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ABSTRACT

This paper studies a constrained linear best arm identification problem with covari-
ate selection in the fixed-confidence setting, where each arm is evaluated across
multiple performance metrics. The mean performance of each metric depends lin-
early on the feature vectors of both arms and covariates. The goal is to identify the
arm with the highest expected value of one targeted metric while ensuring that the
means of the remaining metrics stay below specified thresholds for each covariate.
We first establish an instance-dependent lower bound on the sample complexity,
formulated as a multi-level optimization problem that captures both feasibility and
optimality. We then prove that this bound is tight by designing an algorithm that
asymptotically matches it. Since the original algorithm is computationally inten-
sive, we develop a relaxed version of the bound through a surrogate optimization
problem and derive its convex dual. Using this bound, we propose a duality-based
decomposition algorithm that is computationally efficient, updating only two co-
ordinates and performing a single gradient step per iteration. We further show that
the algorithm achieves the relaxed bound in theory and demonstrates its practical
effectiveness through numerical experiments.

1 INTRODUCTION

Best arm identification (BAI) is a well-studied problem in machine learning, with broad applications
in areas such as large language models (Shi et al., 2024), quantum computing (Wanner et al., 2025),
and pharmaceutical development (Wang et al., 2024). This paper studies a constrained linear BAI
problem with covariate selection. In this setting, each arm is evaluated across multiple performance
metrics, where the mean of each metric is modeled as a linear function of feature vectors associated
with both arms and covariates. Given a specific covariate, the goal is to identify the arm with the
highest expected value in a target metric, while ensuring that the means of the remaining metrics
remain below predefined thresholds. At each time step t, the agent selects an arm-covariate pair to
sample and observes an independent random performance vector covering all metrics. In the fixed-
confidence setting, the agent seeks to learn the underlying performance functions through sampling,
identify the best arm for each covariate with probability at least 1−δ, and minimize the total number
of samples required.

Compared to the canonical BAI setting, constrained linear BAI with covariate selection is par-
ticularly well-suited for personalized decision-making problems. For example, in personalized
medicine (Shen et al., 2021), each treatment option (arm) is associated with multiple performance
metrics, such as therapeutic efficacy and side effects, which can only be observed through noisy
clinical trial data. The mean outcome of each metric depends on both patient characteristics (covari-
ates) and the chemical composition of the drug. The objective is to identify the drug with the highest
expected efficacy while ensuring that the expected side effects remain below predefined thresholds.
Similar scenarios arise in inventory management (Ban & Rudin, 2019), where metrics like revenue,
lead time, and customer satisfaction depend on observable factors such as seasonality, economic
indicators, and market conditions, as well as the chosen order quantity. The goal is to identify the
order quantity that maximizes average revenue while ensuring that the mean values of the other
metrics remain within acceptable limits.

Two key challenges set constrained linear BAI with covariate selection apart from the canonical
BAI problem (Garivier & Kaufmann, 2016), making existing algorithms insufficient for this setting.
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First, unlike the standard BAI framework, which focuses solely on identifying the optimal arm, the
constrained version requires balancing both optimality and feasibility. This trade-off between opti-
mality and feasibility requires new theoretical insights to understand its effect on sample complexity
and to guide the design of optimal algorithms. Second, covariate selection introduces an additional
layer of complexity. The agent must determine an optimal sampling rule over arm-covariate pairs
at each iteration. In contrast, canonical linear BAI (Jedra & Proutiere, 2020) and contextual bandit
settings (Slivkins et al., 2019) typically assume that covariates are passively observed, limiting the
agent’s control to selecting a single arm. As we demonstrate in this work, leveraging both linear
structure and active covariate selection can significantly improve sampling efficiency and necessi-
tates a fundamentally different algorithmic approach.

The contributions of this paper are summarized as follows:

• Motivated by practical personalized decision-making scenarios, we study a constrained
BAI problem with covariate selection. We derive an instance-dependent lower bound on
the sample complexity, formulated as a multi-level optimization problem, and characterize
how both the feasibility and optimality of each arm influence this bound. Moreover, we
demonstrate the tightness of this bound by constructing a Track-and-Stop algorithm whose
sample complexity matches it asymptotically.

• Due to the computational intractability of the Track-and-Stop algorithm, we introduce a re-
laxed sample complexity bound derived from a surrogate optimization problem. We further
derive its convex dual, which possesses favorable structural properties and can be solved
efficiently. Notably, the dual formulation provides a closed-form mapping to the primal
optimal solution and offers an intuitive interpretation of the optimal sampling ratio.

• Leveraging the specific structure of the dual problem, we propose a duality-based decom-
position algorithm. This algorithm has two key features: first, it updates two coordinates of
the dual solution at a time; second, it performs a one-step gradient descent at each iteration.
These features contribute to its high efficiency. We theoretically demonstrate that the algo-
rithm’s sample complexity attains the relaxed bound and validate its practical effectiveness
through numerical experiments.

Our study connects to three principal strands of the existing literature:

Best Arm Identification. BAI is one of the most extensively studied problems in the bandit litera-
ture (Audibert & Bubeck, 2010; Gabillon et al., 2012). This work contributes to the growing body
of research on BAI in the fixed-confidence setting, also known as pure exploration (Kaufmann et al.,
2016; Garivier & Kaufmann, 2016; Juneja & Krishnasamy, 2019; Degenne & Koolen, 2019), which
focuses on deriving instance-dependent lower bounds on sample complexity and designing adap-
tive, asymptotically optimal algorithms (Degenne et al., 2019; Wang et al., 2021). Jedra & Proutiere
(2020) extended these results to the linear BAI setting. Our formulation generalizes both the canon-
ical and linear BAI problems as special cases. Furthermore, the proposed algorithm introduces a
duality-based perspective, enhancing both efficiency and practicality compared to methods that rely
on access to an optimization oracle.

Constrained Best Arm Identification. The multi-performance constrained BAI problem has re-
ceived relatively limited attention in the literature. While recent studies have begun exploring multi-
objective settings aimed at identifying the Pareto set (Kone et al., 2023; 2024b;a; 2025), these prob-
lems are fundamentally different from our constrained formulation, and the algorithms proposed in
those works are not applicable to our setting. Yang et al. (2025) and Hu & Hu (2024) consider con-
strained BAI problems that are more closely related to ours. However, Yang et al. (2025) proposes a
top-two Thompson sampling algorithm under a fixed-budget setting, without leveraging linear struc-
ture or considering covariate information, resulting in a simplified optimization problem compared
to our setting. Meanwhile, Hu & Hu (2024) primarily focuses on risk constraints rather than the
mean-based constraints studied here, and their algorithm is not readily adaptable to our framework.

Covariate Selection. Decision-making with covariate information has been a central research theme
across various domains, including operations research (Bertsimas & Kallus, 2020), simulation opti-
mization (Shen et al., 2021; Du et al., 2024), and bandit problems (Lattimore & Szepesvári, 2020;
Kato & Ariu, 2021). However, the covariate selection problem studied in this paper differs from
the classical contextual bandit setting, where covariates are observed passively and drawn randomly.
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Kato et al. (2024) investigates covariate selection in the context of experimental design, focusing on
minimizing the semi-parametric efficiency bound. In contrast, we extend the notion of covariate se-
lection to the BAI setting, with the objective of maximizing the probability of correct identification.

2 PROBLEM FORMULATION

This section presents the formulation of the constrained BAI problem with covariate selection and
introduces the notation used throughout the paper.

Consider K different arms, denoted by X = {x1, . . . , xK} ⊂ RX , where each arm is associated
with a vector xi. We assume a finite set of M possible covariates, denoted by C = {c1, . . . , cM} ⊂
RC . For problems involving continuous covariate spaces, it is common to discretize the feature space
and group covariate values accordingly. The performance of arm xi under covariate cj is represented
by a random vector (F (xi, cj), G(xi, cj)) ∈ R2, where F (xi, cj) and G(xi, cj) correspond to the
objective-related and constraint-related performance metrics, respectively. The agent aims to solve
the following stochastic optimization problem:

max
xi∈X

f(xi, cj) ≜ E[F (xi, cj)] s.t. g(xi, cj) ≜ E[G(xi, cj)] ≤ b, (1)

for all covariate cj ∈ C. For notational simplicity, we consider a single-constraint setting. Extending
our theoretical results and algorithm to accommodate multiple constraints is straightforward (see
Appendix A.4). A problem instance is defined as P = (f(xi, cj), g(xi, cj))xi∈X ,cj∈C . To facilitate
the analysis, we adopt the following standard assumptions, which are commonly used in the BAI
literature.
Assumption 1. The problem instance P belongs to the set S of instances such that, for each covari-
ate cj ∈ C, there exists a unique best arm xi∗(cj) that solves problem (1), and no arm lies exactly on
the constraint, i.e., g(xi, cj) ̸= b,∀xi ∈ X .
Assumption 2. For each arm-covariate pair (xi, cj) ∈ X × C, the mean performances are given
by f(xi, cj) = θ⊤ϕ(xi, cj) and g(xi, cj) = β⊤ϕ(xi, cj), where ϕ(·, ·) : X × C → RD is a known
feature map, and θ, β ∈ RD are unknown parameter vectors.
Assumption 3. The observed performances are given by F (xi, cj) = f(xi, cj) + ϵij and
G(xi, cj) = g(xi, cj) + ϵ′ij , where the noise terms ϵij and ϵ′ij are independent and identically
distributed Gaussian random variables with mean zero and variance σ2

ij .

Assumption 1 is standard in the canonical BAI literature (Garivier & Kaufmann, 2016; Jedra &
Proutiere, 2020) and can be relaxed by identifying ϵ-optimal and feasible arms, as discussed in Ap-
pendix A.3. Assumption 2 imposes a linear relationship between the mean performances and feature
vectors. Despite its simplicity, the linear model effectively captures structural relationships across
arms and covariates, enhances interpretability, and is widely used in linear bandit problems (Soare
et al., 2014; Jedra & Proutiere, 2020) as well as personalized medicine (Shen et al., 2021; Du et al.,
2024). Lastly, the Gaussian noise assumption in Assumption 3 is a standard choice in classical linear
regression and enables the derivation of closed-form sample complexity lower bound.

Design points. In this paper, we use a fixed set of design points, denoted by Z = {z1, . . . , zD}, to
estimate θ and β. Each design point zh corresponds to an arm-covariate pair (xi, cj) ∈ X × C, and
we simplify the notation by writing F (zh) = F (xi, cj). The motivations for adopting a fixed set of
design points can be categorized into three aspects. First, De la Garza (1954) shows that to estimate
the D-dimensional parameters θ and β via regression, sampling only D design points captures the
same amount of information as sampling more than D points. Second, this formulation has been
widely used in the transductive linear bandits literature (Fiez et al., 2019). Third, concentrating on
a fixed set of D design points allows for the decomposition of regression variance, which facilitates
the design of efficient algorithms.

Learning problem. In the online setting, at each iteration t, the agent selects a design point
zh(t) ∈ Z to sample. It then observes a random performance vector Zt = (Z

(1)
t , Z

(2)
t ), drawn in-

dependently according to the distribution of the corresponding random vector (F (zh(t)), G(zh(t))).
An algorithm in this setting is characterized by three components: the sampling rule {zh(t)}t, which
determines the design point to sample based on the historical sampling decisions and observations

3
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up to time t; the stopping rule τ , which decides when to terminate the algorithm based on the col-
lected information; and the recommendation rule {xî(cj ,τ)

}cj∈C , which specifies the recommended
best arm for each covariate cj ∈ C. The goal is to find a δ-Probably Approximately Correct (PAC)
algorithm (see Definition 1) while minimizing the sample complexity E[τ ].
Definition 1 (δ-PAC algorithm). An algorithm L = ({zh(t)}t; τ ; {xî(cj ,τ)

}cj∈C) is said to be δ-PAC
if for every problem instance P ∈ S, it satisfies PP(∀cj ∈ C, xî(cj ,τ)

= xi∗(cj)) ≥ 1− δ.

Notation. For a positive integer K, let [K] = {1, . . . ,K}. Denote by Nh(t) the number of samples
drawn from design point zh up to time t, and define the corresponding sampling ratio ωh(t) =

Nh(t)/t. Let Ω ≜ {ω ∈ RD
+ :

∑
h∈D ωh = 1} denote the probability simplex over the design

points. Let I(·) denote the indicator function, which takes the value 1 if the condition is true, and 0
otherwise.

3 SAMPLE COMPLEXITY

In this section, we first derive a lower bound on the sample complexity. We then introduce a Track-
and-Stop algorithm that asymptotically achieves this lower bound. However, this algorithm is com-
putationally expensive, motivating the development of a duality-based approach. This perspective
enables the design of a more efficient algorithm, which we present in the next section.

3.1 SAMPLE COMPLEXITY LOWER BOUND

This subsection presents a tight, instance-dependent lower bound on the sample complexity E[τ ],
which provides a benchmark for evaluating the performance of any δ-PAC algorithm.

The characterization of sample complexity relies on the transportation lemma from (Kaufmann et al.,
2016), which establishes a relationship between the sample complexity, the Kullback-Leibler (KL)
divergence between two problem instances, and the confidence level δ. However, the constrained
BAI problem with covariate selection is more challenging. Specifically, different types of arms
contribute differently to the sample complexity depending on their feasibility and optimality. To
capture this effect, we classify the arms into four categories for each covariate: the best arm xi∗(cj),
suboptimal feasible arms

D1(cj) ≜ {xi ∈ X : f(xi, cj) < f(xi∗(cj), cj), g(xi, cj) ≤ b},
infeasible arms with better performance

D2(cj) ≜ {xi ∈ X : f(xi, cj) > f(xi∗(cj), cj), g(xi, cj) > b},
and infeasible arms with worse performance

D3(cj) ≜ {xi ∈ X : f(xi, cj) < f(xi∗(cj), cj), g(xi, cj) > b}.
Then, leveraging the linear structure in Assumption 2 and the Gaussian noise in Assumption 3, we
derive a closed-form lower bound on the sample complexity in Theorem 1.
Theorem 1. Under Assumptions 1-3, for a fixed confidence level δ ∈ (0, 1/2), any δ-PAC algorithm
applied to problem instance P ∈ S must satisfy

E[τ ] ≥ H∗(P)kl(δ, 1− δ), (2)
which leads to

lim inf
δ→0

E[τ ]
log(1/δ)

≥ H∗(P), (3)

whereH∗(P)−1 = maxω∈Ω mincj∈C Γ(ω, cj ,P),

Γ(ω, cj ,P) = min

(
min

xi ̸=xi∗(cj)

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj) ∪ D3(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D2(cj) ∪ D3(cj)

))
,
(b− β⊤ϕ(xi∗(cj), cj))

2

∥ϕ(xi∗(cj), cj)∥2Λ(ω)−1

)
,

(4)
Λ(ω) =

∑
zh∈Z

ωh

2σ2
h
ϕ(zh)ϕ(zh)

⊤, and kl(δ, 1− δ) ≜ δ log(δ/1− δ) + (1− δ) log((1− δ)/δ).

4
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The derivation of the sample complexity result in Theorem 1 has an intuitive game-theoretic inter-
pretation: the agent aims to select a randomized sampling strategy ω ∈ Ω that maximizes the KL
divergence between two instances, while the environment chooses an alternative instance P̃ that is
difficult to distinguish from P . In the case of Gaussian noise, this formulation yields the closed-
form expression in (58). Additionally, the sample complexity is influenced by the feasibility of the
best arm xi∗(cj), the performance of infeasible arms (both better arms in D2(cj) and worse arms in
D3(cj)), and the optimality of suboptimal feasible arms in D1(cj) as well as infeasible arms with
worse performance in D3(cj).

Theorem 1 can be viewed as an extension of the linear BAI problem to the constrained setting with
covariate selection. When the agent knows that all arms are feasible and there is only one covariate,
Theorem 1 reduces to the sample complexity result in (Jedra & Proutiere, 2020), making it a special
case of our framework.

3.2 SAMPLE COMPLEXITY UPPER BOUND

This section demonstrates the existence of an algorithm that asymptotically matches the sample
complexity lower bound in Theorem 1 as δ → 0.
Definition 2 (Asymptotic optimality). An algorithm L = ({zh(t)}t; τ ; {xî(cj ,τ)

}cj∈C) is said to be
asymptotically optimal if for every problem instance P ∈ S, it is δ-PAC and

lim sup
δ→0

E[τ ]
log(1/δ)

≤ H∗(P). (5)

The intuition behind the algorithm design is as follows. The sample complexity lower bound in
Theorem 1 depends on the hardness of the problem instanceH∗(P) and the confidence level δ. The
quantity H∗(P) is defined through an optimization problem that yields the optimal static sampling
ratio

ω∗(P) = argmax
ω∈Ω

min
cj∈C

Γ(ω, cj). (6)

Therefore, an optimal algorithm must ensure that the empirical sampling ratio ω(t) = {ωh(t)}h∈[D]

converges to the optimal ratio ω∗(P).
Since the problem instance P is unknown, we must estimate it based on empirical observations. For
each design point zh ∈ Z , define the empirical estimates of F (zh) and G(zh) up to time t as

F̄ (zh; t) =
1

Nh(t)

∑
s≤t

Z
(1)
t I(zh(t) = zh), Ḡ(zh; t) =

1

Nh(t)

∑
s≤t

Z
(2)
t I(zh(t) = zh). (7)

Then, the least squares estimators of the unknown parameters θ and β up to time t are given by

θ̂(t) = Λ(ω(t))−1
∑
zh∈Z

ωh(t)

σ2
h

ϕ(zh)F̄ (zh; t), β̂(t) = Λ(ω(t))−1
∑
zh∈Z

ωh(t)

σ2
h

ϕ(zh)Ḡ(zh; t). (8)

Using the least squares estimators in (8), we estimate P by P̂(t), calculated from θ̂(t) and β̂(t), and
compute the corresponding empirical static ratio ω∗(P̂(t)).

To ensure that the estimate P̂(t) converges to the true problem instance P , it is necessary to sample
each design point infinitely often. Define the set of undersampled design points up to time t as

Bt = {zh ∈ Z : Nh(t) <
√
t−D/2}. (9)

Consider the following sampling rule

zh(t+1) =

{
argminzh∈Bt

Nh(t) if Bt ̸= ∅
argminzh∈Z Nh(t)− tω∗

h(P̂(t)) otherwise
, (10)

which continuously updates the estimate P̂(t) and adaptively tracks the empirical static ratio
ω∗(P̂(t)). Under this rule, we can show that P̂(t)→ P and ω(t)→ ω∗(P) as t→∞.

5
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Finally, we apply the generalized likelihood ratio test method to ensure that the algorithm satisfies
the δ-PAC guarantee described in Definition 1. Define the stopping rule as

τ = inf{t ∈ N : tH(P̂(t), ω(t))−1 > ρ(t, δ)}, (11)

where H(P̂(t), ω(t))−1 = mincj∈C Γ(ω(t), cj , P̂(t)). This rule ensures the algorithm terminates
once the accumulated empirical evidence exceeds the confidence threshold ρ(t, δ), thus supporting
the δ-PAC guarantee and contributing to its asymptotic optimality, as shown in Proposition 1.

This algorithmic framework, known as Track-and-Stop, is widely used to address the BAI problem
in various settings (Garivier & Kaufmann, 2016; Juneja & Krishnasamy, 2019; Jedra & Proutiere,
2020). Further details are provided in Algorithm 1.

Algorithm 1: Track-and-Stop Algorithm
1 Input: Covariate set C, arm set X , design point set Z , confidence level δ.
2 Initialization: Sample each design point zh ∈ Z n0 times.
3 Set t← n0D and update Nh(t), ωh(t), P̂(t), Λ(ω(t)).
4 while tH(P̂(t), ω(t))−1 < ρ(t, δ) do
5 if Bt ̸= ∅ then
6 zh(t+1) = argminzh∈Bt

Nh(t)
7 else
8 ω∗(P̂(t))← argmaxω∈ΩH(P̂(t), ω)−1

9 zh(t+1) = argminzh∈Z Nh(t)− tω∗
h(P̂(t))

10 Sample the design point zh(t+1) and obtain the observation Zt+1.
11 Set t← t+ 1, and update Nh(t), ωh(t), P̂(t), Λ(ω(t)).
12 return For each covariate cj ∈ C, recommend the estimated best arm:

xî(cj ;τ)
= argmaxxi∈X θ̂(τ)⊤ϕ(xi, cj) s.t. β̂(τ)⊤ϕ(xi, cj) ≤ b

Proposition 1. Under Assumptions 1-3, there exists a constant C > 0 such that, with the stopping
rule in (11) and ρ(t, δ) = log(Ctα/δ), Algorithm 1 is asymptotically optimal up to α.

Proposition 1 follows directly by extending the proof technique of Jedra & Proutiere (2020). It
shows that the sample complexity upper bound of Algorithm 1 matches the lower bound exactly,
establishing its asymptotic optimality.

3.3 A DUALITY PERSPECTIVE

Although Algorithm 1 provides strong theoretical guarantees, it is impractical for implementation.
The primary challenge arises from the fact that the lower bound involves a complex, multi-level opti-
mization problem, which makes computing ω∗(P̂(t)) at each iteration computationally prohibitive.
Additionally, the presence of constraints and the linear structure complicates the analysis of the KKT
conditions, unlike in the canonical BAI setting (Kaufmann et al., 2016), making it difficult to apply
existing algorithms to our problem.

Surrogate Objective Function. We first introduce a surrogate objective function to reduce the
computational burden. By merging the sets D2(cj) and D3(cj) for each covariate cj ∈ C and focus-
ing solely on the feasibility of the corresponding arms, we derive the following surrogate objective
function for Γ(ω, cj ,P) in (58):

Γs(ω, cj ,P) = min
xi∈X

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ {xi∗(cj)} ∪ D2(cj) ∪ D3(cj)

))
.

(12)

Compared to the original objective function Γ(ω, cj ,P), the surrogate function Γs(ω, cj ,P) exhibits
a better decomposition property, which can be leveraged to design a highly efficient algorithm.

6
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Lemma 1. Let U∗(P)−1 = maxω∈Ω mincj∈C Γ
s(ω, cj ,P). Then, it holds thatH∗(P) ≤ U∗(P).

Lemma 1 shows that the surrogate optimal value U∗(P) provides an upper bound for the optimal
value H∗(P) under the original objective function. This implies that U∗(P) can serve as a relaxed
performance measure for the algorithms. In Appendix A.7, we establish a constant relaxation gap,
i.e., U∗(P) ≤ CH∗(P) for some positive constant C > 1.

Dual Optimization Problem. Although the primal multi-level optimization problem

max
ω∈Ω

min
cj∈C

Γs(ω, cj ,P) (13)

is complex; it admits a dual problem that can be efficiently solved using a decomposition algorithm.

Theorem 2. The dual of the primal optimization problem in (13) is equivalent to

min
λ
Q(λ,P) = −

∑
h∈[D]

√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj)

s.t.
∑

i∈[K], j∈[M ]

λij = 1, λij ≥ 0, ∀i ∈ [K], j ∈ [M ],
(14)

where for each cj ∈ C,

χh(xi, cj) =


σ2
h

[
(Φ⊤)−1(ϕ(xi∗(cj), cj)− ϕ(xi, cj))

]2
h(

(ϕ(xi∗(cj), cj)− ϕ(xi, cj))⊤θ
)2 if xi ∈ D1(cj),

σ2
h

[
(Φ⊤)−1ϕ(xi, cj)

]2
h

(b− β⊤ϕ(xi, cj))
2 if xi ∈ {xi∗(cj)} ∪ D2(cj) ∪ D3(cj),

(15)
Φ is the D ×D design matrix, and [v]h denotes the hth element of the vector v.

The dual optimization problem in (14) is a convex optimization problem over the unit simplex, which
can be efficiently solved using off-the-shelf gradient-based algorithms. The following Lemma 2
establishes that strong duality holds.

Lemma 2. The primal optimization problem in (13) is convex, strong duality holds, and it admits a
unique optimal solution.

According to Lemma 2, given a dual optimal solution λ∗, an optimal static sampling ratio ω∗(P)
can be recovered as follows:

ω∗
h(P) =

√∑
i∈[K],j∈[M ] λ

∗
ijχh(xi, cj)∑

l∈[D]

√∑
i∈[K],j∈[M ] λ

∗
ijχl(xi, cj)

. (16)

We provide an intuitive explanation of the optimal static sampling ratio ω∗(P). The optimal dual
solution λ∗ represents the importance of each arm-covariate pair. The term χh(xi, cj) quantifies
the benefit of sampling the design point zh for identifying a specific arm-covariate pair (xi, cj).
This quantity depends on the signal variance, the location in the feature space, and the optimality or
feasibility gap. Consequently, the optimal sampling ratio must balance these factors, weighted by
the relative importance of each arm-covariate pair, to minimize the overall sample complexity.

4 DUALITY-BASED DECOMPOSITION ALGORITHM

In this section, we introduce a duality-based decomposition algorithm based on Theorem 2. Further-
more, we demonstrate that this algorithm asymptotically achieves the relaxed sample complexity
bound U∗(P) log(1/δ).
Leveraging the specific structure of problem (14), we design a decomposition algorithm that updates
two coordinates at a time to reduce computational complexity.

7
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Lemma 3. Let λ be a feasible dual solution such that λmn > 0, for some m ∈ [K], n ∈ [M ]. Then,
λ is a stationary point of problem (14) if and only if

∇Q(λ,P)⊤d ≥ 0, ∀d ∈ Dm,n(λ), (17)

where Dm,n(λ) = {eij − emn : i ̸= m or j ̸= n} ∪ {emn − eij : i ̸= m or j ̸= n, λij > 0},
eij ∈ RKM is obtained by letting λij equal to one and other elements equal to zero.

Note that Lin et al. (2009) analyzes the decomposition structure of general singly linearly con-
strained problems with lower and upper bounds, and our dual problem (14) falls within this class.
However, the problem is more challenging in our case because the problem instance P is unknown.
Similar to Algorithm 1, we replace P with the estimated instance P̂(t) to solve the empirical version
of problem (14). Instead of performing full gradient descent to obtain the optimal static sampling
ratio ω∗(P̂(t)), we apply a single gradient step, alternating with the estimate update P̂(t), which is
sufficient to ensure asymptotic convergence while significantly reducing computational cost.

Algorithm 2 outlines the one-step gradient descent procedure. It begins by randomly selecting two
coordinates and then determines a descent direction along with the corresponding maximal step
size. If the decrease in the objective function exceeds a given threshold, the algorithm employs
the canonical line search to determine the step size and update the dual solution. A feasible sam-
pling ratio can then be computed using (16). We also compare the per-iteration complexity of
Algorithm 1 and 2 (see Appendix A.12), showing that the proposed procedure is highly efficient.

Algorithm 2: One-Step Gradient Descent Algorithm
1 Input: Covariate set C, arm set X , design point set Z , a small positive constant κ0 and

η < 1
KM , P̂(t), θ̂(t), β̂(t), λ(t− 1).

2 Initialization: Let xî(cj ;t)
= argmaxxi∈X θ̂(t)⊤ϕ(xi, cj) s.t. β̂(t)⊤ϕ(xi, cj) ≤ b for each

covariate cj ∈ C.
3 Randomly choose (m(t), n(t)) from {(i, j) : λij(t− 1) ≥ η}.
4 Compute the descent direction d(t), and determine the maximum step size smax:

d(t), smax = argmin
s∈R+,d∈RKM

s∇Q(λ(t− 1), P̂(t))⊤d,

s.t.λij(t− 1) + sdij ∈ [0, 1], ∀i ∈ [K], j ∈ [M ]

d ∈ D(m(t),n(t))(λ(t− 1)).

5 DefineW(t) = ∇Q(λ(t− 1), P̂(t))⊤d(t).
6 ifW(t) < max{−κ0,−(log t/t)1/4} and smaxW(t) < max{−κ0,−(log t/t)1/2} then
7 λ(t) = λ(t− 1) + s(t)d(t) where s(t) = LineSearch Algorithm (smax)
8 else
9 λ(t) = λ(t− 1)

10 Return: Sampling ratio γ(P̂(t)) calculated according to (16) based on λ(t).

The one-step gradient descent idea has appeared in the simulation literature (Zhou et al., 2024; Du
et al., 2024), but our approach differs in two key ways. First, we tackle a more complex constrained
BAI problem with covariate selection, which has not been previously explored. Second, we analyze
the algorithm in the fixed-confidence setting to assess its statistical validity and sample complexity,
whereas existing work focuses on sampling ratio convergence under the fixed-budget setting.

The algorithmic framework is the same as Algorithm 1, except for a modified sampling rule:

zh(t+1) =

{
argminzh∈Bt

Nh(t) if Bt ̸= ∅
argminzh∈Z Nh(t)− tγh(P̂(t)) otherwise

, (18)

where γ(P̂(t)) = {γh(P̂(t))}h∈D denotes the sampling ratio returned by Algorithm 2. To mitigate
the effect of estimation error, λ(t) is reset to 1/KM whenever the optimal arms are challenged.
We refer to this algorithm as the duality-based decomposition algorithm. Theorem 3 shows that the
algorithm asymptotically matches the relaxed bound U∗(P) log(1/δ) on sample complexity.
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Theorem 3. Under Assumptions 1-3, the duality-based decomposition algorithm is δ-PAC and sat-
isfies

P
(
lim sup

δ→0

τ

log(1/δ)
≤ U∗(P)

)
= 1, lim sup

δ→0

E[τ ]
log(1/δ)

≤ U∗(P). (19)

5 NUMERICAL EXPERIMENT

In this section, we evaluate the practical performance of the proposed duality-based decomposition
algorithm. Detailed parameter settings and pseudo-code are provided in Appendix A.13.

We consider a problem with two covariates, four arms, and one constraint. For the first covariate,
there is one optimal arm and three suboptimal arms. For the second, there is one optimal, one sub-
optimal, and two infeasible arms, i.e., one with better performance and one with worse performance
than the optimal arm.

Since no existing methods directly address our problem, we propose the following benchmarks for
comparison: (1) USR: Allocate an equal number of samples to each design point. (2) BCSR: A
modified Best Challenger algorithm (Garivier & Kaufmann, 2016) based solely on arm optimality,
representing the state-of-the-art for BAI. (3) GOSR: A greedy algorithm for problem (13) that relies
solely on arm optimality. (4) GFSR: A greedy algorithm for problem (13) that relies solely on arm
feasibility. We refer to our proposed duality-based decomposition algorithm as DSR.
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Figure 1: Performance comparison of various algorithms

Figure 1 illustrates the empirical sample complexity and probability of correct identification (PCI)
based on 100 independent macro-replications of various algorithms, with δ = 0.1 and n0 = 1.
The results demonstrate that DSR achieves the lowest sample complexity among all benchmarks,
with an average of 9205.46 samples. Furthermore, the findings highlight the statistical conservatism
of the fixed-confidence setting: with 4000 samples, the empirical PCI of both DSR and GOSR
exceeds the target PCI. Notably, the DSR algorithm outperforms all other benchmarks in terms of
the PCI measure. This conclusion holds consistently across different problem instances and noise
distributions (Appendix A.13). We also present an application example on personalized treatment
for diabetes management in Appendix A.14, which verifies the practical performance of DSR.

6 CONCLUSION

This paper studies a constrained linear BAI problem with covariate selection, where each arm has
multiple performance metrics, and the goal is to identify the best feasible arm per covariate. Our
main contributions include an instance-dependent lower bound, a relaxed bound derived from a sur-
rogate optimization problem, a duality-based formulation, and an efficient decomposition algorithm
with theoretical guarantees. This work opens several avenues for future research, including extend-
ing the framework to continuous covariate spaces and generalizing the linear model to more flexible
statistical structures, such as Gaussian Process Regression.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 LARGE LANGUAGE MODELS USAGE

ChatGPT was used for wording refinement and expression improvement.

A.2 PROOF OF THEOREM 1

Proof. To prove Theorem 1, we first introduce additional notation that was simplified or omitted
in the main paper for clarity. Let xi∗(cj ,P) denote the best arm for covariate cj under the problem
instance P; when no ambiguity arises, we abbreviate this as xi∗(cj). We define d(f(zh), f̃(zh)) as
the KL divergence between two Gaussian random variables with means f(zh) and f̃(zh), sharing a
common variance σ2

h. The subscript h indexes design points; for instance, if zh corresponds to the
arm-covariate pair (xi, cj), then f(zh) = f(xi, cj), σ

2
h = σ2

ij .

A problem instance can be represented as P = (f(xi, cj), g(xi, cj))xi∈X ,cj∈C . Consider the set of
alternative instances

A(P) =
{
P̃ ∈ S : ∃ci ∈ C, xi∗(cj ,P) ̸= xi∗(cj ,P̃)

}
, (20)

which includes all problem instances P̃ = (f̃(xi, cj), g̃(xi, cj))xi∈X ,cj∈C for which the optimal arm
differs from that of P for at least one covariate.

In the fixed confidence setting, for a given confidence level δ ∈ (0, 1), the δ-PAC condition requires
that

PP

(
∀cj ∈ C, xî(cj ,τ)

= xi∗(cj ,P)

)
≥ 1− δ, (21)
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and for any alternative instance P̃ ∈ A(P),

PP̃

(
∀cj ∈ C, xî(cj ,τ)

= xi∗(cj ,P)

)
≤ δ. (22)

As the event {
∀cj ∈ C, xî(cj ,τ)

= xi∗(cj ,P)

}
(23)

belongs to the filtration generated by all observations collected up to the stopping time τ . Thus,
applying the transportation inequality (Lemma 1) from Kaufmann et al. (2016), we obtain a funda-
mental information-theoretic lower bound:

∀P̃ ∈ A(P),
∑
h∈[D]

E[Nh]

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)
≥ kl(δ, 1− δ). (24)

Consequently, we have the following sequence of inequalities:

kl(δ, 1− δ) ≤
∑
h∈[D]

E[Nh]

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)

≤ inf
P̃∈A(P)

∑
h∈[D]

E[Nh]

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)

≤ sup
ω∈Ω

inf
P̃∈A(P)

∑
h∈[D]

E[Nh]

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)

= E[τ ] sup
ω∈Ω

inf
P̃∈A(P)

∑
h∈[D]

E[Nh]

E[τ ]

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)

≤ E[τ ] sup
ω∈Ω

inf
P̃∈A(P)

∑
h∈[D]

ωh

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)
,

(25)

where ωh = E[Nh]/E[τ ] represents the expected sampling proportion at design point zh. This leads
to the following lower bound on the sample complexity:

E[τ ] ≥ H∗(P)kl(δ, 1− δ), (26)

where the instance-dependent complexity term is defined as

H∗(P)−1 = sup
ω∈Ω

inf
P̃∈A(P)

H(ω,P, P̃)−1

= sup
ω∈Ω

inf
P̃∈A(P)

∑
h∈[D]

ωh

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)
.

(27)

For each covariate cj ∈ C, define the following sets:

O(xi∗(cj ,P), cj) =

{
P̃ ∈ S : β̃⊤ϕ(xi∗(cj ,P), cj) > b

}
, (28)

and

O(xi, cj) =

{
P̃ ∈ S : θ̃⊤(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) > 0, β̃⊤ϕ(xi, cj) ≤ b

}
. (29)
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Then, the set A(P) can be decomposed as

A(P) =
{
P̃ ∈ S : ∃ci ∈ C, xi∗(cj ,P) ̸= xi∗(cj ,P̃)

}
=

⋃
ci∈C

{
P̃ ∈ S : xi∗(cj ,P) ̸= xi∗(cj ,P̃)

}
=

⋃
ci∈C

({
P̃ ∈ S : β̃⊤ϕ(xi∗(cj ,P), cj) > b

}
⋃{

P̃ ∈ S : ∃xi ∈ X , θ̃⊤(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) > 0, β̃⊤ϕ(xi, cj) ≤ b

})
=

⋃
ci∈C

(
O(xi∗(cj ,P), cj)

⋃( ⋃
xi∈X\xi∗(cj,P)

O(xi, cj)

))
(30)

Then, we can expressH∗(P)−1 as:

H∗(P)−1 = sup
ω∈Ω

inf
P̃∈A(P)

H(ω,P, P̃)−1

= sup
ω∈Ω

min
cj∈C

min

(
inf

P̃∈O(xi∗(cj,P),cj)
H(ω,P, P̃)−1, min

xi∈X\xi∗(cj,P)

inf
P̃∈O(xi,cj)

H(ω,P, P̃)−1

)
.

(31)

Next, we leverage the linear model structure and Gaussian noise assumptions from Assumptions 2
and 3 to derive a closed-form expression for H∗(P). Recall that for two univariate Gaussian distri-
butions with equal variance, the KL divergence is given by

d(f(zh), f̃(zh)) =
(f(zh)− f̃(zh))

2

2σ2
h

=
(θ − θ̃)⊤ϕ(zh)ϕ(zh)

⊤(θ − θ̃)

2σ2
h

. (32)

Using this result, the functionH(ω,P, P̃)−1 admits the following closed-form:

H(ω,P, P̃)−1 =
∑
h∈[D]

ωh

(
(θ − θ̃)⊤ϕ(zh)ϕ(zh)

⊤(θ − θ̃)

2σ2
h

+
(β − β̃)⊤ϕ(zh)ϕ(zh)

⊤(β − β̃)

2σ2
h

)
.

(33)

We now consider the following sub-optimization problem:

inf
P̃∈O(xi∗(cj,P),cj)

H(ω,P, P̃)−1

= inf
β̃⊤ϕ(xi∗(cj,P),cj)>b

∑
h∈[D]

ωh

(
(θ − θ̃)⊤ϕ(zh)ϕ(zh)

⊤(θ − θ̃)

2σ2
h

+
(β − β̃)⊤ϕ(zh)ϕ(zh)

⊤(β − β̃)

2σ2
h

)

= inf
β̃⊤ϕ(xi∗(cj,P),cj)>b

∑
h∈[D]

ωh
(β − β̃)⊤ϕ(zh)ϕ(zh)

⊤(β − β̃)

2σ2
h

= inf
β̃⊤ϕ(xi∗(cj,P),cj)>b

(β − β̃)⊤
( ∑

h∈[D]

ωh
ϕ(zh)ϕ(zh)

⊤

2σ2
h

)
(β − β̃)

= inf
β̃⊤ϕ(xi∗(cj,P),cj)>b

(β − β̃)⊤Λ(ω)(β − β̃),

(34)
where we define

Λ(ω) =
∑
h∈[D]

ωh
ϕ(zh)ϕ(zh)

⊤

2σ2
h

. (35)
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Thus, the subproblem reduces to the following constrained quadratic minimization:

inf
β̃

(β − β̃)⊤Λ(ω)(β − β̃)

s.t. β̃⊤ϕ(xi∗(cj ,P), cj) > b (λ)
(36)

The Karush–Kuhn–Tucker (KKT) conditions for the above optimization problem are given by

2Λ(ω)(β − β̃) + λϕ(xi∗(cj ,P), cj) = 0

β̃⊤ϕ(xi∗(cj ,P), cj) = b,
(37)

where λ is the Lagrange multiplier associated with the inequality constraint. According to the first
equation in (37), it holds that

β̃ = β +
1

2
λΛ(ω)−1ϕ(xi∗(cj ,P), cj). (38)

Plug (46) into the second equation in (37), we have that

λ∗ =
2(b− β⊤ϕ(xi∗(cj ,P), cj))

∥ϕ(xi∗(cj ,P), cj)∥2Λ(ω)−1

. (39)

Plug (47) into (46) yields the optimal solution

β̃∗ = β +
b− β⊤ϕ(xi∗(cj ,P), cj)

∥ϕ(xi∗(cj ,P), cj)∥2Λ(ω)−1

Λ(ω)−1ϕ(xi∗(cj ,P), cj). (40)

The corresponding optimal value of the objective function is

(b− β⊤ϕ(xi∗(cj ,P), cj))
2

∥ϕ(xi∗(cj ,P), cj)∥2Λ(ω)−1

. (41)

Next, we consider the complementary sub-optimization problem

min
xi∈X\xi∗(cj,P)

inf
P̃∈O(xi,cj)

H(ω,P, P̃)−1

= min

(
min

xi∈D1(cj)
inf

P̃∈O(xi,cj)
H(ω,P, P̃)−1, min

xi∈D2(cj)
inf

P̃∈O(xi,cj)
H(ω,P, P̃)−1,

min
xi∈D3(cj)

inf
P̃∈O(xi,cj)

H(ω,P, P̃)−1

)
.

(42)

Consider the analysis of the following optimization problem as an example:

min
xi∈D1(cj)

inf
P̃∈O(xi,cj)

H(ω,P, P̃)−1

= min
xi∈D1(cj)

inf
P̃∈O(xi,cj)

∑
h∈[D]

ωh

(
(θ − θ̃)⊤ϕ(zh)ϕ(zh)

⊤(θ − θ̃)

2σ2
h

+
(β − β̃)⊤ϕ(zh)ϕ(zh)

⊤(β − β̃)

2σ2
h

)

= min
xi∈D1(cj)

inf
P̃∈O(xi,cj)

∑
h∈[D]

ωh

(
(θ − θ̃)⊤ϕ(zh)ϕ(zh)

⊤(θ − θ̃)

2σ2
h

)
= min

xi∈D1(cj)
inf

P̃∈O(xi,cj)
(θ − θ̃)⊤Λ(ω)(θ − θ̃)

(43)

The inner optimization problem is therefore

inf
θ̃

(θ − θ̃)⊤Λ(ω)(θ − θ̃)

s.t. θ̃⊤(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) ≥ 0 (λ)
(44)
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The KKT conditions are given by

2Λ(ω)(θ − θ̃) + λ(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) = 0

θ̃⊤(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) = 0
(45)

According to the first equation in (45), it holds that

θ̃ = θ +
1

2
λΛ(ω)−1(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)). (46)

Plug (46) into the second equation in (45), we have that

λ∗ =
2(θ⊤(ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj)))

∥ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)∥2Λ(ω)−1

. (47)

Plug (47) into (46) yields the optimal solution.

θ̃∗ = θ +
θ⊤(ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj))

∥ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj))∥2Λ(ω)−1

Λ(ω)−1(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)), (48)

The corresponding optimal value is

(θ⊤(ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj)))
2

∥ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj))∥2Λ(ω)−1

. (49)

The analyses for the subproblems

min
xi∈D2(cj)

inf
P̃∈O(xi,cj)

H(ω,P, P̃)−1 (50)

and
min

xi∈D3(cj)
inf

P̃∈O(xi,cj)
H(ω,P, P̃)−1 (51)

follow analogous steps. Their optimal values are respectively

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

(52)

and
(θ⊤(ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj)))

2

∥ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj))∥2Λ(ω)−1

+
(b− β⊤ϕ(xi, cj))

2

∥ϕ(xi, cj)∥2Λ(ω)−1

. (53)

Finally, we conclude thatH∗(P)−1 = maxω∈Ω mincj∈C Γ(ω, cj ,P), where

Γ(ω, cj ,P) = min

(
min

xi ̸=xi∗(cj,P)

(
((ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj) ∪ D3(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D2(cj) ∪ D3(cj)

)
,

)
(b− β⊤ϕ(xi∗(cj ,P), cj))

2

∥ϕ(xi∗(cj ,P), cj)∥2Λ(ω)−1

)
.

(54)
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A.3 BOUNDARY CASE ANALYSIS

In this section, we relax Assumption 1 by identifying ϵ-optimal and feasible arms. Specifically, our
goal is to identify an ϵ-optimal solution to the following optimization problem.

max
xi∈X

f(xi, cj) s.t. g(xi, cj) ≤ b+ ϵ

For each covariate cj ∈ C, define the following sets:

O(xi∗(cj ,P), cj) =
{
P̃ ∈ S : β̃⊤ϕ(xi∗(cj ,P), cj) ≥ b+ ϵ

}
and

O(xi, cj) =
{
P̃ ∈ S : θ̃⊤(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) > ϵ, β̃⊤ϕ(xi, cj) ≤ b+ ϵ

}
.

Then, the set A(P) can be decomposed as

A(P) =
{
P̃ ∈ S : ∃ci ∈ C, xi∗(cj ,P) ̸= xi∗(cj ,P̃)

}
=

⋃
ci∈C

{
P̃ ∈ S : xi∗(cj ,P) ̸= xi∗(cj ,P̃)

}
=

⋃
ci∈C

({
P̃ ∈ S : β̃⊤ϕ(xi∗(cj ,P), cj) > b+ ϵ

}
⋃{

P̃ ∈ S : ∃xi ∈ X , θ̃⊤(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) > ϵ, β̃⊤ϕ(xi, cj) ≤ b+ ϵ

})
=

⋃
ci∈C

(
O(xi∗(cj ,P), cj)

⋃( ⋃
xi∈X\xi∗(cj,P)

O(xi, cj)

))
Then, we can expressH∗(P)−1 as:

H∗(P)−1 = sup
ω∈Ω

inf
P̃∈A(P)

H(ω,P, P̃)−1

= sup
ω∈Ω

min
cj∈C

min

(
inf

P̃∈O(xi∗(cj,P),cj)
H(ω,P, P̃)−1, min

xi∈X\xi∗(cj,P)

inf
P̃∈O(xi,cj)

H(ω,P, P̃)−1

)
.

The following analysis follows the same approach as in Theorem 1. Therefore, we conclude that

E[τ ] ≥ H∗(P)kl(δ, 1− δ)

whereH∗(P)−1 = maxω∈Ω mincj∈C Γ
ϵ(ω, cj ,P),

Γϵ(ω, cj ,P) = min

(
min

xi ̸=xi∗(cj,P)

(
(ϵ+ (ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj ,P), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj) ∪ D3(cj)

)
+

(b+ ϵ− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D2(cj) ∪ D3(cj)

)
,

)
(b+ ϵ− β⊤ϕ(xi∗(cj ,P), cj))

2

∥ϕ(xi∗(cj ,P), cj)∥2Λ(ω)−1

)
.

(55)

A.4 MULTIPLE CONSTRAINTS SETTING

In this section, we present the sample complexity lower bound for the multiple-constraint setting,
which follows directly from an extension of the proof of Theorem 1. In the multi-constraint setting,
each arm corresponds to a random performance vector (F (xi, cj), G1(xi, cj), . . . , GH(xi, cj)), and
the sample complexity must separately account for both feasible and infeasible constraints of each
arm. Let I(xi, cj) and F(xi, cj) denote the index sets of infeasible and feasible constraints, respec-
tively, for the arm-covariate pair (xi, cj). For the s-th constraint of the arm-covariate pair (xi, cj),
the mean performance is given by gs(xi, cj) = β⊤

s ϕ(xi, cj).
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Theorem 4. Under Assumptions 1-3, for a fixed confidence level δ ∈ (0, 1/2), any δ-PAC algorithm
applied to problem instance P ∈ S must satisfy

E[τ ] ≥ H∗(P)kl(δ, 1− δ), (56)

which leads to

lim inf
δ→0

E[τ ]
log(1/δ)

≥ H∗(P), (57)

whereH∗(P)−1 = maxω∈Ω mincj∈C Γ(ω, cj ,P),

Γ(ω, cj ,P) = min

(
min

xi ̸=xi∗(cj)

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj) ∪ D3(cj)

)
+

∑
s∈I(xi,cj)

(b− β⊤
s ϕ(xi, cj))

2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D2(cj) ∪ D3(cj)

))
, min
s∈F(xi,cj)

(b− β⊤
s ϕ(xi∗(cj), cj))

2

∥ϕ(xi∗(cj), cj)∥2Λ(ω)−1

)
,

(58)
Λ(ω) =

∑
zh∈Z

ωh

2σ2
h
ϕ(zh)ϕ(zh)

⊤, and kl(δ, 1− δ) ≜ δ log(δ/1− δ) + (1− δ) log((1− δ)/δ).

Intuitively, arms from different classes are governed by different types of constraints. For the best
arm, the lower bound is determined by the most critical feasible constraint, i.e., the one closest to
violation. In contrast, for infeasible arms, the lower bound reflects the combined effect of all violated
constraints.

A.5 PROOF OF PROPOSITION 1

Proposition 1 follows directly by extending the proof of Theorem 3 in Jedra & Proutiere (2020).
The only difference is that Jedra & Proutiere (2020) considered the case where the optimal sampling
ratio ω∗(P) may be non-unique. Specifically, it proposed the following sampling rule:

zh(t+1) = argmin
zh∈Z

Nh(t)−
t∑

s=1

ω∗
h(P̂(s)) (59)

and showed that the empirical sampling ratio converges to the setM∗(P), defined as

M∗(P)← argmax
ω∈Ω
H(P, ω)−1. (60)

This sampling rule in (59) can also be applied in our setting to handle the non-unique optimal
sampling ratio case. Moreover, if all optimal sampling ratios can be enumerated, one may track a
linear combination of them and apply the sampling rule in (10). Following the same analysis as
in Lemma 4, we can show that H(P, ω)−1 is a continuous function with respect to (P, ω). More-
over, Ω is a simplex, which is a compact, convex, and non-empty set. In addition, H(P, ω)−1 is
concave with respect to ω, because it can be expressed as the infimum over linear functions of ω.
By Berge’s theorem, the solution set M∗(P) is convex, so any linear combination of elements in
M∗(P) also belongs to M∗(P). Hence, this modification does not affect the convergence of the
empirical sampling ratio ω(t).
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A.6 PROOF OF LEMMA 1

Proof. This lemma establishes that the relaxed complexity U∗(P) serves as an upper bound on the
instance-dependent complexityH∗(P). Note that for each ω ∈ Ω, cj ∈ C, we have

Γ(ω, cj ,P) = min

(
min

xi ̸=xi∗(cj)

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj) ∪ D3(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D2(cj) ∪ D3(cj)

)
,

)
(b− β⊤ϕ(xi∗(cj), cj))

2

∥ϕ(xi∗(cj), cj)∥2Λ(ω)−1

)
≥ min

xi∈X

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ {xi∗(cj)} ∪ D2(cj) ∪ D3(cj)

))
= ΓS(ω, cj ,P).

(61)

Then, we conclude that

H∗(P)−1 = max
ω∈Ω

min
cj∈C

Γ(ω, cj ,P) ≥ max
ω∈Ω

min
cj∈C

ΓS(ω, cj ,P) = U∗(P)−1, (62)

and therefore U∗(P) ≤ H∗(P).

A.7 RELAXATION GAP ANALYSIS

In this subsection, we analyze the gap between the relaxed bound U∗(P) and the original bound
H∗(P).
Define the constant

γ = inf

{
ρ ∈ R+ :

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

ρ ≥
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

, ∀xi ∈ D3(cj), cj ∈ C
}
.

(63)

By definition of γ, it holds that

Γ(ω, cj ,P) = min
xi ̸=xi∗(cj)

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj) ∪ D3(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D2(cj) ∪ D3(cj)

)
,
(b− β⊤ϕ(xi∗(cj), cj))

2

∥ϕ(xi∗(cj), cj)∥2Λ(ω)−1

)
≤ (1 + γ) min

xi∈X

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ {xi∗(cj)} ∪ D2(cj) ∪ D3(cj)

))
= (1 + γ)ΓS(ω, cj ,P).

Then, it is easy to verify that
U∗(P) ≤ (1 + γ)H∗(P) (64)

by using the definition of U∗(P) andH∗(P). We use a numerical example to compare the approxi-
mation ratio Γ(ω, cj ,P)/ΓS(ω, cj ,P) under different values of the constraint threshold b. For each
b, we randomly generate 1000 problem instances with M = 2 and K = 4. The expected objective
and constraint values of all arms lie within [0, 1]. We then calculate Γ(ω, cj ,P) and ΓS(ω, cj ,P)
using a uniform sampling ratio ω for the first covariate. Figure 2 shows the average ratio under
different constraint thresholds b. The results show that the approximation ratio is close to 1 as the
constraint threshold b increases.
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Figure 2: Average ratio under different constraint thresholds b

We also propose an alternative relaxed bound Ũ∗(P) by partitioning the setD3(cj) into two subsets:
M1(cj) andM2(cj) where arms inM1(cj) are relatively easy to identify as suboptimal, i.e.,

M1(cj) =

{
xi ∈ D3(cj) :

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

≤
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

}
. (65)

And arms inM2(cj) are easy to identify as infeasible, i.e.,

M2(cj) =

{
xi ∈ D3(cj) :

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

>
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

}
. (66)

Based on this, we define a new surrogate objective function:

Γ̃s(ω, cj ,P) = min
xi∈X

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj) ∪M1(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ {xi∗(cj)} ∪ D2(cj) ∪M2(cj)

))
.

(67)

Using this surrogate function, we can show that:

H∗(P) ≤ Ũ∗(P) ≤ 2H∗(P). (68)

The bound for U∗(P) becomes tight when the objective values of the arms in D3(cj) are close to
that of the best arm, implying that arms in D3(cj) can be easily identified as infeasible rather than
suboptimal. In this case, the constant γ is close to zero. However, when the constraint performance
of arms in D3(cj) is close to the threshold, γ may exceed 1, and the second bound Ũ∗(P) should be
used. Since the theoretical analysis of the two bounds is essentially the same, except that the second
bound requires constructing two subsets during implementation, without loss of generality, we focus
on U∗(P) in the main paper for notational simplicity.

A.8 PROOF OF THEOREM 2

Proof. Consider the following primal optimization problem in (13):

max
ω∈Ω

min
cj∈C

Γs(ω, cj ,P), (69)

where

Γs(ω, cj ,P) = min
xi∈X

(
((ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤θ)2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ D1(cj)

)
+

(b− β⊤ϕ(xi, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

I
(
xi ∈ {xi∗(cj)} ∪ D2(cj) ∪ D3(cj)

))
.

(70)
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This problem is equivalent to:

min
ω∈Ω

max
cj∈C,xi∈X

(∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

((ϕ(xi∗(cj), cj)− ϕ(xi, cj))⊤θ)2
I
(
xi ∈ D1(cj)

)
+
∥ϕ(xi, cj)∥2Λ(ω)−1

(b− β⊤ϕ(xi, cj))2
I
(
xi ∈ {xi∗(cj)} ∪ D2(cj) ∪ D3(cj)

))
.

(71)

By introducing an auxiliary variable ξ, we can reformulate the problem as:

min
ξ,ω

ξ

s.t.
∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

((ϕ(xi∗(cj), cj)− ϕ(xi, cj))⊤θ)2
≤ ξ,∀cj ∈ C, xi ∈ D1(cj)

∥ϕ(xi, cj)∥2Λ(ω)−1

(b− β⊤ϕ(xi, cj))2
≤ ξ,∀cj ∈ C, xi ∈ {xi∗(cj)} ∪ D2(cj) ∪ D3(cj)∑

h∈[D]

ωh = 1

ωh ≥ 0,∀h ∈ [D]

(72)

Since we only sample from D design points, the corresponding design matrix Φ ∈ RD×D is invert-
ible. Then, we have that

Λ(ω)−1 =

( ∑
h∈[D]

ωh
ϕ(zh)ϕ(zh)

⊤

2σ2
h

)−1

= (ΦTΣ−1Φ)−1 = Φ−1Σ(ΦT )−1, (73)

where Σ is a diagonal matrix with elements {2σ2
h/ωh}h∈[D].

Now, for each covariate cj ∈ C and each arm xi ∈ D1(cj), we have

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

((ϕ(xi∗(cj), cj)− ϕ(xi, cj))⊤θ)2

=
(ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤Λ(ω)−1(ϕ(xi∗(cj), cj)− ϕ(xi, cj))

((ϕ(xi∗(cj), cj)− ϕ(xi, cj))⊤θ)2

=
(ϕ(xi∗(cj), cj)− ϕ(xi, cj))

⊤Φ−1Σ(ΦT )−1(ϕ(xi∗(cj), cj)− ϕ(xi, cj))

((ϕ(xi∗(cj), cj)− ϕ(xi, cj))⊤θ)2

=2
∑
h∈[D]

σ2
h[(Φ

T )−1(ϕ(xi∗(cj), cj)− ϕ(xi, cj))]
2
h

ωh((ϕ(xi∗(cj), cj)− ϕ(xi, cj))⊤θ)2

=2
∑
h∈[D]

χh(xi, cj)

ωh
,

(74)

where we define

χh(xi, cj) =
σ2
h[(Φ

T )−1(ϕ(xi∗(cj), cj)− ϕ(xi, cj))]
2
h

((ϕ(xi∗(cj), cj)− ϕ(xi, cj))⊤θ)2
, (75)

and [v]h denotes the hth element of the vector v.
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Similarly, for each covariate cj ∈ C and each arm xi ∈ {xi∗(cj)} ∪ D2(cj) ∪ D3(cj), we have

∥ϕ(xi, cj)∥2Λ(ω)−1

(b− β⊤ϕ(xi, cj))2

=
ϕ(xi, cj)

⊤Λ(ω)−1ϕ(xi, cj)

(b− β⊤ϕ(xi, cj))2

=
ϕ(xi, cj)

⊤Φ−1Σ(ΦT )−1ϕ(xi, cj)

(b− β⊤ϕ(xi, cj))2

=2
∑
h∈[D]

σ2
h[(Φ

T )−1ϕ(xi, cj)]
2
h

ωh(b− β⊤ϕ(xi, cj))2

=2
∑
h∈[D]

χh(xi, cj)

ωh
,

(76)

where we define

χh(xi, cj) =
σ2
h[(Φ

T )−1ϕ(xi, cj)]
2
h

(b− β⊤ϕ(xi, cj))2
. (77)

Hence, the optimization problem becomes:
min
ω,ξ

ξ

s.t.
∑
h∈[D]

χh(xi, cj)

ωh
≤ ξ,∀cj ∈ C, xi ∈ X (λij)

∑
h∈[D]

ωh = 1, (ν)

ωh ≥ 0,∀h ∈ [D]

(78)

The corresponding Lagrangian function is:

L(ξ, ω, λ, ν) = ξ +
∑

j∈[M ],i∈[K]

λij

( ∑
h∈[D]

χh(xi, cj)

ωh
− ξ

)
+ ν

( ∑
h∈[D]

ωh − 1

)
. (79)

Let (ξ∗, ω∗, λ∗, ν∗) denote the optimal primal-dual solution. The KKT conditions for this optimiza-
tion problem are: ∑

j∈[M ],i∈[K]

λ∗
ij = 1

−
∑

j∈[M ],i∈[K]

λ∗
ij

χh(xi, cj)

(ω∗
h)

2
+ ν∗ = 0

λ∗
ij

( ∑
h∈[D]

χh(xi, cj)

ω∗
h

− ξ∗
)

= 0,∀j ∈ [M ], i ∈ [K]

λ∗
ij ≥ 0,∀j ∈ [M ], i ∈ [K]∑

h∈[D]

χh(xi, cj)

ω∗
h

≤ ξ,∀cj ∈ C, xi ∈ X

∑
h∈[D]

ω∗
h = 1

ω∗
h ≥ 0,∀h ∈ [D].

(80)

From the second and sixth equations, we deduce the optimal form of ω∗
h. Solving the second equa-

tion, we obtain:

ω∗
h =

√∑
j∈[M ],i∈[K] λ

∗
ijχh(xi, cj)

ν∗
, (81)
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Using the sixth equation, we normalize the solution:

ω∗
h =

√∑
j∈[M ],i∈[K] λ

∗
ijχh(xi, cj)∑

l∈[D]

√∑
j∈[M ],i∈[K] λ

∗
ijχl(xi, cj)

. (82)

We now derive the Lagrange dual function.

g(λ, ν) = inf
ξ,ω

L(ξ, ω, λ, ν)

= inf
ξ,ω

(1−
∑

j∈[M ],i∈[K]

λij)ξ +
∑

j∈[M ],i∈[K]

λij

∑
h∈[D]

χh(xi, cj)

ωh
+ ν(

∑
h∈[D]

ωh − 1)

=

{
infω

∑
j∈[M ],i∈[K] λij

∑
h∈[D]

χh(xi,cj)
ωh

+ ν(
∑

h∈[D] ωh − 1) if
∑

j∈[M ],i∈[K] λij = 1, λij ≥ 0

−∞ o.w.

=

{
2
√
ν
∑

h∈[D]

√∑
j∈[M ],i∈[K] λijχh(xi, cj) if

∑
j∈[M ],i∈[K] λij = 1, λij ≥ 0

−∞ o.w.
(83)

By optimizing the variable ν, we can obtain that the dual optimization problem is

max
λ

( ∑
h∈[D]

√ ∑
j∈[M ],i∈[K]

λijχh(xi, cj)

)2

s.t.
∑

j∈[M ],i∈[K]

λij = 1

λij ≥ 0,∀i ∈ [K], j ∈ [M ].

(84)

A.9 PROOF OF LEMMA 2

Proof. The convexity of the primal optimization problem (13) can be established under more general
distributional assumptions.

As shown in the proof of Theorem 1, the optimization problem (13) can be equivalently derived
from the following formulation:

max
ω∈Ω

min
cj∈C

min

(
inf

P̃∈O(xi∗(cj)
,cj)
H(ω,P, P̃)−1, min

xi∈D1(cj)
inf

P̃∈O1(xi,cj)
H(ω,P, P̃)−1

min
xi∈D2(cj)∪D3(cj)

inf
P̃∈O2(xi,cj)

H(ω,P, P̃)−1

)
,

(85)

where the sets and functionals are defined as follows:

O(xi∗(cj ,P), cj) =

{
P̃ ∈ S : β̃⊤ϕ(xi∗(cj ,P), cj) > b

}
,

O1(xi, cj) =

{
P̃ ∈ S : θ̃⊤(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) > 0

}
,

O2(xi, cj) =

{
P̃ ∈ S : β̃⊤ϕ(xi, cj) ≤ b

}
,

H(ω,P, P̃)−1 =
∑
h∈[D]

ωh

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)
.

(86)
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Note that H(ω,P, P̃)−1 is a convex function of P̃ , due to the convexity of the KL divergence
(see Wang et al. (2021)). Therefore, the following problems are convex programs for fixed ω ∈ Ω:

L(xi∗(cj), ω,P) = inf
P̃∈O(xi∗(cj)

,cj)
H(ω,P, P̃)−1

L1(xi, ω,P) = inf
P̃∈O1(xi,cj)

H(ω,P, P̃)−1

L2(xi, ω,P) = inf
P̃∈O2(xi,cj)

H(ω,P, P̃)−1

(87)

The resulting functions L(xi∗(cj), ω,P),L1(xi, ω,P), and L2(xi, ω,P) are concave in ω, as each
is defined as the point-wise infimum of functions that are concave in ω. Consequently, the overall
objective in (85) is concave in ω, and the problem is a convex maximization problem. Moreover, it
is straightforward to verify that this problem is strictly feasible. Hence, by standard results in convex
optimization, strong duality holds.

By (78), this optimization problem is equivalent to

min
ω

f(ω) = max
cj∈C,xi∈X

∑
h∈[D]

χh(xi, cj)

ωh

s.t.
∑
h∈[D]

ωh = 1,

ωh ≥ 0,∀h ∈ [D]

(88)

Assume that ω and ω′ are two optimal solutions such that f(ω) = f(ω∗) = ξ∗. For any λ ∈ (0, 1),
define ω′′ = λω+(1−λ)ω′. Then, by the strong convexity of 1/ωh on the interval (0,∞), we have

1

ω′′
j

≤ λ
1

ωj
+ (1− λ)

1

ω′
j

. (89)

Since χh(xi, cj) > 0 for all h ∈ [D], cj ∈ C, and xi ∈ X , it follows that∑
h∈[D]

χh(xi, cj)

ω′′
j

≤ λ
∑
h∈[D]

χh(xi, cj)

ωj
+ (1− λ)

χh(xi, cj)

ω′
j

= ξ∗. (90)

If ω ̸= ω′, then the inequality holds strictly, contradicting the assumption that both ω and ω′ are
optimal solutions. Hence, the optimal solution is unique.

A.10 PROOF OF LEMMA 3

Proof. Consider the dual optimization problem stated in Theorem 2:

min
λ
Q(λ,P) = −

∑
h∈[D]

√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj)

s.t.
∑

i∈[K], j∈[M ]

λij = 1, (ϕ)

λij ≥ 0, ∀i ∈ [K], j ∈ [M ]. (vij)

(91)

For any feasible solution λ, the set of all feasible directions at λ is defined by:

F(λ) =
{
d ∈ RKM :

∑
j∈[M ],i∈[K]

dij = 0, dij ≥ 0, if λij = 0

}
. (92)

The Lagrangian function for this problem is:

L(λ, ϕ, v) = −
∑
h∈[D]

√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj) + ϕ

( ∑
i∈[K], j∈[M ]

λij − 1

)
−

∑
i∈[K], j∈[M ]

vijλij .

(93)
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Let (λ∗, ϕ∗, v∗) denote an optimal primal-dual solution. The KKT conditions of this optimization
problem are given by:

−1

2

∑
h∈[D]

χh(xi, cj)√∑
i∈[K], j∈[M ] λ

∗
ijχh(xi, cj)

+ ϕ∗ − v∗ij = 0

v∗ijλ
∗
ij = 0

λ∗
ij ≥ 0∑

i∈[K],j∈[M ]

λ∗
ij = 1

v∗ij ≥ 0

(94)

From these KKT conditions, we observe that a feasible solution λ∗ is a stationary point if and only
if there exists a ϕ∗ such that if λ∗

ij = 0, then

ϕ∗ ≥ 1

2

∑
h∈[D]

χh(xi, cj)√∑
i∈[K], j∈[M ] λ

∗
ijχh(xi, cj)

(95)

and if λ∗
ij > 0, then

ϕ∗ =
1

2

∑
h∈[D]

χh(xi, cj)√∑
i∈[K], j∈[M ] λ

∗
ijχh(xi, cj)

. (96)

This implies that a feasible solution λ is a stationary point of problem (14) if and only if:

−1

2

∑
h∈[D]

χh(xi, cj)√∑
i∈[K], j∈[M ] λ

∗
ijχh(xi, cj)

≥ −1

2

∑
h∈[D]

χh(xi′ , cj′)√∑
i∈[K], j∈[M ] λ

∗
ijχh(xi, cj)

, (97)

for any (i, j) ∈ {(a, b) : a ∈ [K], b ∈ [M ]} and (i′, j′) ∈ {(a, b) : a ∈ [K], b ∈ [M ], λab > 0}.
Now, fix a feasible solution λ with λmn > 0. Define the reduced set:

Dm,n(λ) =

{
eij − emn : i ̸= m or j ̸= n

}⋃{
emn − eij : i ̸= m or j ̸= n, λij > 0

}
, (98)

where eij ∈ RKM is obtained by letting λij equal to one and other elements equal to zero.

According to Proposition 3.4 of Lin et al. (2009), we have:

Dm,n ⊂ F(λ), Conv(Dm,n(λ)) = F(λ). (99)

Combining this with the stationary condition (97), we conclude that a feasible solution λ is a sta-
tionary point of problem (14) if and only if:

∇Q(λ,P)⊤d ≥ 0, ∀d ∈ Dm,n(λ). (100)

A.11 PROOF OF THEOREM 3

The proof of Theorem 3 relies on several auxiliary lemmas. Lemma 4 establishes the necessary
continuity arguments. Lemma 5 proves the δ-PAC property of the proposed algorithm. Lemmas 6
and 7 present known results from the existing literature. Lemma 8 establishes the convergence of the
gradient descent procedures in Algorithm 2. Finally, we derive upper bounds—both almost surely
and in expectation—for the stopping time τ .

Lemma 4. Let U(ω,P)−1 = mincj∈C Γ
s(ω, cj ,P) denote the objective function of problem (14).

Then, U(ω,P)−1 is continuous function with respect to both ω and P . Moreover, the optimal sam-
pling ratio ω∗ satisfies ω∗

h > 0 for all h ∈ [D].
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Proof. Recall the following notation from the proof of Lemma 2:

O(xi∗(cj ,P), cj) =

{
P̃ ∈ S : β̃⊤ϕ(xi∗(cj ,P), cj) > b

}
,

O1(xi, cj) =

{
P̃ ∈ S : θ̃⊤(ϕ(xi, cj)− ϕ(xi∗(cj ,P), cj)) > 0

}
,

O2(xi, cj) =

{
P̃ ∈ S : β̃⊤ϕ(xi, cj) ≤ b

}
,

H(ω,P, P̃)−1 =
∑
h∈[D]

ωh

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)
.

(101)

Define the alternative set of problem instances for a context cj and problem instance P as:

A′(cj ,P) = O(xi∗(cj ,P), cj)
⋃( ⋃

xi∈D1(cj)

O1(xi, cj)

)⋃( ⋃
xi∈D2(cj)∪D3(cj)

O2(xi, cj)

)
,

(102)
and A′(P) =

⋃
cj∈C A′(cj ,P).

From Lemma 2, for a given context cj ∈ C, we have:

U(ω,P)−1 = min
cj∈C

Γs(ω, cj ,P)

= min
cj∈C

inf
P̃∈A′(cj ,P)

H(ω,P, P̃)−1

= min
cj∈C

inf
P̃∈A′(cj ,P)

∑
h∈[D]

ωh

(
d(f(zh), f̃(zh)) + d(g(zh), g̃(zh))

)

= min
cj∈C

inf
P̃∈A′(cj ,P)

∑
h∈[D]

ωh

(
(θ − θ̃)⊤ϕ(zh)ϕ(zh)

⊤(θ − θ̃)

2σ2
h

+
(β − β̃)⊤ϕ(zh)ϕ(zh)

⊤(β − β̃)

2σ2
h

)
= min

cj∈C
inf

P̃∈A′(cj ,P)
(θ − θ̃)⊤Λ(ω)(θ − θ̃) + (β − β̃)⊤Λ(ω)(β − β̃).

(103)

Now, consider a sequence (P̂(t), ω(t)) such that: limt→∞(P̂(t), ω(t)) = (P, ω). By definition of
xi∗(cj ,P),D1(cj),D2(cj) and D3(cj), we obtain limt→∞A′(cj , P̂(t)) = A(cj ,P).
Therefore, for any ϵ > 0, there exists t0 > 0 such that for all t ≥ t0, we have

∥(P̂(t), ω(t))− (P, ω)∥∞ ≤ ϵ, A′(cj , P̂(t)) = A(cj ,P) (104)

Since H(ω,P, P̃)−1 is a polynomial in its arguments, it is continuous with respect to ω,P . Thus,
there exists t1 > 0 such that for any t ≥ t1:∣∣∣∣H(ωt, P̂(t), P̃)−1 −H(ω,P, P̃)−1

∣∣∣∣ ≤ ϵ, (105)

Combining both observations, there exists t2 > max(t0, t1), such that for any t > t2 we have∣∣∣∣U(ωt, P̂(t))−1 − U(ω,P)−1

∣∣∣∣ = ∣∣∣∣min
cj∈C

inf
P̃∈A′(cj ,P)

H(ωt, P̂(t), P̃)−1 − min
cj∈C

inf
P̃∈A′(cj ,P)

H(ω,P, P̃)−1

∣∣∣∣
≤ ϵ,

(106)
which establishes the continuity of U(ω,P)−1.

Now, let ω∗ ∈ Ω denote the optimal solution of problem (13). Suppose, for contradiction, that
there exists h ∈ [D] such that ω∗

h = 0. Then, one can construct an alternative problem instance
P̃ ∈ A′(P) such that mincj∈C Γ(ω

∗
h, cj ,P) = 0. This contradicts the optimality of ω∗ because we

can always choose a feasible uniform sampling rule ω̃ ∈ Ω with ω̃h = 1/D,∀h ∈ [D], which yields
mincj∈C Γ(ω

∗
h, cj ,P) > 0. Hence, it must hold that ω∗

h > 0 for all h ∈ [D].
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Lemma 5. The duality-based decomposition algorithm is δ-PAC.

Proof. The stopping rule of the duality-based decomposition algorithm is

τ = inf

{
t ∈ N : tU(P̂(t), ω(t))−1 > ρ(t, δ)

}
, (107)

where U(P̂(t), ω(t))−1 = mincj∈C Γ
s(ω(t), cj , P̂(t)). To establish the δ-PAC property of the

duality-based decomposition algorithm, we must show that

P
(
τ <∞,∃cj ∈ C, xî(cj ;τ)

̸= xi∗(cj)

)
≤ δ. (108)

We begin by noting that

P
(
τ <∞,∃cj ∈ C, xî(cj ;τ)

̸= xi∗(cj)

)
≤P

(
∃t ∈ N, ∃cj ∈ C, xî(cj ;τ)

̸= xi∗(cj), tU(P̂(t), ωt)
−1 ≥ ρ(t, δ)

)
=P

(
∃t ∈ N, ∃cj ∈ C, xî(cj ;τ)

̸= xi∗(cj), inf
P̃∈A′(P̂(t))

tH(ωt, P̂(t), P̃)−1 ≥ ρ(t, δ)

)
≤P

(
∃t ∈ N, tH(ωt, P̂(t),P)−1 ≥ ρ(t, δ)

)
=P

(
∃t ∈ N,

∑
h∈[D]

Nh(d(F̄ (zh; t), f(zh)) + d(Ḡ(zh; t), g(zh))) ≥ ρ(t, δ)

)

≤
∞∑
t=1

P
([ ∑

h∈[D]

Nhd(F̄ (zh; t), f(zh)) >
1

2
ρ(t, δ)

]⋃[ ∑
h∈[D]

Nhd(Ḡ(zh; t), g(zh)) >
1

2
ρ(t, δ)

])

≤
∞∑
t=1

P
([ ∑

h∈[D]

Nhd(F̄ (zh; t), f(zh)) >
1

2
ρ(t, δ)

])
+

∞∑
t=1

P
([ ∑

h∈[D]

Nhd(Ḡ(zh; t), g(zh)) >
1

2
ρ(t, δ)

])
(109)

According to Proposition 12 of Garivier & Kaufmann (2016), we have

P
([ ∑

h∈[D]

Nhd(F̄ (zh; t), f(zh)) >
1

2
ρ(t, δ)

])
≤ e−

1
2ρ(t,δ)

(
ρ(t, δ)2 log t

4D

)D

eD+1. (110)

Similarly, an identical bound holds for the second term

P
([ ∑

h∈[D]

Nhd(Ḡ(zh; t), g(zh)) >
1

2
ρ(t, δ)

])
. (111)

Thus, if we choose ρ(t, δ) = log(Ctα/δ), and let C be a constant such that

∞∑
t=1

e−
1
2ρ(t,δ)

(
ρ(t, δ)2 log t

4D

)D

eD+1 ≤ δ

2
, (112)

then both infinite series are bounded above by δ/2, leading to the final result:

P
(
τ <∞,∃cj ∈ C, xî(cj ;τ)

̸= xi∗(cj)

)
≤ δ. (113)
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The convergence analysis of the duality-based decomposition algorithm relies on a line search pro-
cedure to determine the step size. For completeness, we include the canonical line search algorithm
along with its associated theoretical results.

Algorithm 3: Line Search Algorithm
1 Input: Descent direction d, maximum feasible step size smax, the current feasible solution λ,

problem instance P , parameter α and ν ∈ (0, 1).
2 Set s = smax

3 while Q(λ+ sd,P) > Q(λ,P) + αs∇Q(λ,P)⊤d do
4 s← vs

5 return the step size s.

Lemma 6 (Proposition 4.1 in Lin et al. (2009)). Define a subsequence T ⊂ {1, 2 . . .} such that
the line search algorithm is invoked at time steps t ∈ T . Let {λ(t)}t∈T denote the corresponding
sequence of solutions, and let {d(t)}t∈T denote the associated descent directions. Then, the line
search algorithm terminates in a finite number of iterations, producing a step size s(t) that satisfies

Q(λ(t− 1) + s(t)d(t), P̂(t)) ≤ Q(λ(t), P̂(t)) + αs(t)∇Q(λ(t− 1), P̂(t))⊤d(t). (114)

Furthermore, suppose that limt→∞ λ(t) = λ̄, and

lim
t→∞

Q(λ(t− 1),P)−Q(λ(t− 1) + s(t)d(t),P) = 0. (115)

Then, it follows that
lim
t→∞

smax∇Q(λ(t− 1),P)⊤d(t) = 0. (116)

Lemma 7 (Lemma 17 in Garivier & Kaufmann (2016)). Consider the following sampling rule

zh(t+1) =

{
argminzh∈Bt

Nh(t) if Bt ̸= ∅
argminzh∈Z Nh(t)− tγh(P̂(t)) otherwise

, (117)

where Bt = {zh ∈ Z : Nh(t) <
√
t − D/2}. Then, for every design point zh ∈ Z , we have

Nh(t) ≥ (
√
t−D/2)+ − 1. Furthermore, for any ϵ > 0 and t0 > 0 such that

sup
t≥t0

max
h∈[D]

∣∣∣∣γh(P̂(t))− ω∗
h(P)

∣∣∣∣ ≤ ϵ, (118)

there exists t1 > 0 such that

sup
t≥t1

max
h∈[D]

∣∣∣∣Nh(t)

t
− ω∗

h(P)
∣∣∣∣ ≤ 3(D − 1)ϵ. (119)

The following lemma establishes the convergence of the gradient descent procedure in Algorithm 2.
The analysis follows the proof of Proposition 6.1 in Lin et al. (2009) and Theorem 5 in Zhou et al.
(2024).
Lemma 8. Let {λ(t)} be the sequence generated by the duality-based algorithm. Then every limit
point of this sequence is a stationary point of the dual optimization problem (14).

Proof. According to Lemma 7, the sampling rule of the duality-based decomposition algorithm
guarantees that

Nh(t) ≥ (
√
t−D/2)+ − 1. (120)

This lower bound implies that the number of samples allocated to each design point grows un-
bounded as t → ∞. Consequently, by the strong law of large numbers, the estimators converge
almost surely:

θ̂(t)→ θ, β̂(t)→ β and P̂(t)→ P (121)
As a result, the estimated best arm xî(cj ;t)

converges almost surely to the true best arm xi∗(cj) for all
cj ∈ C almost surely. This establishes the consistency of the proposed duality-based decomposition
algorithm.
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We now establish useful continuity properties of the objective function Q(λ,P) and its gradient
∇Q(λ,P). Recall that

Q(λ,P) = −
∑
h∈[D]

√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj ,P), (122)

and for i ∈ [K], j ∈ [M ],

[∇Q(λ,P)]ij = −
∑
h∈[D]

χh(xi, cj ,P)
2
√∑

i∈[K], j∈[M ] λijχh(xi, cj ,P)
. (123)

It is straightforward to verify thatQ(λ,P) is continuous in λ. We now show that it is also continuous
in P . Since P̂(t))→ P and by definition of χh(xi, cj), for sufficiently large t, we have

|χh(xi, cj ,P)− χh(xi, cj , P̂(t))| ≤ L∥P − P̂(t)∥∞, (124)

for some constant L > 0. Then,

|Q(λ,P)−Q(λ, P̂(t))|

=

∣∣∣∣ ∑
h∈[D]

√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj ,P)−
∑
h∈[D]

√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj , P̂(t))
∣∣∣∣

≤
∑
h∈[D]

∣∣∣∣√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj ,P)−
√ ∑

i∈[K], j∈[M ]

λijχh(xi, cj , P̂(t))
∣∣∣∣

≤
∑
h∈[D]

∑
i∈[K], j∈[M ] λij |χh(xi, cj ,P)− χh(xi, cj , P̂(t))|√∑

i∈[K], j∈[M ] λijχh(xi, cj ,P) +
√∑

i∈[K],j∈[M ] λijχh(xi, cj , P̂(t))

≤
∑
h∈[D]

∑
i∈[K], j∈[M ]

|χh(xi, cj ,P)− χh(xi, cj , P̂(t)))|√
χh(xi, cj ,P) +

√
χh(xi, cj , P̂(t))

≤DKML√
C0

∥P̂(t)− P∥∞

≜C̄∥P̂(t)− P∥∞,

(125)

where C0 = mini∈[K],j∈[M ],h∈[D] inft χh(xi, cj , P̂(t)) > 0 is some constant and we define C̄ =

DKML/
√
C0.

We next show that ∇Q(λ, P̂(t)) is continuous in λ. Following the approach of Theorem 5 in Zhou
et al. (2024), it holds that

lim inf
t→∞

∑
i∈[K],j∈[M ]

λij(t)χh(xi, cj , P̂(t)) > 0,∀i ∈ [K], j ∈ [M ], h ∈ [D]. (126)
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Let Cmin > 0 be a lower bound for
∑

i∈[K],j∈[M ] λij(t)χh(xi, cj , P̂(t)) for all i ∈ [K], j ∈
[M ], h ∈ [D] for sufficiently large t. Then,∣∣∣∣[∇Q(λ, P̂(t))]ij − [∇Q(λ′, P̂(t))]ij

∣∣∣∣
=

∣∣∣∣ ∑
h∈[D]

χh(xi, cj , P̂(t))

2
√∑

i∈[K], j∈[M ] λijχh(xi, cj , P̂(t))
−

∑
h∈[D]

χh(xi, cj , P̂(t))

2
√∑

i∈[K], j∈[M ] λ
′
ijχh(xi, cj , P̂(t))

∣∣∣∣
≤

∑
h∈[D]

χh(xi, cj , P̂(t))
2

∣∣∣∣ 1√∑
i∈[K], j∈[M ] λijχh(xi, cj , P̂(t))

− 1√∑
i∈[K], j∈[M ] λ

′
ijχh(xi, cj , P̂(t))

∣∣∣∣
≤

∑
h∈[D]

C1

4C
3
2
min

∣∣∣∣ ∑
i∈[K], j∈[M ]

(λ′
ij − λij)χh(xi, cj , P̂(t))

∣∣∣∣
≤DKMC2

1

4C
3
2
min

∥λ′ − λ∥∞

≜C̃∥λ′ − λ∥∞,
(127)

where C1 = maxi∈[M ],j∈[K],h∈[D] supt χh(xi, cj , P̂(t)) > 0 is some constant and we define C̃ =

DKMC2
1/4C

3
2
min.

Finally, we show that ∇Q(λ,P) is continuous with respect to P . We consider∣∣∣∣[∇Q(λ, P̂(t))]ij − [∇Q(λ,P)]ij
∣∣∣∣

=

∣∣∣∣ ∑
h∈[D]

χh(xi, cj , P̂(t))

2
√∑

i∈[K], j∈[M ] λijχh(xi, cj , P̂(t))
−

∑
h∈[D]

χh(xi, cj ,P)
2
√∑

i∈[K], j∈[M ] λijχh(xi, cj ,P)

∣∣∣∣
≤

∑
h∈[D]

∣∣∣∣ χh(xi, cj , P̂(t))

2
√∑

i∈[K], j∈[M ] λijχh(xi, cj , P̂(t))
− χh(xi, cj ,P)

2
√∑

i∈[K], j∈[M ] λijχh(xi, cj ,P)

∣∣∣∣
=

∑
h∈[D]

1

2

∣∣∣∣χh(xi, cj , P̂(t))
√∑

i∈[K], j∈[M ] λijχh(xi, cj ,P)− χh(xi, cj ,P)
√∑

i∈[K], j∈[M ] λijχh(xi, cj , P̂(t))√∑
i∈[K], j∈[M ] λijχh(xi, cj , P̂(t))

√∑
i∈[K], j∈[M ] λijχh(xi, cj ,P)

∣∣∣∣
≤

∑
h∈[D]

1

2Cmin

∣∣∣∣χh(xi, cj , P̂(t))
√ ∑

i∈[K], j∈[M ]

λijχh(xi, cj ,P)− χh(xi, cj , P̂(t))
√ ∑

i∈[K], j∈[M ]

λijχh(xi, cj , P̂(t))
∣∣∣∣

+

∣∣∣∣χh(xi, cj , P̂(t))
√ ∑

i∈[K], j∈[M ]

λijχh(xi, cj , P̂(t))− χh(xi, cj ,P)
√ ∑

i∈[K], j∈[M ]

λijχh(xi, cj , P̂(t))
∣∣∣∣

=
∑
h∈[D]

1

2Cmin

[
χh(xi, cj , P̂(t))

∣∣∣∣√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj ,P)−
√ ∑

i∈[K], j∈[M ]

λijχh(xi, cj , P̂(t))
∣∣∣∣

+

√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj , P̂(t))
∣∣∣∣χh(xi, cj , P̂(t))− χh(xi, cj ,P)

∣∣∣∣]

≤ D

2Cmin
(C1C̄ +

√
C1L)∥P̂(t)− P∥∞

,

(128)

Define a subsequence T ⊂ {1, 2 . . .} such that the line search algorithm is invoked at time step
t ∈ T . Let λ̄ be a limit point of the sequence {λ(t)}. Then, by definition, there exists a subsequence
T1 ⊂ T such that

lim
t→∞,t∈T1

λ(t− 1) = λ̄. (129)
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Since the index pair (m(t), n(t)) ∈ [K]× [M ] takes values from a finite set, we can further extract
a subsequence T2 ⊂ T1 and a fixed index pair (m,n) ∈ [K]× [M ] such that

λmn(t− 1) ≥ η,Dm(t),n(t)(λ(t− 1)) = Dm,n(λ(t− 1)), Conv(Dm,n(λ̄)) = F(λ̄), (130)

where
F(λ̄) = {d ∈ RKM :

∑
j∈[M ],i∈[K]

dij = 0, dij ≥ 0, if λ̄ij = 0}. (131)

denote the set of all feasible directions at λ̄.

We proceed by contradiction. Suppose that λ̄ is not a stationary point of the dual optimization
problem (14). Then, by Lemma 3, there exists a feasible direction d̄ ∈ Dm,n(λ̄) such that

∇Q(λ̄,P)⊤d̄ < 0. (132)

From the previous argument, we know that λ(t − 1) → λ̄ as t → ∞, t ∈ T2. Therefore, for
sufficiently large t ∈ T2, we have that d̄ ∈ Dm,n(λ(t − 1)), due to the continuity of the reduced
feasible direction set with respect to λ. Moreover, since P̂(t)→ P almost surely, and ∇Q(λ,P) is
continuous in its arguments, it follows that for sufficiently large t ∈ T2,

∇Q(λ(t− 1), P̂(t))⊤d̄ < 0. (133)

By Proposition A.1 in Lin et al. (2009), there exists a constant c > 0 such that, for sufficiently large
t, the maximum step size smax(d̄, λ(t − 1)) ≥ c. For simplicity, we denote smax(d̄, λ(t − 1)) by
smax when no ambiguity arises.

The following analysis is motivated by the proof of Theorem 6 in Zhou et al. (2024), aiming to
mitigate the effect of noise and ensure that the objective function is monotone decreasing. Observe
that

Q(λ(t− 1),P)−Q(λ(t),P)
=Q(λ(t− 1),P)−Q(λ(t− 1), P̂(t)) +Q(λ(t− 1), P̂(t))−Q(λ(t), P̂(t))+
Q(λ(t), P̂(t))−Q(λ(t),P)

(134)

By the continuity of Q(λ,P) in P and the law of the iterated logarithm, we have:

Q(λ(t− 1),P)−Q(λ(t− 1), P̂(t)) +Q(λ(t), P̂(t))−Q(λ(t),P) = O(
√
log log t/t) (135)

From the definition of the duality-based decomposition algorithm, for t ∈ T2 and sufficiently large
t, it holds that:

smax(d(t), λ(t− 1))∇Q(λ(t− 1), P̂(t))⊤d(t) ≤ smax(d̄, λ(t− 1))∇Q(λ(t− 1), P̂(t))⊤d̄ < 0
(136)

Since the second derivative of Q(λ, P̂(t)) with respect to each λij is bounded, applying Taylor’s
theorem yields:

Q(λ(t−1)+s(t)d(t), P̂(t)) ≤ Q(λ(t−1), P̂(t))+s(t)∇Q(λ(t−1), P̂(t))⊤d(t)+ s(t)2C̃

2
∥d(t)∥22.

(137)

Hence, the line search stopping condition is satisfied if

Q(λ(t− 1), P̂(t)) + s(t)∇Q(λ(t− 1), P̂(t))⊤d(t) + s(t)2C̃

2
∥d(t)∥22

≤ Q(λ(t− 1), P̂(t)) + αs(t)∇Q(λ(t− 1), P̂(t))⊤d
(138)

Letting s(t) ≤ (α−1)∇Q(λ(t−1),P̂(t))⊤d(t)

C̃
= (α−1)W(t)

C̃
ensures the stopping condition is satisfied.

Now consider two cases: if smax(d(t), λ(t− 1)) ≤ (α−1)W(t)

C̃
, then the step size selected is s(t) =

smax(d(t), λ(t− 1)), and

Q(λ(t− 1), P̂(t))−Q(λ(t), P̂(t)) ≥ −αsmax(d(t), λ(t− 1))W(t). (139)
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Otherwise, the algorithm chooses s(t) = (α−1)W(t)

C̃
, resulting in

Q(λ(t− 1), P̂(t))−Q(λ(t), P̂(t)) ≥ αv(1− α)W(t)2

C̃
. (140)

Therefore, we have that

Q(λ(t− 1), P̂(t))−Q(λ(t), P̂(t)) ≥ min

{
− αsmax(d(t), λ(t− 1))W(t),

αv(1− α)W(t)2

C̃

}
.

(141)

By the definition of Algorithm 2

Q(λ(t− 1), P̂(t))−Q(λ(t), P̂(t)) ≥ Ω

(√
log t

t

)
. (142)

Combining this with the earlier bound on the noise error gives:

Q(λ(t− 1),P)−Q(λ(t),P) ≥ O
(√

log log t

t

)
+Ω

(√
log t

t

)
> 0, (143)

which establishes that the objective function is monotone decreasing for sufficiently large t.

Moreover, note that Q(λ(t− 1),P) is bounded below since, for any feasible λ,

Q(λ,P) = −
∑
h∈[D]

√ ∑
i∈[K], j∈[M ]

λijχh(xi, cj) ≥ −
∑
h∈[D]

√ ∑
i∈[K], j∈[M ]

χh(xi, cj). (144)

Then the sequence {Q(λ(t− 1),P)} will converge to a finite value. By continuity ofQ(λ,P) in λ,
we have:

lim
t→∞,t∈T2

Q(λ(t− 1),P) = Q(λ̄,P), (145)

which means
lim

t→∞,t∈T2

Q(λ(t− 1),P)−Q(λ(t− 1) + s(t)d(t),P) = 0. (146)

From Lemma 6, it follows that:

lim
t→∞

smax(d(t), λ(t− 1))∇Q(λ(t− 1),P)⊤d(t) = 0, (147)

which yields
∇Q(λ̄,P)⊤d̄ = 0 (148)

contradicting the assumed condition in (132). Hence, λ̄ must be a stationary point of the dual
problem (14).

We are now ready to establish the sample complexity upper bound stated in Theorem 3. Our analysis
builds on the framework proposed by Garivier & Kaufmann (2016), which has been widely adopted
in the BAI literature (Juneja & Krishnasamy, 2019; Wang et al., 2021).

Proof. We begin by defining the following clean event:

E =

{
max
h∈[D]

∣∣∣∣Nh(t)

t
− ω∗

h(P)
∣∣∣∣→ 0, P̂(t)→ P

}
. (149)

By Lemma 8, every limit point of the sequence {λ(t)}, generated by the algorithm, is a stationary
point of the dual problem (14).

Moreover, by Lemma 2, strong duality holds. Hence, we can recover a solution sequence γ(P̂(t))
to the primal problem (13) via (16), and every limit point of {γ(P̂(t))} is an optimal solution to the
primal problem. That is, for any ϵ > 0, there exists t0 > 0 such that:

sup
t≥t0

max
h∈[D]

∣∣∣∣γh(P̂(t))− ω∗
h(P)

∣∣∣∣ ≤ ϵ. (150)
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Furthermore, by Lemma 7, there exists t1 > 0 such that

sup
t≥t1

max
h∈[D]

∣∣∣∣Nh(t)

t
− ω∗

h(P)
∣∣∣∣ ≤ 3(D − 1)ϵ. (151)

In addition, since Nh(t) ≥ (
√
t−D/2)+−1, the strong law of large numbers implies that P̂(t)→ P

almost surely. Therefore, we conclude: P(E) = 1.

Condition on the clean event E , by Lemma 4, the function Γs(ω, cj ,P) is continuous in both ω and
P . Thus, for any ϵ > 0, there exists t0 > 0 such that for all t ≥ t0,

U(P̂(t), ωt)
−1 ≥ (1− ϵ)U(P, ω∗(P))−1. (152)

Since ρ(t, δ) = log(Ctα

δ ) = o(t), there exists t1 > 0 such that for all t ≥ t1, we have

ρ(t, δ) ≤ log(1/δ) + ϵU(P, ω∗(P))−1t. (153)

Then, the stopping time τ satisfies:

τ = inf

{
t ∈ N : tU(P̂(t), ω(t))−1 ≥ ρ(t, δ)

}
= t0 + t1 + inf

{
t ∈ N : tU(P̂(t), ω(t))−1 ≥ log(1/δ) + ϵU(P̂(t), ω(t))−1t

}
= t0 + t1 + inf

{
t ∈ N : t(1− ϵ)U(P, ω∗(P))−1 ≥ log(1/δ) + ϵU(P̂(t), ω(t))−1t

}
= t0 + t1 + inf

{
t ∈ N : t(1− 2ϵ)U(P, ω∗(P))−1 ≥ log(1/δ)

}
= t0 + t1 +

U(P, ω∗(P)) log(1/δ)
1− 2ϵ

.

(154)

Therefore,

lim sup
δ→0

τ

log(1/δ)
≤ U(P, ω

∗(P))
1− 2ϵ

, (155)

and letting ϵ→ 0, we obtain

P
(
lim sup

δ→0

τ

log(1/δ)
≤ U∗(P)

)
= 1. (156)

Next, we establish an upper bound on E[τ ]. By Lemma 4, the function U(ω,P)−1 is continuous in
both ω and P . Therefore, for any ϵ > 0, there exists ξ1(ϵ) > 0 such that for all P̂(t), ωt satisfying

∥P̂(t)− P∥∞ ≤ ξ1(ϵ), ∥ωt − ω∗(P)∥∞ ≤ ξ1(ϵ), (157)

we have
U(ωt, P̂(t))−1 ≥ (1− ϵ)U(ω∗(P),P)−1. (158)

Since the sequence γ(P̂(t)) converges to a stationary point ω∗(P) of the primal optimization prob-
lem, there exists ξ2(ϵ) > 0 such that for any P̂(t) with

∥P̂(t)− P∥∞ ≤ ξ2(ϵ), (159)
we have

∥γ(P̂(t))− ω∗(P)∥∞ <
ξ1(ϵ)

3(D − 1)
. (160)

Define ξ(ϵ) = min{ξ1(ϵ), ξ2(ϵ)}, define the event

ET =

T⋂
t=T 1/4

{∥P̂(t)− P∥∞ ≤ ξ(ϵ)}. (161)
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Let ϵ1 = ξ1(ϵ)
3(D−1) , then by Lemma 7, there exists a constant T (ϵ1) such that for all T ≥ T (ϵ1), on

the event ET , we have for all t ≥ T 1/2,

∥ωt − ω∗(P)∥∞ ≤ 3(D − 1)ϵ1 = ξ1(ϵ). (162)

Therefore, let T ≥ T (ϵ1), on the event ET , for all ∀t ≥ T 1/2, we have

U(ωt, P̂(t))−1 ≥ (1− ϵ)U(ω∗(P),P)−1. (163)

This leads to the bound:

min(τ, T ) ≤ T 1/2 +

T∑
t=T 1/2

I(τ > t)

≤ T 1/2 +

T∑
t=T 1/2

I(tU(ωt, P̂(t))−1 ≤ ρ(t, δ))

≤ T 1/2 +

T∑
t=T 1/2

I(t ≤ ρ(T, δ)

(1− ϵ)U(ω∗(P),P)−1
)

≤ T 1/2 +
ρ(T, δ)U(ω∗(P),P)

(1− ϵ)
.

(164)

Define

T ∗
1 (δ) = inf

{
T ∈ N : T 1/2 +

ρ(T, δ)U(ω∗(P),P)
1− ϵ

≤ T

}
(165)

Then for all T ≥ max(T (ϵ1), T
∗
1 (δ)), it holds that ET ⊂ (τ ≤ T ).

Thus, we obtain:

E[τ ] =
∞∑

T=1

P(τ ≥ T )

≤ T (ϵ1) + T ∗
1 (δ) +

∞∑
T=1

P(τ ≥ T )

= T (ϵ1) + T ∗
1 (δ) +

∞∑
T=1

(
P(ET )P(τ ≥ T |ET ) + P(EcT )P(τ ≥ T |EcT )

)

≤ T (ϵ1) + T ∗
1 (δ) +

∞∑
T=1

P(EcT )

(166)

By Lemma 18 of Garivier & Kaufmann (2016), we know

T ∗
1 (δ) =

U(ω∗(P),P)
1− ϵ

(O(log(1/δ)) +O(log log(1/δ))) (167)

To upper bound
∑∞

T=1 P(EcT ), observe:

P(EcT )

=P
( T⋃

t=T 1/4

{
∥P̂(t)− P∥∞ > ξ(ϵ)

})

≤
T∑

t=T 1/4

D∑
h=1

P
(∣∣∣∣F̄ (zh; t)− f(zh)

∣∣∣∣ > ξ(ϵ)

)
+ P

(∣∣∣∣Ḡ(zh; t)− g(zh)

∣∣∣∣ > ξ(ϵ)

)
.

(168)
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Since we have
P(F̄ (zh; t) < f(zh)− ξ(ϵ))

=P(F̄ (zh; t) < f(zh)− ξ(ϵ), Nh(t) ≥
√
t−D)

≤
t∑

s=
√
t−D

P(F̄s(zh) ≤ f(zh)− ξ(ϵ))

≤
t∑

s=
√
t−D

e(−sd(f(zh)−ξ(ϵ),f(zh)))

≤ 1

1− ed(f(zh)−ξ(ϵ),f(zh))
e−(

√
t−D)d(f(zh)−ξ(ϵ),f(zh)),

(169)

where F̄s(zh) denotes the empirical mean of the first s samples. Similarly, we can also show that

P(F̄ (zh; t) > f(zh)− ξ(ϵ)) ≤ 1

1− ed(f(zh)+ξ(ϵ),f(zh))
e−(

√
t−D)d(f(zh)+ξ(ϵ),f(zh)), (170)

By choosing

C = min
h∈[D]

min(d(f(zh)− ξ(ϵ), f(zh)), d(f(zh) + ξ(ϵ), f(zh)),

d(g(zh)− ξ(ϵ), g(zh)), d(g(zh) + ξ(ϵ), g(zh))),
(171)

and

B =
∑
h∈[D]

(
eDd(f(zh)−ξ(ϵ),f(zh))

1− ed(f(zh)−ξ(ϵ),f(zh))
+

eDd(f(zh)+ξ(ϵ),f(zh))

1− ed(f(zh)+ξ(ϵ),f(zh))

+
eDd(g(zh)−ξ(ϵ),g(zh))

1− ed(g(zh)−ξ(ϵ),g(zh))
+

eDd(g(zh)+ξ(ϵ),g(zh))

1− ed(g(zh)+ξ(ϵ),g(zh))

)
.

(172)

Therefore,

P(EcT ) ≤ B

T∑
t=T 1/4

exp(−C
√
t) ≤ BT exp(−CT 1/8), (173)

and therefore
∑∞

T=1 P(EcT ) ≤ ∞. Finally, this leads to the conclusion:

lim sup
δ→0

E[τ ]
log(1/δ)

≤ 1

1− ϵ
U(ω∗(P),P). (174)

Letting ϵ→ 0 completes the proof.

A.12 COMPUTATIONAL COMPLEXITY

Since the main difference between Algorithm 1 (TS) and the proposed Algorithm (DSR) lies in how
the empirical optimal sampling ratio is computed, we focus on this step. In TS, assuming gradi-
ent descent is used, evaluating the objective function involves a matrix inversion O(D3), an inner
minimization over K arms and M covariates O(MK), and gradient computation O(D), leading
to a total per-iteration complexity of O

(
1
ϵ (D

3 +MK +D)
)
, where ϵ denotes the allowed error

precision for the optimization problem. In DSR, only one gradient step is performed per iteration.
The matrix inversion involved in the dual objective function is done once and reused, while each
iteration involves objective evaluation and descent direction computation O(MK) and line search
O(log(1/ϵ′)) for precision ϵ′, resulting in a total per-iteration complexity of O(MK + log(1/ϵ′)).

A.13 NUMERICAL EXPERIMENT

This subsection provides the detailed parameter settings and pseudo-code for the benchmark algo-
rithms used in the numerical experiments.

DSR. Algorithm 4 outlines the complete pseudo-code for the proposed duality-based decompo-
sition algorithm. The overall framework follows the structure of the Track-and-Stop algorithm,
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with the key difference being that the sampling ratio γ(P̂(t)) is computed using Algorithm 2.
In our implementation, we adopt a heuristic step size of s(t) = 0.01 and a threshold parameter
ρ(t, δ) = log(log(t) + 1)/δ, the latter of which is commonly used in the best arm identification
(BAI) literature (Garivier & Kaufmann, 2016; Wang et al., 2021).

Algorithm 4: Duality-based Decomposition Algorithm (DSR)
1 Input: Covariate set C, arm set X , design point set Z , confidence level δ, λ(0) = 1/KM .
2 Initialization: Sample each design point zh ∈ Z n0 times.
3 Set t← n0D and update Nh(t), ωh(t), P̂(t), Λ(ω(t)).
4 while tH(P̂(t), ω(t))−1 < ρ(t, δ) do
5 if Bt ̸= ∅ then
6 zh(t+1) = argminzh∈Bt

Nh(t)
7 else
8 γ(P̂(t))← Algorithm 2 (C,X ,Z, κ0, η, P̂(t), θ̂(t), β̂(t), λ(t− 1))
9 zh(t+1) = argminzh∈Z Nh(t)− tγh(P̂(t))

10 Sample the design point zh(t+1) and obtain the observation Zt+1.
11 Set t← t+ 1, and update Nh(t), ωh(t), P̂(t), Λ(ω(t)).
12 return For each covariate cj ∈ C, recommend the estimated best arm:

xî(cj ;τ)
= argmaxxi∈X θ̂(τ)⊤ϕ(xi, cj) s.t. β̂(τ)⊤ϕ(xi, cj) ≤ b

USR. Algorithm 5 presents the pseudo-code for the USR algorithm. At each time step t, it samples
all design points uniformly, without incorporating any information from the arms.

Algorithm 5: USR Algorithm
1 Input: Covariate set C, arm set X , design point set Z , confidence level δ.
2 while tH(P̂(t), ω(t))−1 < ρ(t, δ) do
3 zh(t+1) = argminzh∈Z Nh(t)
4 Sample the design point zh(t+1) and obtain the observation Zt+1.
5 Set t← t+ 1, and update Nh(t), ωh(t), P̂(t), Λ(ω(t)).
6 return For each covariate cj ∈ C, recommend the estimated best arm:

xî(cj ;τ)
= argmaxxi∈X θ̂(τ)⊤ϕ(xi, cj) s.t. β̂(τ)⊤ϕ(xi, cj) ≤ b

Algorithm 6 presents the pseudo-code for the BCSR, GOSR, and GFSR algorithms. All three algo-
rithms employ a score-based approach to determine the sampling rule, with the key distinction being
how each algorithm defines its respective score.

BCSR. This algorithm is inspired by the state-of-the-art Best Challenger algorithm proposed
by Garivier & Kaufmann (2016). It relies solely on the optimality information of each arm. For
each design point, the score at time step t is defined as:

Sh(P̂(t), ω(t)) =
(f̂(zh; t)− f̂(xî(cj ;t)

, cj))
2

σ2
h/Nh(t)

, (175)

where xî(cj ;t)
= argmaxxi∈X θ̂(t)⊤ϕ(xi, cj) denotes the estimated best arm under covariate cj .

This score captures a trade-off between the estimated optimality gap and the sampling variance.

If the design point corresponds to the estimated best arm, then its score is defined as:

Sh(P̂(t), ω(t)) = min
zh∈Z\(xî(cj ;t)

,cj)
Sh(P̂(t), ω(t)). (176)

meaning the best arm is assigned the minimum score. The algorithm then randomly selects among
arms with the lowest score for sampling.
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Algorithm 6: BCSR/GOSR/GFSR Algorithm
1 Input: Covariate set C, arm set X , design point set Z , confidence level δ.
2 Initialization: Sample each design point zh ∈ Z n0 times.
3 Set t← n0D and update Nh(t), ωh(t), P̂(t), Λ(ω(t)).
4 while tH(P̂(t), ω(t))−1 < ρ(t, δ) do
5 if Bt ̸= ∅ then
6 zh(t+1) = argminzh∈Bt

Nh(t)
7 else
8 zh(t+1) = argminzh∈Z Sh(P̂(t), ω(t))
9 Sample the design point zh(t+1) and obtain the observation Zt+1.

10 Set t← t+ 1, and update Nh(t), ωh(t), P̂(t), Λ(ω(t)).
11 return For each covariate cj ∈ C, recommend the estimated best arm:

xî(cj ;τ)
= argmaxxi∈X θ̂(τ)⊤ϕ(xi, cj) s.t. β̂(τ)⊤ϕ(xi, cj) ≤ b

GOSR. This algorithm is motivated by the surrogate optimization problem (13) and relies solely on
optimality information. For each covariate cj ∈ C, the estimated best arm is defined as xî(cj ;t)

=

argmaxxi∈X θ̂(τ)⊤ϕ(xi, cj). For each design point, the score at time step t is defined as

Sh(P̂(t), ω(t)) =
(f̂(zh; t)− f̂(xî(cj ;t)

, cj))
2

∥ϕ(xi∗(cj), cj)− ϕ(xi, cj)∥2Λ(ω)−1

, (177)

Similarly, the score for the estimated best arm is defined according to (176).

GFSR. The general algorithmic framework of GFSR is identical to that of GOSR, with the key dis-
tinction that GFSR relies solely on feasibility information to determine the sampling rule. Specifi-
cally, the score for each design point at time step t is defined as

Sh(P̂(t), ω(t)) =
(ĝ(zh; t)− ĝ(xî(cj ;t)

, cj))
2

∥ϕ(xi, cj)∥2Λ(ω)−1

, (178)

where the score quantifies the deviation in feasibility performance. The score for the estimated best
arm is defined in the same way as in (176).

Comparison with Frank-Wolfe Sampling (Wang et al., 2021). Wang et al. (2021) propose a
general framework for pure exploration via Frank–Wolfe. However, our constrained setting with
covariate selection leads to a more complex sample complexity bound, making their algorithm un-
suitable for our problem. First, the presence of constraints complicates the gradient computation
in Proposition 1 of Wang et al. (2021). The gradient calculation depends on the most confusing
alternative instance. When constraints are considered, the alternative problem instance set A(P)
becomes more complex, as it depends on both the optimality and feasibility of the arms. We need
to classify arms into four subclasses and construct the alternative instance for each class differently.
For infeasible arms with worse performance, the alternative instance is particularly complex, as it
depends simultaneously on both the objective and the constraint performance measures. Second,
the covariate selection setting makes the Frank–Wolfe update, which involves solving a game, more
complicated. Wang et al. (2021) handle non-smooth objectives via the r-subdifferential subspace.
In our setting, covariate selection introduces an additional layer of optimization over all possible
covariates in the sample complexity lower bound. This increases the number of non-smooth points
in the overall objective, making the Frank-Wolfe update, which solves the game over a simplex and
the convex hull of the gradient vectors, more time-consuming.

We also compare the numerical performance of the proposed DSR with Frank-Wolfe Sampling
(FWS) on the same problem used in the numerical experiment. Each algorithm is run for 3000
iterations, and we report the total running time and the empirical PCI over 30 independent macro
replications. The results show that DSR completes in 56 seconds, whereas FWS takes 917 seconds,
which is approximately 16 times longer than DSR. Moreover, Figure 3 shows that DSR achieves a
PCI exceeding 0.9, while the PCI of FWS is below 0.8. Therefore, DSR also demonstrates superior
empirical performance compared with FWS.
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Figure 3: Comparison of empirical PCI

Table 1: Sample complexity comparison of various algorithms under different gaps

Method Mean (0.2) Lower Upper Mean(0.3) Lower Upper

USR 12786.50 9756.38 15816.62 12313.53 9405.00 15222.06
DSR 5282.73 4023.10 6542.37 4100.33 2969.65 5231.01
GOSR 21274.73 14772.71 27776.76 8861.53 7200.30 10522.77
GFSR 6537.10 5241.74 7832.46 6526.23 5312.21 7740.25
BCSR 16936.70 12649.17 21224.23 7825.07 6505.59 9144.54

Parameter setting. The experimental setup is inspired by the numerical example in Soare et al.
(2014). There are two covariates, C = {c1, c2}, four arms, X = {x1, . . . , x4}, and one constraint.
The threshold parameter b in the constraint of problem (1) is set to b = 0.5. The dimension of the
unknown parameter vectors θ and β is D = 7. Specifically, θ = [1.0, 0.0, 0.0, 0.0, 1.0, 1.2, 0.0]⊤,
and β = [0.45, 0.0, 0.0, 0.0, 0.6, 0.8]⊤. Let el ∈ RD denote the lth standard basic vector, with the
lth element equal to one and all other elements zero. The feature vectors of the arm-covariate
pairs are defined as ϕ(x1, c1) = e1, ϕ(x2, c1) = e2, . . . , ϕ(x3, c2) = e7, and ϕ(x4, c2) =
[cos(0.4), sin(0.4), 0, . . . , 0]⊤. The design point set is Z = {(x1, c1), (x2, c1), . . . , (x3, c2)} with
|Z| = 7, meaning that the design points correspond to the standard basis vectors in RD. The vari-
ance of each arm-covariate pair is independently drawn from a uniform distribution over [0.5, 1.0].
For computational convenience during implementation, we use a heuristic step size s(t) = 0.01 and
a threshold parameter ρ(t, δ) = log(log(t) + 1)/δ, the latter of which is also employed in the BAI
literature (Garivier & Kaufmann, 2016; Wang et al., 2021).

Robustness evaluation. We report additional sample complexity results for small (∆ = 0.2) and
large (∆ = 0.3) feasibility and optimality gaps to assess the robustness of the proposed algorithm
across different problem instances. Table 1 summarizes the sample complexity of various algorithms
at a confidence level of δ = 0.1, with “lower” and “upper” indicating the 90% confidence interval
bounds. Our proposed Algorithm DSR consistently outperforms other methods, and larger gaps
correspond to lower sample complexity.

We also evaluate the algorithm’s performance when the Gaussian noise assumption is violated. In
this example, the problem setting remains the same, but the noise follows a standard t-distribution
with 3 degrees of freedom, scaled by 0.1. Figure 4 presents the empirical sample complexity of the
algorithms based on 30 macro-replications. The proposed DSR method continues to outperform the
other benchmarks.

Effect of covariate selection rule. We examine the importance of covariate selection by comparing
the sample complexity of DSR under different covariate selection rules. Specifically, we consider
four rules: (1) OPT: active covariate selection according to the optimal sampling ratio; (2) Uniform:
covariates are passively sampled from a uniform distribution; (3) Covariate 1: the two covariates
are sampled with probabilities 0.8 and 0.2, respectively; (4) Covariate 2: the two covariates are
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Figure 4: Empirical sample complexity over t-distribution noise
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Figure 5: Sample complexity of DSR under different covariate selection rules

sampled with probabilities 0.2 and 0.8, respectively. Conditional on the covariate, the arm is sam-
pled according to the optimal sampling ratio. To control the computation time, we set a maximum
iteration limit of 40000, the algorithm terminates once the total number of samples reaches this
threshold. Figure 5 presents the empirical sample complexity based on 100 independent macro-
replications of DSR under the four covariate selection rules. The results indicate that optimal active
covariate selection plays a crucial role in reducing sample complexity.

Initial design points in Z . Figure 6 compares the sample complexity of DSR using three groups of
different initial design points Z in the current numerical example. The result shows that, although
different initial design points do lead to variations in sample complexity, the differences are not
substantial. This indicates that DSR is relatively robust to the choice of initial design points.

Problem scale and noise level. We compare the sample complexity under different problem scales
and noise levels. To control computation time, we impose a maximum iteration limit of 80000, and
the algorithm terminates once the total number of samples reaches this threshold. Figure 7 reports
the empirical sample complexity based on 30 independent macro-replications. As the problem size
and noise level increase, the total number of samples required by all algorithms also increases.
However, DSR consistently outperforms the other benchmarks.

Experiments compute resources.The numerical experiments were conducted on a Windows ma-
chine equipped with an Intel® Xeon® Silver 4210R CPU @ 2.40GHz. Running the algorithm for
100 replications took less than 1 hour.

A.14 PERSONALIZED TREATMENT FOR DIABETES MANAGEMENT

Diabetes mellitus (DM) affects over 500 million people globally (World Health Organization), with
type 2 diabetes (T2D) comprising 90–95% of cases. Managing T2D is complex, with treatment op-
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Figure 6: Sample complexity of DSR under different initial design points
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Figure 7: Sample complexity across different problem scales and noise levels
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Table 2: Comparison of Methods with different confidence level δ

Method Mean (0.1) Lower Upper Mean (0.2) Lower Upper

USR 38661.00 30180.15 47141.85 25130.70 19243.79 31017.61
DSR 13127.07 10211.51 16042.62 11114.93 8236.33 13993.54
GOSR 16892.83 13055.05 20730.62 13779.97 10091.68 17468.25
GFSR 51852.90 41498.39 62207.41 49358.80 37399.20 61318.40
BCSR 17004.70 12753.25 21256.15 13786.23 9995.75 17576.71

tions ranging from lifestyle modifications to various pharmacological therapies such as Metformin,
each with differing efficacy and side effect profiles depending on individual patient characteristics
(covariates). Therefore, it is important to identify the most suitable treatment plan tailored to each
patient’s specific characteristics.

We model this as a constrained linear BAI problem with covariate selection. Based on ADA/EASD
clinical guidelines, we consider four drug classes—Metformin, Sulfonylureas, SGLT2 inhibitors,
and GLP-1 receptor agonists—each with distinct benefits and risks. For example, Metformin im-
proves insulin sensitivity and is generally well-tolerated; however, it is contraindicated in patients
with severe renal impairment.

Patient covariates include HbA1c, BMI, and cardiovascular risk. Drug features include dose, fre-
quency, hypoglycemia risk, and renal adjustment threshold. The goal is to identify the treatment
that maximizes glycemic improvement while maintaining adverse effects below a risk threshold for
each patient.

Table 2 compares the sample complexity of various algorithms in a setting with 2 patients, 7-
dimensional features (D = 7), and confidence levels δ = 0.1 and δ = 0.2. Our algorithm DSR,
which balances feasibility and optimality, consistently achieves the lowest sample complexity.
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