN, LEFT)
and an OPEN-action to open a chest when standing next to it with a key in the inventory. Episodes
terminate when the chest is opened. We enable auto-pickup, so no additional action is needed to pick
up the key when stepping on it. We use an episode length of 800 time steps.

Rewards All environments use a sparse reward of r; = 1, which the agent only receives upon
accomplishing the task. A small punishment (r; = —0.01) is given, when the agent performs an
action that does not alter the screen.

Image remapping Empirically, we found that GPT-4 may encounter problems if we provide
the image observations as is. For example, when using the default character in the KeyRoom-S15
environment (Rogue), GPT-4 sometimes throws content violation errors. We suspect that this is
due to the character wearing a helmet with horns, which could be mistaken for demonic or satanic
imagery. Thus, we pre-processed the images before returning them from the environment. We
render all characters as the Tourists, a friendly looking character with a Hawaiian shirt and straw hat.
Furthermore, GPT-4 sometimes mistakes entrance staircases for exit staircases. Since the entrance
staircases serve no particular purpose and are not different from the regular floor, we remap all
entrance staircases to floors.

20

AAAAA;AAAA
LG

: CE—
227 22

pEIGHT Py
ITEM RUMN

(a) map navigation (b) battle screen (c) low-resolution observation

Figure 11: Pokémon Red poses a strong exploration challenge as it requires an agent to learn (1)
to navigate a complex overworld map (a) and (2) to battle and catch Pokémon (b). We only use the
down-scaled game screen image as observations (c).

C.3 Pokémon Red

We evaluate SENSEI'’s ability for semantic exploration in the classic Game Boy game, Pokémon
Red. Pokémon Red presents an extremely challenging exploration problem due to: (1) its vast and
interconnected world, composed of towns, routes, forests, and other areas that must be navigated, and
(2) its complex battle system, which requires semantic knowledge to understand type interactions
(e.g., Water attacks are strong against Fire-type Pokémon). Thus, an agent needs strong exploration
capabilities to progress in the game’s primary objective, i.e., becoming the Pokémon Champion by
defeating Gym Leaders and collecting their badges. We base our implementation on PokeGym vO0.1.1
Suarez (2024), which is based on Whidden (2023), with minor modifications as detailed below.

Observations Unlike previous RL agents applied to Pokémon Whidden (2023); Pleines et al.
(2025), we provide only the raw game screen image as input, without access to the internal game
state or additional memory. When input into the world model, we downscale the game screen (to
64x64 pixels) in order to save compute (see Fig. 1 1c). For VLM annotations, we use the original size
(1202x1080 pixels), such that all text is clearly readable (see Fig. 11b).

Actions The agent controls the game using a 6-dimensional action space corresponding to Game
Boy button presses (Left, Right, Up, Down, A, B). Since the game only advances upon button presses
(except during attack animations) we only apply an action every 1.5 seconds real time game play
(frame skip of 96) to manage episode length.

Rewards The agent receives a weighted sum of rewards r, = Y ¢ for different in-game events
1. Rewarded events include leveling up, catching Pokémon, encountering strong opponents, healing
Pokémon, visiting new map tiles, earning badges, and a penalty for blacking out after losing a battle.
We leave the default values ¢° from Suarez (2024) except we increase ¢''°s = 0.1 for reaching new
map tiles (previously set to 0.01), as we found this improves exploration.

Episode Length To scaffold exploration, we gradually increase the maximum episode length over
environment steps: 1k length for 0-25k steps, 2k length for 25-50k, 4k length for 50-75k, and 8k
length when continuing exploration beyong 75k steps.

Starting point As in Whidden (2023), we skip the initial “tutorial” phase of the game, and start
only when the player can freely move and catch Pokémon. In-game, this corresponds to the point
after delivering Oak’s Parcel and receiving the Pokédex and Poké Balls from Professor Oak. We use
the same checkpoint as Whidden (2023), starting with a level 6 Squirtle named AAAAAAAAAA.

Map segments The accessible game world in Pokémon Red prior to defeating the first Gym is
already expansive, comprising a variety of interconnected areas. Many of these are distinct maps
that load separately when the player enters or exits a building (see Fig. 12). To evaluate spatial
exploration, we segment this world into discrete map segments, as illustrated in Fig. 8a. Each route

21

and town is treated as a separate segment, as are buildings or enclosed areas like forests that load a
dedicated sub-map. This amounts to 25 map segments that can be accessed before beating the first
Pokémon Gym. Reaching the first Pokémon Gym requires navigating through 10 such segments,
which we enumerate in order of appearance (cf. Fig. 8a):

Number Name Type
0 Oak’s Lab building
1 Pallet Town town
2 Route 1 route
3 Viridian City town
4 Route 2 route
5 Viridian Forest South Gate building
6 Viridian Forest forest
7 Viridian Forest North Gate building
8 Pewter City town
9 Pewter Gym building

This segmentation allows us to quantify exploration progress by measuring the highest-indexed map
segment reached during an episode.

22

H

Figure 12: Full map of Pokémon Red accessible prior to defeating the first Gym. If entering or
exiting a building brings the agent to a submap, this is indicated by a line. The map is modified from
https://blog.vjeux.com/2023/project/pokemon-red-blue-map.html

23

https://blog.vjeux.com/2023/project/pokemon-red-blue-map.html

D VLM prompting

We prompt the VLM with somewhat general descriptions of the environments that we consider. Here
we provide the full prompts for all environments.

D.1 Robodesk

In Robodesk, for each query, we provide two observation images (resolution 224 x 224) with the
following prompt:

Here are two images in a simulated environment with a robot in front
of a desk. Your task is to pick between these images based on how
interesting they are. Which image is more interesting in terms of

the showcased behavior? For context following points would constitute
interestingness: (1) The robot is currently holding an object in its
gripper. (2) The robot is pushing an object around or pushing a button
or opening the drawer or interacting with entities on the desk. (3)
Objects on the desk are in an interesting configuration: e.g. a
stack. Being far away from the desk with the robot arm retracted or
just stretching your arm without interactions, is a sign the image is
not interesting. Answer in maximum one word: O for image 1, 1 for
image 2, 2 for both images and 3 if you have no clue.

Due to occlusions, we annotate the same pair from the initial dataset D™™i* with the same prompt
using images from two camera angles: right (Fig. 9c) and left (Fig. 9c). A pair is deemed valid only
if the GPT-4 response is the same across both camera angles, otherwise the pair and the annotation
are removed from the dataset. The VLM-MOTIF training as well as the world model training are still
executed using only the right camera image, such that during free play with SENSEI we only rely on
the right camera images as input.

In Robodesk, we use GPT-4 Turbo (gpt-4-turbo-2024-04-09) for the right camera annotations
and GPT-4 omni (gpt-40-2024-05-13) for the left camera annotations. To cap the dataset size
of pairs at 200K and still make sure that we got contrastive pairs of interesting vs. uninteresting
behaviors, we pre-filtered the pairs using our Oracle of interestingness for the Plan2Explore dataset.
We believe that in future work this step can be omitted by simply generating more random pairs and
expanding the dataset size. After the two-angle image annotation, we use the subset of the dataset
where both left and right camera annotations agree. This corresponds to 139409 pairs from the
original 200K dataset, or 69.7% of it.

D.2 Robodesk: Zero Pre-Knowledge General Prompt

To demonstrate the generality of SENSEI, we also test a version with a general prompt (SENSEI
GENERAL), using a multi-turn strategy for getting the annotations for a pair of images. This version
of the prompt does not contain any external environment specific knowledge. First, we show a
picture from the robotic environment (shown in Fig. 9¢) and ask the VLM (gpt-40-2024-05-13) to
describe what it sees in the scene using the following prompt:

I will show you an image from a simulated environment. Describe the
environment to me and what you deem the agent and then explain what
types of behavior / observations would be useful and interesting for the
agent to explore in this setting?

We obtain the following response from GPT:

24

The image depicts a simulated environment featuring a robotic arm
interacting with a table that has various objects on it. The objects
include buttons of different colors, a red ball, a green cube, and a
blue rectangular block. The setting appears to be designed for testing
robotic manipulation and interaction with objects.

Agent: The robotic arm is the agent in this environment. It is likely
programmed to interact with the objects on the table, possibly for tasks
involving sorting, stacking, or pressing buttons.

Useful and Interesting Behaviors/Observations: 1. Object Manipulation:
- Grasping and moving objects like the ball, cube, and block. - Testing
different grips and force applications to handle objects of various
shapes and weights. 2. Button Interaction: - Pressing buttons to
observe effects, such as changes in the environment or triggering
specific actions. - Learning which buttons correspond to which

actions or outcomes. 3. Spatial Awareness: - Navigating the arm
around the table without knocking over objects. - Understanding the
spatial relationship between objects for tasks like stacking. 4.

Task Learning: - Completing specific tasks like sorting objects by
color or shape. - Learning sequences of actions to achieve complex
goals. 5. Feedback and Adaptation: - Using sensory feedback to adjust
actions in real-time. - Adapting to changes in the environment, such as
objects being moved or removed. 6. Exploration and Experimentation: -
Experimenting with different strategies for interacting with objects.

- Exploring the effects of different actions on the environment.

These behaviors would help the agent develop skills in manipulation,
decision-making, and adaptive learning, which are crucial for more
complex real-world applications.

Next, we show the pair of images that we would like GPT-4 to annotate with the following prompt:

Now I will show you two images. Based on your answer, choose which one
of these images is more interesting in terms of the showcased behavior?
Answer in maximum one word: O for image 1, 1 for image 2, 2 for both
images and 3 if you have no clue.

We obtain the final annotation for the pair as the answer to this last prompt.

In this experiment, the environment description is generated using the first prompt only once. For
subsequent annotations, the initial question-answer pair is included in GPT-4’s context window as
history. In the second turn, the new image pair is presented using the final prompt. This approach is
more cost-efficient, as in-context tokens are less expensive than generated ones, and time-efficient, as
generating the full environment description sequentially requires more processing time. With this
multi-turn strategy, annotating each image pair costs approximately $0.004, compared to $0.002 per
annotation with the single-turn prompt.

D.3 MiniHack

For MiniHack we provide two observation images (resolution 80 x 80) and the inventory. For the
inventory, we only consider items that were picked up and not items in the agent’s starting equipment”.
We provide the inventory as text descriptions. The different options are shown in purple.

5The starting equipment is taken from the NetHack game and irrelevant and inaccesible in our tasks.

25

Your task is to help play the video game MiniHack. MiniHack is a
roguelike game where an agent needs to navigate through rooms and
escape a dungeon. For succeeding in the game, finding items, collecting
items and exploring new rooms is crucial. Images are egocentric around
the agent, who is standing on a dotted blue floor. Your task is to
pick between two game states, composed of images and an inventory
descriptions, based on how interesting and useful they are.

Is there any difference between the first and second game state in
terms of how interesting it is? The images depict the current view.
{The first agent has a key named The Master Key of Thievery in their
inventory., The second agent has a key named The Master Key of Thievery
in their inventory., Both agents have a key named The Master Key

of Thievery in their inventory., Both agents have no items in their
inventory.},

Think it through and then answer in maximum one word: O if the first
state is more interesting, 1 if the second state is more interesting, 2
if both states are interesting and 3 if nothing is interesting or you
are very unsure.

For MiniHack we use GPT-4 omni (gpt-40-2024-05-13).

D.4 Pokémon Red

For Pokémon Red we set the goal to reach the first Pokémon Gym (the first boss battle of the
game): We assume that GPT-4 (gpt-40-2024-05-13) was extensively trained on game play data
and various walkthroughs of Pokémon Red and contains sufficient knowledge of the game. Thus, we
again use a multi-turn strategy for image annotations, as with SENSEI GENERAL (see Suppl. D.2),
where we first ask the VLM for a game play description, which we then use as context for further
annotations. We first asked the VLM:

Your task is to help me play the Game Boy game Pokémon Red. I just
obtained my starter Pokémon, Squirtle. My goal is to find and defeat
the Gym Leader, Brock. What do I need to do, and which areas do I need
to traverse to achieve this goal? Keep it very short.

We generated five different responses from GPT-4. We sample from them uniformly as context for
image-based comparisons. We provide two observation images with the following prompt:

Here are two screenshots from the game. Which image depicts a game
state that is closer to my goal? Answer in maximum one word: O if the
first state is better, 1 if the second state is better.

D.5 Oracle for Interestingness

In Robodesk, we also use an Oracle of interestingness to annotate the pairs as an ablation (see
Suppl. E.2). Our goal here is to showcase an upper-bound of performance on SENSEI without the
noisiness of VLMs. For the Oracle, we deem a state interesting if: (1) any one of the entities are
in motion (here only for the ball we make an exception that the ball should be in motion with the
end effector close to it as the ball in the environment is unimpeded by friction), (2) if the drawer is
opened, (3) if the drawer/sliding cabinet is not yet in motion, but the end effector is very close to their
handles, (4) if the upright and flat blocks are not yet in motion but the end effector is very close to
them (almost touching), (5) if the stacking task is solved. With these statements, we essentially cover
the range of tasks defined in the Robodesk environment, as they are shown in Fig. 16.

26

| 14 2 S/
g ff'
S 0.5 0.5

0- —PPO 0 — PPO
0 10 20 30 40 0 5 10 15
le6 steps 1e6 steps
(a) extrinsic phase in KeyRoom-S15 (b) extrinsic phase in KeyChest

Figure 13: PPO performance in MiniHack: We plot the mean episode score obtained by PPO
during evaluation for the MiniHack tasks KeyRoom-S15 (a) and KeyChest (b). Shaded areas depict
the standard error (10 seeds). We apply smoothing over the score trajectories with window size 30.

E Extended Results

E.1 MiniHack: Extended Results

Figure 13 shows the full trajectory of evalutation scores for Proximal Policy Optimization (PPO,
Schulman et al. 2017) in MiniHack when trained until convergence. While PPO manages to learn to
solve all tasks, it can be much less sample efficient than the model-based agents we evaluated (see
Fig. 7), especially in KeyRoom-S15. Here SENSEI outperforms PPO in terms of sample efficiency in
one to two orders of magnitude.

E.2 Robodesk: SENSEI Ablations

In Robodesk, we compare different versions of SENSEI in order to analyze the effect of the VLM
and the initial exploration data on SENSEI performance (Fig. 14). First, we showcase SENSEI results
when annotating the initial exploration dataset from Plan2Explore with only the right camera images.
In this case, we use the whole 200K pairs in the dataset, without any pruning. In another ablation,
we replace the VLM (GPT-4) with a hand-crafted Oracle (see Suppl. D.5 for how the oracle is
computed) for annotating the pairs. After the oracle annotations, we distill these preferences into
VLM-MOTIF for SENSEI, following the same procedure as before. Furthermore, we compare two
initial datasets D™ of self-supervised exploration collected either by CEE-US (Sancaktar et al.,
2022) or by Plan2Explore for the oracle SENSEI versions. CEE-US uses vector-based position of
entities for information-gain-based exploration, in comparison to Plan2Explore, which works on the
pixel-level. Due to the privileged inputs, Dé‘gE Us contains more complex interactions. We compare
1M steps of exploration with the four versions of SENSEI and Plan2Explore.

On average, all versions of SENSEI interact more with the objects than Plan2Explore and our semantic
exploration reward seems to lead to more object interactions than pure epistemic uncertainty-based
exploration. SENSEI with Oracle for both the Plan2Explore and especially the CEE-US initial datasets

= 100k B Plan2Explore (P2X)

g B SENsEL GPT-4 & P2X

é SENSEL, GPT-4 & P2X - right cam

= B 3 ¥ SENSEI, Oracle & P2X

£ 50k I : SENsEL, Oracle & CEE-US

Q

5

5 il L. b
arere KX m—-

Sliding cabmet Ball Uprlght block Flat block Buttons Dra\\ rer

Figure 14: Interactions in Robodesk: We plot the mean over the number of interactions with objects
in the environment during exploration for different versions of SENSEI (Oracle vs. VLM, CEE-US
(Sancaktar et al., 2022) vs. Plan2Explore to create the data to label D™i*) and Plan2Explore. We also
ablate SENSEI using only the right camera angle for VLM annotations on the Plan2Explore dataset.
Error bars show the standard deviation (3 seeds).

27

show the most object interactions. We believe this further showcases that the VLM provides a much
noisier signal of interestingness, making it harder to optimize for.

The initial exploration dataset D'™i* influences with which objects SENSEI interacts. Qualitatively,
we observe Plan2Explore performing mostly arm stretches. Interestingly, this can still lead to solving
tasks during exploration. For example, stretching the arm against the sliding cabinet can close it,
and stretching the arm toward the upright block can push it off the table. As a result, SENSEI with
Plan2Explore Oracle focuses mainly on the sliding cabinet and the upright block, reinforcing the
existing trends in the initial dataset from which VLM-MOTIF is distilled.

For CEE-US data, Oracle SENSEI interacts more with the other objects, such as the ball and the flat
block, as well as the drawer. The difference between the Oracle annotator SENSEI versions with
CEE-US vs. Plan2Explore data showcases that there is still a lot to be gained from a richer initial
dataset for SENSEI, which could be obtained via multiple rounds of SENSEI exploration.

If a VLM annotates images instead of the Oracle, SENSEI shows similar behavioral trends, but
overall less object interactions, such that neither of the GPT-4 annotations on the Plan2Explore data
completely match the performance of the oracle annotator.

Finally, when we compare the performance for SENSEI using GPT-4 annotations with two-angle
camera images vs. only the right camera angle image, we see that the two-angle version performs
better in terms of drawer interactions. This is expected since the drawer is more clearly visible in the
left camera view. However, as the ball and blocks are mainly initialized on the right side of the table,
the pure right camera angle SENSEI generates more interactions with these objects during exploration.
Another factor here is that for the right camera angle we retain all 200K pairs for VLM-MOTIF
distillation, whereas we only keep ca. 70% of the pairs in the case of SENSEI using both cameras for
annotation.

E.3 Robodesk: Rewards

In addition to interaction metrics, we count the number of times
task rewards are collected during exploration. We observe that for
the majority of tasks SENSEI solves more tasks in the environment
during play than Plan2Explore. Note that for the open_slide task
you need to open the slide fully in one direction, which is achieved in 2,000
abundance in Plan2Explore runs by simply stretching the arm. The
full interaction metrics of exploring how the slide moves left-right
is not necessarily reflected in the task rewards, as can be seen in
comparison to Fig. 6. Similar arguments also apply for opening the
drawer fully vs. opening and closing the drawer more dynamically.
Additionally as the bin is not really visible in our camera angle,
solving in_bin tasks are more due to the objects that go off the
table landing by chance in the bin for all methods, such that higher statistics for off_table rewards
also lead to higher in_bin rewards.

open_drawer_light

4,000

P2X SeENsel RND

Figure 15: Collected rewards
for open_drawer_light dur-
ing exploration (3 seeds).

28

stack upright_block_off_table ball_off_table

10,000 4 1,500 A
100
1,000 A
504 5,000
; 500
01 - = 0- 0-
flat_block_in_shelf flat_block_off_table ball_in_shelf
800 1,500
300
200 1 600 1,000
400
100 500
200
0 7 - - 0 O 4 == =
upright_block_in_shelf lift flat block lift_ball
1,500 400 200
1,000 A
200 4 100 A
500
i =
0 0 0 s
lift_upright block flat_block_in_bin ball_in_bin
80
201 i
40 601
104 201 40 1
20
0+ - - 0+ - -
0 - -— -—
push_blue push_red push_green
8,000] 1,000 4

8004
600
400
2004

6,000 - 1,000+

4,000 4
2,000 |

5004

=
~
=

open_slide open_drawer open_drawer_light
300
40,000 T 1- 105 -
2004
20,000 - 50,000 -
100 ’
0- 0- 0-

B Plan2Explore (P2X) B SENSEI, GPT-4 & P2X B VLM-Motif B RND

Figure 16: Robodesk environment rewards: We plot the mean number of sparse rewards (successful
task completions) discovered during 1M steps of task-free exploration for all tasks for Plan2Explore,
SENSEIL, pure VLM-MOTIF, and the RND baseline.

29

SENSEI GENERAL ™= SENSEI

1 2 34 5

=

50 100, 150 200 250

45

50 100,150 200 250
1 2 3 4 5

0 50 100,150 200 250

(a) screenshots (b) semantic exploration reward
Figure 17: Semantic exploration rewards for example trajectories with VLM-MOTIF using
general vs. specialized prompts: For three example Robodesk episodes, we showcase VLM-MOTIF
semantic rewards distilled from GPT-4 annotations using a prompt specialized to the environment
vs. a general prompt using multi-turn annotations. The reward trajectories for both the general and
specialized prompts peak at the “interesting” moments of exploration, such as opening a drawer or
pushing the blocks. With zero external knowledge injection, the general prompt version of VLM-
MOTIF is highly correlated with its specialized prompt counterpart.

E.4 Robodesk: VLM-MOTIF with General Prompt

In this section, we investigate the distilled reward function when using a general prompting strategy
(SENSEI GENERAL, see Suppl. D.2). As shown in Fig. 17, the semantic reward r;*™ for the general
prompt seems to show a high positive correlation or qualitatively matches with the VLM-MOTIF
distilled using the specialized prompt in Robodesk (see Suppl. D.1). Thus, we manage to distill a
reward function that peaks at interesting moments of exploration without injecting any environment
specific knowledge into the prompt.

E.5 Robodesk: Baselines

We present two other baselines in Robodesk: RND trained with PPO and pure VLM-MOTIF, and
analyze the interaction metrics in Fig. 18. On average, SENSEI interacts more with most available
objects than the baselines. RND mostly moves the arm around in the center of the screen, occasionally
hitting objects or mostly buttons. It is important to note that the robot arm in Robodesk is mostly
initialized close to the buttons. Pure VLM-MOTIF is an ablation of SENSEI without any information
gain objective. Here, we see the importance of the information gain reward to ensure diverse
exploration. Unlike SENSEI, we see that VLM-MOTIF interacts with specific entities: mostly the
buttons, the drawer and the flat block. The lack of interaction with the cabinet, the upright block and
the ball are expected as these entities are spatially further away from the robot initialization pose.
Once high semantic rewards are found in the vicinity by interacting with the drawer and buttons,
there is no incentive for pure VLM-MOTIF to explore further. On the other hand SENSEI aims to
discover interesting and yet novel behaviors, ensuring better coverage across the different useful
behaviors in the environment.

30

Upright block Flat block Ball
20k 1

30k q

15k 10Kk

0
P2X Senser VLM RND P2X Senser VLM RND P2X Senser VLM RND
MoTIF Morir Mortir
Buttons Drawer Sliding cabinet
10k q 24k

40k q
18k 4

5k 12K 20k |

6k 4

0 0
P2X SeENser VLM RND P2X SENser VLM RND P2X Senser VLM RND
Mortir MorTir MoTir

Figure 18: Interactions in Robodesk: We plot the mean over the number of interactions with any
object during 1M steps of exploration for SENSEI, Plan2Explore (P2X), pure VLM-MOTIF and
Random Network Distillation (RND) trained with a PPO policy, as a model-free exploration baseline.
Error bars show the standard deviation (3 seeds).

E.6 Robodesk: SENSEI without Dynamic Scaling and Analyzing Hyperparameter Sensitivity

In this section, we ablate the dynamic scaling of the semantic reward r{*™ and the information
gain reward r{"* terms in SENSEL In SENSEI we adjust the weight of these two terms based on
whether 77°™ has reached the high percentile region of interestingness (r;*™ > @)i), as per equation
Eq. 8. In this ablation, we instead use a linear combination with fixed weights « and f3, such that the
exploration reward is given by:

= a4 . ©

We present the results in Fig. 19 for 6 different sets of fixed weights. First of all, we observe that none
of the fixed scale settings outperform SENSEI nor do they consistently perform as well as SENSEI.
Second of all, we see that the exploration behavior is very sensitive to the choice of the weights «
and 3. For larger « values, the behavior collapses to mostly interacting with the drawer, buttons and
the flat block, with larger fluctuations. This mode is very similar to the case of pure VLM-MOTIF
presented in Fig. 18.

Next, we test the hyperparameter sensitivity of SENSEI with dynamic scaling of the reward weights.
We see in Fig. 20, that across all 4 hyperparameter configurations, SENSEI is better or at least on
par with Plan2Explore, and we don’t observe any behavior collapse as in the fixed scale setting. We
argue that although the dynamic scaling introduces additional hyperparameters, the overall behavior
is much more robust and less dependent on hyperparameter tuning.

Table 1: Hyperparameter configurations for SENSEI presented in the main experiments and the 3
other configurations that are shown in Fig. 20.

SENSEI SENSEI HP1 SENSEI HP2 SENSEI HP3

Quantile 0.75 0.80 0.85 0.75
qexplore 0.1 0.01 0.1 0.05
ﬂexplore 1 1 1 1
as° 1 1 1 1
55° 0 0 0 0

31

Upright block Flat block

30k 12k

Gk 1

04
P2X SENSEL

a=
B=

20k

10k

P2X SENSEI

o
Il

Drawer Sliding cabinet

60k - 40k 4

40k
20k

20K

. ,a,a.
0 pf=01pF=.25pF=0.

P2X SENSEI

Figure 19: Comparing interactions in Robodesk between SENSEI and fixed scaling of rewards:
We plot the mean over the number of interactions with any object during 1M steps of exploration for
SENSEI and Plan2Explore (P2X) and an ablation of SENSEI, where we do not dynamically adjust
the weight of the reward terms based on the current semantic reward. For this ablation, reward
is computed as rf"pl = ary*™ + Brdis with fixed weights @ and 3. Error bars show the standard
deviation (3 seeds).

E.7 Robodesk: Downstream task learning

We investigate whether the world model learned 1
by SENSEI is versatile enough to efficiently sup-
port downstream task learning in the multi-task
environment of Robodesk. We evaluate this on

three representative tasks: opening the drawer Wi'::
(Drawer-Medium), pushing the upright block 0

off the table (Upright-Block-0ff-Table), 0 1 2

lifti h 11 (Lift-Ball). . 1e6 steps
and [ifting the ball (Lizt-Ball) Figure 22: Dreamer in Robodesk for upright

As in our MiniHack experiments (see Sec. 4.3), _block_off_table (5 seeds, = SEM).
we initialize a DreamerV3 agent with a pre-

— Dreamer

32

Upright block Flat block

P2X SENSEI SENSEI SENSEI SENSEI P2X SENSEI SENSEI SENSEI SENSEI
HP1 HP2 HP3 HP1 HP2 HP3
Ball Buttons

P2X SENSEI SENSEI SENSEL SENSEI P2X SENSEI SENSEL SENSEI SENSEI
HP1 HP2 HP3 HP1 HP2 HP3
Drawer Sliding cabinet

P2X SENSEI Sll;:II\PI;%EI SENSEL SENSEI P2X SENSEI SI}_EINSEI SENSEI SENSEI
1

HP2 HP3 P1 HP2 HP3
Figure 20: Comparing interactions in Robodesk for SENSEI with different hyperparameters:
We plot the mean over the number of interactions with any object during 1M steps of exploration for
SENSEI (winner hyperparameter configuration) and Plan2Explore (P2X) and SENSEI with different
hyperparameters as specified in Table 1. Error bars show the standard deviation (3 seeds).

trained world model obtained from 1M steps of SENSEI-driven exploration. We compare this
setup to exploration with Plan2Explore, running each agent for 1.2M steps or until SENSEI converges
on the task.

Fig. 21 shows the performance of task-specific policies over training. The world model explored by
SENSEI enables significantly faster learning compared to Plan2Explore. SENSEI reliably learns to
open the drawer and push the block off the table, though it does not fully converge to 100% success
on the ball-lifting task. Nevertheless, across all tasks, SENSEI achieves higher success rates than
Plan2Explore.

Finally, we also train a DreamerV3 agent for one of the tasks (Upright-Block-0ff-Table) from
scratch (Fig. 22). Dreamer does not fully learn to solve the task within 2M environment steps. This
shows that exploration is crucial to reliably learn to solve these sparse reward tasks.

33

== SENSEI === Plan2Explore

@
5051

&
04

0 05 1 0 04 08 0 0.6 12
1e6 steps 1e6 steps le6 steps

(a) Drawer-Medium (b) Upr.-Block-0ff-Table (c) Lift-Ball

Figure 21: Downstream task performance in Robodesk: We plot the mean of the episode
score obtained during evaluation for three exemplary Robodesk tasks (a) Drawer-Medium, (b)
Upright-Block-0ff-Table, and (¢) Lift-Ball, with world models learned from SENSEI
vs. Plan2Explore (P2X) exploration. Shaded areas depict the standard error (10 seeds) and we
apply smoothing over the score trajectories with window size 3.

E.8 Pokémon Red: Extended Results

We evaluate the exploration of battle-related mechanics in Pokémon Red, by tracking the Pokémon
party size and their levels and plot their distribution in Fig. 23. Only Plan2Explore and SENSEI
explored the battle mechanics of catching Pokémon and leveling them. Dreamer fails to consistently
engage in battles or catch Pokémon. Throughout exploration SENSEI assembles the strongest teams
in terms of highest individual level and summed total levels of Pokémon in the party (Fig. 23b &
23c).

We visualize how exploration progressess over episodes in Fig. 24. Despite being only trained on task
rewards, Dreamer is quickly outperformed by SENSEI and Plan2Explore in terms of rewards achieved
(Fig. 24a). This highlights the complexity of the Pokémon environment and how easily agents can
get stuck in local optima without structured exploration. Overall, SENSEI and Plan2Explore reach
comparable reward levels.

How do SENSEI and Plan2Explore allocate their exploration? Plan2Explore appears to prioritize
catching Pokémon: after around 50 episodes, it consistently maintains a larger party than SENSEI
(Fig. 24b). This is also reflected in the number of Pokémon caught by both methods (Fig. 25).
Plan2Explore manages to collect a wider variety of Pokémon across seeds. SENSEI, on the other
hand, allocates more resources to map-based progress towards the Gym (Fig. 24c¢) and to leveling
its Pokémon team through battles, consistently reaching higher Pokémon levels from episode 100
onward (Fig. 8c).

We hypothesize that SENSEI ’s exploration is shaped by GPT-4’s preferences and our prompt
emphasizing the goal of defeating the first Gym Leader. Most early-game wild Pokémon are weak
against Brock’s Rock/Ground-type team, and only the Water-type starter Squirtle has a type advantage.
As aresult, the most promising strategy, reflected in SENSEI ’s behavior, is to repeatedly battle and
level Squirtle in preparation for the Gym.

== SENSEI GENERAL ™= Plan2Explore DreamerV3

100 100 100

-
15

% episodes
% episodes
% episodes

4

8 9 10 11 12 13 14 15 6-9 10-13 14-17 18-21 22-25 26-29 30-33 34-37

3 1 5 6 6 7
(b) highest levels of Pokémon (c) summed levels of Pokémon

1 (a)zparfy size
Figure 23: Pokémon interaction statistics: We report the distribution of maximum party size (a), the
highest individual Pokémon level (b), and the total sum of levels across all Pokémon in the party (c)
for 750k steps of SENSEI, Plan2Explore, and DreamerV3. Error bars indicate standard error across 5
seeds.

34

mmmmm== SENSEI GENERAL === Plan2Explore === DreamerV3

400+

w
S
S

=

return per step
party size
w
map segment

o
S
S
o

14 AA

100+ T T T T T T T T
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 330 400 50 100 150 200 250 300 350 400
episodes episodes episodes

(a) return per step (b) maximum party size (c) maximum map segment

Figure 24: Exploration progress in Pokémon Red: We plot the mean return per step (a) and
maximum party size reached (b) over episodes. To visualize map progress, we plot the maximum
map segment reached between episode starting point (0) and the Gym (9) (¢). We compare SENSEI
GENERAL to Plan2Explore (r; + ar?is) and Dreamer (7). Shaded areas depict the standard error (5
seeds) and we apply smoothing over the score trajectories with window size 5.

E.9 Pokémon Red: Second Generation VLM-MOTIF

A limitation of our current SENSEI implementation is that if an agent encounters entirely novel states,
the semantic reward may contain mostly noise, as it is outside of the training distribution for VLM-
MOTIF. Here, exploration relies on epistemic uncertainty rewards (r{*), similar to Plan2Explore.
This can be the case for large, open-ended environment such as in Pokémon Red. The initial SENSEI
dataset contains 100K pairs from a Plan2Explore run (500K steps exploration), reaching at most
Viridian Forest (map segment 6, Fig. 8a). SENSEI reaches the frontier of Viridian Forest more often,
occasionally breaking into Pewter City, where the first Pokémon Gym is located. However, the
first-generation VLM-MOTIF has never seen this area and thus relies on information gain to explore
beyond Viridian Forest.

We visualize these failure cases in Fig. 26. For instance, the first-generation reward function
incorrectly assigns higher interestingness to a task-irrelevant museum (top row, frames 3 & 5) than to
the Pewter Gym (top row, frames 2 & 4), which is the actual task goal. Upon entering the Gym, the
semantic reward drops sharply (middle row, frames 3-5), further highlighting this OOD failure.

To address this, we propose a simple refinement procedure: re-annotating data collected from a
SENSEI run. We sample 50K additional observation pairs explored by SENSEI and annotate them
using the same VLM prompting strategy. We then distill a second-generation semantic reward
function Ry, trained on both the original and newly collected annotations, now including previously
unseen areas such as Pewter City and the Gym. As shown qualitatively in Fig. 26 (Generation 2), the
refined reward function corrects earlier misjudgments: it spikes correctly upon seeing the Gym and
peaks when the agent enters and faces the Gym Leader (middle row, frame 5). This demonstrates
the potential of iterative semantic refinement. We see this as a promising extension to SENSEI,
enabling agents to continuously improve their internal reward models by incorporating data from
newly explored regions.

We evaluate the effect of the refined semantic reward function on exploration by continuing the
original SENSEI runs for 200 additional episodes. Specifically, we resume exploration from the same
point used to collect the second-generation annotations, comparing runs that use either the refined
reward function (Generation 2) or the original (Generation 1). To assess whether simply running

B Plan2Explore
80 B SENSEI
60 B Dreamer

% of seeds
ey
(=)

20
0 L i
Squirtle Caterpie Metapod Weedle Kakuna Pidgey Rattata Pikachu Nidorang

Figure 25: Pokémon caught: For SENSEI GENERAL, Plan2Explore and DreamerV3 we plot the ratio
of seeds that managed to obtain the listed Pokémon at least once during 750k steps of exploration.
Other Pokémon were never caught.

35

=== Generation 1 Ry, Generation 2

Ry

1 23 45
. 11 T .
4 = : P P
= — ==l Z 087 ¥ A :
&n & &n £ : VA, \A
G e e = R Y : " :
sy foru Faliaiaiag ;N 0.6 I\,\/'\/ \,/\\/V
=044 : Do Do

T T T

5 775, 800

14

-

vvvvvvv
BRI e
oy

5™ (norm.)

¥ seeeee

WEEDLE WEEDLE WEEDLE

L7 L7 . FEN e, Fan

o] = ea) = =a) = e ‘S =]

Wild REEDLE G0t mamAaABmanT Critical hite 2ained
[- hurt by poisons v a7 exp. Pointse

(a) screenshots (b) semantic exploration reward

s

3™ (norm.)

315 325,335 345

Figure 26: First and second generation semantic rewards in Pokémon Red: We visualize semantic
rewards from a reward function Ry, learned either purely from Plan2Explore data (Generation 1)
or refined based on SENSEI data. Generation 2 semantic rewards r;*" correctly peak when seeing
Pewter Gym (top row, 2 & 4) or entering the Gym (middle row, 3 —5). These images are out-
of-distribution for Generation 1 R,,, which is incorrectly yielding low sematic rewards r;™. In
battle-related game play both reward functions are highly correlated.

our baselines longer would yield similar benefits, we also continue one run of Plan2Explore. For
fairness and to avoid biasing our baselines, we select the only Plan2Explore seed that managed to
reach Pewter City.

Exploration progress across these runs is visualized in Fig. 27, where a dashed gray line marks
the onset of the second-generation annotations and the divergence point between Generation 1
and Generation 2. SENSEI Generation 2 broadly continues the exploration trends of Generation 1,
outperforming Plan2Explore on all metrics except Pokémon party size (Fig. 27¢). However there
are a few subtle differences between SENSEI Generation 1 & 2: Both SENSEI Generation 1 & 2
seem to mostly avoid catching new Pokémon (Fig. 27¢) and instead focus solely on leveling up their
Squirtle. Thereby, SENSEI Generation 2 reaches slightly higher levels than Generation 1 (Fig. 27b).
We hypothesize that SENSET’s focus on leveling Squirtle comes from our prompt defining its objective
"to find and defeat the Gym Leader, Brock". The best option to beat Brock is a high-level Squirtle
whose Water attacks are super effective against Brock’s team. While SENSEI Generation 2 visits
fewer overall map segments than Generation 1 (Fig. 27d), it concentrates more on segments 8 and 9
(Fig. 27¢), corresponding to Pewter City and the Pewter Gym. This focused exploration, combined
with a stronger Squirtle, allows SENSEI Generation 2 to achieve a critical milestone: defeating Brock,
the Pewter City Gym Leader, and obtaining the Boulder Badge. This event occurs twice over the
course of continued exploration (Fig. 27f), with the first badge earned after 570 episodes, or roughly
1.8 million environment steps. None of our baselines were able to achieve this milestone before.

This demonstrates the potential of iterative semantic refinement. We see this as a promising extension
to SENSEI, enabling agents to continuously improve their internal reward models by incorporating
data from previously unexplored regions.

36

=== SENSEI Generation 1 SENSEI Generation 2 === Plan2Explore

A 159

i) A
; 2f r !v!
104 :‘ U’“

0100 200 300 400 500 G600 0 100 200 300 400 500 60O 0 100 200 300 400 500 G600
episodes episodes episodes

(a) return per step (b) highest Pokémon level (c) maximum map segment

600

P

map segment

S N ok o ®

highest level

return per ste

=
party size

)

of map segments

0 100 200 300 400 500 600 0 100 200 300 400 500 G600 0 100 200 300 400 500 60O
episodes episodes episodes

(d) map segments explored (e) maximum party size (f) Gym badges obtained

Figure 27: Exploration with first and second generation semantic rewards in Pokémon Red: We
track exploration progress when continuing one seed of SENSEI with 12, annotated on its previous
exploration data (Generation 2) and compare against continuing with the previous R, (Generation
1) or longer runs of Plan2Explore. We plot return per step (a), highest Pokémon level achieved (b),
maximum map segment reached (c¢), overall number of map segments explored (d), maximum party
size reached (e) or Gym badges obtained (f) over episodes. The gray dashed line marks the annotation
Generation 2 Ry,. In (a)—(e) we apply smoothing over the trajectories with window size 10.

F Computation

SENSEI has 3 phases: (1) annotation of data pairs (offline), (2) reward model, i.e. VLM-MOTIF,
training (offline), (3) online RL training with environment interactions (DreamerV3). All experiments
were performed on an internal compute cluster.

Dataset Annotation The annotation of data pairs is done using the OpenAl API, such that a
single CPU is sufficient. For instance for Robodesk with a dataset size of 200K pairs, we par-
allelized this over 200 CPUs, where we annotated 1K pairs each, which took approximately 40
minutes. Note that annotations are fully offline and do not affect the runtime of SENSEI itself.
Each annotation using the single-turn strategy cost $0.002 with gpt-40-2024-05-13 and $0.004
with gpt-4-turbo-2024-04-09. The multi-turn prompting for the zero-knowledge Robodesk
annotations also cost $0.004 per pair with gpt-40-2024-05-13.

Reward Model Training After annotating the dataset, we train the VLM-MOTIF network using
a single GPU for 50 epochs. Using e.g. Tesla V100-SXM2-32GB, this took 20min. We ran a grid
search over different hyperparameters for VLM-MOTIF training (batch size, learning rate, weight
decay, network size), testing for a total of 18 different combinations, and we chose the reward model
with the best validation loss to use in SENSEI runs.

Online Model-based RL Training SENSEI is built on top of DreamerV3, just like our main
baseline Plan2Explore. On a NVIDIA A100-SXM4-80GB, SENSEI runs at ca. 7.5Hz, Plan2Explore
runs at ca. 10Hz and pure VLM-MOTIF runs at ca. 8.7Hz.

37

	Introduction
	Method
	Reward function distillation: MOTIFate SENSEI
	World model: Let your SENSEI dream
	Exploration policy: Go and Explore with SENSEI

	Related work
	Results
	Reward function of SENSEI
	Task-free exploration
	MiniHack
	Robodesk

	Fast downstream task learning
	Task-based exploration

	Discussion
	SENSEI: Implementation Details
	World model
	Semantic Reward Distillation: VLM-Motif
	Design Choice: Semantic Reward Predictions

	Hyperparameters
	Environment Details
	Robodesk
	MiniHack
	Pokémon Red

	VLM prompting
	Robodesk
	Robodesk: Zero Pre-Knowledge General Prompt
	MiniHack
	Pokémon Red
	Oracle for Interestingness

	Extended Results
	MiniHack: Extended Results
	Robodesk: Sensei Ablations
	Robodesk: Rewards
	Robodesk: VLM-Motif with General Prompt
	Robodesk: Baselines
	Robodesk: Sensei without Dynamic Scaling and Analyzing Hyperparameter Sensitivity
	Robodesk: Downstream task learning
	Pokémon Red: Extended Results
	Pokémon Red: Second Generation VLM-Motif

	Computation

