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Abstract

An important element of learning contact-rich manipulation for robots is leveraging
the synergy between heterogeneous sensor modalities such as vision, force, and
proprioception while adapting to sensory perturbations and dynamic changes. In
such multisensory settings, Reinforcement Learning (RL) faces caveats arising
from varying sensory feature distributions and their changing importance depend-
ing on the task phase. To this end, taking a leaf out of Multimodal representation
learning, pretraining yields itself as a natural way to learn robust cross-modal
feature representations useful for different downstream tasks. In this work, we pro-
pose MultiSensory Dynamic Pretraining (MSDP), a novel framework for learning
multisensory representations tailored for task-oriented policy learning via masked
autoencoding coupled with self-supervised forward dynamics objectives to shape
features from multiple different sensors. Using our pretraining approach, we
demonstrate how using a simple cross-attention between a learnable task-specific
embedding and frozen multisensory embeddings yields consistently strong per-
formance on downstream tasks. Our approach simplifies the handling of sensory
interactions, allowing the agent to focus entirely on mastering the task. Our method
demonstrates accelerated learning and robust performance under diverse perturba-
tions, including sensor noise, and changes in object dynamics. Evaluations across
multiple challenging contact-rich robot manipulation tasks showcase the effec-
tiveness and robustness of MSDP. Our framework’s modular pretraining process
supports various sensor combinations, providing a simple and robust solution for
complex manipulation tasks.

1 Introduction

Reinforcement Learning (RL) has shown impressive successes in learning complex tasks from games
like Atari [43]], to locomotion [64], vision-based manipulation [63], and multi-sensory peg-insertion
[30}1314152]]. However, incorporating multiple sensor modalities, especially in more complex contact-
rich robotic manipulation tasks, remains a challenge for RL, due to the heterogeneous dynamics of
different sensor modalities. Additionally, the importance of each input modality changes during the
execution of a manipulation task, e.g., coarse scene understanding from visual input to fine-grained
force feedback when in contact. Thus, robotic agents need to learn how to dynamically focus on
the most relevant sensory information while adapting to perturbations and dynamic changes in the
environment. This capability, of effective sensor fusion, is a long-studied problem in the field of
robotics for various tasks ranging from control [[16} 126, 159, 6], manipulation [25} |58]], localization,
and navigation [2]], but remains underexplored in RL settings.
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To this end, Imitation Learning approaches [35} 23, [50] have shown promise in utilizing multisensory
data for learning skills, but require experts collecting informative data. The challenge of data
collection becomes particularly pronounced in tasks involving objects with varying or uncertain
properties, such as mass or friction. In such cases, substantial and often expensive data acquisition
efforts are required to develop a robust policy capable of generalizing effectively across diverse
contextual variations [3]]. Instead, RL offers a promising avenue to mitigate the challenges associated
with extensive data collection. Self-directed exploration in RL facilitates the development of adaptable
strategies that can be generalized across diverse object properties and contexts. These advantages
position RL as a compelling approach for learning multisensory contact-rich manipulation [30} 131} I8}
38]]. Recent advances in multimodal learning [3. [18]] have shown the advantages of reconstructing
masked or noised inputs to learn robust cross-modal representations for downstream tasks. Such
masking-based self-supervision approaches have been shown to improve the network’s robustness [53}
37, 127]. Masking inputs, whether at the sensory or embedding level, facilitates the learning of robust
representations when trained on extensive datasets [11} [18, 4]. Recent works have also explored
how such masked multisensory pretraining, can enhance representation learning for contact-rich
manipulation [52, 38].

In this paper, we propose MultiSensory Dynamic Pretraining (MSDP), a novel framework for
learning multisensory representations that combine masked autoencoding with dynamics-aware
self-supervised predictions to capture the interactions between different sensory modalities. Our
intuitive use of masking sensor embeddings, resulting in cross-sensor predictions, enables learning
a robust and synergistic fusion of sensory data in a way that is robust to sensory noise and dropout
while enabling seamless integration of multiple modalities.

We decouple the representation learning and downstream RL and demonstrate how our pretraining
approach yields meaningful sensor representations that can enable effective learning via a simple
yet effective architecture wherein we use cross-attention between a learnable embedding and the
frozen multisensory embeddings to obtain a rich task-specific representation for the critic. The
policy acts directly on the multisensory representation to effectively solve downstream robotic tasks.
Our experimental results demonstrate that the proposed approach yields effective representations
for accelerating RL on a variety of contact-rich manipulation tasks in a manner robust to sensory
noise and changing object dynamics. By focusing on global representation extraction and leveraging
multisensory masked autoencoding, MSDP advances the capabilities to use RL in challenging
contact-rich tasks, where dynamics matter.

To summarize, the key contributions of our work are twofold: (i) we develop an effective pretraining
strategy that merges masked autoencoding and forward dynamics modeling and (ii) introduce a novel
multisensory architecture that allows task specific feature extraction to achieve effective sensory
fusion to form an expressive multisensory latent for robotic Reinforcement Learning of contact-rich
manipulation tasks. Our findings pave the way for more adaptive and resilient RL-agents to handle
multiple input modalities to master complex manipulation tasks.

2 Related Work

2.1 Reinforcement Learning for Contact-rich Manipulation

Tasks where a robotic manipulator has to interact with its environment, either directly or indirectly
via a tool, require a good understanding of the interaction forces that shape the task at hand. Solving
contact-rich tasks often relies on an accurate estimate of the force and dynamics of the task at
hand. When such estimates are available, classical control approaches can be adapted to solve the
task [56,57]. However, such approaches often require a lot of hand-crafting to tune the controller
parameters for various tasks. While adapting force/impedance controller parameters can be learned
from demonstration [47], to adapt to more unstructured environments, and to better handle unseen
or difficult contact dynamics, Reinforcement Learning presents itself as an ideal candidate that can
learn via interactions with the environment [45]]. In the context of contact-rich manipulation, various
works have employed RL to learn contact-based policies on a variety of tasks [13]. Additionally, the
advent of visuomotor policy learning [33]] opened up new horizons for abstracting out accurate state
estimation needed for such tasks. A more in-depth review on reinforcement learning for contact-rich
robotic manipulation tasks can be found in [[13} 154} 39].



2.2 Multimodal Self-Supervision for Robotics

Lee et. al. [30,31] learn a multimodal representation from Vision, Force-Torque, and Proprioception
via MLP-fusion and multiple Self-Supervised objectives. The frozen representation leads to a robust
representation for RL to solve multiple Peg Insertion tasks. [8] extended the Vision Transformer [12]
with a Force-Torque sensor to solve a variety of contact-rich tasks. They additionally incorporate
the self-supervised objectives from [31]] to shape a representation using SLAC [29]. Mejia et. al.
[42] pretrain an audio-encoder [44] to combine Vision and Audio via a Transformer Decoder for
Imitation Learning. The audio signal from the contact microphone provides rich feedback for various
manipulation tasks. To also account for different sensor frequencies [50] developed a multi-resolution
policy based on pretrained Vision Language Models to increase inference time using Proprioception
and Force-Torque.

2.3 Deep Sensor Fusion

A robust representation is essential to integrate and process various sensory inputs to ensure stable and
efficient learning in multisensory RL. Previous architectures often focused on straightforward latent
fusion approaches by concatenating the various representations for downstream tasks [32, 136, 34, |19}
22]. Feng et. al. [14] take this a step further by adding a subgoal-aware weighting for learning the
stage-wise importance of difference sensors. Alternatively, contrastive learning approaches [10, 40]
emphasize feature alignment, rather than fusion, to learn a shared latent representation between
multiple modalities. However, distilling task-relevant features while maintaining sensor-specific
information can be challenging. In contrast, inspired by the success of masked token prediction [3],
recent works have also explored how masked multisensory pre-training can enhance representation
learning for contact-rich manipulation [52} 38]].

3 Preliminaries

We define a multisensorial POMDP as a tuple M = (S,0ups, A, R, P, v) [28], where S is
the true state of the environment. The agent does not have access to S and observes it through
multiple sensor observations, which we specify as Proprioception Op € R4, Force Torque (FT)
Opr € R**6 and Vision Oy € R64%64%3_ The sensors build up the multisensory Observation-space
Ous = [Op, Opr, Oy]. Ais the action space, R : S X A x § — R is the reward function,
P : S x A — §is the transition kernel, and y € [0, 1) is the discount factor. Our goal is to learn a
policy 7 : Oprs — A that maximizes the discounted sum of rewards E [ v'r(s¢, at, s¢41))-

We specify Proprioception as the joint position and velocities, the Force Torque sensor feedbacks
4 wrench readings per POMDP-step and the vision observation is obtained through an external
RGB-Camera. We aim to extract an expressive, fused representation from all sensors in order to solve
contact-rich manipulation tasks with RL. We only provide the current multisensory observation and
no history. We use the off-policy algorithm SAC [20} 21]], however we stress that our approach is
compatible with any actor-critic RL algorithm.

4 Multisensory Dynamic Pretraining

We present MultiSensory Dynamic Pretraining (MSDP), a novel framework for representation
learning that builds upon Masked Autoencoders [24] and transformer-based architectures, tailored
to enhance contact-rich robot reinforcement learning tasks that require perception through multiple
sensor modalities. MSDP introduces a modular architecture to seamlessly handle varying input
sensors, and a multisensory masking scheme to promote rich cross-modal representations, i.e., to
retain knowledge about the task and the environment dynamics even in the absence or perturbation
of one or more modalities. Particularly, we modify the original masked autoencoding objective to
predict the next observation instead of reconstructing the current one, resulting in dynamics-aware
features. Furthermore, we shed light on the different ways to map pre-trained transformer embeddings
to input states for downstream RL tasks, referred to as latent bridging, a problem often overlooked in
practice by the community.

In this context, we propose employing a simple cross-attention layer to obtain expressive task-specific
features from frozen multisensory embeddings for the critic representation. The actor on the other
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Figure 1: The MSDP framework with MSDP-Encoder (left), Pretraining (top right) and down stream
RL (botton-right): The current multisensory observation gets projected with a CNN-stem (vision)
and linear layers (Force Torque and Proprioception) to the embedding space. The MSDP-encoder
fuses all sensor embeddings to form our expressive multisensory latent representation. The encoder
is trained via the decoder and next sensor observation prediction from a subset of sensor embeddings.
This pretraining results in dynamic cross sensor prediction, shaping and fusing sensor representations.
For downstream RL we extract multisensory task-specific features via a single cross-attention layer
for the critic and via pooling for the actor. Sensor embeddings are only masked during pretraining.
Our Framework provides dynamic and expressive multisensory features for contact-rich manipulation
tasks.

hand receives a special pooling of the sensor embeddings to ensure a stable representation. Both
mechanisms offers a fixed low-dimensional observation for the downstream RL-agent.

Overall, our framework decouples representation learning and downstream RL to ensure rich feature
extraction and modular sensor modalities, while offering stability and compact downstream represen-
tations. Particularly, notice that our architecture is scalable w.r.t. the number of input modalities and
does not make any assumptions on the learning pipeline of the downstream RL task.

As a result, our pretraining phase on limited offline data leads to rich representations that may be
directly used to solve complex contact-rich RL tasks from high-dimensional input (including images)
in less then 500k environment steps.

We structure the description of our method as follows: Section 1] describes the neural network
architecture; Section d.2]explains the multisensory pretraining scheme for representation learning;
Section 4.3|describes the details of latent bridging and policy learning for downstream robotic tasks.
Figure ﬁplays an overview of the proposed framework.

4.1 MSDP Architecture

Given the inputs from multiple sensor modalities, such as vision, proprioception and end-effector
forces, we encode each modality using a separate layer/network referred to as sensor encoders.

Particularly for the vision input, we use a CNN-stem similar to [S1], which allows us to mask at
embedding- rather than pixel-level. Masked object positions can not be retrieved in pixel-space. The
CNN-stem also introduces redundancy as vision-embeddings have overlapping receptive fields and,
most importantly, stabilizes training [61]. Furthermore, compared to a patchify-stem, it reduces the
burden of the multisensory encoder to extract vision features, while fusing with other modalities.
We use a linear projection to encode force-torque readings and proprioception given their low
dimensionalities.

Subsequently, we incorporate position encoding for the embedded sensor features (or tokens) to
contextualize the position and modality of each token. Rather than using fixed positional/modality
encoding [55| 7] we use learnable embeddings to encode position and modality together, adding only
1.2% of overall parameters. Once we obtain embedding representations from all sensors, we randomly



mask out a subset of those sensor embeddings and feed the remaining to our multisensory transformer
encoder, resulting in our multisensory latent embeddings. The self attention mechanism [55] of the
encoder leads to dynamic multisensory fusion promoted by the representation objective described in

Section 421

A learnable mask embedding is added to the randomly masked out embedding positions, next to
the multisensory embeddings from the encoder to generate the original number of embeddings.
Additionally, an action embedding from a linear projection is added to make the decoder action-
conditioned. We reapply our positional/modality encoding before feeding all embeddings to the
decoder. In the decoder embeddings exchange information, especially for the mask embedding,
before being feed to separate decoder heads to fulfill the Representation Learning objective described
in Section 4.2] We use a shared linear projection for all vision embeddings to reconstruct their
corresponding patch. Examples of Vision prediction can be found in Figure[I2} The extraction of a
global multisensory representation is explained in Section 4.3

4.2 Representation Learning

Our representation learning objective is based on multimodal masked autoencoding [3} [18]. The
objective is to predict the next sensor observation from a subset of sensor embeddings. Vision as a
global sensing modality has a high number of embeddings and needs to extract information about
other, potentially masked, sensors e.g. identifying contact to estimate force. Other sensors are
beneficial to predict the next (vision) observation as e.g. Proprioception indicates the robot position.
This representation objective results in cross-sensor prediction thus leading to fusion of all modalities.
Furthermore, the decoder is conditioned on action and needs to extract dynamic action-related features
important for downstream RL. We denote our method MSDP-P (Prediction) wherein we reconstruct
the next observation ||O;41 — ®(O;, A;)||?> and MSDP-R (Reconstruction) where we reconstruct
the current observation ||O; — ®(Oy)||?, where ®(.) denotes the network prediction conditioned on
the current observation O; and optionally action A;. || - ||? denotes the Mean Squared Error.

Non-transformer based architectures (see baselines in Sec. trained on reconstruction introduce a
bottleneck limiting expressiveness as task irrelevant features (e.g. background) are encoded. Our
embedding-based latent rather yields redundant features promoting robustness rather than a bottleneck
limiting performance.

4.3 Policy Learning

From the pretrained encoder, we receive expressive multisensory embeddings given the available
sensors. Extracting a global representation from those embeddings for downstream task solving is a
crucial and often underdiscussed design choice, while having a considerable impact on performance.
To address this, we depart from works that naively extract the "CLS"-embedding from the high-
dimensional embeddings, analogous to the Vision Transformer [12} 160} 48| 41]] and, instead, propose
a asymmetric latent bridging strategy between actor and critic to obtain a compact representation.
The critic uses a single cross-attention layer with a learnable query and the multisensory embeddings
from the MSDP encoder as key’s and value’s (see Figure[I)). It offers dynamic task-specific feature
extraction (e.g. object positions, robot state, contact) over the task solving process. The fine-grained
understanding of the environment leads to faster convergence compared to a global representation.
The policy on the other hand does not profit from a cross-attention layer as it’s destabilizing training.
Instead, we mean pool all embeddings originating from the vision sensor before pooling all sensor
embeddings, to account for the uneven number of embeddings. Pooling sensor embeddings results
in a stable and parameter free latent bridging similiar to [51}152]. This asymmetric representation
between actor and critic, follows [[17]], where the actor benefits from a stable representation over task
stages and the critic from a value specific representation. The cross-attention layer is trained solely
by the critic resulting in task-specific feature extraction. We train with the off-policy algorithm SAC,
where we incorporate the offline data for pre-training in our replay buffer. Our approach is working
with any actor-critic RL algorithm.



5 Experiments and Results

In this Section, we present our experimental setting, consisting of two competitive baselines, training
details and multisensory environments. Furthermore, we ablate the impact of sensor settings and
latent bridging mechanisms. Finally, we investigate how pretraining with multiple sensors can enrich
the vision representation for Downstream RL.

5.1 Baselines and Training Details

We compare our methods against two competitive baselines. Both Baselines extract sensor-specific
features with a CNN for Vision and an MLP for Proprioception and Force-Torque readings. The
Concat model fuses the concatenated features with a 2-layer MLP to form the multisensory latent
representation [30} 31]. The PoE model generates separate means and variances for each sensor and
fuses them with a Product of Expert approach. As the models are non transformer based we neglect
masking and pretrain the encoders with reconstruction to form a multisensory latent. Both models
use an identical decoder architecture for the representation objectives, where proprioception and
force-torque signals are reconstructed from the latent representation using separate two-layer MLPs.
Vision is reconstructed via a Deconvolutional-CNN. More details can be found in the appendix

Training Details: We collect 30,000 random samples from the environment and train each model
with its respective representation learning objective (see Section [#.2)) for 30,000 update steps. After
pretraining, we freeze the encoder and train the on downstream task for 100 epochs. Each epoch
consists of 5,000 interaction steps, totaling 500,000 RL update steps.

5.2 Multisensory Environments

Our multisensory environments are based on panda-gym [15]] and Pybullet [9]. The tasks—Peg
Insertion, Push Cube and Close Drawer Gently—are inspired by Minitouch [8, |49] and consist of
3 challenging manipulation tasks. Each task comes with multisensory observations consisting of
proprioception (joint position and velocities), vision from an external RGB camera and a force-torque
sensor located on the wrist of the robot. The action-space consists of the 3-dimensional end-effector
displacement if not stated otherwise. Task details are provided below, with an overview of the
environments available in Appendix [A.T]

Peg Insertion: Insert the triangular peg (fixed at the endeffector) into the hole. The dense reward
function is guiding the robot to place the peg above the hole before inserting it. Next to the position,
the z-orientation of the triangular-peg needs to match the hole, leading to a 4-dimensional action
space and complex insertion dynamics. We randomize the hole position and orientation. Furthermore,
we add gaussian noise to the vision observation to mimic sensor noise and encourage the usage of the
FT-sensor to solve the task.

Push Cube: Push an orange cube to a target location with a round peg held by the robot. Goal
threshold is 3cm, while we provide a dense reward function. Next to the position of the cube, we
randomize its mass and center of mass leading to changing object dynamics [46]].

Close Drawer Gently: Instead of fully closing a drawer, the Task is successful, when the drawer is
nearly closed, while having a small velocity. It requires fine-grained control to be solved. A standard
close-drawer task formulation often results in forceful closing behavior, which is undesirable in
real-world applications. We randomize the position and orientation of the drawer and the friction of
its prismatic joint.

Figure 2] shows the performance of our MSDP-P and MSDP-R models compared to the proposed
Baselines. We obtain superior performance in Peg Insertion and Push Cube indicating a rich
representation for RL. Especially in Peg Insertion, our sensor-fusion provides fine-grained features
to solve the task around 80% of the time after just 40 epochs. Our Baselines struggle to provide an
appropriate representation for the given Task. As Push Cube is more Vision-focused and does not
introduce vision noise, the PoE baseline can solve the task in a reasonable timeframe. Our method
performs less prominent in Close Drawer Gently Task mainly due to simulation bottlenecks. We
observed sudden drawer changes during contact limiting the ability of the agent to close the drawer
smoothly in order to solve the task consistently. Regardless, our pretraining allows the agent to
understand the complex sensor interactions faster and obtains a higher final performance / success rate
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Figure 2: Performance comparison between MSDP-P, MSDP-R and the baselines in Peg Insertion,
Push Cube and Close Drawer Gently. Our Method achieves the highest success rate across all Tasks.

(~79%) compared to the Baselines (~63%). Additionally, our models report higher force interactions
(see Figure[TT), indicating fast reaching of the drawer and movement adjustment once in contact.
In the following sections we discuss sensor- and latent-ablations as well how multiple sensors can
enrich the vision representation for the MSDP-P model. More results for MSDP-R are reported in

Section[A3]

5.3 Sensor Ablation

To identify the contribution of each sensor we ablate them for the Peg Insertion and Push Cube
environment for our MSDP-P model. As seen in Figure [3]the usage of all three sensor modalities
obtain best performance. This is more prominent in the Peg Insertion Task, where Proprioception
and the FT-sensor are crucial to insert the peg with limited vision features. The Push Cube task can
be solved with Vision only, as identifying the cube position is crucial. The additional sensors still
provide useful information especially, where the center of mass is shifted significantly.
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Figure 3: Sensor ablation of MSDP-P for Peg Insertion and Push Cube. The usage of all sensors
leads to a rich representation indicated by the highest performance. This is especially prominent in
Peg Insertion, where all sensors are needed to insert the peg consistently. "V" stand for Vision



Next to the performance gains, we observed that models in Peg Insertion without having access to the
FT-modality asserts higher forces on the Hole (see Section[A.4), indicating unwanted exploration
actions, which may damage the robot or environment in the real world.

5.4 Latent bridging results

The latent bridging mechanism, described in Section[4.3] to obtain a compact representation from
multisensory embeddings can have a big impact on performance. We compare our critic cross-
attention extraction with common approaches. CLS is using the CLS-embedding of the encoder,
commonly used in the Vision Transformer [12] or Imitation Learning [50]. In Pooling we mean-pool
all sensor embeddings [51}52]. To account for the different number of embeddings we first take
the mean of all vision embeddings. To avoid possible dilution Cat provides the Concatenation of
sensor embeddings [62], where we pool the vision embeddings before. The common latent bridging
mechanisms do not introduce new learnable parameters, while our Cross attention layer only adds
minimal parameters to extract task-related features.
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Figure 4: Peg Insertion and PushCube Latent bridging ablation

Figure[]shows different latent bridging mechanisms on our MSDP-P model in Peg Insertion and Push
Cube. Our critic cross-attention (CCA) successfully extracts a rich representation to learn the task in
a fast manner. We highlight that all embeddings from the pre-trained encoder are multisensorial, even
if we can assign their origin from a specific sensor. In Push Cube our mechanism can extract more
fine-grained vision features resulting in superior performance. Figure [6] shows the attention map of
CCA’s latent bridging, focusing on the cube and its target. This confirms how our cross-attention
extracts task specific features from multisensory embeddings. The Peg Insertion task demands
detailed information about robot position and contact, which is also given by the Cat latent bridging.
The CLS embedding doesn’t contain rich features for downstream task learning, while Pooling
takes longer to solve the task consistently as the agent needs to extract environment details from a
potentially diluted representation.

5.5 Enriched Representation for Vision-based RL

In this Section, we investigate how low-dimensional sensor modalities can enrich the vision repre-
sentation. Our MSDP transformer encoder allows for varying input length, offering us the option to
pretrain the representation on more sensors and only use a subset, e.g. only Vision, for downstream
task learning. We pretrain our MSDP model with different sensor configurations and only provide the
vision modality during task solving. The latent is constructed by mean-pooling all vision embeddings.

Figure 5] shows how different pretraining settings can enhance vision-based RL in the Peg Insertion
and Push Cube tasks. In all configurations, we pretrain using the MSDP-P objective. The vision
representation in Peg Insertion is significantly improved by incorporating other sensors, increasing the
success rate from 40% to over 70%. In contrast, the representation for the vision-focused Push Cube
task degenerates when all sensor modalities are used during pretraining but not during dowmstream
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Figure 5: Peg Insertion and Push Cube, Comparisons of different Pretraining, Only Vision during RL.
"V" stand for Vision

RL. During task execution, the observed vision distribution shifts from the random collected data
during pretraining. The data shift in combination with the absence of other sensors, leads to corrupted
features. However, using only one additional sensor (Proprioception or FT-sensor) during pretraining
improves performance. Notably, the FT sensor adds beneficial features to the vision representation,
as it’s indicating cube contact.

6 Conclusion and Outlook

In this work, we propose MultiSensory Dynamic Pretraining (MSDP), a novel pre-training framework
for learning multisensory representations for contact-rich manipulation tasks using masked autoen-
coding and self-supervised forward dynamics objectives. Specifically, MSDP learns to reconstruct
sensory information of future timesteps in an action-conditioned manner from a subset of input sensor
embeddings. MSDP captures the interplay between the different sensor modalities to learn a rich
multisensory representation, which in combination with task specific feature extraction through cross
attention leads to a superior performance in challenging contact-rich manipulation tasks. MSDP’s
architecture supports various sensor combinations and can shift each sensor’s importance with its
attention mechanism, allowing for task-oriented multisensory feature extraction. In the future, we plan
to evaluate MSDP’s performance in more challenging real-world settings, especially the robustness of
the latent representation against sensor dropout or perturbation like noise. Moreover, the flexible and
decoupled nature of our representation learning provides a meaningful direction on how to exploit
heterogeneous multisensory data, which we aim to explore in a multi-task fashion as part of our
future work.
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A Technical Appendix

A.1 Environment Details

Peg Insertion: Insert the triangular peg (fixed at the end-
effector) into the hole. The dense reward function got two
stages. First: lead the peg to an area above the hole based
on the xy-distance between peg and hole. Second, with a
small orientation penalty: encourage the peg to lower its
position inside the hole. Exact position is not indicated by
the reward function. A high reward is achieved if the peg
is fully inserted. Next to the position, the z-orientation of
the triangular-peg is part of the 4-dimensional action space.
We randomize the hole position in a 15cm box and vary the
z-orientation in a span of 80 degrees.
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Push Cube: Push an orange cube to a target location with a
round peg held by the robot. Goal threshold is 3cm, while
we provide a dense reward function based on the distance
between endeffector-cube and cube-goal. A high reward
is achieved for task success. Next to the position of the
cube, we randomize its mass and center of mass leading to
changing object dynamics.

Close Drawer Gently: Instead of fully closing a drawer,
the Task is successful, when the drawer is nearly closed,
while having a small velocity. It requires fine-grained con-
trol to be solved. A standard close-drawer task formulation
often results in forceful closing behavior, which is undesir-
able in real-world applications. We randomize in a 10cm
x10cm x10cm box and orientation in a span of 30 degreees.
Furthermore we vary the friction of the drawer’s prismatic
joint. The exact goal is to push the drawer between 3cm
and lcm openess, while having a velocity under 1cm/s. The
dense reward is guiding the robot to the drawer and indicates
the distance between desired and actual drawer state. Right
drawer position get’s rewarded as well as Task success.

A.2 Cross-attention of critic in the Push Cube task

(a) timestep: 0 (b) timestep: 4 (c) timestep: 8 (d) timestep: 12

Figure 6: Critic ross-attention (CCA) maps in the Push Cube Task pretrained with MSDP-P. The
critic is focusing on the cube and its target, indicating task relevant feature extraction.
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A.3 MSDP-R Results

Push Cube MSDP-R: Latent bridging Push Cube MSDP-R: Sensor Ablation
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Figure 7: Latent and Sensor ablation for MSDP-R in Push Cube Task
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Figure 8: Force Interaction of MSDP-R with enriched Vision Representation
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Figure 9: Latent Ablation of MSDP-R in Peg Insertion Task
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A.4 Force Interactions

Peg Insertion: Sensor Ablation Peg Insert: Task only with Vision
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Figure 10: We define the force interaction as the standard deviation of the force-torque distribution
over an episode. Agents with access to Vision and Prorioception during training (a) or pretraining (b)
exihbit higher forces on the environment. Especially during exploration the missing force information
is leading to sub-optimal actions, which may be dangerous in the real world.
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Figure 11: Force Interaction in the Close Drawer Gently Task. High Force Interaction indicates
fast reaching of the drawer, while adjusting the movement once in contact. Our Methods archive
comparable results with the baselines.
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A.5 Baseline details

Following equation describes the latent generation from the PoE-baselines. From each sensor
modality ¢ we extract a normal distribution, which gets fused over each feature j.

3 -1 3 i 3 -1
i=1 i=1 i=1

A.6 Vision Predictions

Observed Vision Vision Prediction Next Vision Observation

(a)

Observed Vision Vision Prediction Next Vision Observation

(b)

Figure 12: Vision observation prediction in (a) Peglnsertion and (b) PushCube environment. Left:
Observed Vision from our Multsensory Masked Autoencoder. Middle: The Vision Prediction. Right:
The actual next Vision observation. Our model predicts correct peg movement under 60% masking

ratio, while the shared linear projection layer introduces artifacts and is not able to predict fine-grained
details.



A.7 Force Observation

Force Torque readings Force Torque readings
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Figure 13: Force Observation for (a) Peg Insertion and (b) Push Cube.

A.8 Attention MAE encoder

Attention Rollout over an episode Attention Rollout over an episode
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Figure 14: Attention Rollout [1]] for (a) Peg Insertion and (b) Push Cube. We report only the maximum
attention on a single vision embedding to account for its high embedding number. The attention
mechanism reported here is solely trained on the representation objective and is not an indicator on
the sensor importance for the agent.

18



	Introduction
	Related Work
	Reinforcement Learning for Contact-rich Manipulation
	Multimodal Self-Supervision for Robotics
	Deep Sensor Fusion

	Preliminaries
	Multisensory Dynamic Pretraining
	MSDP Architecture
	Representation Learning
	Policy Learning

	Experiments and Results
	Baselines and Training Details
	Multisensory Environments
	Sensor Ablation
	Latent bridging results
	Enriched Representation for Vision-based RL

	Conclusion and Outlook
	Technical Appendix
	Environment Details
	Cross-attention of critic in the Push Cube task
	MSDP-R Results
	Force Interactions
	Baseline details
	Vision Predictions
	Force Observation
	Attention MAE encoder


