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Abstract

An open question in Imprecise Probabilistic Machine Learning is how to empirically derive a
credal region (i.e., a closed and convex family of probabilities on the output space) from the
available data, without any prior knowledge or assumption. In classification problems, credal
regions are a tool that is able to provide provable guarantees under realistic assumptions
by characterizing the uncertainty about the distribution of the labels. Building on previous
work, we show that credal regions can be directly constructed using conformal methods.
This allows us to provide a novel extension of classical conformal prediction to problems
with ambiguous ground truth, that is, when the exact labels for given inputs are not exactly
known. The resulting construction enjoys desirable practical and theoretical properties: (i)
conformal coverage guarantees, (ii) smaller prediction sets (compared to classical conformal
prediction regions) and (iii) disentanglement of uncertainty sources (epistemic, aleatoric).
We empirically verify our findings on both synthetic and real datasets.

1 Introduction

In most real-world applications of machine learning, especially in the context of safety-critical applications
such as healthcare, researchers have found it difficult to reason with precise probabilities. Instead, practition-
ers have become comfortable reasoning in terms of families of probabilities, often in the form of closed and
convex sets called credal regions. Imprecise probabilistic machine learning (IPML) (Denoeux, 2000; Zaffalon,
2002; Destercke et al., 2008; Caprio & Gong, 2023; Caprio & Mukherjee, 2023a;b; Dutta et al., 2023; Lu et al.,
2024; Caprio, 2024; Caprio et al., 2024a;c;d; Sale et al., 2024) aims to develop machine learning theory and
methods that work with such imprecise probabilities. Such tools allow to better quantify and disentangle
different types of uncertainty, e.g., epistemic (model) and aleatoric (data) uncertainties, which play key roles
in any machine learning system. However, other sources of uncertainty are also highly relevant; for example,
uncertainty originating from the annotation process used to derive ground truth labels (Stutz et al., 2023a).

A crucial line of research in IPML is that of empirically deriving credal regions without any prior knowledge
or assumption. The first steps in this direction were made recently by Cella & Martin (2022a;b). They
discovered that, subject to a so-called consonance assumption (see Section 4.2) and given exchangeable
calibration data, the conformal transducer assigning a p-value to each possible label uniquely identifies a
credal region. This is a very promising result, since this only relies on having to select a non-conformity
measure, and the obtained coverage guarantee is valid irrespective of this choice. Unfortunately, Cella &
Martin (2022a;b) do not provide an implementation of their results on credal regions in real-world, complex
datasets. Moreover, they ignore the particularly interesting case of ambiguous ground truth (Stutz et al.,
2023a;b) where labels are not crisp, but subject to uncertainty due to rater disagreement (Yan et al., 2014;
Zheng et al., 2017) and imperfect labeling tools. In fact, calibration data are often not exactly classified;
we can see this in machine learning (Dawid & Skene, 1979; Smyth et al., 1994), but especially in medicine
(Feinstein & Cicchetti, 1990; McHugh, 2012; Raghu et al., 2019; Schaekermann, 2020) and natural language
processing (Pavlick & Kwiatkowski, 2019).

Contributions. In this paper, we follow an alternative way of constructing credal regions in a conformal
way, inspired by recent work (Javanmardi et al., 2023; 2024; Lienen et al., 2023; Martin Bordini et al.,
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2023). Specifically, we directly construct conformalized families of probabilities and show that these are in
fact credal regions, i.e. convex and closed. Furthermore, we extend this approach to classification problems
with ambiguous ground truth, first studied in the context of conformal prediction by Stutz et al. (2023b;c).1
These problems are extremely relevant from an applied point of view. Instead of a “precise” calibration set
(xn, yn) = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y,2 we consider a calibration set Dc = {(xi, λi)} that encompasses
the ground truth ambiguity, where the λi’s are probability vectors, and the k-th entry λi,k is the probability
of k being the correct label for xi.3 To see that this is a generalization of the usual classification problems,
notice that we can write a pair (xi, yi) as a pair (xi, λi), where λi is a one-hot encoding vector with entry
1 on the correct label k = yi. By directly conformalizing in the probability space, we obtain an appealing
calibration property for the constructed credal region: the true data generating process belongs to the credal
region with high probability 1−α, where α is chosen by the user. Due to this property, our credal regions are
well-suited to disentangle and quantify aleatoric and epistemic uncertainties associated with the analysis at
hand (Hüllermeier & Waegeman, 2021; Sale et al., 2023). On both synthetic and real datasets, we verify both
the coverage of the constructed regions and the true label coverage guarantee of the derived predictive sets.
In contrast to Cella & Martin (2022a;b), we do not require any assumption beyond exchangeability. Using
imprecise highest density sets, we can derive predictive sets of labels that are more efficient, i.e., smaller on
average, compared to those by Stutz et al. (2023c).

Outline. This paper is structured as follows: First, in Section 2, we recall the plausibility regions and the
conformal predictive sets derived in Stutz et al. (2023c) and define the corresponding conformal coverage
guarantee which we built on in the following. Then, in Section 3 we revisit the necessary background on
imprecise probabilistic concepts relevant for this paper, including imprecise highest density sets (IHDSs).
Part of our main results, Section 4 shows that the plausibility region in Stutz et al. (2023c) is equivalent to
a credal region, which also satisfies a desirable calibration property. Then, Sections 4.1 and 4.2 discuss the
utility of our credal region the field of Imprecise Probabilistic Machine Learning in general and the relation
and improvements over the work of Cella & Martin (2022a;b) in particular. Finally, Section 5 presents our
findings on obtaining more efficient prediction sets from our credal regions compared to (Stutz et al., 2023c).
We present our experimental evidence in Section 6 and conclude in Section 7.

2 Conformal Plausibility Regions

In Stutz et al. (2023b;c), the authors study conformal prediction for K-class classification in the context of
ambiguous ground truth. Standard split conformal prediction typically assumes instead a calibration set of
examples with “crisp” ground truth labels {(Xi, Yi)}n

i=1 (Shafer & Vovk, 2008). Realizing that such crisp
ground truth labels might not be available in many practical settings, Stutz et al. (2023b;c) assume a cali-
bration set of examples and so-called plausibilities, {(Xi, Λi)}n

i=1, where plausibilities λi (i.e., the realizations
of Λi) represent categorical distributions over the K possible labels.4 This allows to represent ambiguous
examples where the corresponding distribution P[Y |X] is not one-hot and might have high entropy. In the
full-information setting, these plausibility vectors may represent the true distribution P[Y |X] directly; in
many practical scenarios, however, we can only approximate the true distribution. For example, disagree-
ment among annotators frequently indicates ambiguity and deterministic or probabilistic aggregation of
multiple annotators can be used as plausibilities (Stutz et al., 2023a). Then, we assume the true distribution
can be obtained in the limit of infinite “faithful” annotators.

1Reference Stutz et al. (2023b) refers to the published version, while Stutz et al. (2023c) to the first version of the paper.
Since many of the concept needed in the present paper were not included in the final, published version, we differentiate between
the two for ease of reference.

2We use lower case letters for realizations, while capital letters for random variables. In this case, calibration data
(x1, y1), . . . , (xn, yn) are realizations that we observe, while the test example Xn+1 is a random variable that has not yet
been realized.

3A pair (xi, λi) in the calibration set is the realization of a random pair (Xi, Λi).
4They may be, for example, realizations from random variables Λi distributed according to a Dirichlet distribution.
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For a new test example Xn+1 and a significance level α ∈ [0, 1], a so-called plausibility region c(Xn+1) is
derived as (

{(xi, λi)}n
i=1, Xn+1, α

)
⇝ c(Xn+1) := {λ ∈ ∆K−1 : e(Xn+1, Λn+1 = λ) ≥ τ}, (1)

where ∆K−1 is the unit simplex in RK , and e(Xn+1, Λn+1 = λ) :=
∑K

k=1 λkE(Xn+1, k) is a score derived
from a so-called conformity score E(Xn+1, k) based on the probabilistic model prediction pk(Xn+1). Such
a model (e.g. the softmax output for class k of a trained neural network) approximates the posterior class
probabilities, pk(Xn+1) ≈ P(Yn+1 = k | Xn+1, D), where D denotes the training set, and it is assumed to
be available. Conformity score E is built so that a high score is more unlikely, hence we can interpret E as
a function assigning a score to the assertion “k is the correct label for the realization xn+1 of test example
Xn+1”, which is lower the more the pair (xn+1, k) “lacks conformity” with the training data. It is worth
noting that alternative definitions of e have also recently been explored by Javanmardi et al. (2024). The
threshold τ is then chosen using a simple quantile computation on the calibration set,

τ = Q ({e (Xi, Λi)}n
i=1 ; ⌊α(n + 1)⌋/n) .

Under the assumption that {(Xi, Λi)}n+1
i=1 are exchangeable, following standard conformal prediction liter-

ature (Stutz et al., 2023c, Equation (13)), the plausibility region c(Xn+1) provides a coverage guarantee
stating that P[Λn+1 ∈ c(Xn+1)] ≥ 1 − α,5 where Λn+1 is the unobserved true plausibility vector of the test
example. If the λi’s in the calibration set correspond to the true distributions P[Y |Xi = xi], this provides
coverage with respect to the true distribution. As (Stutz et al., 2023c, Section 3.1) details, however, in
many practical settings, the plausibilities are obtained from expert annotations. With finite annotators,
the authors are able to give a coverage guarantee, Pagg[Λn+1 ∈ c(Xn+1)] ≥ 1 − α, stated in terms of the
distribution Pagg that explicitly captures how annotations are aggregated into plausibilities. The underlying
assumption is that λn+1,k = Pagg[Yn+1 = k|Xn+1] where, ideally, Pagg ≈ P, and the annotators are the
same for the calibration set and the test example. In any case, annotators can “agree to disagree” such that
λn+1 has high entropy in which case xn+1 is called ambiguous. For simplicity, we ignore this caveat for the
presentation of this paper and write P henceforth.

The plausibility region c(Xn+1) is then used in (Stutz et al., 2023c, Equation (41)) to derive “plausibility-
reduced” predictive sets (PRPS)

Ψ(c(Xn+1)) :=
{

y ∈ Y : ∃λ ∈ c(Xn+1), l ∈ Y s.t.
l∑

i=1
λσi

≥ 1 − δ and ∃i ≤ l s.t. σi = y

}
. (2)

Here λσ = (λσ1 , . . . , λσK
)⊤ corresponds to vector λ sorted in descending order. In Stutz et al. (2023c), this is

also contrasted with regular conformal predictive sets (CPS) that are obtained by calibrating a threshold κ
on the per-label scores E and constructing the CPS C(Xn+1) as {k ∈ Y : E(Xn+1, k) ≥ κ}. There, the latter
is further adapted to allow for ambiguous examples with plausibilities λi available for calibration, see (Stutz
et al., 2023c, Algorithm 1). These adapted CPS C(Xn+1) are shown to be generally more efficient, i.e.,
smaller, compared to Ψ(c(Xn+1)) but unable to capture or even disentangle different sources of uncertainty.
We make a step towards addressing this gap by deriving narrower predictive sets that allow for uncertainty
quantification and disaggregation, using methods from imprecise probability.

3 Imprecise Probability

Following Cella & Martin (2022a;b) and additional previous work on IPML (Augustin et al., 2014; Caprio
& Seidenfeld, 2023; Coolen, 1992), we briefly introduce the notions of lower and upper probabilities, and
also the concept of Imprecise Highest Density Sets (IHDS). These will play a pivotal role in the paper – and
especially in Section 5 – as a way to derive predictive sets of labels from our credal regions, that are shown
to be more efficient than the predictive sets Ψ(c(Xn+1)).

5This probability is also on the calibration set, since the latter is used to derive c(Xn+1).
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We begin by recalling that a credal region P is a convex and closed family of probabilities. Its lower envelope
P = infP ∈P P is called lower probability, while its upper envelope P = supP ∈P P is called upper probability.
Considering the assertion that the true label Yn+1 of test example Xn+1 is included in a set A ⊆ Y, and
using P (A) ≡ P (Yn+1 ∈ A), we see that the upper probability is conjugate to the lower probability, i.e. for
all A ⊆ Y, P (A) = 1−P (Ac), where Ac = Y \A. Hence, studying one is sufficient to then retrieve the other.
Moreover, in the present paper Y is finite, meaning

P (A) = inf
P ∈P

P (A) = inf
P ∈P

[∑
k∈A

P ({k})
]

.

As we can see, P (A) can be calculated in polynomial time. This is important, since using the lower probability
we can derive predictive sets of labels.
Definition 1 (Imprecise Highest Density Set, Coolen (1992)). Let δ ∈ [0, 1] be any significance level. Then,
the (1 − δ)-Imprecise Highest Density Set (IHDS) ISP,δ associated with P is the subset of Y that satisfies the
following two conditions,

(i) P (ISP,δ) ≥ 1 − δ,

(ii) |ISP,δ| is a minimum of all sets for which (i) holds.

In order to compute IHDSs in practice, we need another important result – proved in (Augustin et al., 2014,
Section 4.4) and de Campos et al. (1994).
Proposition 2 (Computing P (A)). If P avoids sure loss, i.e. if

∑
k∈Y P ({k}) ≤ 1 ≤

∑
k∈Y P ({k}), then

P (A) = max
{∑

k∈A

P ({k}), 1 −
∑

k∈Ac

P ({k})
}

(3)

≥
∑
k∈A

P ({k}), ∀A ⊆ Y.

Since P is the lower envelope of a credal region, the sure loss avoidance condition is always met, as proven
in Walley (1991). We make this explicit in the following Lemma.
Lemma 3 (Lower Envelopes Avoid Sure Loss). The lower probability P associated with P avoids sure loss.

Definition 1 can be used to derive a parallel between (generic) Conformal Prediction Sets (CPSs) and IHDSs.
Condition (i) tells us that Yn+1 belongs to ISP,δ with P -probability of at least 1 − δ, for all distributions
P in the credal region P. Condition (ii) tells us that ISP,δ is “efficient”. That is, it is the narrowest subset
of the label set Y that is able to ensure the probabilistic guarantee of condition (i). Compared to CPSs,
this is a weaker guarantee: First and foremost, the conformal guarantee is uniform, holding for all possible
exchangeable distributions P on Y. Second, without assumptions on the credal region P, condition (i)
ignores whether the true distribution belongs to the credal set P.

4 Conformal Plausibility Regions as Credal Regions

A key contribution of this paper is relating the plausibility regions c(Xn+1) in equation 1 to the imprecise
probabilistic notion of credal regions. As we will show, this leads to a remarkable synergy that allows us to
construct a credal regions for Xn+1 in a conformal way, and subsequently to use IHDSs to construct predictive
sets of labels. Compared to Cella & Martin (2022a;b), our credal regions provide coverage, only requiring
the exchangeability of {(Xi, Λi)}n+1

i=1 . In addition, we improve over Stutz et al. (2023c): the predictive sets
that we derive are more efficient, i.e., always non-broader and sometimes strictly narrower. For a start, we
show that the plausibility regions c(Xn+1) are convex and closed, and thus proper credal regions.
Proposition 4 (Properties of the Plausibility Region). The plausibility region c(Xn+1) derived in equation 1
is convex and closed.6

6The topology in which c(Xn+1) is closed is specified in the proof of the statement.
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Proof. We first show that c(Xn+1) is convex. Pick λ1, λ2 ∈ c(Xn+1), λ1 ̸= λ2, and β ∈ [0, 1]. Then,

e(Xn+1, βλ1 + (1 − β)λ2) =
K∑

k=1
(βλ1

k + (1 − β)λ2
k)E(Xn+1, k)

= β

K∑
k=1

λ1
kE(Xn+1, k) + (1 − β)

K∑
k=1

λ2
kE(Xn+1, k)

≥ βτ + (1 − β)τ = τ.

Hence, βλ1 + (1 − β)λ2 ∈ c(Xn+1), which proves convexity.

Let us then turn our attention to sequential closure. We begin by showing that e(Xn+1, ·) is a continuous
function. Pick (λm) ⊆ c(Xn+1) such that λm → λ⋆. That is, for all γ > 0, there exists M ∈ N such that
|λ⋆

k − λm
k | < γ, for all m ≥ M and all k ∈ {1, . . . , K}. Now, to show continuity, we prove that, for all ϵ > 0,

there exists δϵ := ϵ/
∑K

k=1 E(Xn+1, k) > 0 such that |λ⋆
k−λm

k | < δϵ implies that |e(Xn+1, λ⋆)−e(Xn+1, λm)| <
ϵ. Indeed,

|e(Xn+1, λ⋆) − e(Xn+1, λm)| =

∣∣∣∣∣
K∑

k=1
(λ⋆

k − λm
k )E(Xn+1, k)

∣∣∣∣∣
≤

K∑
k=1

|λ⋆
k − λm

k | E(Xn+1, k)

< δϵ︸︷︷︸
=: ϵ∑K

k=1
E(Xn+1,k)

K∑
k=1

E(Xn+1, k) = ϵ.

This proves that e(Xn+1, ·) is continuous. Then, after noting that e(Xn+1, λ) ≥ τ , for all λ ∈ c(Xn+1) –
here the weak inequality plays a crucial role in showing sequential closure – we can conclude that c(Xn+1)
is indeed sequentially closed.

P({1}) P({2})

P({3})

c(X̃)

Figure 1: Suppose we are in a 3-class classification setting, so Y = {1, 2, 3}. Then, any probability measure
P on Y can be seen as a probability vector. For example, suppose P ({1}) = 0.6, P ({2}) = 0.3, and
P ({3}) = 0.1. We have that P ≡ (0.6, 0.3, 0.1)⊤. Since its elements are positive and sum up to 1, probability
vector P belongs to the unit simplex ∆2 in R3, the purple (2D) triangle in the figure. Then, plausibility
region c(Xn+1) is a closed and convex body in ∆2, such as the depicted orange (2D) heptagon (we depict it
with a solid black border to highlight the fact that it is indeed closed).
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As we can see, then, every λ ∈ c(Xn+1) uniquely identifies a Categorical distribution Cat(λ) parameterized
by λ itself. A visual representation for c(Xn+1) is given in Figure 1. A consequence of Proposition 4 is
that for all k ∈ Y, we can find λk, λk ∈ [0, 1], λk ≤ λk, such that λk ∈ [λk, λk], for all λ ∈ c(Xn+1).7 The
following result relates c(Xn+1) to a credal region, that is, a closed and convex family of probabilities (Levi,
1980). It is an immediate consequence of Proposition 4 and of the definition of c(Xn+1) in equation 1.
Corollary 4.1 (Plausibility Region as a Credal Region). The plausibility region c(Xn+1) derived in equa-
tion 1 is equivalent to the credal region P := {Cat(λ) : λ ∈ c(Xn+1)}.

Notice how P is a predictive credal region. This is because its elements can be seen as predictive distributions
resulting from a Dirichlet (conjugate) prior and a Categorical likelihood. In addition, as we shall see in Section
5, P can be used to derive a set of labels that contain the true one for Xn+1 with high probability.

Recall that λn+1 denotes the “true” probability vector over the K labels, once we observe the new test exam-
ple Xn+1, and consider the Categorical distribution Cat(λn+1) parameterized by such a vector. Cat(λn+1)
captures the intrinsic difficulty of labeling Xn+1. For an easy-to-categorize instance, we will have a low-
entropy Categorical, and vice-versa for a highly ambiguous input Xn+1. We can also give a subjectivist
interpretation to the credal region P: we can think of λn+1 as the vector subsuming the opinions of all the
experts, and that cannot be “further refined” given the available information. The sharper the disagreement
between the expert around the right label for Xn+1 is, the wider P will be. We have the following important
result.
Proposition 5 (Probabilistic Correctness). Let α be the same significance level selected in equation 1. Then,

P[Cat(λn+1) ∈ P] ≥ 1 − α,

where P depends on the statistical model relating expert opinions to plausibilities as outlined in Section 2 and
(Stutz et al., 2023c, Equation (6)).

Proof. Immediate from Corollary 4.1 and (Stutz et al., 2023c, Equation (13)).

4.1 Significance for IPML

In this section, we argue that Proposition 5 is extremely important for the field of Imprecise Probabilistic
Machine Learning (IPML) (Caprio et al., 2024a; Hüllermeier & Waegeman, 2021; Zaffalon, 2002). We will
further show (in the next section) that making this connection to imprecise probability allows to derive more
efficient predictive sets from these credal regions, compared to Ψ(c(Xn+1)) in equation 2.

In IPML, scholars tend to adopt either of the following two approaches. One approach is the robust statisti-
cian one, also called Huberian (Huber & Ronchetti, 2009). This is more frequentist in nature, hence the true
data generating process – Cat(λn+1) in our case – is a well-defined concept. Those who take this approach
proceed in two different ways: either they assume that Cat(λn+1) ∈ P (in which case a result like Proposition
5 is very interesting, as it allows to forego such requirement), or they verify that a calibration à la Proposition
5 holds for the methodology they propose (Acharya et al., 2015; Gao et al., 2018; Mortier et al., 2023; Liu
& Briol, 2024; Chau et al., 2024). In particular, in the case of transductive conformal prediction, Martin
(2023) shows that the upper envelope Π of the credal region M(Π) induced by conformal transducer π as we
discussed in Section 1, is the minimal outer consonant approximation of the true data generating process.
This means that Π is the narrowest upper bound for the true distribution, that also satisfies the consonance
assumption. We can then conclude – although it is not explicitly shown in their work – that credal region
M(Π) contains the true data generating process. This is important in Cella and Martin’s framework because
it is linked to the concept of type-2 validity: since the upper probability Π provides control on erroneous
predictions uniformly (Cella & Martin, 2022b, Definition 3), so does the true probability if the credal set is
well-calibrated. Of course, we cannot directly use their result in our context because we do not have access
to crisp labels. In a sense, then, in Proposition 5 we prove (a probabilistic version of) this property for the
ambiguous ground truth case in classification problems.

7As a consequence, a greedy algorithm to approximate the values of λk, λk, for all k ∈ Y, is easy to design, e.g. based on
random samples from the uniform Unif(c(Xn+1)) on the plausibility region c(Xn+1).
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Another approach is the deFinettian or Walleyan one (de Finetti, 1974; 1975; Walley, 1991), in which it is
posited that “probability does not exist”, and what we call probability measure is just a way of capturing
the subjective assessments of the likelihood of events to obtain, according to the agent. In light of this, the
concept of “true data generating process” is absent, and so it does not make sense to look for probabilistic
guarantees à la Proposition 5.

4.2 Relation to Cella & Martin (2022a;b)

Given calibration data with crisp labels in Y as outlined in the beginning of Section 2, Cella & Martin
(2022a;b) consider the conformal transducer π : Y → [0, 1], which assigns a p-value to each possible label in
Y (Cella & Martin, 2022a, Definition 2). It uniquely identifies a credal region, assuming consonance. Here,
π is typically interpreted as telling us how “in line” the pair (xn+1, ỹ) is with the previously observed data
(xn, yn). A value closer to 1 means that seeing (Xn+1, Yn+1) = (xn+1, ỹ) would align with the preceding
observations, and vice versa for values closer to 0. Once π is obtained, consonance posits that there exists at
least one label ỹ such that π(ỹ) = 1. Loosely, this means that the label ỹ that makes pair (xn+1, ỹ) “the most
conformal to” the observations (xn, yn), is required to have the highest possible value 1. This can be obtained
artificially by setting π for ỹ ∈ arg maxy π(y) to 1 (Cella & Martin, 2022a, Section 7). Then, an upper
probability (that is, the upper envelope of a credal region) Π is derived for π by letting Π(A) = supy∈A π(y),
for all subsets A of the label space Y. In turn, a credal region is defined as M(Π) = {P : P (A) ≤ Π(A)},
for all A ⊆ Y. That is, M(Π) contains all the probabilities on Y that are set-wise dominated by Π where
P (A) ≡ P (Yn+1 ∈ A).

In comparison to Cella & Martin (2022a;b), we avoid the consonance assumption. In Cella & Martin
(2022a;b), this assumptions is primarily required to bridge the so-called possibilistic approach to imprecise
probabilities (Augustin et al., 2014, Chapter 4) with conformal prediction. Moreover, we do not explicitly
construct the conformal transducer, also due to the fact that we work with probability vectors instead of
“precise” (that is, one-hot) labels. In this sense, our work subsumes and extends Cella & Martin (2022a;b).
Furthermore, our credal region P establishes a coverage guarantee on the true data generating process being
in P, and it also enjoys (a version of) type-2 validity, a notion important for uncertainty quantification,
introduced for the first time in (Cella & Martin, 2022b, Definition 2). Let us be more formal about it.
Proposition 6 (A Version of Type-2 Validity for Our Credal Region). The credal region P in Corollary 4.1
is [δ/(1 − α)]-type-2 valid, where α is the quantity chosen in equation 1. That is,

P[P (A) ≤ δ, Yn+1 ∈ A] ≤ δ

1 − α
,

for all δ ∈ [0, 1], all n ∈ N, and all A ⊆ Y. Here as in Proposition 5, P depends on the statistical model
relating expert opinions to plausibilities.

Proof. Pick any δ ∈ [0, 1], any n ∈ N, and any A ⊆ Y. Notice that P[P (A) ≤ δ, Yn+1 ∈ A] ≤ P[Yn+1 ∈ A].
If Cat(λn+1) ∈ P, which happens with P-probability (1 − α) as shown in Proposition 5, then P[Yn+1 ∈ A] ≤
P (A), which in turn is smaller than δ by choice. Hence, the claim follows by dividing δ by (1 − α).

In words, this means that the (true/aggregated) probability of a set A having small upper probability, and
yet containing the true output Yn+1 for a given new input Xn+1, is controllably small, and it depends on
the parameters α and δ chosen by the user.

5 Improving over Conformal Prediction Sets

In this section, we show how prediction set Ψ(c(Xn+1)) can be improved by using the IHDS of the lower
probability P of credal region P. In addition, we show how P can be used to quantify and disentangle aleatoric
and epistemic uncertainties. Specifically, let us denote by λ the vector whose k-th entry is λk = P ({k}), and
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by λ the vector whose k-th entry is λk = P ({k}). Then, we can rewrite equation 3 as

P (A) = max
{∑

k∈A

λk, 1 −
∑

k∈Ac

λk

}
, ∀A ⊆ Y. (4)

This gives us an easy way to compute P (A) in practice, to then derive IDHSs. We can use equation 4 and
Definition 1.(i) to derive Algorithm 1, a greedy algorithm to build ISP,δ. In turn, IHDS ISP,δ is used to
derive a predictive set narrower than the conformal one Ψ(c(Xn+1)) from equation 2, and that retains the
same probabilistic guarantees. Recall that Definition 1.(i) gives us a probabilistic guarantee that holds for
all distributions in the credal region P that we built in Corollary 4.1. This is a slightly weaker guarantee
than that of classical conformal prediction, whose guarantee instead holds for all possible exchangeable
distributions P on Y. Thanks to Proposition 5, though, a consequence of the following Proposition 7 is that
the loss of coverage for the IHDS with respect to a classical CPS is negligible.
Proposition 7 (Improving on Conformal via IPs). Let α be the same significance level selected in equation 1.
Pick any δ ∈ [0, 1]. Then, ISP,δ ⊆ Ψ(c(Xn+1)), and the inclusion is strict for some value of δ. In addition,
P[Yn+1 ∈ ISP,δ] ≥ (1 − δ)(1 − α) where Yn+1 denotes the correct label for input Xn+1.

Proof. First, let us introduce the concept of (1 − δ)-(Precise) Highest Density Set HDSP,δ, for some P ∈ P
Hyndman (1996),

HDSP,δ := {y ∈ Y : P ({y}) ≥ P δ},

where P δ is the largest constant such that

P [Y ∈ HDSP,δ] ≥ 1 − δ.

By (Coolen, 1992, Page 3), we know that

ISP,δ ⊆
⋃

P ∈P
HDSP,δ

= {y ∈ Y : ∃P ∈ P, P (y) ≥ P δ},

for all δ ∈ [0, 1], and the inclusion is strict for some value of δ. The first part of the proof is concluded by
noting that ∪P ∈PHDSP,δ = Ψ(c(Xn+1)). The probabilistic guarantee according to P is a consequence of
Proposition 5 and the fact that P (ISP,δ) ≥ 1 − δ =⇒ P (ISP,δ) ≥ 1 − δ, for all P ∈ P, by the definition of
lower probability.

In standard conformal prediction – that is, when we calibrate on crisp-labeled data – the probabilistic
guarantee that we derive is of the form P[Yn+1 ∈ CPS] ≥ 1 − δ, where we denote by CPS the conformal
prediction set, and by δ the same threshold as in Proposition 7. In the present work, we need to take into
account the imprecision coming from the ambiguous labeling, which appears in the form of 1 − α in the
probabilistic guarantee of Proposition 7. In our imprecise probabilistic framework, 1 − α is the guarantee
that we have on the true distribution Cat(λn+1) belonging to the credal set P (see Proposition 5). But
1 − α is chosen by the user, so letting e.g. 1 − α = 0.95 or 1 − α = 0.99 will yield a negligible coverage
loss with respect to the classical conformal prediction setting. It is also worth noting that the guarantee
in Proposition 7 is the same derived for “standard” conformal prediction in the case of ambiguous labels in
(Stutz et al., 2023c, Equation (43)).

Finally, let us point out that we can use credal regions to quantify and disentangle between aleatoric and
epistemic uncertainties (AU and EU, respectively) in the analysis at hand (Caprio et al., 2024b). AU refers
to the uncertainty that is inherent to the data generating process; as such, it is irreducible. EU, instead,
refers to the lack of knowledge about the data generating process; as such, it is reducible. It can be lessened
on the basis of additional data, e.g. by retraining the model using an augmented training set (Lin et al.,
2023). On the other hand, since AU is irreducible, there is an increasing need for ML techniques that are
able to detect and flag excess of AU, so that the user can “proceed with caution”.

8
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Algorithm 1 Computing Imprecise Highest Density Set ISP,δ

Input: Vector λ Parameter: Significance level δ ∈ [0, 1]
Output: IHDS ISP,δ

Step 1 For all A ⊆ Y, compute P (A) using equation 4. ▷ 2K possible A’s for |Y| = K labels.
Step 2 Sort the A’s in ascending order of their lower probability P (A); if two or more sets have the same
lower probability, put the one with lower cardinality first. Denote the sorted order as {Aρ1 , . . . , Aρ2K

}.
Step 3
for k ∈ {1, . . . , 2K} do

if P (Aρk
) ≥ 1 − δ then

ISP,δ = Aρk

break
end if

end for
return ISP,δ

Recall that, for a single Categorical distribution P = Cat(λ) on Y, the (Shannon) entropy is defined as

H(P ) = −
K∑

k=1
λk log2(λk). (5)

The credal versions of the Shannon entropy as proposed by Abellán et al. (2006); Hüllermeier & Waegeman
(2021) are H(P ) := supP ∈P H(P ) and H(P ) := infP ∈P H(P ), called the upper and lower (Shannon) entropy,
respectively. The upper entropy is a measure of total uncertainty (TU), since it represents the minimum
level of predictability associated with the elements of P. In Abellán et al. (2006); Hüllermeier & Waegeman
(2021), the authors postulate that TU can be decomposed additively as a sum of aleatoric and epistemic
uncertainties, and that the latter can be specified as the difference between upper and lower entropy, thus
obtaining

H(P )︸ ︷︷ ︸
total uncertainty TU(P)

= H(P )︸ ︷︷ ︸
aleatoric uncertainty AU(P)

+
[
H(P ) − H(P )

]
.︸ ︷︷ ︸

epistemic uncertainty EU(P)

(6)

Other measures based on credal regions are also available (see Bronevich & Rozenberg (2021); Hofman et al.
(2024); Hüllermeier & Waegeman (2021) or Appendix A for a few examples) and they can be used in place
of upper and lower entropy to quantify EU and AU within our credal region P, as long as the measure
chosen for the total uncertainty is bounded. We also note in passing that the decomposition in equation 6 is
extremely important for the field of conformal prediction, since, as pointed out in (Hüllermeier & Waegeman,
2021, Section 5), the role of aleatoric and epistemic uncertainties in (classical) conformal prediction is in
general not immediately clear. Our approach allows to overcome this shortcoming.

Let us add a remark. In many modern-day ML and AI methodologies that allow to disentangle and quantify
different types of uncertainties, the uncertainty quantification (UQ) part is not an intrinsic feature of the
model, but rather something that is put “on top of” the main procedure. In contrast, uncertainty is inherent
to the method we propose, via the plausibility region c(Xn+1) (and so the credal region P). We are then
able to quantify the amount of AU, and discern its types. They may even be used to build an abstaining
option: if TU is “too high”, the IHDS should not be returned, and instead the excess of which between AU
and EU is responsible for the ambiguity should be reported.

6 Experiments

We verify the proposed algorithm on three datasets with ambiguous ground truth, including the toy and
Dermatology DDx datasets from Stutz et al. (2023b;c) (“Toy” and “Derm”, respectively), and CIFAR-
10H (Peterson et al., 2019) (“Cifar10h”). For Derm, we use risk labels as classes, classifying cases into
low, medium and high risk. For CIFAR-10H, for computational convenience, we only consider data points
whose annotated ground truth label in the original CIFAR-10 dataset is within the three classes (airplane,

9
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automobile, and bird). The toy dataset contains 1,000 data points, Dermatology DDx contains 1,947 data
points, and CIFAR-10H contains 3,000 data points. We split each dataset into random calibration and
testing sets in a 50%-50% ratio.

We consider different miscoverage levels ϵ, including 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. We denote the coverage
level as 1−ϵ in our plots. For simplicity, we put the significance levels α and δ to ϵ

2 . We compare our method
(denoted by “Ours (IS)” for “Imprecise Set”) to Plausibility Reduced Predictive Set Ψ(c(Xn+1)) proposed
in (Stutz et al., 2023c, Equation (41)) (denoted by “[49](PRPS)”). For Algorithm 1, we construct the credal
region c(Xn+1) from equation 1 by discretizing the simplex and computing the convex hull. We report three
measures, including empirical distribution coverage, empirical label coverage, and average inefficiency. To
account for randomness, we run each experiment with 20 random seeds.

Empirical distribution and label coverage. First, we report the empirical distribution coverage levels
on different datasets in Figure 2. Since our method and the conformal-based method utilize the same
algorithm to compute distribution prediction sets, we only report the true distribution coverage levels using
our method. As shown in the figure, the empirical distribution coverage levels are equal to 1 − α, which is
consistent with Proposition 5.

Secondly, we report the end-to-end empirical label coverage levels in Figure 3. As shown in the figure, the
true label coverage levels of both methods are above 1− ϵ, which is consistent with the coverage guarantee in
(Stutz et al., 2023c, Equation (43)) and Proposition 7. Both our method and the baseline served to obtain
the coverage guarantee.
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Figure 2: Empirical distribution coverage levels. The left plot is on toy dataset; the middle plot is on
Dermatology DDx dataset; the right plot is on CIFAR-10H.

Inefficiency reduction. We report the inefficiencies using our method and the baseline in Figure 4. In
our experiments, the inefficiency is defined as the average size of the resulting label prediction sets, with
larger sizes indicating higher inefficiency. As shown in the plots, in most cases, our method can obtain lower
inefficiencies than the baseline method. These results are consistent with Proposition 7. This implies that
while both methods provide the true coverage guarantee, our method can construct smaller prediction sets
that provide more information to the users. The outlier cases, where the baseline achieves lower inefficiency
(e.g., 1 − ϵ = 0.8 on the Toy dataset), arise from discretization in the search for plausible distributions in
P, potentially introducing additional conservativeness (indeed, calibration for 1 − ϵ slightly larger or lower
than 0.8 removes this outlier in our experiments). Furthermore, the observed differences in inefficiency
across datasets can be attributed to the variation and inherent ambiguity present within these datasets. For
instance, the average inefficiency on CIFAR-10H is lower due to the concentration of probability mass on
the correct label for most data points, resulting in low inherent ambiguity. In contrast, when the probability
mass is more evenly distributed across labels, it induces higher inherent ambiguity.

Effect of α and δ. According to Proposition 7, for a specified coverage level 1−ϵ, the probability P[Yn+1 ∈
ISP,δ] holds for any combination of α and δ as long as they satisfy (1 − δ)(1 − α) ≥ 1 − ϵ. However, different
combinations of α and δ can impact the inefficiency of the resulting prediction set. To study this effect,
we consider ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}, select α on a grid in (0, ϵ) with intervals of ϵ/10,
and compute the corresponding δ levels. Figure 5 shows the average inefficiency across various α and δ
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Figure 3: True label coverage levels. The left plot is on the toy dataset; the middle plot is on Dermatology
DDx; the third is on CIFAR-10H.
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Figure 4: Average inefficiencies. The left plot is on the toy dataset; the middle plot is on Dermatology DDx;
the third is on CIFAR-10H.

combinations. The plot indicates that α has a more significant effect on inefficiency; allowing higher α
typically results in lower inefficiency (i.e., smaller prediction sets).
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Figure 5: Inefficiency using different combinations of α and δ.

Qualitative analysis. We conduct a qualitative analysis of the constructed credal regions using two
examples from the DDx dataset, with results summarized in Table 1. First, as shown in the middle and
right columns, the constructed credal regions (right) encompass the ground truth label distributions (middle),
which were annotated by domain experts. Second, as a higher ϵ level demands greater coverage, the resulting
credal regions become larger.

7 Conclusion

In this paper, we address an important problem in imprecise probabilistic machine learning, namely how to
empirically derive credal regions in a data-driven and efficient way, without any prior assumptions. To this
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Image Ground Truth Credal region (ϵ = 0.1) Credal region (ϵ = 0.2)
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Table 1: Qualitative Examples from the DDx Dataset: The left column presents the original medical images,
the middle column shows the label distributions annotated by experts, and the right column displays the
credal regions constructed using our method.

end, we build on previous work by Stutz et al. (2023b;c) and apply conformal prediction in the probability
space. Given a calibration set of examples with associated categorical distributions over classes, we can
explicitly construct credal regions that enjoy a calibration property guaranteeing the true data generating
process being included with high probability. Besides being efficient, this approach also allows to deal with
ambiguous ground truth, examples where the ground truth label is uncertain. By constructing imprecise
highest density sets (Coolen, 1992), we can derive predictive sets of labels that are narrower, i.e., more
efficient than those from Stutz et al. (2023c). Compared to the seminal work of Cella & Martin (2022a;b),
we obtain credal sets without explicitly constructing the conformal transducer (i.e., computing p-values for
all classes of the test example) and avoid the consonance assumption (stating that the p-value for the class
ỹ that makes (xn+1, ỹ) the “most conformal” to what we see in the calibration set has to be 1). Moreover,
due to our calibration property, we do not need to assume that the true data generating process is included
in the credal region. We also show that our credal region is [δ/(1 − α)]-type-2 valid, a version of a notion
introduced in Cella & Martin (2022b, Definition 2).

Limitations. Eliciting P requires exchangeability as a consequence of using a conformal approach; it also
requires the availability of a calibration set. In addition, some subjectivity enters the analysis via the choice
of the non-conformity measure for the conformal prediction methodology. Furthermore, as proven e.g. in Lei
& Wasserman (2013), with finite samples, we cannot give a conditional version of the probabilistic guarantee
in Proposition 7. Finally, throughout the paper we (tacitly) assumed that the plausibility vectors λi in the
calibration set are available and accurate; this may not be the case in some applications (Stutz et al., 2023a).

A Uncertainty Quantification

Other measures for AU and EU are also available in the context of credal regions (Bronevich & Rozenberg,
2021; Hofman et al., 2024; Hüllermeier & Waegeman, 2021), and they can be used in place of upper and
lower entropy to quantify EU and AU within our credal region P, as long as the measure chosen for the total
uncertainty is bounded. We chose upper and lower entropy because of their ease of computation. In fact,
let us give a case in which the quantities in equation 6 can be easily calculated or bounded. Let exP denote
the extreme elements of P, that is, those elements that cannot be written as a convex combination of one
another. We have that P = Conv(exP), and Conv(·) denotes the convex hull operator. Then, the following
was proven in (Caprio et al., 2024b, Theorem 8).
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Proposition 8. Suppose that |exP| = S < ∞. Let

H(P ex) := min
P ex

s ∈exP
H(P ex

s )

and
H(P ex) := max

P ex
s ∈exP

H(P ex
s ).

Let

l[TU(P)] := max
{

sup
β∈∆S−1

S∑
s=1

βsH(P ex
s ), H(P ex)

}
,

then

TU(P) ∈
[
l[TU(P)], sup

β∈∆S−1

S∑
s=1

βsH(P ex
s ) + log2(S)

]
,

AU(P) = H(P ex),

EU(P) ∈
[

max
{

0, l[TU(P)] − H(P ex)
}

,

sup
β∈∆S−1

S∑
s=1

βsH(P ex
s ) + log2(S) − H(P ex)

]
.

Calculating H(P ex) and H(P ex) is immediate from equation 5. On the other hand, the supremum
supβ∈∆S−1

∑S
s=1 βsH(P ex

s ) can be computed in polynomial time.8
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