

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONSTRINED LINEAR BEST ARM IDENTIFICATION WITH COVARIATE SELECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper studies a constrained linear best arm identification problem with covariate selection in the fixed-confidence setting, where each arm is evaluated across multiple performance metrics. The mean performance of each metric depends linearly on the feature vectors of both arms and covariates. The goal is to identify the arm with the highest expected value of one targeted metric while ensuring that the means of the remaining metrics stay below specified thresholds for each covariate. We first establish an instance-dependent lower bound on the sample complexity, formulated as a multi-level optimization problem that captures both feasibility and optimality. We then prove that this bound is tight by designing an algorithm that asymptotically matches it. Since the original algorithm is computationally intensive, we develop a relaxed version of the bound through a surrogate optimization problem and derive its convex dual. Using this bound, we propose a duality-based decomposition algorithm that is computationally efficient, updating only two coordinates and performing a single gradient step per iteration. We further show that the algorithm achieves the relaxed bound in theory and demonstrates its practical effectiveness through numerical experiments.

1 INTRODUCTION

Best arm identification (BAI) is a well-studied problem in machine learning, with broad applications in areas such as large language models (Shi et al., 2024), quantum computing (Wanner et al., 2025), and pharmaceutical development (Wang et al., 2024). This paper studies a constrained linear BAI problem with covariate selection. In this setting, each arm is evaluated across multiple performance metrics, where the mean of each metric is modeled as a linear function of feature vectors associated with both arms and covariates. Given a specific covariate, the goal is to identify the arm with the highest expected value in a target metric, while ensuring that the means of the remaining metrics remain below predefined thresholds. At each time step t , the agent selects an arm-covariate pair to sample and observes an independent random performance vector covering all metrics. In the fixed-confidence setting, the agent seeks to learn the underlying performance functions through sampling, identify the best arm for each covariate with probability at least $1 - \delta$, and minimize the total number of samples required.

Compared to the canonical BAI setting, constrained linear BAI with covariate selection is particularly well-suited for personalized decision-making problems. For example, in personalized medicine (Shen et al., 2021), each treatment option (arm) is associated with multiple performance metrics, such as therapeutic efficacy and side effects, which can only be observed through noisy clinical trial data. The mean outcome of each metric depends on both patient characteristics (covariates) and the chemical composition of the drug. The objective is to identify the drug with the highest expected efficacy while ensuring that the expected side effects remain below predefined thresholds. Similar scenarios arise in inventory management (Ban & Rudin, 2019), where metrics like revenue, lead time, and customer satisfaction depend on observable factors such as seasonality, economic indicators, and market conditions, as well as the chosen order quantity. The goal is to identify the order quantity that maximizes average revenue while ensuring that the mean values of the other metrics remain within acceptable limits.

Two key challenges set constrained linear BAI with covariate selection apart from the canonical BAI problem (Garivier & Kaufmann, 2016), making existing algorithms insufficient for this setting.

054 First, unlike the standard BAI framework, which focuses solely on identifying the optimal arm, the
 055 constrained version requires balancing both optimality and feasibility. This trade-off between optimality
 056 and feasibility requires new theoretical insights to understand its effect on sample complexity
 057 and to guide the design of optimal algorithms. Second, covariate selection introduces an additional
 058 layer of complexity. The agent must determine an optimal sampling rule over arm-covariate pairs
 059 at each iteration. In contrast, canonical linear BAI (Jedra & Proutiere, 2020) and contextual bandit
 060 settings (Slivkins et al., 2019) typically assume that covariates are passively observed, limiting the
 061 agent’s control to selecting a single arm. As we demonstrate in this work, leveraging both linear
 062 structure and active covariate selection can significantly improve sampling efficiency and necessi-
 063 tates a fundamentally different algorithmic approach.

064 The contributions of this paper are summarized as follows:

- 066 • Motivated by practical personalized decision-making scenarios, we study a constrained
 067 BAI problem with covariate selection. We derive an instance-dependent lower bound on
 068 the sample complexity, formulated as a multi-level optimization problem, and characterize
 069 how both the feasibility and optimality of each arm influence this bound. Moreover, we
 070 demonstrate the tightness of this bound by constructing a Track-and-Stop algorithm whose
 071 sample complexity matches it asymptotically.
- 072 • Due to the computational intractability of the Track-and-Stop algorithm, we introduce a re-
 073 laxled sample complexity bound derived from a surrogate optimization problem. We further
 074 derive its convex dual, which possesses favorable structural properties and can be solved
 075 efficiently. Notably, the dual formulation provides a closed-form mapping to the primal
 076 optimal solution and offers an intuitive interpretation of the optimal sampling ratio.
- 077 • Leveraging the specific structure of the dual problem, we propose a duality-based decom-
 078 position algorithm. This algorithm has two key features: first, it updates two coordinates of
 079 the dual solution at a time; second, it performs a one-step gradient descent at each iteration.
 080 These features contribute to its high efficiency. We theoretically demonstrate that the algo-
 081 rithm’s sample complexity attains the relaxed bound and validate its practical effectiveness
 082 through numerical experiments.

083 Our study connects to three principal strands of the existing literature:

084 **Best Arm Identification.** BAI is one of the most extensively studied problems in the bandit litera-
 085 ture (Audibert & Bubeck, 2010; Gabilon et al., 2012). This work contributes to the growing body
 086 of research on BAI in the fixed-confidence setting, also known as pure exploration (Kaufmann et al.,
 087 2016; Garivier & Kaufmann, 2016; Juneja & Krishnasamy, 2019; Degenne & Koolen, 2019), which
 088 focuses on deriving instance-dependent lower bounds on sample complexity and designing adapt-
 089 ive, asymptotically optimal algorithms (Degenne et al., 2019; Wang et al., 2021). Jedra & Proutiere
 090 (2020) extended these results to the linear BAI setting. Our formulation generalizes both the can-
 091 onical and linear BAI problems as special cases. Furthermore, the proposed algorithm introduces a
 092 duality-based perspective, enhancing both efficiency and practicality compared to methods that rely
 093 on access to an optimization oracle.

094 **Constrained Best Arm Identification.** The multi-performance constrained BAI problem has re-
 095 ceived relatively limited attention in the literature. While recent studies have begun exploring multi-
 096 objective settings aimed at identifying the Pareto set (Kone et al., 2023; 2024b;a; 2025), these prob-
 097 lems are fundamentally different from our constrained formulation, and the algorithms proposed in
 098 those works are not applicable to our setting. Yang et al. (2025) and Hu & Hu (2024) consider con-
 099 strained BAI problems that are more closely related to ours. However, Yang et al. (2025) proposes a
 100 top-two Thompson sampling algorithm under a fixed-budget setting, without leveraging linear struc-
 101 ture or considering covariate information, resulting in a simplified optimization problem compared
 102 to our setting. Meanwhile, Hu & Hu (2024) primarily focuses on risk constraints rather than the
 103 mean-based constraints studied here, and their algorithm is not readily adaptable to our framework.

104 **Covariate Selection.** Decision-making with covariate information has been a central research theme
 105 across various domains, including operations research (Bertsimas & Kallus, 2020), simulation opti-
 106 mization (Shen et al., 2021; Du et al., 2024), and bandit problems (Lattimore & Szepesvári, 2020;
 107 Kato & Ariu, 2021). However, the covariate selection problem studied in this paper differs from
 the classical contextual bandit setting, where covariates are observed passively and drawn randomly.

108 Kato et al. (2024) investigates covariate selection in the context of experimental design, focusing on
 109 minimizing the semi-parametric efficiency bound. In contrast, we extend the notion of covariate se-
 110 lection to the BAI setting, with the objective of maximizing the probability of correct identification.
 111

112 2 PROBLEM FORMULATION

114 This section presents the formulation of the constrained BAI problem with covariate selection and
 115 introduces the notation used throughout the paper.
 116

117 Consider K different arms, denoted by $\mathcal{X} = \{x_1, \dots, x_K\} \subset \mathbb{R}^{\mathcal{X}}$, where each arm is associated
 118 with a vector x_i . We assume a finite set of M possible covariates, denoted by $\mathcal{C} = \{c_1, \dots, c_M\} \subset$
 119 $\mathbb{R}^{\mathcal{C}}$. For problems involving continuous covariate spaces, it is common to discretize the feature space
 120 and group covariate values accordingly. The performance of arm x_i under covariate c_j is represented
 121 by a random vector $(F(x_i, c_j), G(x_i, c_j)) \in \mathbb{R}^2$, where $F(x_i, c_j)$ and $G(x_i, c_j)$ correspond to the
 122 objective-related and constraint-related performance metrics, respectively. **The agent aims to solve**
 123 **the following stochastic optimization problem:**

$$124 \max_{x_i \in \mathcal{X}} f(x_i, c_j) \triangleq \mathbb{E}[F(x_i, c_j)] \quad \text{s.t.} \quad g(x_i, c_j) \triangleq \mathbb{E}[G(x_i, c_j)] \leq b, \quad (1)$$

126 for all covariate $c_j \in \mathcal{C}$. For notational simplicity, we consider a single-constraint setting. Extending
 127 our theoretical results and algorithm to accommodate multiple constraints is straightforward (see
 128 Appendix A.4). A problem instance is defined as $\mathcal{P} = (f(x_i, c_j), g(x_i, c_j))_{x_i \in \mathcal{X}, c_j \in \mathcal{C}}$. To facilitate
 129 the analysis, we adopt the following standard assumptions, which are commonly used in the BAI
 130 literature.

131 **Assumption 1.** *The problem instance \mathcal{P} belongs to the set \mathcal{S} of instances such that, for each covari-
 132 ate $c_j \in \mathcal{C}$, there exists a unique best arm $x_{i^*(c_j)}$ that solves problem (1), and no arm lies exactly on
 133 the constraint, i.e., $g(x_i, c_j) \neq b, \forall x_i \in \mathcal{X}$.*

134 **Assumption 2.** *For each arm-covariate pair $(x_i, c_j) \in \mathcal{X} \times \mathcal{C}$, the mean performances are given
 135 by $f(x_i, c_j) = \theta^\top \phi(x_i, c_j)$ and $g(x_i, c_j) = \beta^\top \phi(x_i, c_j)$, where $\phi(\cdot, \cdot) : \mathcal{X} \times \mathcal{C} \rightarrow \mathbb{R}^D$ is a known
 136 feature map, and $\theta, \beta \in \mathbb{R}^D$ are unknown parameter vectors.*

137 **Assumption 3.** *The observed performances are given by $F(x_i, c_j) = f(x_i, c_j) + \epsilon_{ij}$ and
 138 $G(x_i, c_j) = g(x_i, c_j) + \epsilon'_{ij}$, where the noise terms ϵ_{ij} and ϵ'_{ij} are independent and identically
 139 distributed Gaussian random variables with mean zero and variance σ_{ij}^2 .*

141 Assumption 1 is standard in the canonical BAI literature (Garivier & Kaufmann, 2016; Jedra &
 142 Proutiere, 2020) and can be relaxed by identifying ϵ -optimal and feasible arms, as discussed in Ap-
 143 pendix A.3. Assumption 2 imposes a linear relationship between the mean performances and feature
 144 vectors. Despite its simplicity, the linear model effectively captures structural relationships across
 145 arms and covariates, enhances interpretability, and is widely used in linear bandit problems (Soare
 146 et al., 2014; Jedra & Proutiere, 2020) as well as personalized medicine (Shen et al., 2021; Du et al.,
 147 2024). Lastly, the Gaussian noise assumption in Assumption 3 is a standard choice in classical linear
 148 regression and enables the derivation of closed-form sample complexity lower bound.

149 **Design points.** In this paper, we use a fixed set of design points, denoted by $\mathcal{Z} = \{z_1, \dots, z_D\}$, to
 150 estimate θ and β . Each design point z_h corresponds to an arm-covariate pair $(x_i, c_j) \in \mathcal{X} \times \mathcal{C}$, and
 151 we simplify the notation by writing $F(z_h) = F(x_i, c_j)$. The motivations for adopting a fixed set of
 152 design points can be categorized into three aspects. First, De la Garza (1954) shows that to estimate
 153 the D -dimensional parameters θ and β via regression, sampling only D design points captures the
 154 same amount of information as sampling more than D points. Second, this formulation has been
 155 widely used in the transductive linear bandits literature (Fiez et al., 2019). Third, concentrating on
 156 a fixed set of D design points allows for the decomposition of regression variance, which facilitates
 157 the design of efficient algorithms.

158 **Learning problem.** In the online setting, at each iteration t , the agent selects a design point
 159 $z_{h(t)} \in \mathcal{Z}$ to sample. It then observes a random performance vector $Z_t = (Z_t^{(1)}, Z_t^{(2)})$, drawn in-
 160 dependently according to the distribution of the corresponding random vector $(F(z_{h(t)}), G(z_{h(t)}))$.
 161 An algorithm in this setting is characterized by three components: the sampling rule $\{z_{h(t)}\}_t$, which
 determines the design point to sample based on the historical sampling decisions and observations

up to time t ; the stopping rule τ , which decides when to terminate the algorithm based on the collected information; and the recommendation rule $\{x_{i(c_j, \tau)}\}_{c_j \in \mathcal{C}}$, which specifies the recommended best arm for each covariate $c_j \in \mathcal{C}$. The goal is to find a δ -Probably Approximately Correct (PAC) algorithm (see Definition 1) while minimizing the sample complexity $\mathbb{E}[\tau]$.

Definition 1 (δ -PAC algorithm). *An algorithm $\mathcal{L} = (\{z_{h(t)}\}_t; \tau; \{x_{i(c_j, \tau)}\}_{c_j \in \mathcal{C}})$ is said to be δ -PAC if for every problem instance $\mathcal{P} \in \mathcal{S}$, it satisfies $\mathbb{P}_{\mathcal{P}}(\forall c_j \in \mathcal{C}, x_{i(c_j, \tau)} = x_{i^*(c_j)}) \geq 1 - \delta$.*

Notation. For a positive integer K , let $[K] = \{1, \dots, K\}$. Denote by $N_h(t)$ the number of samples drawn from design point z_h up to time t , and define the corresponding sampling ratio $\omega_h(t) = N_h(t)/t$. Let $\Omega \triangleq \{\omega \in \mathbb{R}_+^D : \sum_{h \in \mathcal{D}} \omega_h = 1\}$ denote the probability simplex over the design points. Let $\mathbb{I}(\cdot)$ denote the indicator function, which takes the value 1 if the condition is true, and 0 otherwise.

3 SAMPLE COMPLEXITY

In this section, we first derive a lower bound on the sample complexity. We then introduce a Track-and-Stop algorithm that asymptotically achieves this lower bound. However, this algorithm is computationally expensive, motivating the development of a duality-based approach. This perspective enables the design of a more efficient algorithm, which we present in the next section.

3.1 SAMPLE COMPLEXITY LOWER BOUND

This subsection presents a tight, instance-dependent lower bound on the sample complexity $\mathbb{E}[\tau]$, which provides a benchmark for evaluating the performance of any δ -PAC algorithm.

The characterization of sample complexity relies on the transportation lemma from (Kaufmann et al., 2016), which establishes a relationship between the sample complexity, the Kullback-Leibler (KL) divergence between two problem instances, and the confidence level δ . However, the constrained BAI problem with covariate selection is more challenging. Specifically, different types of arms contribute differently to the sample complexity depending on their feasibility and optimality. To capture this effect, we classify the arms into four categories for each covariate: the best arm $x_{i^*(c_j)}$, suboptimal feasible arms

$$\mathcal{D}_1(c_j) \triangleq \{x_i \in \mathcal{X} : f(x_i, c_j) < f(x_{i^*(c_j)}, c_j), g(x_i, c_j) \leq b\},$$

infeasible arms with better performance

$$\mathcal{D}_2(c_j) \triangleq \{x_i \in \mathcal{X} : f(x_i, c_j) > f(x_{i^*(c_j)}, c_j), g(x_i, c_j) > b\},$$

and infeasible arms with worse performance

$$\mathcal{D}_3(c_j) \triangleq \{x_i \in \mathcal{X} : f(x_i, c_j) < f(x_{i^*(c_j)}, c_j), g(x_i, c_j) > b\}.$$

Then, leveraging the linear structure in Assumption 2 and the Gaussian noise in Assumption 3, we derive a closed-form lower bound on the sample complexity in Theorem 1.

Theorem 1. *Under Assumptions 1-3, for a fixed confidence level $\delta \in (0, 1/2)$, any δ -PAC algorithm applied to problem instance $\mathcal{P} \in \mathcal{S}$ must satisfy*

$$\mathbb{E}[\tau] \geq \mathcal{H}^*(\mathcal{P}) \text{kl}(\delta, 1 - \delta), \quad (2)$$

which leads to

$$\liminf_{\delta \rightarrow 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \geq \mathcal{H}^*(\mathcal{P}), \quad (3)$$

where $\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma(\omega, c_j, \mathcal{P})$,

$$\begin{aligned} \Gamma(\omega, c_j, \mathcal{P}) &= \min \left(\min_{x_i \neq x_{i^*(c_j)}} \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j) \cup \mathcal{D}_3(c_j)) \right. \right. \\ &\quad \left. \left. + \frac{(b - \beta^{\top} \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)) \right) \right), \frac{(b - \beta^{\top} \phi(x_{i^*(c_j)}, c_j))^2}{\|\phi(x_{i^*(c_j)}, c_j)\|_{\Lambda(\omega)^{-1}}^2} \right), \end{aligned} \quad (4)$$

$$\Lambda(\omega) = \sum_{z_h \in \mathcal{Z}} \frac{\omega_h}{2\sigma_h^2} \phi(z_h) \phi(z_h)^{\top}, \text{ and } \text{kl}(\delta, 1 - \delta) \triangleq \delta \log(\delta/1 - \delta) + (1 - \delta) \log((1 - \delta)/\delta).$$

The derivation of the sample complexity result in Theorem 1 has an intuitive game-theoretic interpretation: the agent aims to select a randomized sampling strategy $\omega \in \Omega$ that maximizes the KL divergence between two instances, while the environment chooses an alternative instance $\hat{\mathcal{P}}$ that is difficult to distinguish from \mathcal{P} . In the case of Gaussian noise, this formulation yields the closed-form expression in (58). Additionally, the sample complexity is influenced by the feasibility of the best arm $x_{i^*(c_j)}$, the performance of infeasible arms (both better arms in $\mathcal{D}_2(c_j)$ and worse arms in $\mathcal{D}_3(c_j)$), and the optimality of suboptimal feasible arms in $\mathcal{D}_1(c_j)$ as well as infeasible arms with worse performance in $\mathcal{D}_3(c_j)$.

Theorem 1 can be viewed as an extension of the linear BAI problem to the constrained setting with covariate selection. When the agent knows that all arms are feasible and there is only one covariate, Theorem 1 reduces to the sample complexity result in (Jedra & Proutiere, 2020), making it a special case of our framework.

3.2 SAMPLE COMPLEXITY UPPER BOUND

This section demonstrates the existence of an algorithm that asymptotically matches the sample complexity lower bound in Theorem 1 as $\delta \rightarrow 0$.

Definition 2 (Asymptotic optimality). *An algorithm $\mathcal{L} = (\{z_{h(t)}\}_t; \tau; \{x_{\hat{i}(c_j, \tau)}\}_{c_j \in \mathcal{C}})$ is said to be asymptotically optimal if for every problem instance $\mathcal{P} \in \mathcal{S}$, it is δ -PAC and*

$$\limsup_{\delta \rightarrow 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \leq \mathcal{H}^*(\mathcal{P}). \quad (5)$$

The intuition behind the algorithm design is as follows. The sample complexity lower bound in Theorem 1 depends on the hardness of the problem instance $\mathcal{H}^*(\mathcal{P})$ and the confidence level δ . The quantity $\mathcal{H}^*(\mathcal{P})$ is defined through an optimization problem that yields the optimal static sampling ratio

$$\omega^*(\mathcal{P}) = \arg \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma(\omega, c_j). \quad (6)$$

Therefore, an optimal algorithm must ensure that the empirical sampling ratio $\omega(t) = \{\omega_h(t)\}_{h \in [D]}$ converges to the optimal ratio $\omega^*(\mathcal{P})$.

Since the problem instance \mathcal{P} is unknown, we must estimate it based on empirical observations. For each design point $z_h \in \mathcal{Z}$, define the empirical estimates of $F(z_h)$ and $G(z_h)$ up to time t as

$$\bar{F}(z_h; t) = \frac{1}{N_h(t)} \sum_{s \leq t} Z_t^{(1)} \mathbb{I}(z_{h(t)} = z_h), \quad \bar{G}(z_h; t) = \frac{1}{N_h(t)} \sum_{s \leq t} Z_t^{(2)} \mathbb{I}(z_{h(t)} = z_h). \quad (7)$$

Then, the least squares estimators of the unknown parameters θ and β up to time t are given by

$$\hat{\theta}(t) = \Lambda(\omega(t))^{-1} \sum_{z_h \in \mathcal{Z}} \frac{\omega_h(t)}{\sigma_h^2} \phi(z_h) \bar{F}(z_h; t), \quad \hat{\beta}(t) = \Lambda(\omega(t))^{-1} \sum_{z_h \in \mathcal{Z}} \frac{\omega_h(t)}{\sigma_h^2} \phi(z_h) \bar{G}(z_h; t). \quad (8)$$

Using the least squares estimators in (8), we estimate \mathcal{P} by $\hat{\mathcal{P}}(t)$, calculated from $\hat{\theta}(t)$ and $\hat{\beta}(t)$, and compute the corresponding empirical static ratio $\omega^*(\hat{\mathcal{P}}(t))$.

To ensure that the estimate $\hat{\mathcal{P}}(t)$ converges to the true problem instance \mathcal{P} , it is necessary to sample each design point infinitely often. Define the set of undersampled design points up to time t as

$$\mathcal{B}_t = \{z_h \in \mathcal{Z} : N_h(t) < \sqrt{t} - D/2\}. \quad (9)$$

Consider the following sampling rule

$$z_{h(t+1)} = \begin{cases} \arg \min_{z_h \in \mathcal{B}_t} N_h(t) & \text{if } \mathcal{B}_t \neq \emptyset, \\ \arg \min_{z_h \in \mathcal{Z}} N_h(t) - t\omega_h^*(\hat{\mathcal{P}}(t)) & \text{otherwise} \end{cases}, \quad (10)$$

which continuously updates the estimate $\hat{\mathcal{P}}(t)$ and adaptively tracks the empirical static ratio $\omega^*(\hat{\mathcal{P}}(t))$. Under this rule, we can show that $\hat{\mathcal{P}}(t) \rightarrow \mathcal{P}$ and $\omega(t) \rightarrow \omega^*(\mathcal{P})$ as $t \rightarrow \infty$.

Finally, we apply the generalized likelihood ratio test method to ensure that the algorithm satisfies the δ -PAC guarantee described in Definition 1. Define the stopping rule as

$$\tau = \inf\{t \in \mathbb{N} : t\mathcal{H}(\hat{\mathcal{P}}(t), \omega(t))^{-1} > \rho(t, \delta)\}, \quad (11)$$

where $\mathcal{H}(\hat{\mathcal{P}}(t), \omega(t))^{-1} = \min_{c_j \in \mathcal{C}} \Gamma(\omega(t), c_j, \hat{\mathcal{P}}(t))$. This rule ensures the algorithm terminates once the accumulated empirical evidence exceeds the confidence threshold $\rho(t, \delta)$, thus supporting the δ -PAC guarantee and contributing to its asymptotic optimality, as shown in Proposition 1.

This algorithmic framework, known as Track-and-Stop, is widely used to address the BAI problem in various settings (Garivier & Kaufmann, 2016; Juneja & Krishnasamy, 2019; Jedra & Proutiere, 2020). Further details are provided in Algorithm 1.

Algorithm 1: Track-and-Stop Algorithm

```

1 Input: Covariate set  $\mathcal{C}$ , arm set  $\mathcal{X}$ , design point set  $\mathcal{Z}$ , confidence level  $\delta$ .
2 Initialization: Sample each design point  $z_h \in \mathcal{Z}$   $n_0$  times.
3 Set  $t \leftarrow n_0 D$  and update  $N_h(t), \omega_h(t), \hat{\mathcal{P}}(t), \Lambda(\omega(t))$ .
4 while  $t\mathcal{H}(\hat{\mathcal{P}}(t), \omega(t))^{-1} < \rho(t, \delta)$  do
5   if  $\mathcal{B}_t \neq \emptyset$  then
6      $z_{h(t+1)} = \arg \min_{z_h \in \mathcal{B}_t} N_h(t)$ 
7   else
8      $\omega^*(\hat{\mathcal{P}}(t)) \leftarrow \arg \max_{\omega \in \Omega} \mathcal{H}(\hat{\mathcal{P}}(t), \omega)^{-1}$ 
9      $z_{h(t+1)} = \arg \min_{z_h \in \mathcal{Z}} N_h(t) - t\omega_h^*(\hat{\mathcal{P}}(t))$ 
10  Sample the design point  $z_{h(t+1)}$  and obtain the observation  $Z_{t+1}$ .
11  Set  $t \leftarrow t + 1$ , and update  $N_h(t), \omega_h(t), \hat{\mathcal{P}}(t), \Lambda(\omega(t))$ .
12 return For each covariate  $c_j \in \mathcal{C}$ , recommend the estimated best arm:
13    $x_{i(c_j; \tau)} = \arg \max_{x_i \in \mathcal{X}} \hat{\theta}(\tau)^\top \phi(x_i, c_j) \quad \text{s.t. } \hat{\beta}(\tau)^\top \phi(x_i, c_j) \leq b$ 

```

Proposition 1. *Under Assumptions 1-3, there exists a constant $C > 0$ such that, with the stopping rule in (11) and $\rho(t, \delta) = \log(Ct^\alpha/\delta)$, Algorithm 1 is **asymptotically optimal up to α** .*

Proposition 1 follows directly by extending the proof technique of Jedra & Proutiere (2020). It shows that the sample complexity upper bound of Algorithm 1 matches the lower bound exactly, establishing its asymptotic optimality.

3.3 A DUALITY PERSPECTIVE

Although Algorithm 1 provides strong theoretical guarantees, it is impractical for implementation. The primary challenge arises from the fact that the lower bound involves a complex, multi-level optimization problem, which makes computing $\omega^*(\hat{\mathcal{P}}(t))$ at each iteration computationally prohibitive. Additionally, the presence of constraints and the linear structure complicates the analysis of the KKT conditions, unlike in the canonical BAI setting (Kaufmann et al., 2016), making it difficult to apply existing algorithms to our problem.

Surrogate Objective Function. We first introduce a surrogate objective function to reduce the computational burden. By merging the sets $\mathcal{D}_2(c_j)$ and $\mathcal{D}_3(c_j)$ for each covariate $c_j \in \mathcal{C}$ and focusing solely on the feasibility of the corresponding arms, we derive the following surrogate objective function for $\Gamma(\omega, c_j, \mathcal{P})$ in (58):

$$\begin{aligned} \Gamma^s(\omega, c_j, \mathcal{P}) = \min_{x_i \in \mathcal{X}} & \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j)) \right. \\ & \left. + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)) \right). \end{aligned} \quad (12)$$

Compared to the original objective function $\Gamma(\omega, c_j, \mathcal{P})$, the surrogate function $\Gamma^s(\omega, c_j, \mathcal{P})$ exhibits a better decomposition property, which can be leveraged to design a highly efficient algorithm.

324 **Lemma 1.** Let $\mathcal{U}^*(\mathcal{P})^{-1} = \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma^s(\omega, c_j, \mathcal{P})$. Then, it holds that $\mathcal{H}^*(\mathcal{P}) \leq \mathcal{U}^*(\mathcal{P})$.
 325

326 Lemma 1 shows that the surrogate optimal value $\mathcal{U}^*(\mathcal{P})$ provides an upper bound for the optimal
 327 value $\mathcal{H}^*(\mathcal{P})$ under the original objective function. This implies that $\mathcal{U}^*(\mathcal{P})$ can serve as a relaxed
 328 performance measure for the algorithms. In Appendix A.7, we establish a constant relaxation gap,
 329 i.e., $\mathcal{U}^*(\mathcal{P}) \leq C\mathcal{H}^*(\mathcal{P})$ for some positive constant $C > 1$.

330 **Dual Optimization Problem.** Although the primal multi-level optimization problem
 331

$$332 \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma^s(\omega, c_j, \mathcal{P}) \quad (13)$$

334 is complex; it admits a dual problem that can be efficiently solved using a decomposition algorithm.
 335

336 **Theorem 2.** The dual of the primal optimization problem in (13) is equivalent to
 337

$$338 \min_{\lambda} \mathcal{Q}(\lambda, \mathcal{P}) = - \sum_{h \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j)} \\ 339 \text{s.t.} \quad \sum_{i \in [K], j \in [M]} \lambda_{ij} = 1, \quad \lambda_{ij} \geq 0, \quad \forall i \in [K], j \in [M], \quad (14)$$

340 where for each $c_j \in \mathcal{C}$,
 341

$$342 \chi_h(x_i, c_j) = \begin{cases} \frac{\sigma_h^2 [(\Phi^\top)^{-1}(\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))]_h^2}{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2} & \text{if } x_i \in \mathcal{D}_1(c_j), \\ \frac{\sigma_h^2 [(\Phi^\top)^{-1} \phi(x_i, c_j)]_h^2}{(b - \beta^\top \phi(x_i, c_j))^2} & \text{if } x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j), \end{cases} \quad (15)$$

343 Φ is the $D \times D$ design matrix, and $[v]_h$ denotes the h th element of the vector v .
 344

345 The dual optimization problem in (14) is a convex optimization problem over the unit simplex, which
 346 can be efficiently solved using off-the-shelf gradient-based algorithms. The following Lemma 2
 347 establishes that strong duality holds.
 348

349 **Lemma 2.** The primal optimization problem in (13) is convex, strong duality holds, and it admits a
 350 unique optimal solution.
 351

352 According to Lemma 2, given a dual optimal solution λ^* , an optimal static sampling ratio $\omega^*(\mathcal{P})$
 353 can be recovered as follows:
 354

$$355 \omega_h^*(\mathcal{P}) = \frac{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij}^* \chi_h(x_i, c_j)}}{\sum_{l \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij}^* \chi_l(x_i, c_j)}}. \quad (16)$$

356 We provide an intuitive explanation of the optimal static sampling ratio $\omega^*(\mathcal{P})$. The optimal dual
 357 solution λ^* represents the importance of each arm-covariate pair. The term $\chi_h(x_i, c_j)$ quantifies
 358 the benefit of sampling the design point z_h for identifying a specific arm-covariate pair (x_i, c_j) .
 359 This quantity depends on the signal variance, the location in the feature space, and the optimality or
 360 feasibility gap. Consequently, the optimal sampling ratio must balance these factors, weighted by
 361 the relative importance of each arm-covariate pair, to minimize the overall sample complexity.
 362

363 4 DUALITY-BASED DECOMPOSITION ALGORITHM

364 In this section, we introduce a duality-based decomposition algorithm based on Theorem 2. Furthermore,
 365 we demonstrate that this algorithm asymptotically achieves the relaxed sample complexity
 366 bound $\mathcal{U}^*(\mathcal{P}) \log(1/\delta)$.
 367

368 Leveraging the specific structure of problem (14), we design a decomposition algorithm that updates
 369 two coordinates at a time to reduce computational complexity.
 370

378 **Lemma 3.** Let λ be a feasible dual solution such that $\lambda_{mn} > 0$, for some $m \in [K], n \in [M]$. Then,
 379 λ is a stationary point of problem (14) if and only if
 380

$$381 \quad \nabla \mathcal{Q}(\lambda, \mathcal{P})^\top d \geq 0, \forall d \in \mathcal{D}^{m,n}(\lambda), \quad (17)$$

382 where $\mathcal{D}^{m,n}(\lambda) = \{e_{ij} - e_{mn} : i \neq m \text{ or } j \neq n\} \cup \{e_{mn} - e_{ij} : i \neq m \text{ or } j \neq n, \lambda_{ij} > 0\}$,
 383 $e_{ij} \in \mathbb{R}^{KM}$ is obtained by letting λ_{ij} equal to one and other elements equal to zero.
 384

385 Note that Lin et al. (2009) analyzes the decomposition structure of general singly linearly
 386 constrained problems with lower and upper bounds, and our dual problem (14) falls within this class.
 387 However, the problem is more challenging in our case because the problem instance \mathcal{P} is unknown.
 388 Similar to Algorithm 1, we replace \mathcal{P} with the estimated instance $\hat{\mathcal{P}}(t)$ to solve the empirical version
 389 of problem (14). Instead of performing full gradient descent to obtain the optimal static sampling
 390 ratio $\omega^*(\hat{\mathcal{P}}(t))$, we apply a single gradient step, alternating with the estimate update $\hat{\mathcal{P}}(t)$, which is
 391 sufficient to ensure asymptotic convergence while significantly reducing computational cost.
 392

393 Algorithm 2 outlines the one-step gradient descent procedure. It begins by randomly selecting two
 394 coordinates and then determines a descent direction along with the corresponding maximal step
 395 size. If the decrease in the objective function exceeds a given threshold, the algorithm employs
 396 the canonical line search to determine the step size and update the dual solution. A feasible sam-
 397 pling ratio can then be computed using (16). We also compare the per-iteration complexity of
 398 Algorithm 1 and 2 (see Appendix A.12), showing that the proposed procedure is highly efficient.
 399

Algorithm 2: One-Step Gradient Descent Algorithm

400 1 **Input:** Covariate set \mathcal{C} , arm set \mathcal{X} , design point set \mathcal{Z} , a small positive constant κ_0 and
 401 $\eta < \frac{1}{KM}, \hat{\mathcal{P}}(t), \hat{\theta}(t), \hat{\beta}(t), \lambda(t-1)$.
 402 2 **Initialization:** Let $\hat{x}_{i(c_j;t)} = \arg \max_{x_i \in \mathcal{X}} \hat{\theta}(t)^\top \phi(x_i, c_j)$ s.t. $\hat{\beta}(t)^\top \phi(x_i, c_j) \leq b$ for each
 403 covariate $c_j \in \mathcal{C}$.
 404 3 Randomly choose $(m(t), n(t))$ from $\{(i, j) : \lambda_{ij}(t-1) \geq \eta\}$.
 405 4 Compute the descent direction $d(t)$, and determine the maximum step size s^{max} :

$$406 \quad d(t), s^{max} = \arg \min_{s \in \mathbb{R}_+, d \in \mathbb{R}^{KM}} s \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top d,$$

$$407 \quad \text{s.t. } \lambda_{ij}(t-1) + s d_{ij} \in [0, 1], \forall i \in [K], j \in [M]$$

$$408 \quad d \in \mathcal{D}^{(m(t), n(t))}(\lambda(t-1)).$$

409 5 Define $\mathcal{W}(t) = \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top d(t)$.
 410 6 **if** $\mathcal{W}(t) < \max\{-\kappa_0, -(\log t/t)^{1/4}\}$ and $s^{max} \mathcal{W}(t) < \max\{-\kappa_0, -(\log t/t)^{1/2}\}$ **then**
 411 7 $\lambda(t) = \lambda(t-1) + s(t)d(t)$ where $s(t) = \text{LineSearch Algorithm } (s^{max})$
 412 8 **else**
 413 9 $\lambda(t) = \lambda(t-1)$
 414 10 **Return:** Sampling ratio $\gamma(\hat{\mathcal{P}}(t))$ calculated according to (16) based on $\lambda(t)$.

415 The one-step gradient descent idea has appeared in the simulation literature (Zhou et al., 2024; Du
 416 et al., 2024), but our approach differs in two key ways. First, we tackle a more complex constrained
 417 BAI problem with covariate selection, which has not been previously explored. Second, we analyze
 418 the algorithm in the fixed-confidence setting to assess its statistical validity and sample complexity,
 419 whereas existing work focuses on sampling ratio convergence under the fixed-budget setting.

420 The algorithmic framework is the same as Algorithm 1, except for a modified sampling rule:
 421

$$422 \quad z_{h(t+1)} = \begin{cases} \arg \min_{z_h \in \mathcal{B}_t} N_h(t) & \text{if } \mathcal{B}_t \neq \emptyset \\ \arg \min_{z_h \in \mathcal{Z}} N_h(t) - t \gamma_h(\hat{\mathcal{P}}(t)) & \text{otherwise} \end{cases}, \quad (18)$$

423 where $\gamma(\hat{\mathcal{P}}(t)) = \{\gamma_h(\hat{\mathcal{P}}(t))\}_{h \in \mathcal{D}}$ denotes the sampling ratio returned by Algorithm 2. To mitigate
 424 the effect of estimation error, $\lambda(t)$ is reset to $1/KM$ whenever the optimal arms are challenged.
 425 We refer to this algorithm as the duality-based decomposition algorithm. Theorem 3 shows that the
 426 algorithm asymptotically matches the relaxed bound $\mathcal{U}^*(\mathcal{P}) \log(1/\delta)$ on sample complexity.

432 **Theorem 3.** Under Assumptions 1-3, the duality-based decomposition algorithm is δ -PAC and satisfies
 433

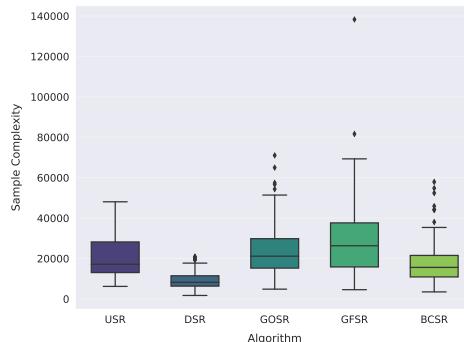
$$434 \quad \mathbb{P}\left(\limsup_{\delta \rightarrow 0} \frac{\tau}{\log(1/\delta)} \leq \mathcal{U}^*(\mathcal{P})\right) = 1, \limsup_{\delta \rightarrow 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \leq \mathcal{U}^*(\mathcal{P}). \quad (19)$$

437 5 NUMERICAL EXPERIMENT

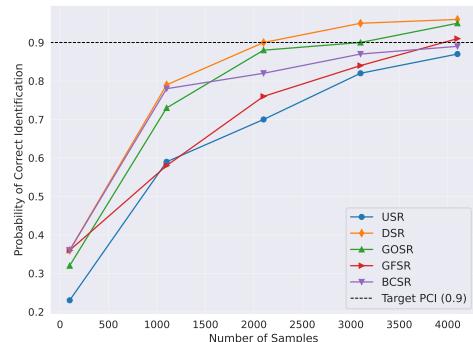
440 In this section, we evaluate the practical performance of the proposed duality-based decomposition
 441 algorithm. Detailed parameter settings and pseudo-code are provided in Appendix A.13.

442 We consider a problem with two covariates, four arms, and one constraint. For the first covariate,
 443 there is one optimal arm and three suboptimal arms. For the second, there is one optimal, one sub-
 444 optimal, and two infeasible arms, i.e., one with better performance and one with worse performance
 445 than the optimal arm.

446 Since no existing methods directly address our problem, we propose the following benchmarks for
 447 comparison: (1) **USR**: Allocate an equal number of samples to each design point. (2) **BCSR**: A
 448 modified Best Challenger algorithm (Garivier & Kaufmann, 2016) based solely on arm optimality,
 449 representing the state-of-the-art for BAI. (3) **GOSR**: A greedy algorithm for problem (13) that relies
 450 solely on arm optimality. (4) **GFSR**: A greedy algorithm for problem (13) that relies solely on arm
 451 feasibility. We refer to our proposed duality-based decomposition algorithm as **DSR**.



464 (a) Empirical sample complexity over 100 runs



464 (b) Empirical PCI over 100 runs

466 Figure 1: Performance comparison of various algorithms

468 Figure 1 illustrates the empirical sample complexity and probability of correct identification (PCI)
 469 based on 100 independent macro-replications of various algorithms, with $\delta = 0.1$ and $n_0 = 1$.
 470 The results demonstrate that DSR achieves the lowest sample complexity among all benchmarks,
 471 with an average of 9205.46 samples. Furthermore, the findings highlight the statistical conservatism
 472 of the fixed-confidence setting: with 4000 samples, the empirical PCI of both DSR and GOSR
 473 exceeds the target PCI. Notably, the DSR algorithm outperforms all other benchmarks in terms of
 474 the PCI measure. **This conclusion holds consistently across different problem instances and noise**
 475 **distributions (Appendix A.13)**. We also present an application example on personalized treatment
 476 for diabetes management in Appendix A.14, which verifies the practical performance of DSR.

478 6 CONCLUSION

480 This paper studies a constrained linear BAI problem with covariate selection, where each arm has
 481 multiple performance metrics, and the goal is to identify the best feasible arm per covariate. Our
 482 main contributions include an instance-dependent lower bound, a relaxed bound derived from a
 483 surrogate optimization problem, a duality-based formulation, and an efficient decomposition algorithm
 484 with theoretical guarantees. This work opens several avenues for future research, including extending
 485 the framework to continuous covariate spaces and generalizing the linear model to more flexible
 486 statistical structures, such as Gaussian Process Regression.

486 REFERENCES
487

488 Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In
489 *COLT-23th Conference on learning theory-2010*, pp. 13–p, 2010.

490 Gah-Yi Ban and Cynthia Rudin. The big data newsvendor: Practical insights from machine learning.
491 *Operations Research*, 67(1):90–108, 2019.

492 Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. *Management
493 Science*, 66(3):1025–1044, 2020.

494 A De la Garza. Spacing of information in polynomial regression. *The Annals of Mathematical
495 Statistics*, 25(1):123–130, 1954.

496 Rémy Degenne and Wouter M Koolen. Pure exploration with multiple correct answers. *Advances
497 in Neural Information Processing Systems*, 32, 2019.

498 Rémy Degenne, Wouter M Koolen, and Pierre Ménard. Non-asymptotic pure exploration by solving
499 games. *Advances in Neural Information Processing Systems*, 32, 2019.

500 Jianzhong Du, Siyang Gao, and Chun-Hung Chen. A contextual ranking and selection method for
501 personalized medicine. *Manufacturing & Service Management*, 26(1):167–181, 2024.

502 Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design for
503 transductive linear bandits. *Advances in neural information processing systems*, 32, 2019.

504 Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm identification: A uni-
505 fied approach to fixed budget and fixed confidence. *Advances in Neural Information Processing
506 Systems*, 25, 2012.

507 Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In
508 *Conference on Learning Theory*, pp. 998–1027. PMLR, 2016.

509 Mingjie Hu and Jianqiang Hu. Multi-task best arm identification with risk constraints. *Available at
510 SSRN 5214504*, 2024.

511 Yassir Jedra and Alexandre Proutiere. Optimal best-arm identification in linear bandits. *Advances
512 in Neural Information Processing Systems*, 33:10007–10017, 2020.

513 Sandeep Juneja and Subhashini Krishnasamy. Sample complexity of partition identification using
514 multi-armed bandits. In *Conference on Learning Theory*, pp. 1824–1852. PMLR, 2019.

515 Masahiro Kato and Kaito Ariu. The role of contextual information in best arm identification. *arXiv
516 preprint arXiv:2106.14077*, 2021.

517 Masahiro Kato, Akihiro Oga, Wataru Komatsubara, and Ryo Inokuchi. Active adaptive experimental
518 design for treatment effect estimation with covariate choices. *arXiv preprint arXiv:2403.03589*,
519 2024.

520 Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identifi-
521 cation in multi-armed bandit models. *The Journal of Machine Learning Research*, 17(1):1–42,
522 2016.

523 Cyrille Kone, Emilie Kaufmann, and Laura Richert. Adaptive algorithms for relaxed pareto set
524 identification. *Advances in Neural Information Processing Systems*, 36:35190–35201, 2023.

525 Cyrille Kone, Marc Jourdan, and Emilie Kaufmann. Pareto set identification with posterior sam-
526 pling. *arXiv preprint arXiv:2411.04939*, 2024a.

527 Cyrille Kone, Emilie Kaufmann, and Laura Richert. Bandit pareto set identification: the fixed
528 budget setting. In *International Conference on Artificial Intelligence and Statistics*, pp. 2548–
529 2556. PMLR, 2024b.

530 Cyrille Kone, Emilie Kaufmann, and Laura Richert. Bandit pareto set identification in a multi-output
531 linear model. In *Seventeenth European Workshop on Reinforcement Learning*, 2025.

540 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.
 541

542 Chih-Jen Lin, Stefano Lucidi, Laura Palagi, Arnaldo Risi, and Marco Sciandrone. Decomposition
 543 algorithm model for singly linearly-constrained problems subject to lower and upper bounds.
 544 *Journal of Optimization Theory and Applications*, 141:107–126, 2009.

545 Haihui Shen, L Jeff Hong, and Xiaowei Zhang. Ranking and selection with covariates for personal-
 546 ized decision making. *INFORMS Journal on Computing*, 33(4):1500–1519, 2021.

547 Chengshuai Shi, Kun Yang, Zihan Chen, Jundong Li, Jing Yang, and Cong Shen. Efficient prompt
 548 optimization through the lens of best arm identification. *arXiv preprint arXiv:2402.09723*, 2024.

549

550 Aleksandrs Slivkins et al. Introduction to multi-armed bandits. *Foundations and Trends® in Ma-
 551 chine Learning*, 12(1-2):1–286, 2019.

552 Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits. *Ad-
 553 vances in neural information processing systems*, 27, 2014.

554

555 Jason Y Wang, Jason M Stevens, Stavros K Kariofillis, Mai-Jan Tom, Dung L Golden, Jun Li, Jose E
 556 Tabora, Marvin Parasram, Benjamin J Shields, David N Primer, et al. Identifying general reaction
 557 conditions by bandit optimization. *Nature*, 626(8001):1025–1033, 2024.

558 Po-An Wang, Ruo-Chun Tzeng, and Alexandre Proutiere. Fast pure exploration via frank-wolfe.
 559 *Advances in Neural Information Processing Systems*, 34:5810–5821, 2021.

560

561 Marc Wanner, Johan Jonasson, Emil Carlsson, and Devdatt Dubhashi. Variational quantum opti-
 562 mization with continuous bandits. *arXiv preprint arXiv:2502.04021*, 2025.

563

564 Le Yang, Siyang Gao, Cheng Li, and Yi Wang. Stochastically constrained best arm identification
 565 with thompson sampling. *arXiv preprint arXiv:2501.03877*, 2025.

566

567 Yi Zhou, Michael C Fu, and Ilya O Ryzhov. Sequential learning with a similarity selection index.
 568 *Operations Research*, 72(6):2526–2542, 2024.

569

570 A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

571 A.1 LARGE LANGUAGE MODELS USAGE

573 ChatGPT was used for wording refinement and expression improvement.

575 A.2 PROOF OF THEOREM 1

576 *Proof.* To prove Theorem 1, we first introduce additional notation that was simplified or omitted
 577 in the main paper for clarity. Let $x_{i^*(c_j, \mathcal{P})}$ denote the best arm for covariate c_j under the problem
 578 instance \mathcal{P} ; when no ambiguity arises, we abbreviate this as $x_{i^*(c_j)}$. We define $d(f(z_h), \tilde{f}(z_h))$ as
 579 the KL divergence between two Gaussian random variables with means $f(z_h)$ and $\tilde{f}(z_h)$, sharing a
 580 common variance σ_h^2 . The subscript h indexes design points; for instance, if z_h corresponds to the
 581 arm-covariate pair (x_i, c_j) , then $f(z_h) = f(x_i, c_j)$, $\sigma_h^2 = \sigma_{ij}^2$.

583 A problem instance can be represented as $\mathcal{P} = (f(x_i, c_j), g(x_i, c_j))_{x_i \in \mathcal{X}, c_j \in \mathcal{C}}$. Consider the set of
 584 alternative instances

$$586 \mathcal{A}(\mathcal{P}) = \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \exists c_i \in \mathcal{C}, x_{i^*(c_j, \mathcal{P})} \neq x_{i^*(c_j, \tilde{\mathcal{P}})} \right\}, \quad (20)$$

588 which includes all problem instances $\tilde{\mathcal{P}} = (\tilde{f}(x_i, c_j), \tilde{g}(x_i, c_j))_{x_i \in \mathcal{X}, c_j \in \mathcal{C}}$ for which the optimal arm
 589 differs from that of \mathcal{P} for at least one covariate.

591 In the fixed confidence setting, for a given confidence level $\delta \in (0, 1)$, the δ -PAC condition requires
 592 that

$$593 \mathbb{P}_{\mathcal{P}} \left(\forall c_j \in \mathcal{C}, x_{\hat{i}(c_j, \tau)} = x_{i^*(c_j, \mathcal{P})} \right) \geq 1 - \delta, \quad (21)$$

594 and for any alternative instance $\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})$,
 595

$$596 \quad 597 \quad 598 \quad \mathbb{P}_{\tilde{\mathcal{P}}} \left(\forall c_j \in \mathcal{C}, x_{\hat{i}(c_j, \tau)} = x_{i^*(c_j, \mathcal{P})} \right) \leq \delta. \quad (22)$$

599 As the event
 600

$$601 \quad 602 \quad 603 \quad \left\{ \forall c_j \in \mathcal{C}, x_{\hat{i}(c_j, \tau)} = x_{i^*(c_j, \mathcal{P})} \right\} \quad (23)$$

604 belongs to the filtration generated by all observations collected up to the stopping time τ . Thus,
 605 applying the transportation inequality (Lemma 1) from Kaufmann et al. (2016), we obtain a funda-
 606 mental information-theoretic lower bound:

$$607 \quad 608 \quad 609 \quad \forall \tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P}), \sum_{h \in [D]} \mathbb{E}[N_h] \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right) \geq kl(\delta, 1 - \delta). \quad (24)$$

611 Consequently, we have the following sequence of inequalities:
 612

$$613 \quad 614 \quad 615 \quad kl(\delta, 1 - \delta) \leq \sum_{h \in [D]} \mathbb{E}[N_h] \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right) \\ 616 \quad 617 \quad 618 \quad \leq \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \sum_{h \in [D]} \mathbb{E}[N_h] \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right) \\ 619 \quad 620 \quad 621 \quad \leq \sup_{\omega \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \sum_{h \in [D]} \mathbb{E}[N_h] \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right) \\ 622 \quad 623 \quad 624 \quad = \mathbb{E}[\tau] \sup_{\omega \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \sum_{h \in [D]} \frac{\mathbb{E}[N_h]}{\mathbb{E}[\tau]} \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right) \\ 625 \quad 626 \quad 627 \quad \leq \mathbb{E}[\tau] \sup_{\omega \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \sum_{h \in [D]} \omega_h \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right), \quad (25)$$

628 where $\omega_h = \mathbb{E}[N_h]/\mathbb{E}[\tau]$ represents the expected sampling proportion at design point z_h . This leads
 629 to the following lower bound on the sample complexity:

$$630 \quad 631 \quad \mathbb{E}[\tau] \geq \mathcal{H}^*(\mathcal{P}) kl(\delta, 1 - \delta), \quad (26)$$

632 where the instance-dependent complexity term is defined as
 633

$$634 \quad 635 \quad 636 \quad \mathcal{H}^*(\mathcal{P})^{-1} = \sup_{\omega \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\ 637 \quad 638 \quad 639 \quad = \sup_{\omega \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \sum_{h \in [D]} \omega_h \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right). \quad (27)$$

640 For each covariate $c_j \in \mathcal{C}$, define the following sets:
 641

$$642 \quad 643 \quad 644 \quad \mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j) = \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b \right\}, \quad (28)$$

645 and
 646

$$647 \quad \mathcal{O}(x_i, c_j) = \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\theta}^\top (\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) > 0, \tilde{\beta}^\top \phi(x_i, c_j) \leq b \right\}. \quad (29)$$

648 Then, the set $\mathcal{A}(\mathcal{P})$ can be decomposed as
649

$$\begin{aligned}
650 \quad \mathcal{A}(\mathcal{P}) &= \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \exists c_i \in \mathcal{C}, x_{i^*(c_j, \mathcal{P})} \neq x_{i^*(c_j, \tilde{\mathcal{P}})} \right\} \\
651 \\
652 \quad &= \bigcup_{c_i \in \mathcal{C}} \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : x_{i^*(c_j, \mathcal{P})} \neq x_{i^*(c_j, \tilde{\mathcal{P}})} \right\} \\
653 \\
654 \quad &= \bigcup_{c_i \in \mathcal{C}} \left(\left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b \right\} \right. \\
655 \\
656 \quad &\quad \left. \bigcup \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \exists x_i \in \mathcal{X}, \tilde{\theta}^\top (\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) > 0, \tilde{\beta}^\top \phi(x_i, c_j) \leq b \right\} \right) \\
657 \\
658 \quad &= \bigcup_{c_i \in \mathcal{C}} \left(\mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j) \bigcup \left(\bigcup_{x_i \in \mathcal{X} \setminus x_{i^*(c_j, \mathcal{P})}} \mathcal{O}(x_i, c_j) \right) \right) \\
659 \\
660 \\
661 \\
662 \\
663
\end{aligned} \tag{30}$$

664 Then, we can express $\mathcal{H}^*(\mathcal{P})^{-1}$ as:
665

$$\begin{aligned}
666 \quad \mathcal{H}^*(\mathcal{P})^{-1} &= \sup_{\omega \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\
667 \\
668 \quad &= \sup_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \min \left(\inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1}, \min_{x_i \in \mathcal{X} \setminus x_{i^*(c_j, \mathcal{P})}} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \right). \\
669 \\
670
\end{aligned} \tag{31}$$

671 Next, we leverage the linear model structure and Gaussian noise assumptions from Assumptions 2
672 and 3 to derive a closed-form expression for $\mathcal{H}^*(\mathcal{P})$. Recall that for two univariate Gaussian distri-
673 butions with equal variance, the KL divergence is given by
674

$$675 \quad d(f(z_h), \tilde{f}(z_h)) = \frac{(f(z_h) - \tilde{f}(z_h))^2}{2\sigma_h^2} = \frac{(\theta - \tilde{\theta})^\top \phi(z_h) \phi(z_h)^\top (\theta - \tilde{\theta})}{2\sigma_h^2}. \tag{32}$$

676 Using this result, the function $\mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1}$ admits the following closed-form:
677

$$678 \quad \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} = \sum_{h \in [D]} \omega_h \left(\frac{(\theta - \tilde{\theta})^\top \phi(z_h) \phi(z_h)^\top (\theta - \tilde{\theta})}{2\sigma_h^2} + \frac{(\beta - \tilde{\beta})^\top \phi(z_h) \phi(z_h)^\top (\beta - \tilde{\beta})}{2\sigma_h^2} \right). \tag{33}$$

679 We now consider the following sub-optimization problem:
680

$$\begin{aligned}
681 \quad &\inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\
682 \\
683 \quad &= \inf_{\tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b} \sum_{h \in [D]} \omega_h \left(\frac{(\theta - \tilde{\theta})^\top \phi(z_h) \phi(z_h)^\top (\theta - \tilde{\theta})}{2\sigma_h^2} + \frac{(\beta - \tilde{\beta})^\top \phi(z_h) \phi(z_h)^\top (\beta - \tilde{\beta})}{2\sigma_h^2} \right) \\
684 \\
685 \quad &= \inf_{\tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b} \sum_{h \in [D]} \omega_h \frac{(\beta - \tilde{\beta})^\top \phi(z_h) \phi(z_h)^\top (\beta - \tilde{\beta})}{2\sigma_h^2} \\
686 \\
687 \quad &= \inf_{\tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b} (\beta - \tilde{\beta})^\top \left(\sum_{h \in [D]} \omega_h \frac{\phi(z_h) \phi(z_h)^\top}{2\sigma_h^2} \right) (\beta - \tilde{\beta}) \\
688 \\
689 \quad &= \inf_{\tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b} (\beta - \tilde{\beta})^\top \Lambda(\omega) (\beta - \tilde{\beta}), \\
690 \\
691 \\
692 \\
693 \\
694 \\
695 \\
696 \\
697 \\
698 \\
699
\end{aligned} \tag{34}$$

700 where we define
701

$$702 \quad \Lambda(\omega) = \sum_{h \in [D]} \omega_h \frac{\phi(z_h) \phi(z_h)^\top}{2\sigma_h^2}. \tag{35}$$

702 Thus, the subproblem reduces to the following constrained quadratic minimization:
 703

$$\begin{aligned} 704 \inf_{\tilde{\beta}} \quad & (\beta - \tilde{\beta})^\top \Lambda(\omega) (\beta - \tilde{\beta}) \\ 705 \text{s.t.} \quad & \tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b \quad (\lambda) \\ 706 \end{aligned} \quad (36)$$

707 The Karush–Kuhn–Tucker (KKT) conditions for the above optimization problem are given by
 708

$$\begin{aligned} 709 \quad & 2\Lambda(\omega)(\beta - \tilde{\beta}) + \lambda \phi(x_{i^*(c_j, \mathcal{P})}, c_j) = 0 \\ 710 \quad & \tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) = b, \\ 711 \end{aligned} \quad (37)$$

712 where λ is the Lagrange multiplier associated with the inequality constraint. According to the first
 713 equation in (37), it holds that

$$\tilde{\beta} = \beta + \frac{1}{2} \lambda \Lambda(\omega)^{-1} \phi(x_{i^*(c_j, \mathcal{P})}, c_j). \quad (38)$$

714 Plug (46) into the second equation in (37), we have that
 715

$$\lambda^* = \frac{2(b - \beta^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j))}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j)\|_{\Lambda(\omega)^{-1}}^2}. \quad (39)$$

716 Plug (47) into (46) yields the optimal solution
 717

$$\tilde{\beta}^* = \beta + \frac{b - \beta^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j)}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j)\|_{\Lambda(\omega)^{-1}}^2} \Lambda(\omega)^{-1} \phi(x_{i^*(c_j, \mathcal{P})}, c_j). \quad (40)$$

718 The corresponding optimal value of the objective function is
 719

$$\frac{(b - \beta^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j))^2}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j)\|_{\Lambda(\omega)^{-1}}^2}. \quad (41)$$

720 Next, we consider the complementary sub-optimization problem
 721

$$\begin{aligned} 722 \min_{x_i \in \mathcal{X} \setminus x_{i^*(c_j, \mathcal{P})}} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\ 723 \\ 724 = \min \left(\min_{x_i \in \mathcal{D}_1(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1}, \min_{x_i \in \mathcal{D}_2(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1}, \right. \\ 725 \\ 726 \left. \min_{x_i \in \mathcal{D}_3(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \right). \quad (42) \\ 727 \end{aligned}$$

728 Consider the analysis of the following optimization problem as an example:
 729

$$\begin{aligned} 730 \min_{x_i \in \mathcal{D}_1(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\ 731 \\ 732 = \min_{x_i \in \mathcal{D}_1(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \sum_{h \in [D]} \omega_h \left(\frac{(\theta - \tilde{\theta})^\top \phi(z_h) \phi(z_h)^\top (\theta - \tilde{\theta})}{2\sigma_h^2} + \frac{(\beta - \tilde{\beta})^\top \phi(z_h) \phi(z_h)^\top (\beta - \tilde{\beta})}{2\sigma_h^2} \right) \\ 733 \\ 734 = \min_{x_i \in \mathcal{D}_1(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \sum_{h \in [D]} \omega_h \left(\frac{(\theta - \tilde{\theta})^\top \phi(z_h) \phi(z_h)^\top (\theta - \tilde{\theta})}{2\sigma_h^2} \right) \\ 735 \\ 736 = \min_{x_i \in \mathcal{D}_1(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} (\theta - \tilde{\theta})^\top \Lambda(\omega) (\theta - \tilde{\theta}) \\ 737 \\ 738 \quad (43) \end{aligned}$$

739 The inner optimization problem is therefore
 740

$$\begin{aligned} 741 \inf_{\tilde{\theta}} \quad & (\theta - \tilde{\theta})^\top \Lambda(\omega) (\theta - \tilde{\theta}) \\ 742 \text{s.t.} \quad & \tilde{\theta}^\top (\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) \geq 0 \quad (\lambda) \\ 743 \end{aligned} \quad (44)$$

756 The KKT conditions are given by
 757

$$\begin{aligned} 758 \quad 2\Lambda(\omega)(\theta - \tilde{\theta}) + \lambda(\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) &= 0 \\ 759 \quad \tilde{\theta}^\top(\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) &= 0 \end{aligned} \quad (45)$$

761 According to the first equation in (45), it holds that
 762

$$\tilde{\theta} = \theta + \frac{1}{2}\lambda\Lambda(\omega)^{-1}(\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)). \quad (46)$$

766 Plug (46) into the second equation in (45), we have that
 767

$$\lambda^* = \frac{2(\theta^\top(\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j)))}{\|\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)\|_{\Lambda(\omega)^{-1}}^2}. \quad (47)$$

771 Plug (47) into (46) yields the optimal solution.
 772

$$\tilde{\theta}^* = \theta + \frac{\theta^\top(\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j))}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}\Lambda(\omega)^{-1}(\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)), \quad (48)$$

776 The corresponding optimal value is
 777

$$\frac{(\theta^\top(\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j)))^2}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}. \quad (49)$$

782 The analyses for the subproblems
 783

$$\min_{x_i \in \mathcal{D}_2(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \quad (50)$$

786 and

$$\min_{x_i \in \mathcal{D}_3(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \quad (51)$$

789 follow analogous steps. Their optimal values are respectively
 790

$$\frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \quad (52)$$

794 and

$$\frac{(\theta^\top(\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j)))^2}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}. \quad (53)$$

799 Finally, we conclude that $\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma(\omega, c_j, \mathcal{P})$, where
 800

$$\begin{aligned} 801 \quad \Gamma(\omega, c_j, \mathcal{P}) &= \min \left(\min_{x_i \neq x_{i^*(c_j, \mathcal{P})}} \left(\frac{((\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j) \cup \mathcal{D}_3(c_j)) \right. \right. \\ 802 \quad &\quad \left. \left. + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)), \right) \frac{(b - \beta^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j))^2}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j)\|_{\Lambda(\omega)^{-1}}^2} \right). \end{aligned} \quad (54)$$

806 \square
 807

810 A.3 BOUNDARY CASE ANALYSIS
811812 In this section, we relax Assumption 1 by identifying ϵ -optimal and feasible arms. Specifically, our
813 goal is to identify an ϵ -optimal solution to the following optimization problem.

814
$$\max_{x_i \in \mathcal{X}} f(x_i, c_j) \quad \text{s.t.} \quad g(x_i, c_j) \leq b + \epsilon$$

815

816 For each covariate $c_j \in \mathcal{C}$, define the following sets:
817

818
$$\mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j) = \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) \geq b + \epsilon \right\}$$

819

820 and
821

822
$$\mathcal{O}(x_i, c_j) = \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\theta}^\top (\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) > \epsilon, \tilde{\beta}^\top \phi(x_i, c_j) \leq b + \epsilon \right\}.$$

823

824 Then, the set $\mathcal{A}(\mathcal{P})$ can be decomposed as
825

826
$$\begin{aligned} \mathcal{A}(\mathcal{P}) &= \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \exists c_i \in \mathcal{C}, x_{i^*(c_j, \mathcal{P})} \neq x_{i^*(c_j, \tilde{\mathcal{P}})} \right\} \\ &= \bigcup_{c_i \in \mathcal{C}} \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : x_{i^*(c_j, \mathcal{P})} \neq x_{i^*(c_j, \tilde{\mathcal{P}})} \right\} \\ &= \bigcup_{c_i \in \mathcal{C}} \left(\left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b + \epsilon \right\} \right. \\ &\quad \left. \bigcup \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \exists x_i \in \mathcal{X}, \tilde{\theta}^\top (\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) > \epsilon, \tilde{\beta}^\top \phi(x_i, c_j) \leq b + \epsilon \right\} \right) \\ &= \bigcup_{c_i \in \mathcal{C}} \left(\mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j) \bigcup \left(\bigcup_{x_i \in \mathcal{X} \setminus x_{i^*(c_j, \mathcal{P})}} \mathcal{O}(x_i, c_j) \right) \right) \end{aligned}$$

830
831
832
833
834
835
836
837

838 Then, we can express $\mathcal{H}^*(\mathcal{P})^{-1}$ as:
839

840
$$\begin{aligned} \mathcal{H}^*(\mathcal{P})^{-1} &= \sup_{\omega \in \Omega} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}(\mathcal{P})} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\ &= \sup_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \min \left(\inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1}, \min_{x_i \in \mathcal{X} \setminus x_{i^*(c_j, \mathcal{P})}} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \right). \end{aligned}$$

841
842
843

844 The following analysis follows the same approach as in Theorem 1. Therefore, we conclude that
845

846
$$\mathbb{E}[\tau] \geq \mathcal{H}^*(\mathcal{P}) \text{kl}(\delta, 1 - \delta)$$

847

848 where $\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma^\epsilon(\omega, c_j, \mathcal{P})$,
849

850
$$\begin{aligned} \Gamma^\epsilon(\omega, c_j, \mathcal{P}) &= \min \left(\min_{x_i \neq x_{i^*(c_j, \mathcal{P})}} \left(\frac{(\epsilon + (\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j) \cup \mathcal{D}_3(c_j)) \right. \right. \\ &\quad \left. \left. + \frac{(b + \epsilon - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)), \right) \frac{(b + \epsilon - \beta^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j))^2}{\|\phi(x_{i^*(c_j, \mathcal{P})}, c_j)\|_{\Lambda(\omega)^{-1}}^2} \right). \end{aligned} \tag{55}$$

851
852
853
854
855

856 A.4 MULTIPLE CONSTRAINTS SETTING
857858 In this section, we present the sample complexity lower bound for the multiple-constraint setting,
859 which follows directly from an extension of the proof of Theorem 1. In the multi-constraint setting,
860 each arm corresponds to a random performance vector $(F(x_i, c_j), G_1(x_i, c_j), \dots, G_H(x_i, c_j))$, and
861 the sample complexity must separately account for both feasible and infeasible constraints of each
862 arm. Let $\mathcal{I}(x_i, c_j)$ and $\mathcal{F}(x_i, c_j)$ denote the index sets of infeasible and feasible constraints, respec-
863 tively, for the arm-covariate pair (x_i, c_j) . For the s -th constraint of the arm-covariate pair (x_i, c_j) ,
864 the mean performance is given by $g_s(x_i, c_j) = \beta_s^\top \phi(x_i, c_j)$.

864 **Theorem 4.** *Under Assumptions 1-3, for a fixed confidence level $\delta \in (0, 1/2)$, any δ -PAC algorithm*
 865 *applied to problem instance $\mathcal{P} \in \mathcal{S}$ must satisfy*

$$868 \quad \mathbb{E}[\tau] \geq \mathcal{H}^*(\mathcal{P})kl(\delta, 1 - \delta), \quad (56)$$

870 *which leads to*

$$872 \quad \liminf_{\delta \rightarrow 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \geq \mathcal{H}^*(\mathcal{P}), \quad (57)$$

876 *where $\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma(\omega, c_j, \mathcal{P})$,*

$$879 \quad \Gamma(\omega, c_j, \mathcal{P}) = \min \left(\min_{x_i \neq x_{i^*(c_j)}} \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j) \cup \mathcal{D}_3(c_j)) \right. \right. \\ 880 \quad \left. \left. + \sum_{s \in \mathcal{I}(x_i, c_j)} \frac{(b - \beta_s^{\top} \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)) \right) \right), \min_{s \in \mathcal{F}(x_i, c_j)} \frac{(b - \beta_s^{\top} \phi(x_{i^*(c_j)}, c_j))^2}{\|\phi(x_{i^*(c_j)}, c_j)\|_{\Lambda(\omega)^{-1}}^2} \right), \quad (58)$$

$$885 \quad \Lambda(\omega) = \sum_{z_h \in \mathcal{Z}} \frac{\omega_h}{2\sigma_h^2} \phi(z_h) \phi(z_h)^{\top}, \text{ and } kl(\delta, 1 - \delta) \triangleq \delta \log(\delta/1 - \delta) + (1 - \delta) \log((1 - \delta)/\delta).$$

887 Intuitively, arms from different classes are governed by different types of constraints. For the best
 888 arm, the lower bound is determined by the most critical feasible constraint, i.e., the one closest to
 889 violation. In contrast, for infeasible arms, the lower bound reflects the combined effect of all violated
 890 constraints.

893 A.5 PROOF OF PROPOSITION 1

896 Proposition 1 follows directly by extending the proof of Theorem 3 in Jedra & Proutiere (2020).
 897 The only difference is that Jedra & Proutiere (2020) considered the case where the optimal sampling
 898 ratio $\omega^*(\mathcal{P})$ may be non-unique. Specifically, it proposed the following sampling rule:

$$900 \quad z_{h(t+1)} = \arg \min_{z_h \in \mathcal{Z}} N_h(t) - \sum_{s=1}^t \omega_h^*(\hat{\mathcal{P}}(s)) \quad (59)$$

904 and showed that the empirical sampling ratio converges to the set $\mathcal{M}^*(\mathcal{P})$, defined as

$$907 \quad \mathcal{M}^*(\mathcal{P}) \leftarrow \arg \max_{\omega \in \Omega} \mathcal{H}(\mathcal{P}, \omega)^{-1}. \quad (60)$$

910 This sampling rule in (59) can also be applied in our setting to handle the non-unique optimal
 911 sampling ratio case. Moreover, if all optimal sampling ratios can be enumerated, one may track a
 912 linear combination of them and apply the sampling rule in (10). *Following the same analysis as*
 913 *in Lemma 4, we can show that $\mathcal{H}(\mathcal{P}, \omega)^{-1}$ is a continuous function with respect to (\mathcal{P}, ω) . Moreover,*
 914 *Ω is a simplex, which is a compact, convex, and non-empty set. In addition, $\mathcal{H}(\mathcal{P}, \omega)^{-1}$ is*
 915 *concave with respect to ω , because it can be expressed as the infimum over linear functions of ω .*
 916 *By Berge's theorem, the solution set $\mathcal{M}^*(\mathcal{P})$ is convex, so any linear combination of elements in*
 917 *$\mathcal{M}^*(\mathcal{P})$ also belongs to $\mathcal{M}^*(\mathcal{P})$. Hence, this modification does not affect the convergence of the*
 918 *empirical sampling ratio $\omega(t)$.*

918 A.6 PROOF OF LEMMA 1
919920 *Proof.* This lemma establishes that the relaxed complexity $\mathcal{U}^*(\mathcal{P})$ serves as an upper bound on the
921 instance-dependent complexity $\mathcal{H}^*(\mathcal{P})$. Note that for each $\omega \in \Omega$, $c_j \in \mathcal{C}$, we have

922
$$\begin{aligned} 923 \Gamma(\omega, c_j, \mathcal{P}) &= \min \left(\min_{x_i \neq x_{i^*(c_j)}} \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j) \cup \mathcal{D}_3(c_j)) \right. \right. \\ 924 &\quad \left. \left. + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)), \right) \frac{(b - \beta^\top \phi(x_{i^*(c_j)}, c_j))^2}{\|\phi(x_{i^*(c_j)}, c_j)\|_{\Lambda(\omega)^{-1}}^2} \right) \\ 925 &\geq \min_{x_i \in \mathcal{X}} \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j)) \right. \\ 926 &\quad \left. + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)) \right) \\ 927 &= \Gamma^S(\omega, c_j, \mathcal{P}). \end{aligned} \tag{61}$$

935 Then, we conclude that
936

937
$$\mathcal{H}^*(\mathcal{P})^{-1} = \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma(\omega, c_j, \mathcal{P}) \geq \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma^S(\omega, c_j, \mathcal{P}) = \mathcal{U}^*(\mathcal{P})^{-1}, \tag{62}$$

938

939 and therefore $\mathcal{U}^*(\mathcal{P}) \leq \mathcal{H}^*(\mathcal{P})$. \square
940941 A.7 RELAXATION GAP ANALYSIS
942943 In this subsection, we analyze the gap between the relaxed bound $\mathcal{U}^*(\mathcal{P})$ and the original bound
944 $\mathcal{H}^*(\mathcal{P})$.945 Define the constant
946

947
$$\gamma = \inf \left\{ \rho \in \mathbb{R}_+ : \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \rho \geq \frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}, \forall x_i \in \mathcal{D}_3(c_j), c_j \in \mathcal{C} \right\}. \tag{63}$$

948
949

950 By definition of γ , it holds that
951

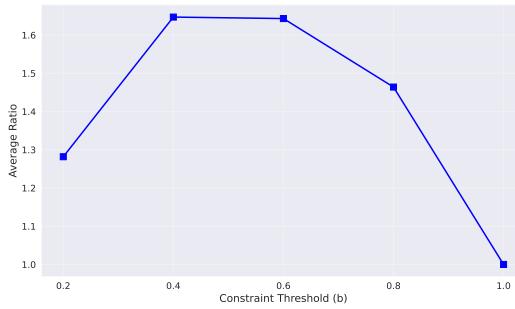
952
$$\begin{aligned} 953 \Gamma(\omega, c_j, \mathcal{P}) &= \min_{x_i \neq x_{i^*(c_j)}} \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j) \cup \mathcal{D}_3(c_j)) \right. \\ 954 &\quad \left. + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)), \frac{(b - \beta^\top \phi(x_{i^*(c_j)}, c_j))^2}{\|\phi(x_{i^*(c_j)}, c_j)\|_{\Lambda(\omega)^{-1}}^2} \right) \\ 955 &\leq (1 + \gamma) \min_{x_i \in \mathcal{X}} \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j)) \right. \\ 956 &\quad \left. + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)) \right) \\ 957 &= (1 + \gamma) \Gamma^S(\omega, c_j, \mathcal{P}). \end{aligned}$$

958 Then, it is easy to verify that
959

960
$$\mathcal{U}^*(\mathcal{P}) \leq (1 + \gamma) \mathcal{H}^*(\mathcal{P}) \tag{64}$$

961

962 by using the definition of $\mathcal{U}^*(\mathcal{P})$ and $\mathcal{H}^*(\mathcal{P})$. We use a numerical example to compare the approxi-
963 mation ratio $\Gamma(\omega, c_j, \mathcal{P})/\Gamma^S(\omega, c_j, \mathcal{P})$ under different values of the constraint threshold b . For each
964 b , we randomly generate 1000 problem instances with $M = 2$ and $K = 4$. The expected objective
965 and constraint values of all arms lie within $[0, 1]$. We then calculate $\Gamma(\omega, c_j, \mathcal{P})$ and $\Gamma^S(\omega, c_j, \mathcal{P})$
966 using a uniform sampling ratio ω for the first covariate. Figure 2 shows the average ratio under
967 different constraint thresholds b . The results show that the approximation ratio is close to 1 as the
968 constraint threshold b increases.
969

Figure 2: Average ratio under different constraint thresholds b

We also propose an alternative relaxed bound $\tilde{\mathcal{U}}^*(\mathcal{P})$ by partitioning the set $\mathcal{D}_3(c_j)$ into two subsets: $\mathcal{M}_1(c_j)$ and $\mathcal{M}_2(c_j)$ where arms in $\mathcal{M}_1(c_j)$ are relatively easy to identify as suboptimal, i.e.,

$$\mathcal{M}_1(c_j) = \left\{ x_i \in \mathcal{D}_3(c_j) : \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \leq \frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \right\}. \quad (65)$$

And arms in $\mathcal{M}_2(c_j)$ are easy to identify as infeasible, i.e.,

$$\mathcal{M}_2(c_j) = \left\{ x_i \in \mathcal{D}_3(c_j) : \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} > \frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \right\}. \quad (66)$$

Based on this, we define a new surrogate objective function:

$$\begin{aligned} \tilde{\Gamma}^s(\omega, c_j, \mathcal{P}) = \min_{x_i \in \mathcal{X}} & \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j) \cup \mathcal{M}_1(c_j)) \right. \\ & \left. + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{M}_2(c_j)) \right). \end{aligned} \quad (67)$$

Using this surrogate function, we can show that:

$$\mathcal{H}^*(\mathcal{P}) \leq \tilde{\mathcal{U}}^*(\mathcal{P}) \leq 2\mathcal{H}^*(\mathcal{P}). \quad (68)$$

The bound for $\mathcal{U}^*(\mathcal{P})$ becomes tight when the objective values of the arms in $\mathcal{D}_3(c_j)$ are close to that of the best arm, implying that arms in $\mathcal{D}_3(c_j)$ can be easily identified as infeasible rather than suboptimal. In this case, the constant γ is close to zero. However, when the constraint performance of arms in $\mathcal{D}_3(c_j)$ is close to the threshold, γ may exceed 1, and the second bound $\tilde{\mathcal{U}}^*(\mathcal{P})$ should be used. Since the theoretical analysis of the two bounds is essentially the same, except that the second bound requires constructing two subsets during implementation, without loss of generality, we focus on $\mathcal{U}^*(\mathcal{P})$ in the main paper for notational simplicity.

A.8 PROOF OF THEOREM 2

Proof. Consider the following primal optimization problem in (13):

$$\max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \Gamma^s(\omega, c_j, \mathcal{P}), \quad (69)$$

where

$$\begin{aligned} \Gamma^s(\omega, c_j, \mathcal{P}) = \min_{x_i \in \mathcal{X}} & \left(\frac{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^\top \theta)^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j)) \right. \\ & \left. + \frac{(b - \beta^\top \phi(x_i, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2} \mathbb{I}(x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)) \right). \end{aligned} \quad (70)$$

1026 This problem is equivalent to:
 1027

$$\begin{aligned}
 1028 \min_{\omega \in \Omega} \max_{c_j \in \mathcal{C}, x_i \in \mathcal{X}} & \left(\frac{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2} \mathbb{I}(x_i \in \mathcal{D}_1(c_j)) \right. \\
 1029 & + \frac{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}{(b - \beta^{\top} \phi(x_i, c_j))^2} \mathbb{I}(x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)) \Big) \\
 1030 & \\
 1031 & \\
 1032 & \\
 1033 & \\
 1034 & \\
 1035 \end{aligned} \tag{71}$$

1035 By introducing an auxiliary variable ξ , we can reformulate the problem as:
 1036

$$\begin{aligned}
 1037 \min_{\xi, \omega} & \xi \\
 1038 \text{s.t.} & \frac{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2} \leq \xi, \forall c_j \in \mathcal{C}, x_i \in \mathcal{D}_1(c_j) \\
 1039 & \frac{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}{(b - \beta^{\top} \phi(x_i, c_j))^2} \leq \xi, \forall c_j \in \mathcal{C}, x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j) \\
 1040 & \sum_{h \in [D]} \omega_h = 1 \\
 1041 & \omega_h \geq 0, \forall h \in [D] \\
 1042 & \\
 1043 & \\
 1044 & \\
 1045 & \\
 1046 & \\
 1047 & \\
 1048 & \\
 1049 \end{aligned} \tag{72}$$

1049 Since we only sample from D design points, the corresponding design matrix $\Phi \in \mathbb{R}^{D \times D}$ is invertible. Then, we have that
 1050

$$1052 \Lambda(\omega)^{-1} = \left(\sum_{h \in [D]} \omega_h \frac{\phi(z_h) \phi(z_h)^{\top}}{2\sigma_h^2} \right)^{-1} = (\Phi^T \Sigma^{-1} \Phi)^{-1} = \Phi^{-1} \Sigma (\Phi^T)^{-1}, \tag{73}$$

1056 where Σ is a diagonal matrix with elements $\{2\sigma_h^2/\omega_h\}_{h \in [D]}$.
 1057

1058 Now, for each covariate $c_j \in \mathcal{C}$ and each arm $x_i \in \mathcal{D}_1(c_j)$, we have
 1059

$$\begin{aligned}
 1060 & \frac{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2} \\
 1061 & = \frac{(\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \Lambda(\omega)^{-1} (\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))}{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2} \\
 1062 & = \frac{(\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \Phi^{-1} \Sigma (\Phi^T)^{-1} (\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))}{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2} \\
 1063 & = 2 \sum_{h \in [D]} \frac{\sigma_h^2 [(\Phi^T)^{-1} (\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))]_h^2}{\omega_h ((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2} \\
 1064 & = 2 \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h}, \\
 1065 & \\
 1066 & \\
 1067 & \\
 1068 & \\
 1069 & \\
 1070 & \\
 1071 & \\
 1072 & \\
 1073 & \\
 1074 \end{aligned} \tag{74}$$

1075 where we define

$$1076 \chi_h(x_i, c_j) = \frac{\sigma_h^2 [(\Phi^T)^{-1} (\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))]_h^2}{((\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j))^{\top} \theta)^2}, \tag{75}$$

1077 and $[v]_h$ denotes the h th element of the vector v .
 1078

1080 Similarly, for each covariate $c_j \in \mathcal{C}$ and each arm $x_i \in \{x_{i^*(c_j)}\} \cup \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)$, we have
 1081

$$\begin{aligned}
 & \frac{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}{(b - \beta^\top \phi(x_i, c_j))^2} \\
 &= \frac{\phi(x_i, c_j)^\top \Lambda(\omega)^{-1} \phi(x_i, c_j)}{(b - \beta^\top \phi(x_i, c_j))^2} \\
 &= \frac{\phi(x_i, c_j)^\top \Phi^{-1} \Sigma(\Phi^T)^{-1} \phi(x_i, c_j)}{(b - \beta^\top \phi(x_i, c_j))^2} \\
 &= 2 \sum_{h \in [D]} \frac{\sigma_h^2 [(\Phi^T)^{-1} \phi(x_i, c_j)]_h^2}{\omega_h (b - \beta^\top \phi(x_i, c_j))^2} \\
 &= 2 \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h},
 \end{aligned} \tag{76}$$

1094 where we define
 1095

$$\chi_h(x_i, c_j) = \frac{\sigma_h^2 [(\Phi^T)^{-1} \phi(x_i, c_j)]_h^2}{(b - \beta^\top \phi(x_i, c_j))^2}. \tag{77}$$

1098 Hence, the optimization problem becomes:
 1099

$$\begin{aligned}
 & \min_{\omega, \xi} \xi \\
 \text{s.t. } & \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h} \leq \xi, \forall c_j \in \mathcal{C}, x_i \in \mathcal{X} \quad (\lambda_{ij}) \\
 & \sum_{h \in [D]} \omega_h = 1, \quad (\nu) \\
 & \omega_h \geq 0, \forall h \in [D]
 \end{aligned} \tag{78}$$

1108 The corresponding Lagrangian function is:
 1109

$$L(\xi, \omega, \lambda, \nu) = \xi + \sum_{j \in [M], i \in [K]} \lambda_{ij} \left(\sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h} - \xi \right) + \nu \left(\sum_{h \in [D]} \omega_h - 1 \right). \tag{79}$$

1112 Let $(\xi^*, \omega^*, \lambda^*, \nu^*)$ denote the optimal primal-dual solution. The KKT conditions for this optimiza-
 1113 tion problem are:
 1114

$$\begin{aligned}
 & \sum_{j \in [M], i \in [K]} \lambda_{ij}^* = 1 \\
 & - \sum_{j \in [M], i \in [K]} \lambda_{ij}^* \frac{\chi_h(x_i, c_j)}{(\omega_h^*)^2} + \nu^* = 0 \\
 & \lambda_{ij}^* \left(\sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h^*} - \xi^* \right) = 0, \forall j \in [M], i \in [K] \\
 & \lambda_{ij}^* \geq 0, \forall j \in [M], i \in [K] \\
 & \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h^*} \leq \xi^*, \forall c_j \in \mathcal{C}, x_i \in \mathcal{X} \\
 & \sum_{h \in [D]} \omega_h^* = 1 \\
 & \omega_h^* \geq 0, \forall h \in [D].
 \end{aligned} \tag{80}$$

1130 From the second and sixth equations, we deduce the optimal form of ω_h^* . Solving the second equa-
 1131 tion, we obtain:
 1132

$$\omega_h^* = \sqrt{\frac{\sum_{j \in [M], i \in [K]} \lambda_{ij}^* \chi_h(x_i, c_j)}{\nu^*}}, \tag{81}$$

1134 Using the sixth equation, we normalize the solution:
 1135

$$1136 \quad 1137 \quad 1138 \quad 1139 \quad \omega_h^* = \frac{\sqrt{\sum_{j \in [M], i \in [K]} \lambda_{ij}^* \chi_h(x_i, c_j)}}{\sum_{l \in [D]} \sqrt{\sum_{j \in [M], i \in [K]} \lambda_{ij}^* \chi_l(x_i, c_j)}}. \quad (82)$$

1140 We now derive the Lagrange dual function.
 1141

$$1142 \quad 1143 \quad g(\lambda, \nu) = \inf_{\xi, \omega} L(\xi, \omega, \lambda, \nu) \\ 1144 \quad 1145 \quad = \inf_{\xi, \omega} (1 - \sum_{j \in [M], i \in [K]} \lambda_{ij}) \xi + \sum_{j \in [M], i \in [K]} \lambda_{ij} \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h} + \nu (\sum_{h \in [D]} \omega_h - 1) \\ 1146 \quad 1147 \quad = \begin{cases} \inf_{\omega} \sum_{j \in [M], i \in [K]} \lambda_{ij} \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h} + \nu (\sum_{h \in [D]} \omega_h - 1) & \text{if } \sum_{j \in [M], i \in [K]} \lambda_{ij} = 1, \lambda_{ij} \geq 0 \\ -\infty & \text{o.w.} \end{cases} \\ 1148 \quad 1149 \quad = \begin{cases} 2\sqrt{\nu} \sum_{h \in [D]} \sqrt{\sum_{j \in [M], i \in [K]} \lambda_{ij} \chi_h(x_i, c_j)} & \text{if } \sum_{j \in [M], i \in [K]} \lambda_{ij} = 1, \lambda_{ij} \geq 0 \\ -\infty & \text{o.w.} \end{cases} \quad (83)$$

1150 By optimizing the variable ν , we can obtain that the dual optimization problem is
 1151

$$1152 \quad 1153 \quad \max_{\lambda} \left(\sum_{h \in [D]} \sqrt{\sum_{j \in [M], i \in [K]} \lambda_{ij} \chi_h(x_i, c_j)} \right)^2 \\ 1154 \quad 1155 \quad \text{s.t.} \quad \sum_{j \in [M], i \in [K]} \lambda_{ij} = 1 \\ 1156 \quad 1157 \quad \lambda_{ij} \geq 0, \forall i \in [K], j \in [M]. \quad (84)$$

□

1165 A.9 PROOF OF LEMMA 2

1166
 1167 *Proof.* The convexity of the primal optimization problem (13) can be established under more general
 1168 distributional assumptions.

1169 As shown in the proof of Theorem 1, the optimization problem (13) can be equivalently derived
 1170 from the following formulation:
 1171

$$1172 \quad 1173 \quad \max_{\omega \in \Omega} \min_{c_j \in \mathcal{C}} \min \left(\inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_{i^*(c_j)}, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1}, \min_{x_i \in \mathcal{D}_1(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}_1(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \right. \\ 1174 \quad 1175 \quad \left. \min_{x_i \in \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)} \inf_{\tilde{\mathcal{P}} \in \mathcal{O}_2(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \right), \quad (85)$$

1176 where the sets and functionals are defined as follows:
 1177

$$1178 \quad 1179 \quad \mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j) = \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b \right\}, \\ 1180 \quad 1181 \quad \mathcal{O}_1(x_i, c_j) = \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\theta}^\top (\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) > 0 \right\}, \\ 1182 \quad 1183 \quad \mathcal{O}_2(x_i, c_j) = \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\beta}^\top \phi(x_i, c_j) \leq b \right\}, \\ 1184 \quad 1185 \quad \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} = \sum_{h \in [D]} \omega_h \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right). \quad (86)$$

1188 Note that $\mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1}$ is a convex function of $\tilde{\mathcal{P}}$, due to the convexity of the KL divergence
 1189 (see Wang et al. (2021)). Therefore, the following problems are convex programs for fixed $\omega \in \Omega$:
 1190

$$\begin{aligned} \mathcal{L}(x_{i^*(c_j)}, \omega, \mathcal{P}) &= \inf_{\tilde{\mathcal{P}} \in \mathcal{O}(x_{i^*(c_j)}, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\ \mathcal{L}_1(x_i, \omega, \mathcal{P}) &= \inf_{\tilde{\mathcal{P}} \in \mathcal{O}_1(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\ \mathcal{L}_2(x_i, \omega, \mathcal{P}) &= \inf_{\tilde{\mathcal{P}} \in \mathcal{O}_2(x_i, c_j)} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \end{aligned} \quad (87)$$

1197 The resulting functions $\mathcal{L}(x_{i^*(c_j)}, \omega, \mathcal{P})$, $\mathcal{L}_1(x_i, \omega, \mathcal{P})$, and $\mathcal{L}_2(x_i, \omega, \mathcal{P})$ are concave in ω , as each
 1198 is defined as the point-wise infimum of functions that are concave in ω . Consequently, the overall
 1199 objective in (85) is concave in ω , and the problem is a convex maximization problem. Moreover, it
 1200 is straightforward to verify that this problem is strictly feasible. Hence, by standard results in convex
 1201 optimization, strong duality holds.

1202 By (78), this optimization problem is equivalent to

$$\begin{aligned} \min_{\omega} f(\omega) &= \max_{c_j \in \mathcal{C}, x_i \in \mathcal{X}} \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_h} \\ \text{s.t. } & \sum_{h \in [D]} \omega_h = 1, \\ & \omega_h \geq 0, \forall h \in [D] \end{aligned} \quad (88)$$

1210 Assume that ω and ω' are two optimal solutions such that $f(\omega) = f(\omega^*) = \xi^*$. For any $\lambda \in (0, 1)$,
 1211 define $\omega'' = \lambda\omega + (1 - \lambda)\omega'$. Then, by the strong convexity of $1/\omega_h$ on the interval $(0, \infty)$, we have
 1212

$$\frac{1}{\omega''_j} \leq \lambda \frac{1}{\omega_j} + (1 - \lambda) \frac{1}{\omega'_j}. \quad (89)$$

1213 Since $\chi_h(x_i, c_j) > 0$ for all $h \in [D]$, $c_j \in \mathcal{C}$, and $x_i \in \mathcal{X}$, it follows that

$$\sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega''_j} \leq \lambda \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\omega_j} + (1 - \lambda) \frac{\chi_h(x_i, c_j)}{\omega'_j} = \xi^*. \quad (90)$$

1214 If $\omega \neq \omega'$, then the inequality holds strictly, contradicting the assumption that both ω and ω' are
 1215 optimal solutions. Hence, the optimal solution is unique. □

A.10 PROOF OF LEMMA 3

1225 *Proof.* Consider the dual optimization problem stated in Theorem 2:

$$\begin{aligned} \min_{\lambda} \mathcal{Q}(\lambda, \mathcal{P}) &= - \sum_{h \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j)} \\ \text{s.t. } & \sum_{i \in [K], j \in [M]} \lambda_{ij} = 1, \quad (\phi) \\ & \lambda_{ij} \geq 0, \quad \forall i \in [K], j \in [M]. \quad (v_{ij}) \end{aligned} \quad (91)$$

1233 For any feasible solution λ , the set of all feasible directions at λ is defined by:

$$\mathcal{F}(\lambda) = \left\{ d \in \mathbb{R}^{KM} : \sum_{j \in [M], i \in [K]} d_{ij} = 0, d_{ij} \geq 0, \text{if } \lambda_{ij} = 0 \right\}. \quad (92)$$

1238 The Lagrangian function for this problem is:

$$L(\lambda, \phi, v) = - \sum_{h \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j)} + \phi \left(\sum_{i \in [K], j \in [M]} \lambda_{ij} - 1 \right) - \sum_{i \in [K], j \in [M]} v_{ij} \lambda_{ij}. \quad (93)$$

Let (λ^*, ϕ^*, v^*) denote an optimal primal-dual solution. The KKT conditions of this optimization problem are given by:

$$\begin{aligned}
 & -\frac{1}{2} \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij}^* \chi_h(x_i, c_j)}} + \phi^* - v_{ij}^* = 0 \\
 & v_{ij}^* \lambda_{ij}^* = 0 \\
 & \lambda_{ij}^* \geq 0 \\
 & \sum_{i \in [K], j \in [M]} \lambda_{ij}^* = 1 \\
 & v_{ij}^* \geq 0
 \end{aligned} \tag{94}$$

From these KKT conditions, we observe that a feasible solution λ^* is a stationary point if and only if there exists a ϕ^* such that if $\lambda_{ij}^* = 0$, then

$$\phi^* \geq \frac{1}{2} \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij}^* \chi_h(x_i, c_j)}} \tag{95}$$

and if $\lambda_{ij}^* > 0$, then

$$\phi^* = \frac{1}{2} \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij}^* \chi_h(x_i, c_j)}}. \tag{96}$$

This implies that a feasible solution λ is a stationary point of problem (14) if and only if:

$$-\frac{1}{2} \sum_{h \in [D]} \frac{\chi_h(x_i, c_j)}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij}^* \chi_h(x_i, c_j)}} \geq -\frac{1}{2} \sum_{h \in [D]} \frac{\chi_h(x_{i'}, c_{j'})}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij}^* \chi_h(x_i, c_j)}}, \tag{97}$$

for any $(i, j) \in \{(a, b) : a \in [K], b \in [M]\}$ and $(i', j') \in \{(a, b) : a \in [K], b \in [M], \lambda_{ab} > 0\}$. Now, fix a feasible solution λ with $\lambda_{mn} > 0$. Define the reduced set:

$$\mathcal{D}^{m,n}(\lambda) = \left\{ e_{ij} - e_{mn} : i \neq m \text{ or } j \neq n \right\} \cup \left\{ e_{mn} - e_{ij} : i \neq m \text{ or } j \neq n, \lambda_{ij} > 0 \right\}, \tag{98}$$

where $e_{ij} \in \mathbb{R}^{KM}$ is obtained by letting λ_{ij} equal to one and other elements equal to zero.

According to Proposition 3.4 of Lin et al. (2009), we have:

$$\mathcal{D}^{m,n} \subset \mathcal{F}(\lambda), \quad \text{Conv}(\mathcal{D}^{m,n}(\lambda)) = \mathcal{F}(\lambda). \tag{99}$$

Combining this with the stationary condition (97), we conclude that a feasible solution λ is a stationary point of problem (14) if and only if:

$$\nabla \mathcal{Q}(\lambda, \mathcal{P})^\top d \geq 0, \forall d \in \mathcal{D}^{m,n}(\lambda). \tag{100}$$

□

A.11 PROOF OF THEOREM 3

The proof of Theorem 3 relies on several auxiliary lemmas. Lemma 4 establishes the necessary continuity arguments. Lemma 5 proves the δ -PAC property of the proposed algorithm. Lemmas 6 and 7 present known results from the existing literature. Lemma 8 establishes the convergence of the gradient descent procedures in Algorithm 2. Finally, we derive upper bounds—both almost surely and in expectation—for the stopping time τ .

Lemma 4. *Let $\mathcal{U}(\omega, \mathcal{P})^{-1} = \min_{c_j \in \mathcal{C}} \Gamma^s(\omega, c_j, \mathcal{P})$ denote the objective function of problem (14). Then, $\mathcal{U}(\omega, \mathcal{P})^{-1}$ is continuous function with respect to both ω and \mathcal{P} . Moreover, the optimal sampling ratio ω^* satisfies $\omega_h^* > 0$ for all $h \in [D]$.*

1296 *Proof.* Recall the following notation from the proof of Lemma 2:
1297

$$\begin{aligned}
1298 \quad \mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j) &= \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\beta}^\top \phi(x_{i^*(c_j, \mathcal{P})}, c_j) > b \right\}, \\
1299 \\
1300 \quad \mathcal{O}_1(x_i, c_j) &= \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\theta}^\top (\phi(x_i, c_j) - \phi(x_{i^*(c_j, \mathcal{P})}, c_j)) > 0 \right\}, \\
1301 \\
1302 \quad \mathcal{O}_2(x_i, c_j) &= \left\{ \tilde{\mathcal{P}} \in \mathcal{S} : \tilde{\beta}^\top \phi(x_i, c_j) \leq b \right\}, \\
1303 \\
1304 \quad \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} &= \sum_{h \in [D]} \omega_h \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right).
\end{aligned} \tag{101}$$

1305 Define the alternative set of problem instances for a context c_j and problem instance \mathcal{P} as:
1306

$$\mathcal{A}'(c_j, \mathcal{P}) = \mathcal{O}(x_{i^*(c_j, \mathcal{P})}, c_j) \bigcup \left(\bigcup_{x_i \in \mathcal{D}_1(c_j)} \mathcal{O}_1(x_i, c_j) \right) \bigcup \left(\bigcup_{x_i \in \mathcal{D}_2(c_j) \cup \mathcal{D}_3(c_j)} \mathcal{O}_2(x_i, c_j) \right), \tag{102}$$

1307 and $\mathcal{A}'(\mathcal{P}) = \bigcup_{c_j \in \mathcal{C}} \mathcal{A}'(c_j, \mathcal{P})$.
1308

1309 From Lemma 2, for a given context $c_j \in \mathcal{C}$, we have:
1310

$$\begin{aligned}
1311 \quad \mathcal{U}(\omega, \mathcal{P})^{-1} &= \min_{c_j \in \mathcal{C}} \Gamma^s(\omega, c_j, \mathcal{P}) \\
1312 \\
1313 \quad &= \min_{c_j \in \mathcal{C}} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}'(c_j, \mathcal{P})} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \\
1314 \\
1315 \quad &= \min_{c_j \in \mathcal{C}} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}'(c_j, \mathcal{P})} \sum_{h \in [D]} \omega_h \left(d(f(z_h), \tilde{f}(z_h)) + d(g(z_h), \tilde{g}(z_h)) \right) \\
1316 \\
1317 \quad &= \min_{c_j \in \mathcal{C}} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}'(c_j, \mathcal{P})} \sum_{h \in [D]} \omega_h \left(\frac{(\theta - \tilde{\theta})^\top \phi(z_h) \phi(z_h)^\top (\theta - \tilde{\theta})}{2\sigma_h^2} + \frac{(\beta - \tilde{\beta})^\top \phi(z_h) \phi(z_h)^\top (\beta - \tilde{\beta})}{2\sigma_h^2} \right) \\
1318 \\
1319 \quad &= \min_{c_j \in \mathcal{C}} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}'(c_j, \mathcal{P})} (\theta - \tilde{\theta})^\top \Lambda(\omega) (\theta - \tilde{\theta}) + (\beta - \tilde{\beta})^\top \Lambda(\omega) (\beta - \tilde{\beta}).
\end{aligned} \tag{103}$$

1320 Now, consider a sequence $(\hat{\mathcal{P}}(t), \omega(t))$ such that: $\lim_{t \rightarrow \infty} (\hat{\mathcal{P}}(t), \omega(t)) = (\mathcal{P}, \omega)$. By definition of
1321 $x_{i^*(c_j, \mathcal{P})}, \mathcal{D}_1(c_j), \mathcal{D}_2(c_j)$ and $\mathcal{D}_3(c_j)$, we obtain $\lim_{t \rightarrow \infty} \mathcal{A}'(c_j, \hat{\mathcal{P}}(t)) = \mathcal{A}(c_j, \mathcal{P})$.
1322

1323 Therefore, for any $\epsilon > 0$, there exists $t_0 > 0$ such that for all $t \geq t_0$, we have
1324

$$\|(\hat{\mathcal{P}}(t), \omega(t)) - (\mathcal{P}, \omega)\|_\infty \leq \epsilon, \quad \mathcal{A}'(c_j, \hat{\mathcal{P}}(t)) = \mathcal{A}(c_j, \mathcal{P}) \tag{104}$$

1325 Since $\mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1}$ is a polynomial in its arguments, it is continuous with respect to ω, \mathcal{P} . Thus,
1326 there exists $t_1 > 0$ such that for any $t \geq t_1$:

$$\left| \mathcal{H}(\omega_t, \hat{\mathcal{P}}(t), \tilde{\mathcal{P}})^{-1} - \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \right| \leq \epsilon, \tag{105}$$

1327 Combining both observations, there exists $t_2 > \max(t_0, t_1)$, such that for any $t > t_2$ we have
1328

$$\begin{aligned}
1329 \quad \left| \mathcal{U}(\omega_t, \hat{\mathcal{P}}(t))^{-1} - \mathcal{U}(\omega, \mathcal{P})^{-1} \right| &= \left| \min_{c_j \in \mathcal{C}} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}'(c_j, \mathcal{P})} \mathcal{H}(\omega_t, \hat{\mathcal{P}}(t), \tilde{\mathcal{P}})^{-1} - \min_{c_j \in \mathcal{C}} \inf_{\tilde{\mathcal{P}} \in \mathcal{A}'(c_j, \mathcal{P})} \mathcal{H}(\omega, \mathcal{P}, \tilde{\mathcal{P}})^{-1} \right| \\
1330 \\
1331 \quad &\leq \epsilon,
\end{aligned} \tag{106}$$

1332 which establishes the continuity of $\mathcal{U}(\omega, \mathcal{P})^{-1}$.
1333

1334 Now, let $\omega^* \in \Omega$ denote the optimal solution of problem (13). Suppose, for contradiction, that
1335 there exists $h \in [D]$ such that $\omega_h^* = 0$. Then, one can construct an alternative problem instance
1336 $\tilde{\mathcal{P}} \in \mathcal{A}'(\mathcal{P})$ such that $\min_{c_j \in \mathcal{C}} \Gamma(\omega_h^*, c_j, \mathcal{P}) = 0$. This contradicts the optimality of ω^* because we
1337 can always choose a feasible uniform sampling rule $\tilde{\omega} \in \Omega$ with $\tilde{\omega}_h = 1/D, \forall h \in [D]$, which yields
1338 $\min_{c_j \in \mathcal{C}} \Gamma(\omega_h^*, c_j, \mathcal{P}) > 0$. Hence, it must hold that $\omega_h^* > 0$ for all $h \in [D]$. \square

1350 **Lemma 5.** *The duality-based decomposition algorithm is δ -PAC.*

1351
1352 *Proof.* The stopping rule of the duality-based decomposition algorithm is

1353
1354
$$\tau = \inf \left\{ t \in \mathbb{N} : t\mathcal{U}(\hat{\mathcal{P}}(t), \omega(t))^{-1} > \rho(t, \delta) \right\}, \quad (107)$$

1355 where $\mathcal{U}(\hat{\mathcal{P}}(t), \omega(t))^{-1} = \min_{c_j \in \mathcal{C}} \Gamma^s(\omega(t), c_j, \hat{\mathcal{P}}(t))$. To establish the δ -PAC property of the
1356 duality-based decomposition algorithm, we must show that

1357
1358
1359
1360
$$\mathbb{P} \left(\tau < \infty, \exists c_j \in \mathcal{C}, x_{\hat{i}(c_j; \tau)} \neq x_{i^*(c_j)} \right) \leq \delta. \quad (108)$$

1361
1362 We begin by noting that

1363
1364
1365
$$\mathbb{P} \left(\tau < \infty, \exists c_j \in \mathcal{C}, x_{\hat{i}(c_j; \tau)} \neq x_{i^*(c_j)} \right)$$

1366
1367 $\leq \mathbb{P} \left(\exists t \in \mathbb{N}, \exists c_j \in \mathcal{C}, x_{\hat{i}(c_j; \tau)} \neq x_{i^*(c_j)}, t\mathcal{U}(\hat{\mathcal{P}}(t), \omega_t)^{-1} \geq \rho(t, \delta) \right)$

1368
1369 $= \mathbb{P} \left(\exists t \in \mathbb{N}, \exists c_j \in \mathcal{C}, x_{\hat{i}(c_j; \tau)} \neq x_{i^*(c_j)}, \inf_{\tilde{\mathcal{P}} \in \mathcal{A}'(\hat{\mathcal{P}}(t))} t\mathcal{H}(\omega_t, \hat{\mathcal{P}}(t), \tilde{\mathcal{P}})^{-1} \geq \rho(t, \delta) \right)$

1370
1371 $\leq \mathbb{P} \left(\exists t \in \mathbb{N}, t\mathcal{H}(\omega_t, \hat{\mathcal{P}}(t), \mathcal{P})^{-1} \geq \rho(t, \delta) \right)$

1372
1373 $= \mathbb{P} \left(\exists t \in \mathbb{N}, \sum_{h \in [D]} N_h (d(\bar{F}(z_h; t), f(z_h)) + d(\bar{G}(z_h; t), g(z_h))) \geq \rho(t, \delta) \right)$

1374
1375 $\leq \sum_{t=1}^{\infty} \mathbb{P} \left(\left[\sum_{h \in [D]} N_h d(\bar{F}(z_h; t), f(z_h)) > \frac{1}{2} \rho(t, \delta) \right] \cup \left[\sum_{h \in [D]} N_h d(\bar{G}(z_h; t), g(z_h)) > \frac{1}{2} \rho(t, \delta) \right] \right)$

1376
1377 $\leq \sum_{t=1}^{\infty} \mathbb{P} \left(\left[\sum_{h \in [D]} N_h d(\bar{F}(z_h; t), f(z_h)) > \frac{1}{2} \rho(t, \delta) \right] \right) + \sum_{t=1}^{\infty} \mathbb{P} \left(\left[\sum_{h \in [D]} N_h d(\bar{G}(z_h; t), g(z_h)) > \frac{1}{2} \rho(t, \delta) \right] \right) \quad (109)$

1378
1379 According to Proposition 12 of Garivier & Kaufmann (2016), we have

1380
1381
1382
1383
1384
$$\mathbb{P} \left(\left[\sum_{h \in [D]} N_h d(\bar{F}(z_h; t), f(z_h)) > \frac{1}{2} \rho(t, \delta) \right] \right) \leq e^{-\frac{1}{2} \rho(t, \delta)} \left(\frac{\rho(t, \delta)^2 \log t}{4D} \right)^D e^{D+1}. \quad (110)$$

1385
1386
1387
1388 Similarly, an identical bound holds for the second term

1389
1390
1391
1392
1393
$$\mathbb{P} \left(\left[\sum_{h \in [D]} N_h d(\bar{G}(z_h; t), g(z_h)) > \frac{1}{2} \rho(t, \delta) \right] \right). \quad (111)$$

1394
1395 Thus, if we choose $\rho(t, \delta) = \log(Ct^\alpha/\delta)$, and let C be a constant such that

1396
1397
1398
$$\sum_{t=1}^{\infty} e^{-\frac{1}{2} \rho(t, \delta)} \left(\frac{\rho(t, \delta)^2 \log t}{4D} \right)^D e^{D+1} \leq \frac{\delta}{2}, \quad (112)$$

1399
1400 then both infinite series are bounded above by $\delta/2$, leading to the final result:

1401
1402
1403
$$\mathbb{P} \left(\tau < \infty, \exists c_j \in \mathcal{C}, x_{\hat{i}(c_j; \tau)} \neq x_{i^*(c_j)} \right) \leq \delta. \quad (113)$$

□

The convergence analysis of the duality-based decomposition algorithm relies on a line search procedure to determine the step size. For completeness, we include the canonical line search algorithm along with its associated theoretical results.

Algorithm 3: Line Search Algorithm

```

1 Input: Descent direction  $d$ , maximum feasible step size  $s^{max}$ , the current feasible solution  $\lambda$ ,
2   problem instance  $\mathcal{P}$ , parameter  $\alpha$  and  $\nu \in (0, 1)$ .
3 Set  $s = s^{max}$ 
4 while  $\mathcal{Q}(\lambda + sd, \mathcal{P}) > \mathcal{Q}(\lambda, \mathcal{P}) + \alpha s \nabla \mathcal{Q}(\lambda, \mathcal{P})^\top d$  do
5    $s \leftarrow \nu s$ 
6 return the step size  $s$ .

```

Lemma 6 (Proposition 4.1 in Lin et al. (2009)). *Define a subsequence $\mathcal{T} \subset \{1, 2, \dots\}$ such that the line search algorithm is invoked at time steps $t \in \mathcal{T}$. Let $\{\lambda(t)\}_{t \in \mathcal{T}}$ denote the corresponding sequence of solutions, and let $\{d(t)\}_{t \in \mathcal{T}}$ denote the associated descent directions. Then, the line search algorithm terminates in a finite number of iterations, producing a step size $s(t)$ that satisfies*

$$\mathcal{Q}(\lambda(t-1) + s(t)d(t), \hat{\mathcal{P}}(t)) \leq \mathcal{Q}(\lambda(t), \hat{\mathcal{P}}(t)) + \alpha s(t) \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top d(t). \quad (114)$$

Furthermore, suppose that $\lim_{t \rightarrow \infty} \lambda(t) = \bar{\lambda}$, and

$$\lim_{t \rightarrow \infty} \mathcal{Q}(\lambda(t-1), \mathcal{P}) - \mathcal{Q}(\lambda(t-1) + s(t)d(t), \mathcal{P}) = 0. \quad (115)$$

Then, it follows that

$$\lim_{t \rightarrow \infty} s^{max} \nabla \mathcal{Q}(\lambda(t-1), \mathcal{P})^\top d(t) = 0. \quad (116)$$

Lemma 7 (Lemma 17 in Garivier & Kaufmann (2016)). *Consider the following sampling rule*

$$z_{h(t+1)} = \begin{cases} \arg \min_{z_h \in \mathcal{B}_t} N_h(t) & \text{if } \mathcal{B}_t \neq \emptyset, \\ \arg \min_{z_h \in \mathcal{Z}} N_h(t) - t \gamma_h(\hat{\mathcal{P}}(t)) & \text{otherwise,} \end{cases} \quad (117)$$

where $\mathcal{B}_t = \{z_h \in \mathcal{Z} : N_h(t) < \sqrt{t} - D/2\}$. Then, for every design point $z_h \in \mathcal{Z}$, we have $N_h(t) \geq (\sqrt{t} - D/2)_+ - 1$. Furthermore, for any $\epsilon > 0$ and $t_0 > 0$ such that

$$\sup_{t \geq t_0} \max_{h \in [D]} \left| \gamma_h(\hat{\mathcal{P}}(t)) - \omega_h^*(\mathcal{P}) \right| \leq \epsilon, \quad (118)$$

there exists $t_1 > 0$ such that

$$\sup_{t \geq t_1} \max_{h \in [D]} \left| \frac{N_h(t)}{t} - \omega_h^*(\mathcal{P}) \right| \leq 3(D-1)\epsilon. \quad (119)$$

The following lemma establishes the convergence of the gradient descent procedure in Algorithm 2. The analysis follows the proof of Proposition 6.1 in Lin et al. (2009) and Theorem 5 in Zhou et al. (2024).

Lemma 8. *Let $\{\lambda(t)\}$ be the sequence generated by the duality-based algorithm. Then every limit point of this sequence is a stationary point of the dual optimization problem (14).*

Proof. According to Lemma 7, the sampling rule of the duality-based decomposition algorithm guarantees that

$$N_h(t) \geq (\sqrt{t} - D/2)_+ - 1. \quad (120)$$

This lower bound implies that the number of samples allocated to each design point grows unbounded as $t \rightarrow \infty$. Consequently, by the strong law of large numbers, the estimators converge almost surely:

$$\hat{\theta}(t) \rightarrow \theta, \hat{\beta}(t) \rightarrow \beta \text{ and } \hat{\mathcal{P}}(t) \rightarrow \mathcal{P} \quad (121)$$

As a result, the estimated best arm $x_{i(c_j;t)}$ converges almost surely to the true best arm $x_{i^*(c_j)}$ for all $c_j \in \mathcal{C}$ almost surely. This establishes the consistency of the proposed duality-based decomposition algorithm.

1458 We now establish useful continuity properties of the objective function $\mathcal{Q}(\lambda, \mathcal{P})$ and its gradient
 1459 $\nabla \mathcal{Q}(\lambda, \mathcal{P})$. Recall that
 1460

$$1462 \mathcal{Q}(\lambda, \mathcal{P}) = - \sum_{h \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})}, \quad (122)$$

1466 and for $i \in [K], j \in [M]$,

$$1470 [\nabla \mathcal{Q}(\lambda, \mathcal{P})]_{ij} = - \sum_{h \in [D]} \frac{\chi_h(x_i, c_j, \mathcal{P})}{2\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})}}. \quad (123)$$

1474 It is straightforward to verify that $\mathcal{Q}(\lambda, \mathcal{P})$ is continuous in λ . We now show that it is also continuous
 1475 in \mathcal{P} . Since $\hat{\mathcal{P}}(t) \rightarrow \mathcal{P}$ and by definition of $\chi_h(x_i, c_j)$, for sufficiently large t , we have
 1476

$$1479 |\chi_h(x_i, c_j, \mathcal{P}) - \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))| \leq L \|\mathcal{P} - \hat{\mathcal{P}}(t)\|_\infty, \quad (124)$$

1482 for some constant $L > 0$. Then,

$$1485 \begin{aligned} & |\mathcal{Q}(\lambda, \mathcal{P}) - \mathcal{Q}(\lambda, \hat{\mathcal{P}}(t))| \\ 1486 &= \left| \sum_{h \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})} - \sum_{h \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))} \right| \\ 1487 &\leq \sum_{h \in [D]} \left| \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})} - \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))} \right| \\ 1488 &\leq \sum_{h \in [D]} \frac{\sum_{i \in [K], j \in [M]} \lambda_{ij} |\chi_h(x_i, c_j, \mathcal{P}) - \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))|}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})} + \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}} \quad (125) \\ 1489 &\leq \sum_{h \in [D]} \sum_{i \in [K], j \in [M]} \frac{|\chi_h(x_i, c_j, \mathcal{P}) - \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))|}{\sqrt{\chi_h(x_i, c_j, \mathcal{P})} + \sqrt{\chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}} \\ 1490 &\leq \frac{DKML}{\sqrt{C_0}} \|\hat{\mathcal{P}}(t) - \mathcal{P}\|_\infty \\ 1491 &\triangleq \bar{C} \|\hat{\mathcal{P}}(t) - \mathcal{P}\|_\infty, \end{aligned}$$

1504 where $C_0 = \min_{i \in [K], j \in [M], h \in [D]} \inf_t \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) > 0$ is some constant and we define $\bar{C} =$
 1505 $DKML/\sqrt{C_0}$.

1507 We next show that $\nabla \mathcal{Q}(\lambda, \hat{\mathcal{P}}(t))$ is continuous in λ . Following the approach of Theorem 5 in Zhou
 1508 et al. (2024), it holds that

$$1511 \liminf_{t \rightarrow \infty} \sum_{i \in [K], j \in [M]} \lambda_{ij}(t) \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) > 0, \forall i \in [K], j \in [M], h \in [D]. \quad (126)$$

1512 Let $C_{min} > 0$ be a lower bound for $\sum_{i \in [K], j \in [M]} \lambda_{ij}(t) \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))$ for all $i \in [K], j \in [M], h \in [D]$ for sufficiently large t . Then,

1513

$$\begin{aligned}
 & \left| [\nabla \mathcal{Q}(\lambda, \hat{\mathcal{P}}(t))]_{ij} - [\nabla \mathcal{Q}(\lambda', \hat{\mathcal{P}}(t))]_{ij} \right| \\
 &= \left| \sum_{h \in [D]} \frac{\chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}{2\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}} - \sum_{h \in [D]} \frac{\chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}{2\sqrt{\sum_{i \in [K], j \in [M]} \lambda'_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}} \right| \\
 &\leq \sum_{h \in [D]} \frac{\chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}{2} \left| \frac{1}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}} - \frac{1}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda'_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}} \right| \\
 &\leq \sum_{h \in [D]} \frac{C_1}{4C_{min}^{\frac{3}{2}}} \left| \sum_{i \in [K], j \in [M]} (\lambda'_{ij} - \lambda_{ij}) \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) \right| \\
 &\leq \frac{DKMC_1^2}{4C_{min}^{\frac{3}{2}}} \|\lambda' - \lambda\|_\infty \\
 &\triangleq \tilde{C} \|\lambda' - \lambda\|_\infty,
 \end{aligned} \tag{127}$$

1531 where $C_1 = \max_{i \in [M], j \in [K], h \in [D]} \sup_t \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) > 0$ is some constant and we define $\tilde{C} =$
 1532 $DKMC_1^2/4C_{min}^{\frac{3}{2}}$.
 1533

1534 Finally, we show that $\nabla \mathcal{Q}(\lambda, \mathcal{P})$ is continuous with respect to \mathcal{P} . We consider

1535

$$\begin{aligned}
 & \left| [\nabla \mathcal{Q}(\lambda, \hat{\mathcal{P}}(t))]_{ij} - [\nabla \mathcal{Q}(\lambda, \mathcal{P})]_{ij} \right| \\
 &= \left| \sum_{h \in [D]} \frac{\chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}{2\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}} - \sum_{h \in [D]} \frac{\chi_h(x_i, c_j, \mathcal{P})}{2\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})}} \right| \\
 &\leq \sum_{h \in [D]} \left| \frac{\chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}{2\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}} - \frac{\chi_h(x_i, c_j, \mathcal{P})}{2\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})}} \right| \\
 &= \sum_{h \in [D]} \frac{1}{2} \left| \frac{\chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})} - \chi_h(x_i, c_j, \mathcal{P}) \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))}}{\sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})}} \right| \\
 &\leq \sum_{h \in [D]} \frac{1}{2C_{min}} \left| \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})} - \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))} \right| \\
 &\quad + \left| \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))} - \chi_h(x_i, c_j, \mathcal{P}) \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))} \right| \\
 &= \sum_{h \in [D]} \frac{1}{2C_{min}} \left[\left| \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \mathcal{P})} - \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))} \right| \right. \\
 &\quad \left. + \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j, \hat{\mathcal{P}}(t))} \left| \chi_h(x_i, c_j, \hat{\mathcal{P}}(t)) - \chi_h(x_i, c_j, \mathcal{P}) \right| \right] \\
 &\leq \frac{D}{2C_{min}} (C_1 \tilde{C} + \sqrt{C_1} L) \|\hat{\mathcal{P}}(t) - \mathcal{P}\|_\infty
 \end{aligned} \tag{128}$$

1562 Define a subsequence $\mathcal{T} \subset \{1, 2, \dots\}$ such that the line search algorithm is invoked at time step
 1563 $t \in \mathcal{T}$. Let $\bar{\lambda}$ be a limit point of the sequence $\{\lambda(t)\}$. Then, by definition, there exists a subsequence
 1564 $\mathcal{T}_1 \subset \mathcal{T}$ such that

$$\lim_{t \rightarrow \infty, t \in \mathcal{T}_1} \lambda(t-1) = \bar{\lambda}. \tag{129}$$

1566 Since the index pair $(m(t), n(t)) \in [K] \times [M]$ takes values from a finite set, we can further extract
 1567 a subsequence $\mathcal{T}_2 \subset \mathcal{T}_1$ and a fixed index pair $(m, n) \in [K] \times [M]$ such that
 1568

$$1569 \lambda_{mn}(t-1) \geq \eta, \mathcal{D}^{m(t), n(t)}(\lambda(t-1)) = \mathcal{D}^{m, n}(\lambda(t-1)), \text{Conv}(\mathcal{D}^{m, n}(\bar{\lambda})) = \mathcal{F}(\bar{\lambda}), \quad (130)$$

1570 where

$$1571 \mathcal{F}(\bar{\lambda}) = \{d \in \mathbb{R}^{KM} : \sum_{j \in [M], i \in [K]} d_{ij} = 0, d_{ij} \geq 0, \text{if } \bar{\lambda}_{ij} = 0\}. \quad (131)$$

1573 denote the set of all feasible directions at $\bar{\lambda}$.

1574 We proceed by contradiction. Suppose that $\bar{\lambda}$ is not a stationary point of the dual optimization
 1575 problem (14). Then, by Lemma 3, there exists a feasible direction $\bar{d} \in \mathcal{D}^{m, n}(\bar{\lambda})$ such that
 1576

$$1577 \nabla \mathcal{Q}(\bar{\lambda}, \mathcal{P})^\top \bar{d} < 0. \quad (132)$$

1579 From the previous argument, we know that $\lambda(t-1) \rightarrow \bar{\lambda}$ as $t \rightarrow \infty, t \in \mathcal{T}_2$. Therefore, for
 1580 sufficiently large $t \in \mathcal{T}_2$, we have that $\bar{d} \in \mathcal{D}^{m, n}(\lambda(t-1))$, due to the continuity of the reduced
 1581 feasible direction set with respect to λ . Moreover, since $\hat{\mathcal{P}}(t) \rightarrow \mathcal{P}$ almost surely, and $\nabla \mathcal{Q}(\lambda, \mathcal{P})$ is
 1582 continuous in its arguments, it follows that for sufficiently large $t \in \mathcal{T}_2$,

$$1583 \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top \bar{d} < 0. \quad (133)$$

1585 By Proposition A.1 in Lin et al. (2009), there exists a constant $c > 0$ such that, for sufficiently large
 1586 t , the maximum step size $s^{max}(\bar{d}, \lambda(t-1)) \geq c$. For simplicity, we denote $s^{max}(\bar{d}, \lambda(t-1))$ by
 1587 s^{max} when no ambiguity arises.

1588 The following analysis is motivated by the proof of Theorem 6 in Zhou et al. (2024), aiming to
 1589 mitigate the effect of noise and ensure that the objective function is monotone decreasing. Observe
 1590 that

$$1591 \begin{aligned} & \mathcal{Q}(\lambda(t-1), \mathcal{P}) - \mathcal{Q}(\lambda(t), \mathcal{P}) \\ 1592 &= \mathcal{Q}(\lambda(t-1), \mathcal{P}) - \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) + \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) - \mathcal{Q}(\lambda(t), \hat{\mathcal{P}}(t)) + \\ 1593 & \quad \mathcal{Q}(\lambda(t), \hat{\mathcal{P}}(t)) - \mathcal{Q}(\lambda(t), \mathcal{P}) \end{aligned} \quad (134)$$

1596 By the continuity of $\mathcal{Q}(\lambda, \mathcal{P})$ in \mathcal{P} and the law of the iterated logarithm, we have:

$$1597 \mathcal{Q}(\lambda(t-1), \mathcal{P}) - \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) + \mathcal{Q}(\lambda(t), \hat{\mathcal{P}}(t)) - \mathcal{Q}(\lambda(t), \mathcal{P}) = \mathcal{O}(\sqrt{\log \log t / t}) \quad (135)$$

1599 From the definition of the duality-based decomposition algorithm, for $t \in \mathcal{T}_2$ and sufficiently large
 1600 t , it holds that:

$$1602 s^{max}(d(t), \lambda(t-1)) \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top d(t) \leq s^{max}(\bar{d}, \lambda(t-1)) \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top \bar{d} < 0 \quad (136)$$

1604 Since the second derivative of $\mathcal{Q}(\lambda, \hat{\mathcal{P}}(t))$ with respect to each λ_{ij} is bounded, applying Taylor's
 1605 theorem yields:

$$1607 \mathcal{Q}(\lambda(t-1) + s(t)d(t), \hat{\mathcal{P}}(t)) \leq \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) + s(t) \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top d(t) + \frac{s(t)^2 \tilde{C}}{2} \|d(t)\|_2^2. \quad (137)$$

1610 Hence, the line search stopping condition is satisfied if

$$1611 \begin{aligned} & \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) + s(t) \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top d(t) + \frac{s(t)^2 \tilde{C}}{2} \|d(t)\|_2^2 \\ 1612 & \leq \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) + \alpha s(t) \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top d(t) \end{aligned} \quad (138)$$

1615 Letting $s(t) \leq \frac{(\alpha-1) \nabla \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t))^\top d(t)}{\tilde{C}} = \frac{(\alpha-1) \mathcal{W}(t)}{\tilde{C}}$ ensures the stopping condition is satisfied.

1616 Now consider two cases: if $s^{max}(d(t), \lambda(t-1)) \leq \frac{(\alpha-1) \mathcal{W}(t)}{\tilde{C}}$, then the step size selected is $s(t) =$
 1617 $s^{max}(d(t), \lambda(t-1))$, and

$$1619 \mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) - \mathcal{Q}(\lambda(t), \hat{\mathcal{P}}(t)) \geq -\alpha s^{max}(d(t), \lambda(t-1)) \mathcal{W}(t). \quad (139)$$

Otherwise, the algorithm chooses $s(t) = \frac{(\alpha-1)\mathcal{W}(t)}{\tilde{C}}$, resulting in

$$\mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) - \mathcal{Q}(\lambda(t), \hat{\mathcal{P}}(t)) \geq \frac{\alpha v(1-\alpha)\mathcal{W}(t)^2}{\tilde{C}}. \quad (140)$$

Therefore, we have that

$$\mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) - \mathcal{Q}(\lambda(t), \hat{\mathcal{P}}(t)) \geq \min \left\{ -\alpha s^{\max}(d(t), \lambda(t-1))\mathcal{W}(t), \frac{\alpha v(1-\alpha)\mathcal{W}(t)^2}{\tilde{C}} \right\}. \quad (141)$$

By the definition of Algorithm 2

$$\mathcal{Q}(\lambda(t-1), \hat{\mathcal{P}}(t)) - \mathcal{Q}(\lambda(t), \hat{\mathcal{P}}(t)) \geq \Omega\left(\sqrt{\frac{\log t}{t}}\right). \quad (142)$$

Combining this with the earlier bound on the noise error gives:

$$\mathcal{Q}(\lambda(t-1), \mathcal{P}) - \mathcal{Q}(\lambda(t), \mathcal{P}) \geq \mathcal{O}\left(\sqrt{\frac{\log \log t}{t}}\right) + \Omega\left(\sqrt{\frac{\log t}{t}}\right) > 0, \quad (143)$$

which establishes that the objective function is monotone decreasing for sufficiently large t .

Moreover, note that $\mathcal{Q}(\lambda(t-1), \mathcal{P})$ is bounded below since, for any feasible λ ,

$$\mathcal{Q}(\lambda, \mathcal{P}) = - \sum_{h \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \lambda_{ij} \chi_h(x_i, c_j)} \geq - \sum_{h \in [D]} \sqrt{\sum_{i \in [K], j \in [M]} \chi_h(x_i, c_j)}. \quad (144)$$

Then the sequence $\{\mathcal{Q}(\lambda(t-1), \mathcal{P})\}$ will converge to a finite value. By continuity of $\mathcal{Q}(\lambda, \mathcal{P})$ in λ , we have:

$$\lim_{t \rightarrow \infty, t \in \mathcal{T}_2} \mathcal{Q}(\lambda(t-1), \mathcal{P}) = \mathcal{Q}(\bar{\lambda}, \mathcal{P}), \quad (145)$$

which means

$$\lim_{t \rightarrow \infty, t \in \mathcal{T}_2} \mathcal{Q}(\lambda(t-1), \mathcal{P}) - \mathcal{Q}(\lambda(t-1) + s(t)d(t), \mathcal{P}) = 0. \quad (146)$$

From Lemma 6, it follows that:

$$\lim_{t \rightarrow \infty} s^{\max}(d(t), \lambda(t-1)) \nabla \mathcal{Q}(\lambda(t-1), \mathcal{P})^\top d(t) = 0, \quad (147)$$

which yields

$$\nabla \mathcal{Q}(\bar{\lambda}, \mathcal{P})^\top \bar{d} = 0 \quad (148)$$

contradicting the assumed condition in (132). Hence, $\bar{\lambda}$ must be a stationary point of the dual problem (14). \square

We are now ready to establish the sample complexity upper bound stated in Theorem 3. Our analysis builds on the framework proposed by Garivier & Kaufmann (2016), which has been widely adopted in the BAI literature (Juneja & Krishnasamy, 2019; Wang et al., 2021).

Proof. We begin by defining the following clean event:

$$\mathcal{E} = \left\{ \max_{h \in [D]} \left| \frac{N_h(t)}{t} - \omega_h^*(\mathcal{P}) \right| \rightarrow 0, \hat{\mathcal{P}}(t) \rightarrow \mathcal{P} \right\}. \quad (149)$$

By Lemma 8, every limit point of the sequence $\{\lambda(t)\}$, generated by the algorithm, is a stationary point of the dual problem (14).

Moreover, by Lemma 2, strong duality holds. Hence, we can recover a solution sequence $\gamma(\hat{\mathcal{P}}(t))$ to the primal problem (13) via (16), and every limit point of $\{\gamma(\hat{\mathcal{P}}(t))\}$ is an optimal solution to the primal problem. That is, for any $\epsilon > 0$, there exists $t_0 > 0$ such that:

$$\sup_{t \geq t_0} \max_{h \in [D]} \left| \gamma_h(\hat{\mathcal{P}}(t)) - \omega_h^*(\mathcal{P}) \right| \leq \epsilon. \quad (150)$$

1674 Furthermore, by Lemma 7, there exists $t_1 > 0$ such that
 1675

$$1676 \sup_{t \geq t_1} \max_{h \in [D]} \left| \frac{N_h(t)}{t} - \omega_h^*(\mathcal{P}) \right| \leq 3(D-1)\epsilon. \quad (151)$$

1678 In addition, since $N_h(t) \geq (\sqrt{t} - D/2)_+ - 1$, the strong law of large numbers implies that $\hat{\mathcal{P}}(t) \rightarrow \mathcal{P}$
 1679 almost surely. Therefore, we conclude: $\mathbb{P}(\mathcal{E}) = 1$.

1681 Condition on the clean event \mathcal{E} , by Lemma 4, the function $\Gamma^s(\omega, c_j, \mathcal{P})$ is continuous in both ω and
 1682 \mathcal{P} . Thus, for any $\epsilon > 0$, there exists $t_0 > 0$ such that for all $t \geq t_0$,

$$1684 \mathcal{U}(\hat{\mathcal{P}}(t), \omega_t)^{-1} \geq (1 - \epsilon) \mathcal{U}(\mathcal{P}, \omega^*(\mathcal{P}))^{-1}. \quad (152)$$

1685 Since $\rho(t, \delta) = \log(\frac{Ct^\alpha}{\delta}) = o(t)$, there exists $t_1 > 0$ such that for all $t \geq t_1$, we have
 1686

$$1687 \rho(t, \delta) \leq \log(1/\delta) + \epsilon \mathcal{U}(\mathcal{P}, \omega^*(\mathcal{P}))^{-1} t. \quad (153)$$

1689 Then, the stopping time τ satisfies:

$$\begin{aligned} 1690 \tau &= \inf \left\{ t \in \mathbb{N} : t \mathcal{U}(\hat{\mathcal{P}}(t), \omega(t))^{-1} \geq \rho(t, \delta) \right\} \\ 1691 &= t_0 + t_1 + \inf \left\{ t \in \mathbb{N} : t \mathcal{U}(\hat{\mathcal{P}}(t), \omega(t))^{-1} \geq \log(1/\delta) + \epsilon \mathcal{U}(\hat{\mathcal{P}}(t), \omega(t))^{-1} t \right\} \\ 1692 &= t_0 + t_1 + \inf \left\{ t \in \mathbb{N} : t(1 - \epsilon) \mathcal{U}(\mathcal{P}, \omega^*(\mathcal{P}))^{-1} \geq \log(1/\delta) + \epsilon \mathcal{U}(\hat{\mathcal{P}}(t), \omega(t))^{-1} t \right\} \quad (154) \\ 1693 &= t_0 + t_1 + \inf \left\{ t \in \mathbb{N} : t(1 - 2\epsilon) \mathcal{U}(\mathcal{P}, \omega^*(\mathcal{P}))^{-1} \geq \log(1/\delta) \right\} \\ 1694 &= t_0 + t_1 + \frac{\mathcal{U}(\mathcal{P}, \omega^*(\mathcal{P})) \log(1/\delta)}{1 - 2\epsilon}. \end{aligned}$$

1702 Therefore,

$$1703 \limsup_{\delta \rightarrow 0} \frac{\tau}{\log(1/\delta)} \leq \frac{\mathcal{U}(\mathcal{P}, \omega^*(\mathcal{P}))}{1 - 2\epsilon}, \quad (155)$$

1704 and letting $\epsilon \rightarrow 0$, we obtain

$$1705 \mathbb{P} \left(\limsup_{\delta \rightarrow 0} \frac{\tau}{\log(1/\delta)} \leq \mathcal{U}^*(\mathcal{P}) \right) = 1. \quad (156)$$

1710 Next, we establish an upper bound on $\mathbb{E}[\tau]$. By Lemma 4, the function $\mathcal{U}(\omega, \mathcal{P})^{-1}$ is continuous in
 1711 both ω and \mathcal{P} . Therefore, for any $\epsilon > 0$, there exists $\xi_1(\epsilon) > 0$ such that for all $\hat{\mathcal{P}}(t), \omega_t$ satisfying

$$1712 \|\hat{\mathcal{P}}(t) - \mathcal{P}\|_\infty \leq \xi_1(\epsilon), \quad \|\omega_t - \omega^*(\mathcal{P})\|_\infty \leq \xi_1(\epsilon), \quad (157)$$

1714 we have

$$1715 \mathcal{U}(\omega_t, \hat{\mathcal{P}}(t))^{-1} \geq (1 - \epsilon) \mathcal{U}(\omega^*(\mathcal{P}), \mathcal{P})^{-1}. \quad (158)$$

1716 Since the sequence $\gamma(\hat{\mathcal{P}}(t))$ converges to a stationary point $\omega^*(\mathcal{P})$ of the primal optimization prob-
 1717 lem, there exists $\xi_2(\epsilon) > 0$ such that for any $\hat{\mathcal{P}}(t)$ with

$$1720 \|\hat{\mathcal{P}}(t) - \mathcal{P}\|_\infty \leq \xi_2(\epsilon), \quad (159)$$

1721 we have

$$1722 \|\gamma(\hat{\mathcal{P}}(t)) - \omega^*(\mathcal{P})\|_\infty < \frac{\xi_1(\epsilon)}{3(D-1)}. \quad (160)$$

1724 Define $\xi(\epsilon) = \min\{\xi_1(\epsilon), \xi_2(\epsilon)\}$, define the event

$$1726 \mathcal{E}_T = \bigcap_{t=T^{1/4}}^T \{\|\hat{\mathcal{P}}(t) - \mathcal{P}\|_\infty \leq \xi(\epsilon)\}. \quad (161)$$

1728 Let $\epsilon_1 = \frac{\xi_1(\epsilon)}{3(D-1)}$, then by Lemma 7, there exists a constant $T(\epsilon_1)$ such that for all $T \geq T(\epsilon_1)$, on
 1729 the event \mathcal{E}_T , we have for all $t \geq T^{1/2}$,
 1730

$$1731 \|\omega_t - \omega^*(\mathcal{P})\|_\infty \leq 3(D-1)\epsilon_1 = \xi_1(\epsilon). \quad (162)$$

1733 Therefore, let $T \geq T(\epsilon_1)$, on the event \mathcal{E}_T , for all $\forall t \geq T^{1/2}$, we have
 1734

$$1735 \mathcal{U}(\omega_t, \hat{\mathcal{P}}(t))^{-1} \geq (1-\epsilon)\mathcal{U}(\omega^*(\mathcal{P}), \mathcal{P})^{-1}. \quad (163)$$

1737 This leads to the bound:
 1738

$$\begin{aligned} 1739 \min(\tau, T) &\leq T^{1/2} + \sum_{t=T^{1/2}}^T \mathbb{I}(\tau > t) \\ 1740 &\leq T^{1/2} + \sum_{t=T^{1/2}}^T \mathbb{I}(t\mathcal{U}(\omega_t, \hat{\mathcal{P}}(t))^{-1} \leq \rho(t, \delta)) \\ 1741 &\leq T^{1/2} + \sum_{t=T^{1/2}}^T \mathbb{I}(t \leq \frac{\rho(T, \delta)}{(1-\epsilon)\mathcal{U}(\omega^*(\mathcal{P}), \mathcal{P})^{-1}}) \\ 1742 &\leq T^{1/2} + \frac{\rho(T, \delta)\mathcal{U}(\omega^*(\mathcal{P}), \mathcal{P})}{(1-\epsilon)}. \end{aligned} \quad (164)$$

1750 Define
 1751

$$1752 T_1^*(\delta) = \inf \left\{ T \in \mathbb{N} : T^{1/2} + \frac{\rho(T, \delta)\mathcal{U}(\omega^*(\mathcal{P}), \mathcal{P})}{1-\epsilon} \leq T \right\} \quad (165)$$

1754 Then for all $T \geq \max(T(\epsilon_1), T_1^*(\delta))$, it holds that $\mathcal{E}_T \subset (\tau \leq T)$.
 1755

1756 Thus, we obtain:
 1757

$$\begin{aligned} 1758 \mathbb{E}[\tau] &= \sum_{T=1}^{\infty} \mathbb{P}(\tau \geq T) \\ 1759 &\leq T(\epsilon_1) + T_1^*(\delta) + \sum_{T=1}^{\infty} \mathbb{P}(\tau \geq T) \\ 1760 &= T(\epsilon_1) + T_1^*(\delta) + \sum_{T=1}^{\infty} \left(\mathbb{P}(\mathcal{E}_T) \mathbb{P}(\tau \geq T | \mathcal{E}_T) + \mathbb{P}(\mathcal{E}_T^c) \mathbb{P}(\tau \geq T | \mathcal{E}_T^c) \right) \\ 1761 &\leq T(\epsilon_1) + T_1^*(\delta) + \sum_{T=1}^{\infty} \mathbb{P}(\mathcal{E}_T^c) \end{aligned} \quad (166)$$

1769 By Lemma 18 of Garivier & Kaufmann (2016), we know
 1770

$$1771 T_1^*(\delta) = \frac{\mathcal{U}(\omega^*(\mathcal{P}), \mathcal{P})}{1-\epsilon} (\mathcal{O}(\log(1/\delta)) + \mathcal{O}(\log \log(1/\delta))) \quad (167)$$

1774 To upper bound $\sum_{T=1}^{\infty} \mathbb{P}(\mathcal{E}_T^c)$, observe:
 1775

$$\begin{aligned} 1776 \mathbb{P}(\mathcal{E}_T^c) &= \mathbb{P}\left(\bigcup_{t=T^{1/4}}^T \left\{ \|\hat{\mathcal{P}}(t) - \mathcal{P}\|_\infty > \xi(\epsilon) \right\}\right) \\ 1777 &\leq \sum_{t=T^{1/4}}^T \sum_{h=1}^D \mathbb{P}\left(\left| \bar{F}(z_h; t) - f(z_h) \right| > \xi(\epsilon)\right) + \mathbb{P}\left(\left| \bar{G}(z_h; t) - g(z_h) \right| > \xi(\epsilon)\right). \end{aligned} \quad (168)$$

1782 Since we have

$$\begin{aligned}
 & \mathbb{P}(\bar{F}(z_h; t) < f(z_h) - \xi(\epsilon)) \\
 &= \mathbb{P}(\bar{F}(z_h; t) < f(z_h) - \xi(\epsilon), N_h(t) \geq \sqrt{t} - D) \\
 &\leq \sum_{s=\sqrt{t}-D}^t \mathbb{P}(\bar{F}_s(z_h) \leq f(z_h) - \xi(\epsilon)) \\
 &\leq \sum_{s=\sqrt{t}-D}^t e^{-(s d(f(z_h) - \xi(\epsilon), f(z_h)))} \\
 &\leq \frac{1}{1 - e^{d(f(z_h) - \xi(\epsilon), f(z_h))}} e^{-(\sqrt{t} - D) d(f(z_h) - \xi(\epsilon), f(z_h))},
 \end{aligned} \tag{169}$$

1794 where $\bar{F}_s(z_h)$ denotes the empirical mean of the first s samples. Similarly, we can also show that

$$\mathbb{P}(\bar{F}(z_h; t) > f(z_h) - \xi(\epsilon)) \leq \frac{1}{1 - e^{d(f(z_h) + \xi(\epsilon), f(z_h))}} e^{-(\sqrt{t} - D) d(f(z_h) + \xi(\epsilon), f(z_h))}, \tag{170}$$

1798 By choosing

$$\begin{aligned}
 C &= \min_{h \in [D]} \min(d(f(z_h) - \xi(\epsilon), f(z_h)), d(f(z_h) + \xi(\epsilon), f(z_h)), \\
 &\quad d(g(z_h) - \xi(\epsilon), g(z_h)), d(g(z_h) + \xi(\epsilon), g(z_h))),
 \end{aligned} \tag{171}$$

1803 and

$$\begin{aligned}
 B &= \sum_{h \in [D]} \left(\frac{e^{D d(f(z_h) - \xi(\epsilon), f(z_h))}}{1 - e^{d(f(z_h) - \xi(\epsilon), f(z_h))}} + \frac{e^{D d(f(z_h) + \xi(\epsilon), f(z_h))}}{1 - e^{d(f(z_h) + \xi(\epsilon), f(z_h))}} \right. \\
 &\quad \left. + \frac{e^{D d(g(z_h) - \xi(\epsilon), g(z_h))}}{1 - e^{d(g(z_h) - \xi(\epsilon), g(z_h))}} + \frac{e^{D d(g(z_h) + \xi(\epsilon), g(z_h))}}{1 - e^{d(g(z_h) + \xi(\epsilon), g(z_h))}} \right).
 \end{aligned} \tag{172}$$

1809 Therefore,

$$\mathbb{P}(\mathcal{E}_T^c) \leq B \sum_{t=T^{1/4}}^T \exp(-C\sqrt{t}) \leq BT \exp(-CT^{1/8}), \tag{173}$$

1813 and therefore $\sum_{T=1}^{\infty} \mathbb{P}(\mathcal{E}_T^c) \leq \infty$. Finally, this leads to the conclusion:

$$\limsup_{\delta \rightarrow 0} \frac{\mathbb{E}[\tau]}{\log(1/\delta)} \leq \frac{1}{1 - \epsilon} \mathcal{U}(\omega^*(\mathcal{P}), \mathcal{P}). \tag{174}$$

1817 Letting $\epsilon \rightarrow 0$ completes the proof. \square

1819 A.12 COMPUTATIONAL COMPLEXITY

1821 Since the main difference between Algorithm 1 (TS) and the proposed Algorithm (DSR) lies in how
1822 the empirical optimal sampling ratio is computed, we focus on this step. In TS, assuming
1823 gradient descent is used, evaluating the objective function involves a matrix inversion $\mathcal{O}(D^3)$, an inner
1824 minimization over K arms and M covariates $\mathcal{O}(MK)$, and gradient computation $\mathcal{O}(D)$, leading
1825 to a total per-iteration complexity of $\mathcal{O}(\frac{1}{\epsilon}(D^3 + MK + D))$, where ϵ denotes the allowed error
1826 precision for the optimization problem. In DSR, only one gradient step is performed per iteration.
1827 The matrix inversion involved in the dual objective function is done once and reused, while each
1828 iteration involves objective evaluation and descent direction computation $\mathcal{O}(MK)$ and line search
1829 $\mathcal{O}(\log(1/\epsilon'))$ for precision ϵ' , resulting in a total per-iteration complexity of $\mathcal{O}(MK + \log(1/\epsilon'))$.

1830 A.13 NUMERICAL EXPERIMENT

1832 This subsection provides the detailed parameter settings and pseudo-code for the benchmark algo-
1833 rithms used in the numerical experiments.

1834 **DSR.** Algorithm 4 outlines the complete pseudo-code for the proposed duality-based decom-
1835 position algorithm. The overall framework follows the structure of the Track-and-Stop algorithm,

1836 with the key difference being that the sampling ratio $\gamma(\hat{\mathcal{P}}(t))$ is computed using Algorithm 2.
 1837 In our implementation, we adopt a heuristic step size of $s(t) = 0.01$ and a threshold parameter
 1838 $\rho(t, \delta) = \log(\log(t) + 1)/\delta$, the latter of which is commonly used in the best arm identification
 1839 (BAI) literature (Garivier & Kaufmann, 2016; Wang et al., 2021).
 1840

Algorithm 4: Duality-based Decomposition Algorithm (DSR)

1 **Input:** Covariate set \mathcal{C} , arm set \mathcal{X} , design point set \mathcal{Z} , confidence level δ , $\lambda(0) = 1/KM$.
 2 **Initialization:** Sample each design point $z_h \in \mathcal{Z}$ n_0 times.
 3 Set $t \leftarrow n_0 D$ and update $N_h(t), \omega_h(t), \hat{\mathcal{P}}(t), \Lambda(\omega(t))$.
 4 **while** $t\mathcal{H}(\hat{\mathcal{P}}(t), \omega(t))^{-1} < \rho(t, \delta)$ **do**
 5 **if** $\mathcal{B}_t \neq \emptyset$ **then**
 6 $z_{h(t+1)} = \arg \min_{z_h \in \mathcal{B}_t} N_h(t)$
 7 **else**
 8 $\gamma(\hat{\mathcal{P}}(t)) \leftarrow \text{Algorithm 2 } (\mathcal{C}, \mathcal{X}, \mathcal{Z}, \kappa_0, \eta, \hat{\mathcal{P}}(t), \hat{\theta}(t), \hat{\beta}(t), \lambda(t-1))$
 9 $z_{h(t+1)} = \arg \min_{z_h \in \mathcal{Z}} N_h(t) - t\gamma_h(\hat{\mathcal{P}}(t))$
 10 Sample the design point $z_{h(t+1)}$ and obtain the observation Z_{t+1} .
 11 Set $t \leftarrow t + 1$, and update $N_h(t), \omega_h(t), \hat{\mathcal{P}}(t), \Lambda(\omega(t))$.
 12 **return** For each covariate $c_j \in \mathcal{C}$, recommend the estimated best arm:

$$x_{\hat{i}(c_j; \tau)} = \arg \max_{x_i \in \mathcal{X}} \hat{\theta}(\tau)^\top \phi(x_i, c_j) \quad \text{s.t. } \hat{\beta}(\tau)^\top \phi(x_i, c_j) \leq b$$

1857 **USR.** Algorithm 5 presents the pseudo-code for the USR algorithm. At each time step t , it samples
 1858 all design points uniformly, without incorporating any information from the arms.
 1859

Algorithm 5: USR Algorithm

1 **Input:** Covariate set \mathcal{C} , arm set \mathcal{X} , design point set \mathcal{Z} , confidence level δ .
 2 **while** $t\mathcal{H}(\hat{\mathcal{P}}(t), \omega(t))^{-1} < \rho(t, \delta)$ **do**
 3 $z_{h(t+1)} = \arg \min_{z_h \in \mathcal{Z}} N_h(t)$
 4 Sample the design point $z_{h(t+1)}$ and obtain the observation Z_{t+1} .
 5 Set $t \leftarrow t + 1$, and update $N_h(t), \omega_h(t), \hat{\mathcal{P}}(t), \Lambda(\omega(t))$.
 6 **return** For each covariate $c_j \in \mathcal{C}$, recommend the estimated best arm:

$$x_{\hat{i}(c_j; \tau)} = \arg \max_{x_i \in \mathcal{X}} \hat{\theta}(\tau)^\top \phi(x_i, c_j) \quad \text{s.t. } \hat{\beta}(\tau)^\top \phi(x_i, c_j) \leq b$$

1870 Algorithm 6 presents the pseudo-code for the BCSR, GOSR, and GFSR algorithms. All three algo-
 1871 rithms employ a score-based approach to determine the sampling rule, with the key distinction being
 1872 how each algorithm defines its respective score.

1873 **BCSR.** This algorithm is inspired by the state-of-the-art Best Challenger algorithm proposed
 1874 by Garivier & Kaufmann (2016). It relies solely on the optimality information of each arm. For
 1875 each design point, the score at time step t is defined as:
 1876

$$S_h(\hat{\mathcal{P}}(t), \omega(t)) = \frac{(\hat{f}(z_h; t) - \hat{f}(x_{\hat{i}(c_j; t)}, c_j))^2}{\sigma_h^2/N_h(t)}, \quad (175)$$

1881 where $x_{\hat{i}(c_j; t)} = \arg \max_{x_i \in \mathcal{X}} \hat{\theta}(t)^\top \phi(x_i, c_j)$ denotes the estimated best arm under covariate c_j .
 1882 This score captures a trade-off between the estimated optimality gap and the sampling variance.

1883 If the design point corresponds to the estimated best arm, then its score is defined as:
 1884

$$S_h(\hat{\mathcal{P}}(t), \omega(t)) = \min_{z_h \in \mathcal{Z} \setminus (x_{\hat{i}(c_j; t)}, c_j)} S_h(\hat{\mathcal{P}}(t), \omega(t)). \quad (176)$$

1888 meaning the best arm is assigned the minimum score. The algorithm then randomly selects among
 1889 arms with the lowest score for sampling.

1890

Algorithm 6: BCSR/GOSR/GFSR Algorithm

¹⁸⁹² ¹ **Input:** Covariate set \mathcal{C} , arm set \mathcal{X} , design point set \mathcal{Z} , confidence level δ .

1893 2 **Initialization:** Sample each design point $z_h \in \mathcal{Z}$ n_0 times.

1894 3 Set $t \leftarrow n_0 D$ and update $N_h(t), \omega_h(t), \hat{\mathcal{P}}(t), \Lambda(\omega(t))$.

1895 4 **while** $t\mathcal{H}(\hat{\mathcal{P}}(t), \omega(t))^{-1} < \rho(t, \delta)$ **do**

1896 5 | if $\mathcal{B}_t \neq \emptyset$ then

$$1897 \quad 6 \quad | \quad z_{h(t+1)} = \arg \min_{z_h \in \mathcal{B}_t} N_h(t)$$

1898 7

$$1899 \quad 8 \quad | \quad z_{h(t+1)} = \arg \min_{z_h \in \mathcal{Z}} S_h(\hat{\mathcal{P}}(t), \omega(t))$$

1900 9 Sample the design point $z_{h(t+1)}$ and obtain the observation Z_{t+1} .

1901 10 Set $t \leftarrow t + 1$, and update $N_h(t)$, $\omega_h(t)$, $\hat{P}(t)$, $\Lambda(\omega(t))$.

¹¹ **return**: For each covariate $c_i \in \mathcal{C}$, recommend the estimated best arm:

1903

$$1904 \quad \hat{x_i(c_j; \tau)} = \arg \max_{x_i \in \mathcal{X}} \theta(\tau)^\top \phi(x_i, c_j) \quad \text{s.t. } \beta(\tau)^\top \phi(x_i, c_j) \leq b$$

1905 GOSR. This document contains the full text of the report.

1906

1907 optimality information. For each covariate $c_j \in \mathcal{C}$, the estimated best arm is defined as $x_{\hat{i}(c_j; t)} =$
1908 $\arg \max_{x_i \in \mathcal{X}} \hat{\theta}(\tau)^\top \phi(x_i, c_j)$. For each design point, the score at time step t is defined as
1909

$$S_h(\hat{\mathcal{P}}(t), \omega(t)) = \frac{(f(z_h; t) - f(x_{i(c_j; t)}^*, c_j))^2}{\|\phi(x_{i^*(c_j)}, c_j) - \phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}, \quad (177)$$

1913 Similarly, the score for the estimated best arm is defined according to (176).

1914 **GFSR.** The general algorithmic framework of GFSR is identical to that of GOSR, with the key dis-
 1915 tinction that GFSR relies solely on feasibility information to determine the sampling rule. Specifi-
 1916 cally, the score for each design point at time step t is defined as

$$S_h(\hat{\mathcal{P}}(t), \omega(t)) = \frac{(\hat{g}(z_h; t) - \hat{g}(x_{\hat{i}(c_j; t)}, c_j))^2}{\|\phi(x_i, c_j)\|_{\Lambda(\omega)^{-1}}^2}, \quad (178)$$

where the score quantifies the deviation in feasibility performance. The score for the estimated best arm is defined in the same way as in (176).

1923 **Comparison with Frank-Wolfe Sampling (Wang et al., 2021).** Wang et al. (2021) propose
 1924 a general framework for pure exploration via Frank-Wolfe. However, our constrained setting with
 1925 covariate selection leads to a more complex sample complexity bound, making their algorithm un-
 1926 suitable for our problem. First, the presence of constraints complicates the gradient computation
 1927 in Proposition 1 of Wang et al. (2021). The gradient calculation depends on the most confusing
 1928 alternative instance. When constraints are considered, the alternative problem instance set $\mathcal{A}(\mathcal{P})$
 1929 becomes more complex, as it depends on both the optimality and feasibility of the arms. We need
 1930 to classify arms into four subclasses and construct the alternative instance for each class differently.
 1931 For infeasible arms with worse performance, the alternative instance is particularly complex, as it
 1932 depends simultaneously on both the objective and the constraint performance measures. Second,
 1933 the covariate selection setting makes the Frank-Wolfe update, which involves solving a game, more
 1934 complicated. Wang et al. (2021) handle non-smooth objectives via the r -subdifferential subspace.
 1935 In our setting, covariate selection introduces an additional layer of optimization over all possible
 1936 covariates in the sample complexity lower bound. This increases the number of non-smooth points
 1937 in the overall objective, making the Frank-Wolfe update, which solves the game over a simplex and
 the convex hull of the gradient vectors, more time-consuming.

We also compare the numerical performance of the proposed DSR with Frank-Wolfe Sampling (FWS) on the same problem used in the numerical experiment. Each algorithm is run for 3000 iterations, and we report the total running time and the empirical PCI over 30 independent macro replications. The results show that DSR completes in 56 seconds, whereas FWS takes 917 seconds, which is approximately 16 times longer than DSR. Moreover, Figure 3 shows that DSR achieves a PCI exceeding 0.9, while the PCI of FWS is below 0.8. Therefore, DSR also demonstrates superior empirical performance compared with FWS.

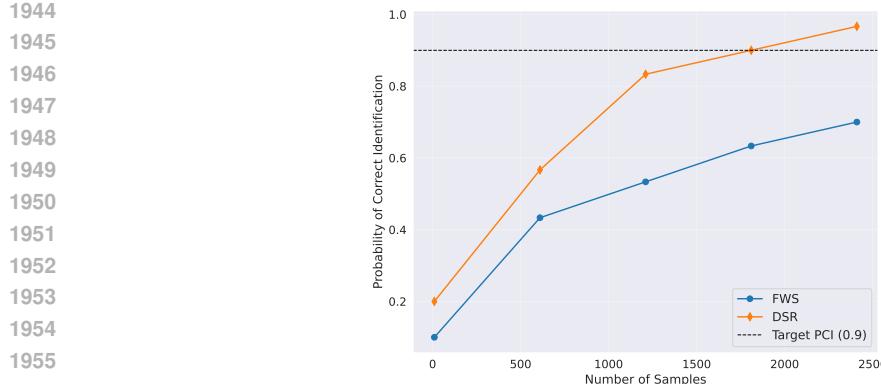


Figure 3: Comparison of empirical PCI

Table 1: Sample complexity comparison of various algorithms under different gaps

Method	Mean (0.2)	Lower	Upper	Mean(0.3)	Lower	Upper
USR	12786.50	9756.38	15816.62	12313.53	9405.00	15222.06
DSR	5282.73	4023.10	6542.37	4100.33	2969.65	5231.01
GOSR	21274.73	14772.71	27776.76	8861.53	7200.30	10522.77
GFSR	6537.10	5241.74	7832.46	6526.23	5312.21	7740.25
BCSR	16936.70	12649.17	21224.23	7825.07	6505.59	9144.54

Parameter setting. The experimental setup is inspired by the numerical example in Soare et al. (2014). There are two covariates, $\mathcal{C} = \{c_1, c_2\}$, four arms, $\mathcal{X} = \{x_1, \dots, x_4\}$, and one constraint. The threshold parameter b in the constraint of problem (1) is set to $b = 0.5$. The dimension of the unknown parameter vectors θ and β is $D = 7$. Specifically, $\theta = [1.0, 0.0, 0.0, 0.0, 1.0, 1.2, 0.0]^\top$, and $\beta = [0.45, 0.0, 0.0, 0.0, 0.6, 0.8]^\top$. Let $e_l \in \mathbb{R}^D$ denote the l th standard basic vector, with the l th element equal to one and all other elements zero. The feature vectors of the arm-covariate pairs are defined as $\phi(x_1, c_1) = e_1, \phi(x_2, c_1) = e_2, \dots, \phi(x_3, c_2) = e_7$, and $\phi(x_4, c_2) = [\cos(0.4), \sin(0.4), 0, \dots, 0]^\top$. The design point set is $\mathcal{Z} = \{(x_1, c_1), (x_2, c_1), \dots, (x_3, c_2)\}$ with $|\mathcal{Z}| = 7$, meaning that the design points correspond to the standard basis vectors in \mathbb{R}^D . The variance of each arm-covariate pair is independently drawn from a uniform distribution over $[0.5, 1.0]$. For computational convenience during implementation, we use a heuristic step size $s(t) = 0.01$ and a threshold parameter $\rho(t, \delta) = \log(\log(t) + 1)/\delta$, the latter of which is also employed in the BAI literature (Garivier & Kaufmann, 2016; Wang et al., 2021).

Robustness evaluation. We report additional sample complexity results for small ($\Delta = 0.2$) and large ($\Delta = 0.3$) feasibility and optimality gaps to assess the robustness of the proposed algorithm across different problem instances. Table 1 summarizes the sample complexity of various algorithms at a confidence level of $\delta = 0.1$, with “lower” and “upper” indicating the 90% confidence interval bounds. Our proposed Algorithm DSR consistently outperforms other methods, and larger gaps correspond to lower sample complexity.

We also evaluate the algorithm’s performance when the Gaussian noise assumption is violated. In this example, the problem setting remains the same, but the noise follows a standard t -distribution with 3 degrees of freedom, scaled by 0.1. Figure 4 presents the empirical sample complexity of the algorithms based on 30 macro-replications. The proposed DSR method continues to outperform the other benchmarks.

Effect of covariate selection rule. We examine the importance of covariate selection by comparing the sample complexity of DSR under different covariate selection rules. Specifically, we consider four rules: (1) **OPT**: active covariate selection according to the optimal sampling ratio; (2) **Uniform**: covariates are passively sampled from a uniform distribution; (3) **Covariate 1**: the two covariates are sampled with probabilities 0.8 and 0.2, respectively; (4) **Covariate 2**: the two covariates are

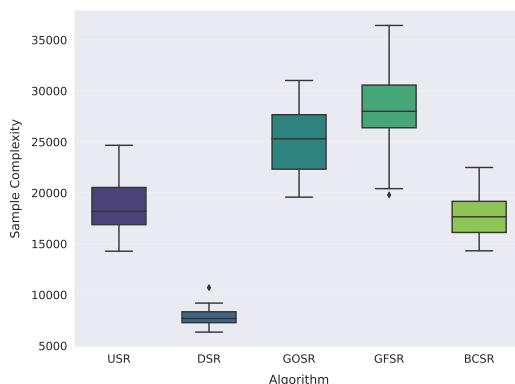
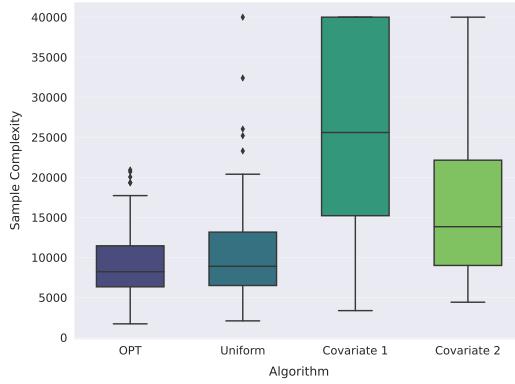
Figure 4: Empirical sample complexity over t -distribution noise

Figure 5: Sample complexity of DSR under different covariate selection rules

sampled with probabilities 0.2 and 0.8, respectively. Conditional on the covariate, the arm is sampled according to the optimal sampling ratio. To control the computation time, we set a maximum iteration limit of 40000, the algorithm terminates once the total number of samples reaches this threshold. Figure 5 presents the empirical sample complexity based on 100 independent macro-replications of DSR under the four covariate selection rules. The results indicate that optimal active covariate selection plays a crucial role in reducing sample complexity.

Initial design points in \mathcal{Z} . Figure 6 compares the sample complexity of DSR using three groups of different initial design points \mathcal{Z} in the current numerical example. The result shows that, although different initial design points do lead to variations in sample complexity, the differences are not substantial. This indicates that DSR is relatively robust to the choice of initial design points.

Problem scale and noise level. We compare the sample complexity under different problem scales and noise levels. To control computation time, we impose a maximum iteration limit of 80000, and the algorithm terminates once the total number of samples reaches this threshold. Figure 7 reports the empirical sample complexity based on 30 independent macro-replications. As the problem size and noise level increase, the total number of samples required by all algorithms also increases. However, DSR consistently outperforms the other benchmarks.

Experiments compute resources. The numerical experiments were conducted on a Windows machine equipped with an Intel® Xeon® Silver 4210R CPU @ 2.40GHz. Running the algorithm for 100 replications took less than 1 hour.

A.14 PERSONALIZED TREATMENT FOR DIABETES MANAGEMENT

Diabetes mellitus (DM) affects over 500 million people globally (World Health Organization), with type 2 diabetes (T2D) comprising 90–95% of cases. Managing T2D is complex, with treatment op-

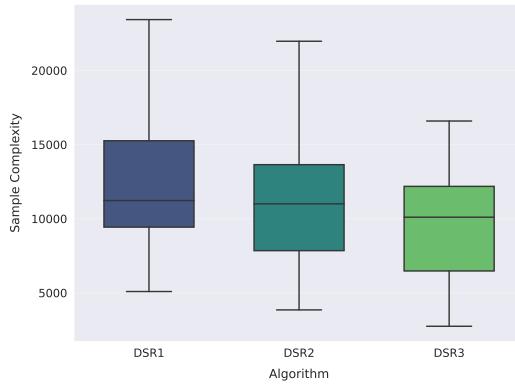


Figure 6: Sample complexity of DSR under different initial design points

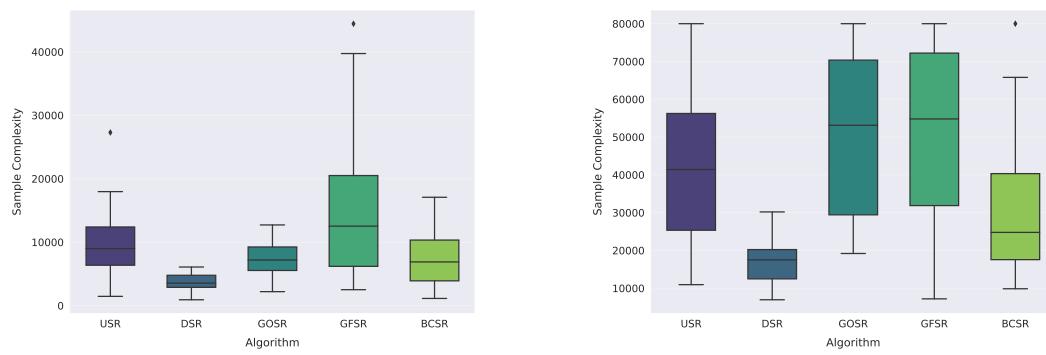
(a) $M = 4, K = 4, D = 7, \sigma_{ij}^2 \in (0, 1)$ (b) $M = 6, K = 4, D = 7, \sigma_{ij}^2 \in (1, 2)$

Figure 7: Sample complexity across different problem scales and noise levels

2106 Table 2: Comparison of Methods with different confidence level δ
2107

2108 Method	2109 Mean (0.1)	2110 Lower	2111 Upper	2112 Mean (0.2)	2113 Lower	2114 Upper
2115 USR	2116 38661.00	2117 30180.15	2118 47141.85	2119 25130.70	2120 19243.79	2121 31017.61
2122 DSR	2123 13127.07	2124 10211.51	2125 16042.62	2126 11114.93	2127 8236.33	2128 13993.54
2129 GOSR	2130 16892.83	2131 13055.05	2132 20730.62	2133 13779.97	2134 10091.68	2135 17468.25
2136 GFSR	2137 51852.90	2138 41498.39	2139 62207.41	2140 49358.80	2141 37399.20	2142 61318.40
2143 BCSR	2144 17004.70	2145 12753.25	2146 21256.15	2147 13786.23	2148 9995.75	2149 17576.71

2115
2116
2117 tions ranging from lifestyle modifications to various pharmacological therapies such as Metformin,
2118 each with differing efficacy and side effect profiles depending on individual patient characteristics
2119 (covariates). Therefore, it is important to identify the most suitable treatment plan tailored to each
2120 patient’s specific characteristics.

2121 We model this as a constrained linear BAI problem with covariate selection. Based on ADA/EASD
2122 clinical guidelines, we consider four drug classes—Metformin, Sulfonylureas, SGLT2 inhibitors,
2123 and GLP-1 receptor agonists—each with distinct benefits and risks. For example, Metformin im-
2124 proves insulin sensitivity and is generally well-tolerated; however, it is contraindicated in patients
2125 with severe renal impairment.

2126 Patient covariates include HbA1c, BMI, and cardiovascular risk. Drug features include dose, fre-
2127 quency, hypoglycemia risk, and renal adjustment threshold. The goal is to identify the treatment
2128 that maximizes glycemic improvement while maintaining adverse effects below a risk threshold for
2129 each patient.

2130 Table 2 compares the sample complexity of various algorithms in a setting with 2 patients, 7-
2131 dimensional features ($D = 7$), and confidence levels $\delta = 0.1$ and $\delta = 0.2$. Our algorithm DSR,
2132 which balances feasibility and optimality, consistently achieves the lowest sample complexity.

2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159