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Abstract

One major challenge in weakly supervised learn-
ing is learning from inexact supervision, ranging
from partial labels (PLs) with redundant infor-
mation to the extreme of unlabeled data with in-
sufficient information. While recent work has
made significant strides in specific inexact super-
vision contexts, supervision forms typically coex-
ist in complex combinations. This is exemplified
in semi-supervised partial label learning, where
PLs act as the exclusive supervision in a semi-
supervised setting. Current strategies addressing
combined inexact scenarios are usually composite,
which can lead to incremental solutions that essen-
tially replicate existing methods. In this paper, we
propose a novel approach to uniformly tackle both
label redundancy and insufficiency, derived from
a mutual information-based perspective. We de-
sign a label channel that facilitates dynamic label
exchange within the candidate label sets, which
identifies potential true labels and filters out likely
incorrect ones, thereby minimizing error accumu-
lation. Experimental results demonstrate the su-
periority of our method over existing state-of-the-
art PL and semi-supervised learning approaches
by directly integrating them. Furthermore, our
extended experiments on partial-complementary
label learning underscore the flexibility of our uni-
form treatment in managing diverse supervision
scenarios.
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1. Introduction
Over the last decade and more, the remarkable progress
in deep neural networks has been primarily driven by the
availability of an enormous amount of manually labeled
data. However, in scenarios with limited labeled data, even
state-of-the-art supervised learning methods often face sub-
stantial challenges in performing well. On the other hand,
the collection of massive data with high-quality annotations
is laborious and costly. To mitigate this issue, a prevalent
strategy is resorting to crowd-sourcing labels (Brabham,
2008) to trade off the cost and quality of annotations, which
has highlighted the critical need for developing algorithms
capable of learning from weakly supervised data (Zhou,
2017).

Inexact supervision (Zhou, 2017) is an important type of
weak supervision, considering scenarios where supervi-
sion information is not as exact as desired. Inexact su-
pervised classification is typically exemplified by partial
labels (PLs) (Nguyen & Caruana, 2008; Cour et al., 2011;
Zhang et al., 2017; Lv et al., 2020; Feng et al., 2020) and
complementary labels (CLs) (Ishida et al., 2017; Yu et al.,
2018; Ishida et al., 2019; Gao & Zhang, 2021) — a PL for
an instance is a set of candidate labels, where a fixed but
unknown candidate is the true label, and a CL specifies one
class that an instance does not belong to. Thus, PLs offer
redundant information that obscures the true label, and CLs
are the extreme case of PLs by offering minimal guidance
on the true label. In contrast, unlabeled data serve as the
opposite extreme, generally necessitating integration with a
small amount of supervised data for a slight supervision, i.e.,
semi-supervised learning (SSL) (Laine & Aila, 2017; Tar-
vainen & Valpola, 2017; Berthelot et al., 2019; Sohn et al.,
2020). For specific forms of supervision, existing learning
paradigms have been extensively developed, such as partial
label learning (PLL), complementary label learning (CLL),
and SSL, with corresponding techniques being elaborately
tailored. However, in reality, forms of supervision rarely
exist in isolation. Rather, they often co-occur in varied
combinations, requiring flexible learning frameworks to ef-
fectively integrate and leverage multiple disparate sources
of data to navigate the complexities of the real world.

Semi-supervised partial label learning (SSPLL) (Wang
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et al., 2019; Wang & Zhang, 2020) is an emerging problem,
which is proposed to exploit PL samples in conjunction
with unlabeled data since one can easily access massive
wild unlabeled samples. One intuitive way to address the
combinations is to “divide and conquer”, that is, to compose
approaches to individual problems. Specifically, the typical
SSPLL model incorporates two key components: a specific
PLL method and a specific SSL process. A PLL method
first disambiguates (Zhang & Yu, 2015) the redundant la-
bels, i.e., decouples instances and their associated spurious
labels, and applies SSL method to generate pseudo-labels
for unlabeled data. The effectiveness of composite strategies
can be anticipated to depend on the performance of the com-
ponents and the heuristic means of combining them. Follow
this pattern, real-world problems are reduced to a mere stack
of fragmented tasks, and then corresponding incremental
methods could be easily proposed, however, fundamentally,
resulting in reinventing the wheel.

In this paper, we aim to address the realistic and challenging
combined inexact scenarios. Instead of composite design,
we propose a strategy to uniformly treat all data, regardless
of whether their initial labeling information is characterized
by redundancy or insufficiency, then allowing for the in-
teraction among training samples across different forms of
supervision. We design a label channel that enables labels
to circulate through the candidate label set, which identi-
fies potential true labels and filters out likely incorrect ones
based on the mutual information, thereby minimizing error
accumulation. We theoretically guarantee that, it is feasible
to safely assign weak supervision signals to the training
samples to initiate the training process under mild assump-
tions. With our strategy, one can easily instantiate a specific
learning algorithm for various combinations of PLL, CLL,
and SSL scenarios. We summarize our main contributions
as follows: (1) Taking the SSPLL problem as a key example,
we instantiate our strategy and introduce the SPMI method.
This method offers a probabilistic formulation that effec-
tively unifies challenges related to both label redundancy
and insufficiency, drawing on principles of mutual informa-
tion. (2) Experimental results demonstrate the effectiveness
of our method compared with the direct combination of cur-
rent state-of-the-art PLL and SSL methods. We additionally
conduct experiments on the partial-complementary label
learning problem, further confirming the flexibility of the
uniform treatment for mixed scenarios.

2. Related Work
In this section, we briefly outline the progress in three as-
pects of weak supervision: partial label learning, comple-
mentary label learning, and semi-supervised learning. Fur-
thermore, we discuss semi-supervised partial label learning,
which represents a typical hybrid domain.

Partial label learning. Traditional PLL has two principal
research directions: the identification-based strategy (IBS)
and the average-based strategy (ABS). In the IBS, label
disambiguation is conducted by selecting the most likely
true label from the candidate label set for training (Jin &
Ghahramani, 2002; Chen et al., 2014; Feng & An, 2019).
In contrast, the ABS assumes equal probabilities for all
labels in the candidate label set and utilizes all candidate
labels for training (Hüllermeier & Beringer, 2006; Cour
et al., 2011; Zhang et al., 2017). Leveraging the powerful
capabilities of deep neural networks, substantial research
progress has been achieved in deep PLL (Lv et al., 2020; Xu
et al., 2021). Wang et al.(2022) introduced contrastive learn-
ing, utilizing prototypes to guide label disambiguation. Wu
et al.(2022) performed consistency regularization through
multiple augmented alignments. Xu et al.(2023a) utilized
label enhancement (Xu et al., 2019; 2020; 2023b) to purify
the candidate label sets and refine the classifier iteratively.
However, PLL is a paradigm designed to handle label in-
formation redundancy, based on the assumption that each
instance is associated with a candidate label set, making
it challenging to address other types of information status
issues.

Complementary label learning. CLL (Ishida et al., 2017;
Yu et al., 2018; Ishida et al., 2019) assigns each training in-
stance one complementary label, indicating the class it does
not belong to. Ishida et al.(2017) proposed the CLL setting
and provided conditions for obtaining unbiased estimates
of the classification risk from complementary labeled data.
Gao et al.(2021) derived a theoretically sound discrimina-
tive model and introduced weighted loss to maximize the
predictive gap between potential true label and the comple-
mentary label. CLL can be considered an extreme case of
PLL with maximum redundancy in label information, where
each instance is associated with a candidate label set that
excludes only one label.

Semi-supervised learning. To alleviate underfitting caused
by data scarcity, SSL is proposed, which involves learn-
ing from a training set consisting of a limited quantity of
labeled data and a large amount of unlabeled data. Deep
SSL (Yang et al., 2022) can be categorized into four tech-
nical directions: deep generative methods (Kingma et al.,
2014; Li et al., 2019; Liu et al., 2020), consistency regular-
ization methods (Sajjadi et al., 2016; Tarvainen & Valpola,
2017; Xie et al., 2020), graph-based methods (Wang et al.,
2016; Kipf & Welling, 2017), and pseudo-labeling meth-
ods (Qiao et al., 2018; Chen et al., 2020). Recent popular
SSL methods (Verma et al., 2019; Berthelot et al., 2019;
Sohn et al., 2020) primarily incorporate a mixture of vari-
ous techniques, such as consistency regularization, entropy
minimization, and data augmentation. For instance, Fix-
Match (Sohn et al., 2020) employed a fixed confidence
threshold to pseudo-label the weakly-augmented outputs,
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which are subsequently aligned with the strongly-augmented
outputs. Subsequent works have further extended it, placing
emphasis on the flexible selection of the pseudo-labeling
threshold (Zhang et al., 2021; Wang et al., 2023). Neverthe-
less, SSL relies on the assumption that labeled data is fully
supervised, and if the supervision information is inexact, it
can significantly impact the model’s regularization.

Semi-supervised partial label learning. Due to the diffi-
culty and diversity of data annotation, addressing the chal-
lenge of effectively leveraging mixed weak supervision an-
notations has become imperative. SSPLL has emerged as a
scenario to meet this demand, combining partial label data
and unlabeled data for learning. SSPL (Wang et al., 2019)
employed label propagation to disambiguate the candidate
label sets of partial label data and assigned valid labels to
unlabeled data. PARM (Wang & Zhang, 2020) employed
label propagation to instantiate the labeling confidence of
partial label data and introduced confidence-rated margin
maximization to jointly optimize the model and estimate
latent labeling confidence for unlabeled data. The above
methods independently handle partial label data and unla-
beled data, falling into the strategy of concatenating two
tasks. There is an urgent need for a uniform framework to
simultaneously handle data with various types of annotation
information.

3. Method
3.1. Preliminaries

Consider a c-class classification problem. Let x ∈ X = Rd

be the features and y ∈ Y = {1, 2, . . . , c} be the labels.
In ordinary multi-class classification, training samples are
independently drawn from an unknown probability distribu-
tion with density p(x, y). The goal is to obtain a multi-class
classifier f : X → Rc that minimizes the classification
risk: R = Ep(x,y)L(f(x), y), where E denotes the expecta-
tion and L is a loss function. In PLL, a dataset denotes by
DP = {xi, Si}Li=1, where Si is the candidate label set of
xi. We require each candidate label set not to be empty nor
the whole label set, i.e., Si ∈ S,S = {2Y\Y\∅}, where
2Y denotes the power set. PLL training data are drawn
from a corrupted distribution p(x, S) of p(x, y) with p(x)
unchanged.

In the semi-supervised partial label learning task, there is
also an unlabeled dataset DU = {xL+i}Ui=1 drawn from
p(x, y), while the labels are inaccessible, and generally
L ≪ U . Compared with the PLL task, it is critical to
leverage the unlabeled data in semi-supervised learning.

3.2. The Uniform Treatment from Data Perspective

An intuitive treatment to tackle semi-supervised partial label
learning is to utilize existing PLL methods to learn from

partial label data, followed by assigning pseudo labels to
unlabeled data, and then jointly employing both subsets for
training. This perspective separates partial label data and
unlabeled data without establishing an effective connection
between the disambiguation of candidate labels and the
pseudo label assignment for unlabeled data. Furthermore,
the existing SSPLL methods (Wang et al., 2019; Wang &
Zhang, 2020) focus on utilizing unlabeled data to populate
the feature representation space, aiding label disambiguation
and establishing smooth decision boundaries. However, a
critical foundational fact has been overlooked: the only
distinction between partial label data and unlabeled data
lies in the density of label information, and the objectives
of label disambiguation and pseudo-labeling are essentially
the same. Therefore, it is reasonable to handle both within
the same framework simultaneously.

Our proposed framework adopts an egalitarian principle,
treating all data uniformly by considering partial label data
as redundant information and unlabeled data as insufficient
information. Concretely, each instance is associated with a
variable pseudo candidate label set, serving as a repository
for the currently potential true labels, instead of enforc-
ing the selection of a single label through a threshold. To
facilitate the progressive process of candidate label gener-
ation and redundant label disambiguation, it is necessary
to design a label channel for dynamically including and
excluding candidate labels.

In our methodology, we consistently apply supervised loss
to all instances with pseudo candidate label sets. Let St

i

denote the generated candidate label set of instance xi in the
t-th epoch and let fj(xi) represent the output of the model
for the j-th class on the i-th instance. The loss function of
our framework can be expressed as:

L =

n∑
i=1

c∑
j=1

wijℓ(fj(xi), S
t
i ), (1)

where ℓ is the cross-entropy loss and the weight wij is
updated by the current model output weight corresponding
to each candidate label (Lv et al., 2020):

wij =

{
fj(xi)∑

k∈St
i
fk(xi)

if j ∈ St
i

0 otherwise.
(2)

This encourages the model to enhance outputs for labels in
the generated candidate label set and motivates the learning
of suitable feature representations, allocating higher weights
to more probable labels, thereby gradually revealing poten-
tial true labels.

According to Eq.(1), our framework emphasizes the explicit
manipulation of the candidate label set S rather than opti-
mizing the weight w. The objective is to identify candidate
labels in each epoch and optimize the model using pseudo
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candidate label sets. The pseudo candidate label set can be
dynamically manipulated based on the relationship between
the features of each instance and its label space, where rel-
evant labels are added while irrelevant ones are removed,
ultimately facilitating the identification of true labels. The
framework consists of two components: label expansion
and label condensation, which are respectively responsible
for adding candidate labels and removing irrelevant labels.
These components are detailed in the following subsections.

3.3. Label Expansion

Label expansion aims to assign pseudo candidate labels to
unlabeled data and recover mistakenly removed labels for
partial label data.

Initialization. Notice that for unlabeled data, the candidate
labels are entirely absent. The purpose of initialization is to
guarantee that, even in the early stages of training when the
model’s learning is insufficient, the true labels can be added
to the pseudo candidate label sets with high credibility. The
initialization process plays a crucial role in providing a sub-
stantial quantity of high-quality labels, effectively reducing
the label space and expediting the training process.

For an instance xi, if fk(xi) > 1/c, then:

ℓ(f(xi), k) <
1

c

c∑
j=1

ℓ(f(xi), j), (3)

where ℓ is a convex function. The derivation is provided in
Appendix A.1. This indicates that if a label has a confidence
greater than the random output (i.e., 1/c), its loss value will
be smaller than the average loss value for all labels. Under
the mild assumption that the output for the true label is
greater than the random output, we can infer an equivalent
contrapositive statement: if the loss for a label is greater
than the average loss value for all labels, then this label
is not the true label. In other words, labels that satisfy
this condition can be considered as complementary labels,
thereby establishing the initial candidate label sets in reverse.
Thanks to this mild assumption, it is feasible to assign initial
candidate labels to unlabeled training samples in a reliable
manner.

Label Generation. After a period of training, the model
incrementally learns proper patterns associated with each
class, identifying potential true labels that are not present
in the current candidate label set. During each epoch, this
requires adding potential candidate labels for unlabeled data
and reinstating possibly correct but previously removed
labels for partial label data from the original candidate label
set.

To achieve this objective, we introduce mutual information
(MI) (Tishby et al., 2000; Tishby & Zaslavsky, 2015; Alemi
et al., 2017) to dynamically generate candidate labels. MI is

a measure of the correlation between random variables and
can be used to estimate information gain under a given con-
dition. Information Bottleneck (IB) (Tishby & Zaslavsky,
2015) is an application of MI in neural networks, and its
optimization objective aligns with that of neural networks.
Considering input X , extracted feature Z, and label Y as
random variables, the aim of the IB is to minimize:

LIB = I(X;Z)− βI(Z;Y ), (4)

where β as a trade-off parameter that controls the com-
pression ratio of the feature representation. Specifically,
I(X;Z) is considered as the encoder, with the objective
of compressing the input X as much as possible to derive
an optimal representation Z. On the other hand, I(Z;Y )
acts as the decoder, responsible for maintaining consistency
between the compressed representation Z and the label Y .

As I(X;Z) corresponds to the feature extraction encoder
through a neural network and its optimization is independent
of the operations on the candidate label set, we exclusively
concentrate on the optimization to maximize I(Z;Y ) in
the subsequent discussion. According to the definition of
mutual information, we have

I(Z;Y ) =

∫
p(z, y) log

p(z, y)

p(z)p(y)
dzdy

=

∫
p(z, y) log

p(y|z)
p(y)

dzdy.

(5)

Given the challenge of obtaining the actual distribution
p(y|z), inspired by (Alemi et al., 2017), we utilize the out-
put q(y|z) of neural network as an approximation. Since
the Kullback-Leibler divergence is always non-negative,
denoted as DKL[p(Y |Z)||q(Y |Z)] ≥ 0, we have∫

p(y|z) log p(y|z)dy ≥
∫

p(y|z) log q(y|z)dy. (6)

Thus there is:

I(Z;Y ) ≥
∫

p(z, y) log
q(y|z)
p(y)

dzdy
.
= R. (7)

Assuming that z is determined solely by x and is inde-
pendent of y, there is p(z|x, y) = p(z|x). So we have
p(z, y) =

∫
p(x, z, y)dx =

∫
p(x, y)p(z|x, y)dx =∫

p(x, y)p(z|x)dx. Consequently, the right term of Eq.(7)
can be expressed as:

R =

∫
p(x, y)p(z|x) log q(y|z)

p(y)
dzdydx. (8)

Then it can be approximated as:

R̂ =
1

n

n∑
i=1

∫
p(z|xi) log

q(yi|z)
p(yi)

dz

=
1

n

n∑
i=1

Ez∼p(z|xi) log
q(yi|z)
p(yi)

.

(9)
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According to Eq.(7) and Eq.(9), we can obtain:

I(Z;Y ) ≥ 1

n

n∑
i=1

Ez∼p(z|xi) log
q(yi|z)
p(yi)

. (10)

Guided by Eq.(10), an intuitive approach is to use a
greedy strategy to determine whether the label k /∈ Si

should be added to the candidate label set S by calculating
I(Z, k). According to the properties of mutual information,
I(Z, k) > 0 indicates that k is related to Z and then k
can be considered as a potential true label. For each label k
corresponding to the features zi of instance xi, if k satisfies:

log
q(k|zi)

p(k)
> 0

⇔ q(k|zi) > p(k),

(11)

where p(k) is the k-th class prior probability, then k is added
to the candidate label set.

3.4. Label Condensation

Unlike label expansion which aims to select numerous po-
tential true labels, label condensation involves removing
the most reliably incorrect labels from the candidate label
set to boost the information density of the remaining labels.
Once the true label is erroneously removed, it misaligns
the model’s optimization objective, resulting in intolerable
consequences. Hence, a rational approach is to remove the
label with the least probability from the candidate label set.
Guided by this principle, in our framework, multiple can-
didate labels are generated, but only one candidate label is
removed in each epoch.

Similar to the calculations in Section 3.3, there is:

I(Z;Y ) ≥ 1

n

N∑
i=1

Ez∼p(z|xi) log q(yi|z) +H(Y ), (12)

where H(Y ) is the entropy of Y . The derivation is provided
in Appendix A.2. Since entropy is non-negative, we have

I(Z;Y ) ≥ 1

n

N∑
i=1

Ez∼p(z|xi) log q(yi|z). (13)

In our framework, we can only access the pseudo candidate
label set and use it as a substitute for the label Y . Let si
represent the uniform label distribution related to Si (e.g.,
if c = 3 and Si = {1, 3}, then si = [0.5, 0, 0.5]). For
each label k ∈ Si, define T k

i = Si \ k, which represents the
removal of k from Si. Let tki represent the uniform label dis-
tribution of T k

i . To measure the impact of removing a label,
we quantify the change in mutual information. Intuitively,
removing the least relevant labels has the least impact on
the change in mutual information. Therefore, we introduce

Algorithm 1 SPMI
Input: The partial label training set DP , the unlabeled train-
ing set DU , the threshold τ , the class prior µ, the number of
epoch T , the warm-up epoch Tw;

1: for t = 1, ..., T do
2: if t < Tw then
3: Train the predictive model f on DP by Eq.(1);
4: else
5: if t == Tw then
6: Initialize pseudo candidate label sets on DU by

Eq.(3);
7: µt = µ;
8: end if
9: for i = 1, ..., n do

10: St+1
i = St

i ;
11: if ∃j ∈ St

i ,G(xi, S
t
i , j) > τ then

12: k = argmin
j

G(xi, S
t
i , j);

13: St+1
i = St

i \ k;
14: end if
15: for j /∈ St

i do
16: if fj(xi) > µt

j and (xi ∈ DU or (xi ∈ DP

and j ∈ S0
i )) then

17: St+1
i = St+1

i ∪ j;
18: end if
19: end for
20: end for
21: Train the predictive model f with St+1 on

DP

⋃
DU by Eq.(1);

22: Update the µt+1 using Eq.(16);
23: end if
24: end for
Output: The predictive model f .

a method to align their mutual information by minimizing
the difference between their model outputs. To achieve this,
we can use the KL divergence to measure the gap between
them:

D = DKL[q(t
k
i |zi)||q(si|zi)]. (14)

Define an information score function

G(xi, Si, k) = DKL[(fSi\k(xi)||fSi(xi)], (15)

where fSi\k(xi) and fSi
(xi) respectively denote the model

output distributions on Si \ k and Si. It quantifies the extent
of information loss after condensing the candidate label set.
The value of this function decreases when the mutual infor-
mation between k and xi reduces, signifying a weakened
relationship between them. According to the property of
this function, the least probable label can be identified by
the minimum value of G(xi, Si, k) of the instance xi. Our
objective is to find k from Si under the given xi and Si such
that it minimizes G(xi, Si, k).
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Table 1. Test accuracy (mean±std) of each PLL approach on benchmark datasets under different numbers of labeled instances l and partial
rate p.

Dataset F-MNIST CIFAR-10 CIFAR-100 SVHN

l 1000 4000 1000 4000 5000 10000 1000

p 0.3 0.3 0.7 0.3 0.3 0.05 0.05 0.3

PRODEN 86.18±0.69 89.08±0.11 86.05±0.15 88.85±0.78 92.19±0.13 52.06±0.77 70.90±0.30 96.51±0.19

PLCR 84.59±0.44 88.59±0.21 85.92±0.30 71.19±0.82 85.71±0.27 27.23±0.15 64.36±0.54 90.41±1.20

POP 84.21±0.87 88.18±0.13 85.35±0.41 68.63±1.28 85.75±0.23 43.04±0.34 65.21±0.53 66.33±1.31

SPMI 86.47±0.30 89.82±0.04 86.83±0.08 90.41±0.24 92.81±0.06 66.43±0.48 73.63±0.37 96.59±0.14

Table 2. Test accuracy (mean±std) of each SSL approach on benchmark datasets under different numbers of labeled instances l and partial
rate p.

Dataset F-MNIST CIFAR-10 CIFAR-100 SVHN

l 1000 4000 1000 4000 5000 10000 1000

p 0.3 0.3 0.7 0.3 0.3 0.05 0.05 0.3

MixMatch 83.70±0.85 87.82±0.03 85.46±0.42 40.03±0.81 82.85±0.33 36.44±0.81 55.75±1.33 89.25±1.39

Fixmatch 86.18±0.69 89.08±0.11 86.05±0.15 88.85±0.78 92.19±0.13 52.06±0.77 70.90±0.30 96.51±0.19

FlexMatch 85.86±0.36 89.54±0.09 86.79±0.26 91.08±0.11 92.32±0.20 64.61±0.13 73.36±0.16 94.04±0.84

FreeMatch 86.12±0.40 89.76±0.13 86.76±0.23 91.20±0.41 92.73±0.02 67.81±0.44 73.15±0.17 91.80±0.70

SPMI 86.47±0.30 89.82±0.04 86.83±0.08 90.41±0.24 92.81±0.06 66.43±0.48 73.63±0.37 96.59±0.14

From another perspective, if the removed label is the true
label, it would result in significant information loss, lead-
ing to a large value for G. Therefore, the maximum value
of G(xi, Si, k) can serve as an indicator of the true label
prominence and learning effectiveness of the instance xi.
Unlike current prevalent SSL methods, our approach estab-
lishes a threshold based on the distribution of all possible
labels, rather than relying on a single label with the highest
confidence. This facilitates the comprehensive utilization
of samples where multiple label outputs exhibit high confi-
dence.

Based on the above analysis, if there exist (xi, Si) such
that Gmax(xi, Si, k) > τ for k ∈ Si, where τ is a hyper-
parameter, then j = argmin

k
G(xi, Si, k) and j is removed

from the candidate label set Si.

3.5. Implementation Details

Our framework integrates label generation and disambigua-
tion, employing label expansion to add possible labels to
the candidate label set, and label condensation to remove
the least probable label from the candidate label set. Specif-
ically, we initially train only on DP during the warm-up
period, then utilize Eq.(3) to initialize the pseudo candidate
label sets for DU . Subsequently, before each training epoch,
we perform both label generation and label condensation on
DP

⋃
DU , ensuring that the number of candidate labels is

within the range of [1, c− 1]. The training loss function is

given by Eq.(1).

In Section 3.3, the class prior probability is required. If the
dataset is balanced, the class prior is 1/c. However, even if
the number of true labels is balanced in PLs, label ambiguity
can impact the bias of class priors. In practice, the j-th class
prior µj can be approximated using the class posterior from
the previous epoch:

µj =
1

n

∑n

i=1
fj(xi). (16)

Algorithm 1 describes the algorithm process of SPMI.

4. Experiments
4.1. Datasets

To validate the effectiveness of our framework, we utilize
four extensively employed benchmark datasets, including
Fashion-MNIST (Xiao et al., 2017), CIFAR-10,
CIFAR-100 (Krizhevsky & Hinton, 2009), and
SVHN (Netzer et al., 2011). Following previous re-
search in PLL (Wang et al., 2022; Wu et al., 2022) and
SSL (Sohn et al., 2020; Zhang et al., 2021; Wang et al.,
2023), our experiments encompass diverse combinations
involving varying partial rates p and varying numbers of
labeled instances l.

For the training set of each dataset, we initially partition
the data into a labeled subset and an unlabeled subset, and
then manually corrupt labeled subset into partially labeled
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Figure 1. The sensitivity analysis on F-MNIST and CIFAR-10.

versions by uniform generation process (Lv et al., 2020).
Specifically, we first extract a labeled subset from the train-
ing set by averaging sampling per class according to the
given total number of labeled instances l, while the remain-
ing samples constitute the unlabeled subset after removing
labels. Subsequently, for the labeled subset, we employ a
unified generation process to construct the candidate label
set. In this process, for each sample, the true label is added
to the candidate label set, and each incorrect label ȳ is added
with a flipping probability p (0 < p < 1), where p is the
partial rate.

4.2. Baselines

Previous works (Wang et al., 2019; Wang & Zhang, 2020)
in SSPLL are based on traditional techniques and are not
inherently applicable to deep neural networks. Given the
current lack of research on deep SSPLL, for a fair compari-
son, it is necessary to conduct comparisons by combining
existing state-of-the-art PLL and SSL methods to adapt to
the SSPLL scenario. Our comparative experiments involve
three PLL methods and four SSL methods. Details of the
baselines are described in Appendix A.3.

In the comparison experiment with PLL methods, consider-
ing the embedability of methods, we choose FixMatch from
the SSL methods as the fundamental method. We select the
following PLL approaches: (1) PRODEN (Lv et al., 2020);
(2) PLCR (Wu et al., 2022); (3) POP (Xu et al., 2023a),
combined with FixMatch.

Additionally, in the comparison experiment with SSL
method, we choose PRODEN from the PLL methods as the
basic method. We employ the following SSL approaches:
(1) MixMatch (Berthelot et al., 2019); (2) FixMatch (Sohn
et al., 2020); (3) FlexMatch (Zhang et al., 2021); (4)
FreeMatch (Wang et al., 2023), combined with PRODEN.

We employ the same backbone, optimizer, epochs and data
augmentation to train all methods on the same dataset. We

Table 3. Test accuracy (mean±std) of SPMI and its variants in
ablation study. The w/o indicates removing this component.

Method F-MNIST CIFAR-10 CIFAR-100 SVHN

SPMI 89.82±0.04 92.81±0.06 73.63±0.37 96.59±0.14

SPMI w/o init 89.38±0.15 92.47±0.12 71.95±0.28 96.26±0.26

SPMI w/o LG 87.51±0.36 74.64±0.81 40.12±1.17 82.99±0.94

SPMI w/o LC 87.56±0.28 85.14±0.55 64.36±0.84 91.13±0.51

use LeNet (LeCun et al., 1998) for F-MNIST, Wide-ResNet-
28-2 (Zagoruyko & Komodakis, 2016) for CIFAR-10 and
SVHN, and Wide-ResNet-28-8 (Zagoruyko & Komodakis,
2016) for CIFAR-100. We apply the same data augmen-
tation strategy to all methods, including PRODEN, which
originally did not have data augmentation. The initial value
for the class prior µ is set to 1/c. The threshold τ is con-
figured to be 3 for partial label data and 2 for unlabeled
data. We run three trials with different random seeds to
record the mean and standard deviation. More details on the
experimental settings are provided in Appendix A.4.

4.3. Experimental Results

Table 1 reports the comparison results with PLL approach
combined with FixMatch on benchmark datasets. The best
results are highlighted in bold. SPMI achieves the best per-
formance against the variations of existing PLL approaches
and exhibits significant performance gaps in many cases.
The results indicate that when labeled data is extremely lim-
ited, methods tailored for PLL may mislead classifiers or
even fail if they do not effectively leverage unlabeled data
for label disambiguation.

Table 2 reports the comparison results with SSL approach
combined with PRODEN on benchmark datasets. The re-
sults demonstrate that SPMI outperforms or achieves com-
petitive results compared to other methods. Although SPMI
shows slightly weaker performance when there is very little
annotated data, such as CIFAR-10 with l = 1000, p = 0.3
and CIFAR-100 with l = 5000, p = 0.05, it should be noted
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Table 4. Test accuracy (mean±std) of each CLL approach on bench-
mark datasets under different numbers of partial label instances lp,
numbers of complementary label instances lc and partial rate p.

Dataset F-MNIST CIFAR-10 CIFAR-100 SVHN

lp 30000 25000 25000 36000

lc 30000 25000 25000 37257

p 0.3 0.3 0.05 0.3

Forward 92.65±0.06 93.45±0.24 75.02±0.42 96.86±0.01

L-W 92.49±0.03 93.44±0.15 75.19±0.39 96.77±0.05

NLL 92.59±0.04 93.55±0.13 75.35±0.28 96.87±0.04

SPMI 92.69±0.07 94.55±0.16 78.67±0.06 97.04±0.02

that FlexMatch and FreeMatch are SSL methods explicitly
designed for scenarios with extremely limited labeled data.

4.4. Further Analysis

Ablation study. To assess the effectiveness of each com-
ponent of our framework, an ablation study is conducted
to measure their contributions. Our framework consists of
three core components: initialization (init), label genera-
tion (LG), and label condensation (LC). Considering that
ablating on the partial label data would significantly im-
pact performance, we conduct ablation experiments only on
the unlabeled data operations while keeping the operations
on partial label data unchanged to evaluate in a reason-
able manner. The ablation study is conducted on F-MNIST
and CIFAR-10 with l = 4000, p = 0.3, CIFAR-100 with
l = 10000, p = 0.05, and SVHN with l = 1000, p = 0.3.
As shown in Table 3, each component contributes to the
overall performance, with the effects of LG and LC being
more pronounced. It is evident that LG effectively recov-
ers unrecognized labels into the candidate labels, and LC
successfully eliminates redundant labels, while the contribu-
tion of initialization is mainly to expedite the convergence
speed of training by assigning a substantial number of initial
labels.

Sensitivity analysis. Figures 1(a) and 1(b) illustrate the sen-
sitivity analysis of the threshold τ and the warm-up epoch
Tw on F-MNIST and CIFAR-10 with l = 4000, p = 0.3
under different parameters. The hyper-parameters τ and
Tw are varied within the ranges of {1.5, 1.8, 2.0, 2.2, 2.5}
and {1, 2, 5, 8, 10}, respectively. The experimental results
demonstrate that, for different parameters, the variation
range of accuracy is approximately within 0.5%, indicat-
ing that our framework is robust to the choice of these two
hyper-parameters under mild settings.

The effectiveness of the pseudo-labeling mechanism. To
investigate the effectiveness of the joint label generation
and label disambiguation mechanism, we record the error
rate (i.e., the true label is not present in the pseudo candi-
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Figure 3. The average number of pseudo candidate labels for unla-
beled data on F-MNIST.

date label set) and the average number of pseudo candidate
labels for unlabeled data during the training process. We
conduct experiments on F-MNIST with l = 4000, p = 0.3,
and the results are shown in Figures 2 and 3. After the
warm-up period, a large number of pseudo candidate labels
are initialized for unlabeled instances, resulting in only an
approximately 5% noise rate in the constructed pseudo can-
didate label sets, thus demonstrating the efficiency of the
initialization process. As training progresses, the average
number of labels in the candidate label set significantly de-
creased, while the error rate remained stable. This indicates
that our framework is capable of progressively purifying
true labels while maintaining a low error rate.

The compatibility on PCLL tasks. To verify the compati-
bility of our framework with other weakly supervised learn-
ing tasks, we further extend experiments to datasets contain-
ing a mixture of partial labels and complementary labels,
a scenario known as partial-complementary label learning
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(PCLL). Experiment details for PCLL are provided in Ap-
pendix A.5. Table 4 reports the comparison results with CLL
approach combined with PRODEN on benchmark datasets.
The results demonstrate that our framework consistently
outperforms all compared methods, underscoring its effec-
tiveness in handling the mixture task of partial labels and
complementary labels. The supplementary experiments in
Appendix A.6 further validate its compatibility across other
weakly supervised learning scenarios.

5. Conclusion
This paper explores the SSPLL problem which combines
different forms of inexact supervision and proposes a novel
approach named SPMI to uniformly treat label redundancy
and insufficiency. The design of SPMI is rooted in mutual
information, establishing a channel for labels to circulate
through the candidate label sets for all data, independent
of their initial state. Extensive experiments on benchmark
datasets have validated that SPMI surpasses the direct com-
bination of PLL and SSL methods, and experiments on the
PCLL problem demonstrate the compatibility of our method
with scenarios involving mixed inaccurate supervision in-
formation.
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A. Appendix
A.1. The derivation of Eq.(3)

Due to the convexity of ℓ, according to Jensen’s inequality, it follows that ℓ( 1c
∑c

j=1 fj(xi)) ≤ 1
c

∑c
j=1 ℓ(fj(xi)). In

practice, − ln(xi) is used as the loss function ℓ.

For an instance xi, there is:

fk(xi) >
1

c
⇔ − ln(fk(xi)) < − ln(

1

c
)

⇔ − ln(fk(xi)) < − ln(

∑c
j=1 fj(xi)

c
)

⇔ ℓ(fk(xi)) < ℓ(

∑c
j=1 fj(xi)

c
)

⇔ ℓ(fk(xi)) <
1

c

c∑
j=1

ℓ(fj(xi))

⇔ ℓ(f(xi), k) <
1

c

c∑
j=1

ℓ(f(xi), j).

(17)

A.2. The derivation of Eq.(12)

I(Z;Y ) =

∫
p(z, y) log

p(y|z)
p(y)

dzdy

≥
∫

p(z, y) log
q(y|z)
p(y)

dzdy

=

∫
p(z, y) log q(y|z)dzdy −

∫
p(y) log p(y)dy

=

∫
p(x, y)p(z|x) log q(y|z)dzdydx+H(Y ).

(18)

Then it can be approximated as:

I(Z;Y ) ≥ 1

n

N∑
i=1

∫
p(z|xi) log q(yi|z)dz +H(Y )

=
1

n

N∑
i=1

Ez∼p(z|xi) log q(yi|z) +H(Y ).

(19)

A.3. Details of the baselines

The employed PLL methods include: (1) PRODEN (Lv et al., 2020) introduces a consistent classification risk estimator to
update the model and performs label disambiguation through a progressive identification algorithm; (2) PLCR (Wu et al.,
2022) utilizes consistency regularization of candidate labels to constrain the model, achieved by matching the multiple
augmented outputs of an instance to a conformal label distribution; (3) POP (Xu et al., 2023a) updates the model and
progressively purifies each candidate label set in every epoch with theoretical guarantees. In addition, the selected SSL
methods consist of: (1) MixMatch (Berthelot et al., 2019) guesses low-entropy labels for data-augmented unlabeled data
and conducts training with a mixture of labeled and unlabeled data using MixUp; (2) FixMatch (Sohn et al., 2020) uses
high-confidence weakly-augmented prediction to generate pseudo-label, aligning it with the strongly-augmented output of
the same image; (3) FlexMatch (Zhang et al., 2021) proposes a curriculum pseudo-labeling approach, flexibly adjusting the
pseudo-labeling threshold for different classes at each time step; (4) FreeMatch (Wang et al., 2023) self-adaptively adjusts
the confidence threshold based on the learning state of the model and designs a self-adaptive class fairness regularization
penalty.
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A.4. Experimental Settings

The implementation is based on PyTorch (Paszke et al., 2019), and all experiments are conducted using NVIDIA RTX
3090 GPUs. We adopt the “weak” and “strong” augmentation strategy, where “weak” augmentation includes random
horizontal flipping and random cropping, and “strong” augmentation builds upon the “weak” strategy and further incorporates
AutoAugment (Cubuk et al., 2019) and Cutout (DeVries & Taylor, 2017). Due to the limitations of data augmentation
techniques, we do not use AutoAugment on F-MNIST. The model is trained for 500 epochs and optimized by stochastic
gradient descent (SGD) with a momentum of 0.9. The initial learning rate is selected from {0.05, 0.03, 0.01} with cosine
learning rate scheduling and the batch size is set to 256. The warm-up epoch Tw is set from {5, 10, 20}. To maintain the
stability of supervised information and reduce noise introduction, we employ the exponential moving average (EMA) to
update the candidate label set in partial label data. Besides, we also use EMA to update the pseudo candidate label set for
unlabeled data on CIFAR-100.

Considering the combined impact of two forms of weak supervision, we adopt a more lenient setting compared to each form
individually. We set {l ∈ {1000, 4000}, p = 0.3} and {l = 4000, p = 0.7} for F-MNIST, {l ∈ {1000, 4000}, p = 0.3} for
CIFAR-10 and {l = 1000, p = 0.3} for SVHN. Additionally, we set {l ∈ {5000, 10000}, p = 0.05} for CIFAR-100.

Moreover, PiCO (Wang et al., 2022) is not included in the comparison experiments due to the contrastive learning classifier’s
reliance on a large number of negative samples and the extremely limited labeled data in the semi-supervised setting,
resulting in the failure of model learning.

A.5. Experimental Details of partial-complementary label learning

To make fair comparisons, we combine existing state-of-the-art CLL methods with the PLL method PRODEN. The compared
CLL methods include: (1) Forward (Yu et al., 2018) extends standard deep neural network classifiers to learn with biased
complementary labels and theoretically ensures that the classifier learned with complementary labels converges to the
optimal one learned with true labels; (2) L-W (Gao & Zhang, 2021) derives a theoretically sound discriminative model and
introduces weighted loss to maximize the predictive gap between potential ground-truth label and complementary label; (3)
NLL (Wu et al., 2022) refers to the modified negative log likelihood loss, which is introduced by PLCR (Wu et al., 2022) to
reduce the outputs of non-candidate labels.

The dataset generation process is similar to that in Section 4.1. First, the training data is divided into a partial label subset
Dp and a complementary label subset Dc. Then, a unified generation process (Lv et al., 2020) is applied to manually corrupt
Dp into a partially labeled version based on the partial rate p. Meanwhile, Dc is assigned complementary labels based on
the generation process following Ishida et al.(2017). Depending on the specific dataset, we configure different numbers of
partial label instances lp, numbers of complementary label instances lc, and partial rate p. We set {lp = 30000, lc = 30000}
for F-MNIST, {lp = 25000, lc = 25000} for CIFAR-10 and CIFAR-100, and {lp = 36000, lc = 37257} for SVHN.
Additionally, we set p = 0.3 for F-MNIST, CIFAR-10 and SVHN, and p = 0.05 for CIFAR-100. The other experimental
settings remain consistent with those previously described.

A.6. Supplementary experiments

To comprehensively assess the generality and efficacy of our framework, we conduct experiments on the combination of
SSL and CLL here. We integrate existing state-of-the-art CLL methods with the SSL method FixMatch. The experimental
setup involves 4000 samples with complementary labels, with the remaining samples being unlabeled for F-MNIST and
CIFAR-10 datasets.

Table 5. Test accuracy of each CLL approach combined with FixMatch.

Method F-MNIST CIFAR-10

SPMI 80.42 62.78
Forward 76.03 35.41
L-W 74.14 21.30
NLL 75.31 25.38
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We also conduct experiments on mixed tasks involving PLL, SSL, and CLL. The baseline method for comparison consist
of a combination of PRODEN (Lv et al., 2020), FixMatch (Sohn et al., 2020), and Forward (Yu et al., 2018). We set the
number of partial labels lp to 2000 and the number of complementary labels lc to 2000 for both F-MNIST and CIFAR-10
datasets, with the remaining data being unlabeled. The partial rate p is set to 0.3.

Table 6. Test accuracy of mixed approach involving PLL, SSL, and CLL.

Method F-MNIST CIFAR-10

SPMI 88.52 91.61
PRODEN + FixMatch + Forward 81.27 48.07

Additionally, to further explore the applicability of our method, experiments are conducted on the independent tasks of SSL
and PLL.

For the SSL experiments, we set the number of supervised labels to 4000 for F-MNIST and CIFAR-10 datasets.

Table 7. Test accuracy of each SSL approach.

Method F-MNIST CIFAR-10

SPMI 90.75 93.18
FixMatch 90.30 93.05
FlexMatch 90.36 93.45
FreeMatch 90.42 93.65

For the PLL experiments, the partial rate is set to 0.3 for F-MNIST, CIFAR-10, and SVHN datasets, while it is set to 0.05
for CIFAR-100 dataset.

Table 8. Test accuracy of each PLL approach.

Method F-MNIST CIFAR-10 CIFAR-100 SVHN

SPMI 93.57 95.90 82.32 97.41
PRODEN 93.00 94.78 78.37 96.72
PiCO 93.47 94.37 78.24 96.50
PLCR 93.83 95.55 81.56 97.23
POP 93.91 95.66 82.48 97.39

From the experimental results presented above, it is evident that our framework also achieves competitive results in
independent SSL or PLL tasks, thereby further demonstrating the generality of SPMI.

We conduct experiments with noisy label to further validate the compatibility of our framework. Considering that our
framework is designed for the scenarios of inexact supervision, we choose to conduct experiments in a well-researched
scenario containing noisy and redundant supervised information, namely unreliable partial label learning (UPLL) (Qiao
et al., 2023), where the true label of each sample may not exist in the candidate label set. The experimental setup includes a
partial rate p = 0.3 and a noise rate of η = {0.1, 0.2} for F-MNIST and CIFAR-10 datasets.
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Table 9. Test accuracy of each UPLL approach.

Method F-MNIST(η=0.1) F-MNIST(η=0.2) CIFAR-10(η=0.1) CIFAR-10(η=0.2)

SPMI 92.31 91.23 90.59 84.25
FREDIS 91.05 89.60 82.75 79.65
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