
Under review as a conference paper at ICLR 2022

FLBOOST: ON-THE-FLY FINE-TUNING BOOSTS FED-
ERATED LEARNING VIA DATA-FREE DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) is an emerging distributed learning paradigm for protect-
ing privacy. Data heterogeneity is one of the main challenges in FL, which causes
slow convergence and degraded performance. Most existing approaches tackle the
heterogeneity challenge by restricting the local model update in client, ignoring
the performance drop caused by direct global model aggregation. On the contrary,
we propose a new solution: on-the-fly fine-tuning the global model in server via
data-free distillation to boost its performance, dubbed FLBoost to relieve the issue
of direct model aggregation. Specifically, FLBoost adopts an adversarial distilla-
tion scheme to continually transfer the knowledge from local models to fine-tune
the global model. In addition, focused distillation and attention-based ensemble
techniques are developed to balance the extracted pseudo-knowledge to adapt the
data heterogeneity scenario, which implicitly mitigates the distribution discrep-
ancy across clients. Extensive experiments show that our FLBoost can achieve
superior performance against the state-of-the-art FL algorithms and can serve as a
strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.

1 INTRODUCTION

With the explosive growth of data and the strict privacy-protection policy, reckless data transmission
and aggregation gradually become unacceptable due to the high bandwidth cost and risk of privacy
leakage. Recently, Federated Learning (FL) (McMahan et al., 2017) has been proposed to replace the
traditional heavily centralized learning paradigm and protect data privacy. The vanilla FL algorithm,
i.e., FedAvg (Li et al., 2019), trains a model by periodically aggregating the local model of the client
in server and updating the aggregated model in the client with its local data. FL has been successfully
applied in real-world tasks, e.g., smart city (Jiang et al., 2020; Zheng et al., 2021), health care (Gao
et al., 2019; Lu et al., 2019), and recommender system (Hard et al., 2018; Hartmann et al., 2019).

One of the main challenges in FL is the data heterogeneity. In FL, the local model of the client is
updated merely with local data, i.e., by minimizing the local empirical loss. However, minimizing
the local empirical loss is fundamentally inconsistent with minimizing the global empirical loss
(Acar et al., 2020; Li et al., 2019), which has been verified that local training, such as FedAvg, leads
to drifted local models and forgets the global knowledge catastrophically, thus inducing the degraded
performance and slow convergence (Hsu et al., 2019; Lee et al., 2021; Khaled et al., 2020).

To tackle the data heterogeneity challenge, most existing methods, e.g., FedProx (Li et al., 2018),
SCAFFOLD (Karimireddy et al., 2020), FedDyn (Acar et al., 2020), constrain the direction of local
model update to align the local and global optimization objectives. Recently, FedGen (Zhu et al.,
2021) learns a lightweight generator to generate pseudo features and broadcasts them to clients to
regulate local training. However, all these methods merely conduct simple model aggregation to
get the global model in server, which fails to balance the class of local datasets and narrow the
distribution discrepancy across clients. In addition, Singh & Jaggi (2020, Section 5.3, Figure 1)
show that directly aggregating models will largely degrade the performance while fine-tuning can
greatly boost its accuracy, which motivates us to fine-tune the aggregated global model in the server
without requiring local or external datasets. On the other hand, merely aggregating local models in
server ignores the server’s rich computing resources that could be potentially utilized to improve the
performance of FL, such as the source in cross-silo FL (Kairouz et al., 2019).

1

Under review as a conference paper at ICLR 2022

Local Training on Clients

…

AdvLearning

…

…

generator

pseudo data

client models

local data

global model

forward backward for generator backward for global model

𝐺

𝐷𝑖,1 𝐷𝑖,2 𝐷𝑖,𝐾

𝐷𝑖

FocusedKD

knowledge

AttEnsemble

Figure 1: Overview of FLBoost.

Motivated by these observations, we
propose a novel approach that boosts
the performance of standard FL by
on-the-fly fine-tuning the global model
via data-free knowledge distillation
(DFKD), dubbed FLBoost (see Fig-
ure 1), which simultaneously refines the
model aggregation procedure and ex-
ploits the rich computing power of the
sever. In each round, FLBoost first ran-
domly selects a small set of client mod-
els trained with local data, which are
then transferred to the server and aggre-
gated as a preliminary global model. Instead of broadcasting the aggregated model back to each
client directly, FLBoost fine-tunes this preliminary global model in server using the knowledge ex-
tracted from local models. Specifically, FLBoost generates a set of pseudo data by an auxiliary
generator, which is trained by inversing the local models via DFKD. Since the local data is class-
imbalanced in FL, the inversed pseudo data is inaccurate and the extracted knowledge is invalid
for the minority classes. We propose a focused knowledge distillation technique (FocusedKD), to
select the valid pseudo data and control the extent of knowledge distillation on different classes.
Due to the discrepancy of data distributions among clients, the extracted knowledge from local
models is heterogeneous, and directly assigning the same weights during aggregation may be sub-
optimal. We thus propose an attention-based ensemble technique (AttEnsemble) to integrate the
extracted knowledge and exploit their potential intra information across clients. The processed re-
liable knowledge is then used to fine-tune the preliminary global model and the generator in an
adversarial scheme (AdvLearning), which yields the final global model.

We emphasize that FLBoost is orthogonal to several existing local optimizers, such as FedAvg,
FedProx, FedDyn, and SCAFFOLD, as it only modifies the procedure of global model aggregation
on the server. Consequently, FLBoost can be seamlessly embedded into these local FL optimizers,
taking their advantages to further improve the performance of FLBoost. At last, we apply FLBoost
to solve the image classification task on CIFAR10 and CIFAR100 datasets with different kinds
of heterogeneous dataset partitions. Extensive experiments verify that FLBoost achieves superior
performance compared with several state-of-the-art (SOTA) methods including FedAvg, FedProx,
FedDyn, SCAFFOLD, FedDF, FedGen. Besides, we demonstrate that FLBoost can serve as a strong
plugin to enhance the performance of FedAvg, FedProx, FedDyn, and SCAFFOLD. To the end, the
main contributions of this work are four-fold:
• We propose FLBoost to fine-tune the global model in server via data-free distillation, which si-

multaneously enhances the model aggregation step and utilizes the computing power of the sever.
• We adopt an adversarial training scheme, and propose focused knowledge distillation and

attention-based ensemble techniques for FLBoost, which can filter the wrongly extracted knowl-
edge with DFKD and exploit the potential intra information among clients.

• We demonstrate that FLBoost is orthogonal to exiting local optimizers and can serve as a strong
and versatile plugin to enhance the performance of FedAvg, FedProx, FedDyn and SCAFFOLD.

• We verify the superiority of FLBoost against several SOTA methods for federated learning, includ-
ing FedAvg, FedProx, FedDyn, SCAFFOLD, FedGen and FedDF, with extensive experiments.

2 RELATED WORK

There exist extensive works focus on improving the global performance of FL via client selection
(Fraboni et al., 2021; Chen et al., 2020), split learning (He et al., 2020; Wu & Gong, 2020), domain
adaptation (Peterson et al., 2019; Liu et al., 2021), and etc., and improving the local performance of
each client via personalized FL (Dinh et al., 2020; Deng et al., 2020). The interested readers may
refer to monographs (Kairouz et al., 2019; Wang et al., 2021) and the reference therein to follow up
the advance of FL. Below, we mainly summarize the most relevant techniques to our work.

Federated Optimizer. The vanilla FL algorithm, i.e. FedAvg (McMahan et al., 2017) periodically
aggregates the local models in server and updates the local model with its individual data. In ad-

2

Under review as a conference paper at ICLR 2022

dition, FedProx (Li et al., 2018) adds a proximal term to the local subproblem to restrict the local
update closer to the initial (global) model. SCAFFOLD (Karimireddy et al., 2020) uses a variance
reduction technique to correct the drifted local update. FedDyn (Acar et al., 2020) modifies the
objective of client with linear and quadratic penalty terms to align global and local objectives. In
summary, all these methods focus on aligning the local and global model to narrow the distribution
drift during the local training without enhancing the global model directly as we do in FLBoost.

Knowledge Distillation in Federated Learning. With the help of an unlabeled dataset, FedDF (Lin
et al., 2020) proposes an ensemble distillation for model fusion, trains the global model using the
averaged logits from local models. FedAUX (Sattler et al., 2021) finds a model initialization for the
local models, and weights the logits from local models using (ε, δ)-differentially private certainty
scoring. FedBE (Chen & Chao, 2020) generates a series of global models from Bayesian perspective
using the local models, then summarizes these models into one global model by ensemble knowledge
distillation. All these methods rely on an auxiliary dataset in server, which is infeasible for private
tasks. Though FedDF maintains the auxiliary dataset can be replaced with a pretrained generator, it
does not instantiate how to acquire the generator without auxiliary data.

Data-Free Knowledge Distillation (DFKD). DFKD methods (Chen et al., 2019; Fang et al., 2019)
generate pseudo data from a pretrained model (teacher), and use them to transfer knowledge of
teacher model to another small model (student). The data is generated by maximizing the response of
fake data on teacher model. DeepImpression (Nayak et al., 2019) models the output space of teacher
model and recovers the real data by fitting the output space. DeepInversion (Yin et al., 2020) further
optimizes the pseudo data by regularizing the distribution of intermediate feature maps. DAFL
(Chen et al., 2019) and DFAD (Fang et al., 2019) use a generator to generate data efficiently, where
DAFL optimizes the generator by maximizing the response on prediction and feature level, and
DFAD uses an adversarial training scheme to exploit the knowledge in teacher model continually.

In this work, we adopt DFKD to generate pseudo data with an auxiliary generator to boost the per-
formance of global model of FL in server. However, directly applying DFKD technique to FL does
not work well in data heterogeneity scenario, since the local models trained with class-imbalanced
data contain invalid knowledge for minority classes, and it is hard to integrate the knowledge for
multiple local models. Recently, FedGen (Zhu et al., 2021) proposes to learn a lightweight gen-
erator to ensemble knowledge of local models in a data-free manner, then delivers it to clients to
correct local updates, which is the most related work to our FLBoost. However, FedGen ignores the
wrong knowledge in data heterogeneity scenario, which may induce the performance drop during
knowledge distillation, while FLBoost proposes FocusedKD to extract effective knowledge from
local models. Besides, FLBoost proposes AttEnsemble to derive a maximum utility of local models.

3 FLBOOST: ON-THE-FLY FINE-TUNE THE GLOBAL MODEL

In this section, we describe the proposed novel federated learning paradigm: FLBoost. We firstly
introduce the proposed FLBoost algorithm in Section 3.1, and then we introduce the two key tech-
niques in FLBoost: focused knowledge distillation (FocusedKD) and attention-based ensemble
training method (AttEnsemble) in Section 3.2 and Section 3.3, respectively.

3.1 OVERVIEW OF FLBOOST

Let ω be the model parameter in the server and clients. In this work, we consider there exist K
clients, where Dk = {(xk,i, yk,i)}Nk

i=1 is the dataset individually stored in k-th client , Nk is the
corresponding the number of samples. Generally speaking, federated learning can be formulated as
the following optimization:

min
ω

1

K

K∑
k=1

fk(ω), with fk(ω) =
1

Nk

Nk∑
i=1

f(ω, xk,i, yk,i), (1)

where f is the loss function to measure training error in FL, and the dataset Dk for k = 1, 2, . . . ,K
could be distributed heterogeneously. Below, we first describe the procedure of FLBoost for solving
problem (1) in Algorithm 1, which is composed of two sub-algorithms, ClientUpdate and ServerUp-
date for updating the network parameters in local models and global model, respectively.

3

Under review as a conference paper at ICLR 2022

Algorithm 1 FLBoost: On-the-fly fine-tune the global model
Input: T : communication round; Dk: the dataset of k-th client; C: the fraction of active client in each round.
1: initialize model parameters ω and θ, initialize state s for server and state s1 ∼ sK for all clients
2: for t = 1, ..., T do
3: St ← (random set of dC ·Ke clients);
4: for k ∈ St in parallel do
5: ωk, sk,∆sk ← ClientUpdate(ω,Dk, sk, s) . FedAvg, FedProx, FedDyn, and SCAFFOLD
6: end for
7: ω, θ, s← ServerUpdate(ω, θ, s, {ωk}k∈St , {∆sk}k∈St) . see Algorithm 2
8: end for

In each communication round, FLBoost randomly selects a set of clients and broadcasts the global
model to them. Each client initializes the local model using the global model and trains it with a local
optimizer. We emphasize that FLBoost is orthogonal to efforts on optimizing local model training,
such as SCAFFOLD, FedAvg, FedProx, and FedDyn, which can serve as the role of ClientUpdate.
In Section 4.1, we display the performance of FLBoost incorporated with above mentioned local
optimizers, where significant performance improvements have been observed. Moreover, for any
local optimizer, FLBoost only needs to additionally transmit the statistics of training data for clients
in St in each round (detailed in Section 3.2 and 3.3), which causes negligibly extra transmission
cost on these local optimizers. Without loss of generality, we use SCAFFOLD in FLBoost as an
instance, where a state s is used to mitigate the client-drift (see Algorithm 3 in Appendix A.1).

Algorithm 2 ServerUpdate, round t
Input: I: iteration of the training procedure in server; Ig ,

Id: inner iteration of training the generator and the global
model; ηg: the global step-size; ω, θ, s, {ωk}k∈S ,
{∆sk}k∈S , λcls, λr .

1: ∆ω = 1
|St|

∑
k∈St

(ωk − ω), ∆s = 1
K

∑
k∈St

sk
2: ω ← ω + ηg∇ω, s← s+ ∆s
3: compute pt(y) according to Eq. (5)
4: for i = 1, ..., I do
5: (Z, Y)← (sample a batch of z∼N (0,1) and y∼pt(y))
6: compute αk,yt for ∀k ∈ St,∀y ∈ Y according to Eq. (6)
7: for j = 1, ..., Ig do
8: update θ with the loss Eq. (2) on samples (Z, Y)
9: end for

10: for j = 1, ..., Id do
11: update ω with loss 1

|Y |
∑

(z,y)∈(Z,Y) Lmd
12: end for
13: end for
14: return ω, θ, s

Followed by ClientUpdate step, the
ServerUpdate in Algorithm 2 updates
the global model using the uploaded
local models. However, the vanilla
model aggregation in existing works
will largely degrade performance in
data heterogeneity scenario, as demon-
strated by Lee et al. (2021). Instead, we
replace the hand-crafted global model
update with a learning procedure, so
that the global model can preserve
the knowledge from local models and
maintain their performance as much
as possible. We achieve this by fine-
tuning the global model using the lo-
cal models, under the help of an auxil-
iary generator. The overall objective on
fine-tuning the global model is formu-
lated as an adversarial learning scheme:

(ω, θ) = arg min
ω

max
θ

Ez∼N (0,1),y∼pt(y) [Lmd(ω, θ)− λclsLcls(θ)− λrLr(θ)] , (2)

with Lmd(ω, θ) =
∑
k∈St

αk,yt DKL(D(G(z, y; θ);ω)||D(G(z, y; θ);ωk)), (3)

Lcls(θ) =
∑
k∈St

αk,yt LCE(D(G(z, y; θ);ωk), y), Lr(θ) = R(G(z, y; θ), z), (4)

where D parameterized with w and wk are the global classifier and uploaded local classifier in the
sever, respectively; G is the generator parameterized with θ in server, whose inputs are a random
noise data z and a class label y, and output is the pseudo data of class y; pt(y) is the sampling
probability of the class y; αk,yt controls the weight of local models during ensemble.

During training, the generator first generates pseudo data by G(z, y; θ). Then the pseudo data is
input to global model D(·;ω) and local models D(·;ωk),∀k ∈ St. The global model is updated by
minimizing the model discrepancy Lmd compared to local models, while the generator is updated
by maximizing Lmd − λclsLcls − λrLr to generate high-quality data. In implementation, we adopt
stochastic gradient descent-ascent algorithm to solve Problem (2) as illustrated in Algorithm 2.

In Eq. (2), Lmd measures the model discrepancy between global model ω and local model ωk by
Kullback-Leibler divergence (DKL), as in Eq. (3). It is used to train the adversarial variables: (1)

4

Under review as a conference paper at ICLR 2022

train θ to generate hard samples that enlarge the model discrepancy; (2) train ω to minimize the
discrepancy using the hard samples. As a result, FLBoost can continually exploit the knowledge in
{ωk}k∈St

and transfer it to ω. Lcls is used to facilitate the fidelity of the generated data. In Eq. 4,
Lcls is formulated as cross-entropy loss (LCE) between the prediction of local model on generated
data (i.e., D(G(z, y; θ);ωk)) and the desired class label y. By minimizing Lcls with θ, G(z, y; θ)
are enforced to yield higher prediction on class y to fit the data distribution of y. In addition, simply
using Lcls will lead to model collapse of generator: G outputs the same data for every class. To
mitigate this issue, we use the diversity loss Lr in Zhu et al. (2021) to improve the diversity of the
generated data. By unifying Lmd, Lcls and Lr, the pseudo data generated in FLBoost can fit the
distribution of training data with high-quality.

To facilitate an effective knowledge transfer in data heterogeneity scenario, we propose focused
knowledge distillation and attention-based ensemble techniques, which customizes the sampling
probability pt(y) and the ensemble weight αk,yt according to the data distributions of clients in each
round. In the following two subsections, we will introduce these methods separately.

3.2 FOCUSED KNOWLEDGE DISTILLATION

0

500

1000

1500

2000

2500

3000

Ins
tan

ce
 Nu

mb
er

2 0 1 3 6 9 8 5 4 7
Class ID

0

20

40

60

80

100

Ac
cu

rac
y

model accuracy
pseudo data accuracy
of samples

Figure 2: Correlation of model ac-
curacy, distilled pseudo data accuracy
and the amount of data on each class.

Typically, datasets in local clients are class-imbalanced in
data heterogeneity scenario, even have no data for some
classes. It has been proved that deep neural networks tend
to learn majority classes and ignore the minority classes
(Fang et al., 2021). Figure 2 illustrates the accuracy of
model trained by class-imbalanced CIFAR10 data, and the
quality of pseudo data inversed by the model. The data
quality is displayed in terms of percentage of pseudo data
that correctly classified by a well-trained classifier (trained
on all data in CIFAR10 with 81.38% test accuracy). We
can see that the model tends to learn majority classes
and yields extremely low even zero accuracy for minority
classes (classes 6,9,8). Moreover, the quality of pseudo data is highly related to original data distri-
bution. For the minority classes, the pseudo data accuracy is less than 10%, which means it is even
worse than random data. We further explore the influence of class-imbalanced data in Appendix A.2.

Based on above observation, the data information of minority classes in local models could be wrong
and misleading. Hence, the pseudo data generated from local models are ambiguous for the minority
classes. If uniformly sample the class label y and generating data by G(z, y; θ), the wrong knowl-
edge will be propagated to global model and induce performance decrease. To mitigate this issue,
we propose FocusedKD to focus the data generation and knowledge distillation on the majority
classes and filter the minority classes. As a result, FLBoost can guarantee an effective knowledge
distillation in data heterogeneity scenario. Specifically, we customize the sampling probability pt(y)
according to the distribution of whole training data in each round,

pt(y) ∝
∑
k∈St

Nk∑
i=1

E(xi,yi)∼Dk
[1yi=y] =

∑
k∈St

nyk, (5)

where 1condition is 1 if the condition is true and 0 otherwise, nyk is the data number of class y in
client k. Substituting Eq. (5) to Eq. (2), the pseudo data of minority classes have low probability to
be generated, thus the extracted knowledge are more reliable.

FocusedKD uses a shared sampling probability pt(y) to generate pseudo data and input to all local
models, as the input of teacher models should be the same in ensemble KD. However, pt(y) may not
be consistent with the individual data distribution of clients, thus the extracted knowledge may be
invalid for some clients. In Section 3.3, we propose a re-weight mechanism to mitigate this problem.

3.3 ATTENTION-BASED ENSEMBLE

The typical ensemble method in KD assigns same weight to the knowledge from different teacher
models (Zhu et al., 2021; Lin et al., 2020). However, the data distributions of clients are differ-
ent in data heterogeneity scenario, which means the knowledge in local models is heterogeneous.

5

Under review as a conference paper at ICLR 2022

Consequently, for one class the importance of knowledge are different among clients. If assigning
same weight to clients, the important knowledge can not be figured out and utilized properly. We
therefore propose an attention-based ensemble method (AttEnsemble), which assigns the ensemble
weight via the individual data distribution of clients. Specifically, for the knowledge distillation in
Eq. (3) and the data inversion in Eq. (4), we use αk,yt to weight the importance of model wk on class
y, where αk,yt is defined by the data proportion of class y in client k against total data in St,

Lmd =
∑
k∈St

αk,yt Dk
KL,Lcls =

∑
k∈St

αk,yt L
k
CE , with αk,yt = nyk

/∑
i∈St

nyi , (6)

where LkCE = LCE(D(G(z, y; θ);ωk), y) is the cross-entropy loss of client k, and Dk
KL is similar.

As a result, the knowledge from clients can be flexibly integrated according to their importance
on classes, so that FLBoost can facilitate a maximum utilization of knowledge from local models.
Note that, compared with merging the outputs of local models as used in FedDF and FedGen, i.e.,
Lcls = LCE(1

|St|
∑
k∈St

D(G(z, y; θ);ωk), y), the knowledge is disentangled in Eq. (6), thus the
knowledge of clients will not pollute each other in FLBoost.

To end this section, we compare FLBoost with the recently proposed FedGen (Zhu et al., 2021)
which also guide the federated learning with DFKD, to further display the advantages of FLBoost:
• FLBoost and FedGen use the pseudo data to train the global model and local model respectively.

However, the local model is originally trained by real and correct data, and additional knowledge
transfer will disturb the local model optimization instead, as illustrated in Section 4.1.

• FLBoost trains the generator and global model with an adversarial training process, so that the
knowledge can be continually exploited and distilled from local model, whereas FedGen trains
the generator and local model in one-shot mode.

• FLBoost customizes the sampling probability and ensemble weight according to the data distribu-
tion in each round, while FedGen uses uniform probability for every class and uniform weight for
every client. As a result, FLBoost can facilitate an effective knowledge transfer.

• FLBoost combines Lmd, Lcls and Lr to improve the quality of generated data as well as exploit
the knowledge in local models, while FedGen only trains the generator by minimizing Lcls.

4 EXPERIMENTS

In this section, we empirically verify the efficacy of FLBoost. We summarize the implementation
details in Section 4.1, and compare FLBoost with several SOTA FL algorithms in Section 4.2. Ab-
lation studies are conducted to verify the necessity of each component of FLBoost in Section 4.3.

4.1 IMPLEMENTATION DETAILS

Baselines. We compare FLBoost against FedAvg, FedProx, SCAFFOLD, FedDyn, FedGen and
FedDF. For a fair comparison, we further derive a variant of FedGen, denoted FedGen*, which
generates data in the input space instead of feature space in FedGen. Besides, since FedDF does not
explain how to obtain the generator, we train the generator in the same way as FedGen.

Datasets. CIFAR10 and CIFAR100 datasets (Krizhevsky et al., 2009) with heterogeneous dataset
partition are used to test the efficacy of FLBoost, which are two difficult tasks in FL scenario and are
widely adopts in FL research. Similar to existing works (Acar et al., 2020; Yurochkin et al., 2019),
we use Dirichlet distribution Dir(α) on label radios to simulate the non-iid data distribution among
clients, where a smaller α indicates higher data heterogeneity. During the implementation, we set
α = 0.3 and α = 0.6, respectively.

Network Architecture. For both CIFAR10 and CIFAR100 datasets, we employ ResNet18 (He
et al., 2016) as the basic backbone. We borrow the generator network architecture from DFAD (Fang
et al., 2019) for FLBoost, FedDF and FedGen*. For FedGen, the generator network architecture is
composed of two embedding layers (for inputs z and y, respectively) and two fully-connected layers
with LeakyReLU and BatchNorm layers between them.

Hyperparameters. For all methods, we set the number of local training epoch E = 5, communica-
tion round T = 1000, the client number K = 100 with the active fraction C = 0.1 (i.e., |St| = 10).

6

Under review as a conference paper at ICLR 2022

Table 1: Test Accuracy of different FL methods on CIFAR10 and CIFAR100.

CIFAR10 CIFAR100
α = 0.6 α = 0.3 α = 0.6 α = 0.3

FedAvg 82.04±0.46 79.59±1.01 50.67±0.34 50.17±0.19
FedProx 82.36±0.38 80.12±0.43 50.94±0.40 50.82±0.20
FedDyn 82.87±0.62 80.15±1.00 51.68±0.31 50.51±0.34
SCAFFOLD 84.55±0.30 82.14±1.20 53.91±0.33 54.36±0.32
FedGen 82.23±0.73 79.72±0.85 50.71±0.55 50.08±0.24
FedGen* 80.80±0.21 78.92±1.16 48.68±0.26 48.04±0.19
FedDF 82.92±0.64 80.97±0.74 51.36±0.02 51.26±0.09
FLBoost 86.06±0.19 84.38±0.49 56.49±0.55 55.96±0.39

For local training, the batchsize is 50 and the weight decay is 1e− 3. The learning rate for classifier
and generator are initialized to be 0.1 and 0.01 respectively, and they are decayed quadratically with
weight 0.998. The dimension of z is 100 for CIFAR10 and 256 for CIFAR100. I , Ig , Id in Algo-
rithm 1 are 10, 1 and 5, respectively. If not specifically declared, we adopt λcls = 1.0 and λr = 1.0,
and adopt SCAFFOLD as the FL optimizer in FLBoost.

We further provide detailed implementations such as descriptions of baselines, heterogeneity of
datasets, topology of network architecture and the settings of hyperparameters in the Appendix A.

4.2 COMPARISON OF FLBOOST WITH EXISTING FL METHODS

Test Accuracy. Table 1 reports the test accuracy of all compared algorithms on CIFAR10 and CI-
FAR100 datasets. All experiments are repeated over 3 random seeds. In Table 1, FLBoost achieves
the best performance in all scenarios, surpassing the second one (i.e., SCAFFOLD) by at least 1.5%.
FedDF also employs DFKD to improve the global model in server. It outperforms the FedAvg, Fed-
Prox and FedDyn, which further validates the superiority of the scheme “fine-tuning the global
model via data-free knowledge distillation”. However, it is worse than SCAFFOLD and FLBoost,
which verifies the effectiveness of FocusedKD and AttEnsemble techniques in FLBoost.

FedGen yields lower accuracy compared with FedDF and FLBoost, and shows marginal perfor-
mance gains than FedAvg in some cases. To evaluate the key component of FedGen that most
influences the performance, we evaluate the performance of FedGen*, which generates pseudo data
in the input space (same as FLBoost) instead of feature space. From Table 1, we see that FedGen* is
worse than FedGen, which means the reason that FedGen is worse than FLBoost is not the feature-
level generation of FedGen. Thus, we conclude the possible reason is that FedGen does not filter
the extracted knowledge from local models. The wrong knowledge will influence the local training,
since local client merely holds a small amount of real dataset.

Communication Rounds. Table 2 evaluates different FL methods in term of the number of commu-
nication rounds to reach target test accuracy (acc = 75% and acc = 80% for CIFAR10, acc = 40%
and acc = 50% for CIFAR100, respectively). In Table 2, FBLoost achieves the second best and the
best results on CIFAR10 and CIFAR100, respectively. Besides, FLBoost reduces the round number
required by its FL optimizer (SCAFFOLD) in all scenarios. For CIFAR10, although FedDyn uses
fewer rounds to achieve the target accuracy, its final accuracy is much worse than FLBoost, as dis-
played in Table 1. Below, we provide the results of using FedDyn as the optimizer of FLBoost, and
the derived method FedDyn+FLBoost requires fewer rounds to reach target accuracy than FedDyn.

Orthogonality of FLBoost with existing FL optimizers. Table 3 provides the results of FLBoost,
FedGen and FedDF using different FL optimizers. First, we evaluate the performance of FLBoost us-
ing FedAvg, FedProx and FedDyn optimizers. In Table 3, SCAFFOLD+FLBoost yields the best test
accuracy among all the optimizers. FedDyn+FLBoost performs better than SCAFFOLD+FLBoost
in terms of the round number to reach the target accuracy. This is consistent with the results in Table
2, where FedDyn requires fewer rounds than SCAFFOLD. Comparing Table 3 with Tables 1 and
2, we notice that for any FL optimizer, its performance can be largely boosted by using FLBoost
than without using it. This validates the effectiveness and the orthogonality of FLBoost. Second,
we also replace the optimiziers in FedGen and FedDF with SCAFFOLD, and compare them with
SCAFFOLD+FLBoost to further illustrate the advantage of FLBoost. Though FedGen and FedDF
achieve higher accuracy by using SCAFFOLD optimizer, they are still worse than FLBoost.

7

Under review as a conference paper at ICLR 2022

Table 2: Evaluation of different FL methods on CIFAR10 and CIFAR100, in terms of the number
of communication rounds to reach target test accuracy (acc). Note that we highlight the best and
second best results in bold, respectively.

CIFAR10 α = 0.6 α = 0.3
acc = 75 acc = 80 acc = 75 acc = 80

FedAvg 104.33±6.67 270.67±13.33 153.67±20.33 425.33±61.67
FedProx 109.67±8.33 263.0±27.0 143.67±0.33 391.67±13.33
FedDyn 72.67±7.33 133.33±28.67 90.67±2.33 183.67±23.33
SCAFFOLD 77.00±3.00 161.00±8.00 100.33±14.67 212.00±24.00
FedGen 114.00±8.00 284.33±30.67 140.00±4.00 406.67±29.33
FedGen* 140.33±13.67 402.33±4.67 223.67±52.33 666.00±191.00
FedDF 97.67±8.33 246.33±24.67 132.67±11.33 329.00±42.00
FLBoost 73.67±4.33 143.33±5.67 92.67±14.33 188.67±31.33

CIFAR100 α = 0.6 α = 0.3
acc = 40 acc = 50 acc = 40 acc = 50

FedAvg 81.67±2.33 563.67±163.33 86.67±6.33 713.67±191.33
FedProx 81.67±11.33 476.00±199.00 86.00±1.00 529.00±36.00
FedDyn 56.00±6.00 213.67±6.33 64.00±8.00 239.33±15.67
SCAFFOLD 61.67±7.33 186.33±10.67 58.33±3.67 185.67±0.33
FedGen 82.00±5.00 571.33±78.67 95.00±1.00 684.00±92.00
FedGen* 95.67±5.33 >1000 100.33±7.67 >1000
FedDF 90.00±6.00 445.00±42.00 94.50±1.50 452.00±5.00
FLBoost 55.00±3.00 152.33±10.67 57.00±1.00 166.33±10.67

Table 3: The impact of FL optimizer on FLBoost and other methods, and the impact of feature-level
generation on FLBoost. We display the test accuracy on CIFAR10, α = 0.3 and 0.6, and the round
number to reach the target accuracy (acc = 75% and acc = 80%) when α = 0.3.

Accuracy Round (α = 0.3)
α = 0.6 α = 0.3 acc = 75 acc = 80

SCAFFOLD+FLBoost 86.06±0.19 84.38±0.49 92.67±14.33 188.67±31.33(baseline)
FedAvg+FLBoost 83.82±0.31 82.27±0.67 122.00±4.00 279.33±17.67
FedProx+FLBoost 84.06±0.32 82.21±0.46 117.33±6.67 278.67±25.33
FedDyn+FLBoost 83.17±0.50 81.43±0.18 79.00±3.00 168.00±13.00
SCAFFOLD+FedGen 84.62±0.16 82.20±0.62 104.67±7.33 221.67±14.33
SCAFFOLD+FedGen* 82.96±0.13 81.27±0.73 169.33±14.67 415.67±71.00
SCAFFOLD+FedDF 85.40±0.12 83.58±0.45 103.33±8.67 201.00±22.00
SCAFFOLD+FLBoost-f 84.67±0.35 82.76±0.81 103.00±11.00 225.00±29.00

Data heterogeneity and Partial Client Participant. Figure 3(a) displays the test accuracy of com-
pared FL methods on different α values. In this figure, FLBoost achieves the best accuracy on all
settings, which validates that FLBoost is effective in various data heterogeneity scenarios. Besides,
FLBoost gains more accuracy improvement in extreme data heterogeneity scenario (α = 0.2). In
addition, as the degree of data heterogeneity decreases (α increases), the accuracy of each method
is ascending. Figure 3(b) displays the test accuracy of FL methods with different numbers of active
clients participating in each communication round. FLBoost also yields the best performance in this
figure. Besides, the more client involved in communication, the higher accuracy will be achieved.
Figure 3(c) displays the learning curve of different methods in the first 250 rounds. Though FedDyn
has faster accuracy improvement rate in the beginning, its improvement trend is gradually slowing
down as the round increases and its accuracy is falling behind FLBoost after 150 rounds.

4.3 ABLATION STUDY

Comments on feature-level pseudo data. Like FedGen, in Table 3 we provide the results of FL-
Boost using feature-level pseudo data, denote FLBoost-f. In Section 4.2 we conclude that for Fed-
Gen, feature-level generation is better then input-level generation (FedGen*). But here we draw a
completely different conclusion for FLBoost: though FLBoost-f still exceeds the other methods in
Table 1 (including FedGen), it suffers significant performance drop compared with the original FL-
Boost, which indicates the input-level generation is more effective for FLBoost. Besides, the rounds
to reach target accuracy 75% and 80% are greatly increased in FLBoost-f, and even exceeds FedDF

8

Under review as a conference paper at ICLR 2022

= 0.2 = 0.3 = 0.4 = 0.5 = 0.6 = 0.7
0.70

0.75

0.80

0.85

0.90

FedAvg
SCAFFOLD
FLBoost

FedProx
FedGen

FedDyn
FedDF

(a) Test accuracy w.r.t. α
C = 0.05

C = 0.10
C = 0.15

C = 0.20
C = 0.25

0.70

0.75

0.80

0.85

0.90

FedAvg
SCAFFOLD
FLBoost

FedProx
FedGen

FedDyn
FedDF

(b) Test accuracy w.r.t. C

r = 0
r = 50

r = 100
r = 150

r = 200
r = 250

0.55

0.60

0.65

0.70

0.75

0.80

0.85

FedAvg
FedDyn
FLBoost

FedProx
FedGen

SCAFFOLD
FedDF

(c) Learning Curve

Figure 3: (a) Test accuracy w.r.t. data heterogeneity. (b) Test accuracy w.r.t. fraction C of active
clients in each round. (c) Learning Curve of the first 250 rounds. All experiments are conducted on
CIFAR10. For (b) and (c), α = 0.3 is applied.

in Table 2 when target accuracy is 75%. Presumably this is because FLBoost-f can only fine-tune
the last few layers of the global model, so the effect of knowledge transfer is limited.

Method Accuracy
baseline FLBoost 83.43±0.10

module

- FKD 82.39±0.22
- AEN 82.40±0.21
- ADV 82.49±0.42
- FKD - AEN 82.11±0.28
- FKD - ADV 82.18±0.16
- AEN - ADV 82.15±0.14
- all 81.98±0.14

loss

- Lcls 82.50±0.55
- Ldis 82.52±0.35
- Lcls- Ldis 82.32±0.16
DKL ← Lmse 10.17±0.26

Table 4: Impact of the each components in
FLBoost (CIFAR10, α = 0.3).

Necessity of each component in FLBoost. Table 4
displays the test accuracy of FLBoost after discarding
some modules and losses, trained with 500 communi-
cation rounds on CIFAR10, α = 0.3. Here “FKD”,
“AEN” and “ATT” represent the modules FocusedKD,
AttEnsemble and AdvLearning. We can see that re-
moving each module leads to worse and unstable per-
formance, i.e., lower accuracy and larger confidence
interval. In addition, their joint absence can cause a
further decrease on accuracy. On the other hand, a sim-
ilar tend is observed for the losses: the absence of sin-
gle loss will lead to performance decrease, and remov-
ing multiple losses will enlarge the decrease. It should
be noticed that, if replacing the Kullback-Leibler di-
vergence with Mean Average Square to measure the
model discrepancy (Lmse), the model will collapse,
which leads to severe performance degradation.

Robustness of FLBoost on hyperparameters. To measure the influence of hyperparameter selec-
tion, we select λcls and λr from [0.5, 0.75, 1.0, 1.25, 1.5] and select the dimension d of noise data
z in [50, 100, 150, 200, 250]. Figure 4 illustrates the test accuracy in term of the box plot, where
FLBoost achieves similar performance among all the choices. Besides, the worst accuracy in Fig-
ure 4(a)-(b) is better than the best of previous works in Table 1. This indicates that FLBoost is not
sensitive to the selection of hyperparameter in a large range.

cls = 0.5
cls = 0.75

cls = 1.0
cls = 1.25

cls = 1.5
0.81

0.82

0.83

0.84

0.85

0.86

0.87

(a) Box plot w.r.t. λcls

r = 0.5
r = 0.75

r = 1.0
r = 1.25

r = 1.5
0.81

0.82

0.83

0.84

0.85

0.86

0.87

(b) Box plot w.r.t. λr

d = 50
d = 100

d = 150
d = 200

d = 250
0.81

0.82

0.83

0.84

0.85

0.86

0.87

(b) Box plot w.r.t. d

Figure 4: The performance of FLBoost using different hyperparameters (a) λcls, (b) λr and (c) the
dimension d of noise z on CIFAR10 with α = 0.3.

5 CONCLUSION

In this paper we propose FLBoost method, which fine-tunes the global model via data-free knowl-
edge distillation, to boost the performance of federated learning. Facing the problem of knowledge
heterogeneity in this scenario, we propose FocusedKD to filter invalid knowledge in local mod-
els, and design AttEnsemble to derive maximum utility when integrating the knowledge. Extensive
experiments validate the efficacy and orthogonality of FLBoost.

9

Under review as a conference paper at ICLR 2022

Reproducibility Statement. Here we introduce supplementary experiment details for easy repro-
duction. In experiments, each data is normalized with mean and standard deviation (std) before
training. For CIFAR10, the mean are [0.491, 0.482, 0.447] and the std are [0.247, 0.243, 0.262] for
R, G, B channels respectively. For CIFAR100, the mean are [0.5071, 0.4867, 0.4408] and the std are
[0.2675, 0.2565, 0.2761] for R, G, B channels respectively. No data augmentation technique is used
for both datasets, such as random crop, random flip, etc. We use official resnet18 implementation1

in PyTorch without any modification. The code of FLBoost will be released upon the acceptance.

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International Con-
ference on Learning Representations, 2020.

Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu,
Chao Xu, and Qi Tian. Data-free learning of student networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 3514–3522, 2019.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to feder-
ated learning. arXiv preprint arXiv:2009.01974, 2020.

Wenlin Chen, Samuel Horvath, and Peter Richtarik. Optimal client sampling for federated learning.
arXiv preprint arXiv:2010.13723, 2020.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen. Personalized federated learning with moreau
envelopes. arXiv preprint arXiv:2006.08848, 2020.

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su. Layer-peeled model: Toward understanding
well-trained deep neural networks. arXiv preprint arXiv:2101.12699, 2021.

Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. Data-free
adversarial distillation. arXiv preprint arXiv:1912.11006, 2019.

Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling: Low-
variance and improved representativity for clients selection in federated learning. arXiv preprint
arXiv:2105.05883, 2021.

Dashan Gao, Ce Ju, Xiguang Wei, Yang Liu, Tianjian Chen, and Qiang Yang. Hhhfl: Hierar-
chical heterogeneous horizontal federated learning for electroencephalography. arXiv preprint
arXiv:1909.05784, 2019.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mobile
keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

Florian Hartmann, Sunah Suh, Arkadiusz Komarzewski, Tim D Smith, and Ilana Segall. Federated
learning for ranking browser history suggestions. arXiv preprint arXiv:1911.11807, 2019.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. arXiv preprint arXiv:2007.14513, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

1https://pytorch.org/vision/stable/ modules/torchvision/models/resnet.html

10

Under review as a conference paper at ICLR 2022

Ji Chu Jiang, Burak Kantarci, Sema Oktug, and Tolga Soyata. Federated learning in smart city
sensing: Challenges and opportunities. Sensors, 20(21):6230, 2020.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identi-
cal and heterogeneous data. In International Conference on Artificial Intelligence and Statistics,
pp. 4519–4529. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Gihun Lee, Yongjin Shin, Minchan Jeong, and Se-Young Yun. Preservation of the global knowledge
by not-true self knowledge distillation in federated learning. arXiv preprint arXiv:2106.03097,
2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations, 2019.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. arXiv preprint arXiv:2006.07242, 2020.

Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg: Federated domain gen-
eralization on medical image segmentation via episodic learning in continuous frequency space.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1013–1023, 2021.

Songtao Lu, Yawen Zhang, Yunlong Wang, and Christina Mack. Learn electronic health records by
fully decentralized federated learning. arXiv preprint arXiv:1912.01792, 2019.

Zhiming Luo, Frederic Branchaud-Charron, Carl Lemaire, Janusz Konrad, Shaozi Li, Akshaya
Mishra, Andrew Achkar, Justin Eichel, and Pierre-Marc Jodoin. Mio-tcd: A new benchmark
dataset for vehicle classification and localization. IEEE Transactions on Image Processing, 27
(10):5129–5141, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient
learning of deep networks from decentralized data. pp. 1273–1282. PMLR, 2017.

Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu Radhakrishnan, and
Anirban Chakraborty. Zero-shot knowledge distillation in deep networks. In International Con-
ference on Machine Learning, pp. 4743–4751. PMLR, 2019.

Daniel Peterson, Pallika Kanani, and Virendra J Marathe. Private federated learning with domain
adaptation. arXiv preprint arXiv:1912.06733, 2019.

Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. Fedaux: Leveraging unlabeled
auxiliary data in federated learning. arXiv preprint arXiv:2102.02514, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

11

Under review as a conference paper at ICLR 2022

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to feder-
ated optimization. arXiv preprint arXiv:2107.06917, 2021.

Guile Wu and Shaogang Gong. Decentralised learning from independent multi-domain labels for
person re-identification. arXiv preprint arXiv:2006.04150, 2020.

Linjie Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. A large-scale car dataset for fine-
grained categorization and verification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3973–3981, 2015.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Ni-
raj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8715–8724, 2020.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16337–16346, 2021.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional Conference on Machine Learning, pp. 7252–7261. PMLR, 2019.

Zhaohua Zheng, Yize Zhou, Yilong Sun, Zhang Wang, Boyi Liu, and Keqiu Li. Applications of
federated learning in smart cities: recent advances, taxonomy, and open challenges. Connection
Science, pp. 1–28, 2021.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In Proceedings of the 38th International Conference on Machine Learning,
volume 139, pp. 12878–12889. PMLR, 2021.

Weiming Zhuang, Xin Gan, Yonggang Wen, Xuesen Zhang, Shuai Zhang, and Shuai Yi. Towards
unsupervised domain adaptation for deep face recognition under privacy constraints via federated
learning. arXiv preprint arXiv:2105.07606, 2021.

12

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 ALGORITHM OF CLIENT UPDATE IN FLBOOST

Algorithm 3 illustrates the algorithm of ClientUpdate in FLBoost. Here we instantiate ClientUpdate
as SCAFFOLD (Karimireddy et al., 2020). For a better readability, we present its iterate procedure
in Algorithm 3. We first initialize the local model ωk with glocal model ω. Then ωk is trained using
local dataset Dk. Two states s and sk are used to correct the client-drift caused by heterogeneous
data. The state s for server estimates the update direction for global model ω, and the state sk for
client k estimates the update direction for local model ωk. Their difference s−sk is then an estimate
of the client-drift and is used to correct the local update, as shown in line 4. The readers can refer to
SCAFFOLD (Karimireddy et al., 2020) for detailed explanation of the states. Finally, we update the
state sk, and compute the difference ∆sk before and after the update, which will be used to update
the state s in server (see Algorithm 2).

Algorithm 3 ClientUpdate, round t
Input: E: local iterations; ηl: local setp-size; k: the client id; ω: global model; Dk: local dataset; sk: state of

client k; s: state of server.
1: initialize local model ωk ← ω
2: for i = 1, ..., E do
3: compute the mini-batch gradient g(ωk)
4: ωk ← ωk − ηl(g(ωk)− sk + s)
5: end for
6: sk ← sk − s+ 1

Kηl
(ω − ωk), ∆sk = −s+ 1

Kηl
(ω − ωk)

7: return ωk, sk, ∆sk

A.2 EXPLORATION OF LONG-TAIL PROBLEM

0.1 0.2 0.3 0.4 0.6 0.8 1.0 IID
 Value

20

40

60

80

100

Ac
cu

rac
y

= 0.05

partitive accuracy
total accuracy

Figure 5: Test accuracy of model
trained on class-imbalanced dataset.

To explore the influence of long-tailed data on model per-
formance, we train the model with multiple imbalanced
subsets of CIFAR10, which have different degrees of im-
balance. Here the subset is generated by Dirichlet distribu-
tion Dir(α), where a smaller α indicates more imbalanced
training data. The data number of each subset is 5000, and
the architecture of model is resnet34 (He et al., 2016). The
results are illustrated in Figure 5. Here, the curves in green
and blue are the test accuracy on total test data and parti-
tive test data respectively, where the distribution of parti-
tive test data is the same as the imbalanced training data.
We can see there is a performance gap between two curves, and the gap becomes larger when the
degree of imbalance is increased, which indicates that the model tends to learn majority data from
imbalanced training data and ignore the long-tailed classes. The model achieves high accuracy on
imbalanced test data, as the model only learns the majority classes, and these classes also dominate
the imbalanced test data. However, for the total test data that contains balanced data for ever class,
the model yields lower accuracy, as it can not correctly predict the data of minority classes.

A.3 VISUALIZATION OF DATA HETEROGENEITY AMONG CLIENTS

In Figure 6, we figure out the data distributions of clients that generated by Dirichlet distribution
Dir(α) with different α as well as IID data distributions. For each α value, we display the data dis-
tributions of 10 clients. In Figure 6, the data distributions of clients are significantly different when
α is small, and the client even has no data for some classes. When α grows, the data is distributed
more evenly in each client, and the discrepancy of data distributions among clients becomes smaller.

A.4 DETAILED ARCHITECTURE OF GENERATOR

Table 5 lists the architectures of generator for FLBoost, FedDF and FedGen used in Section 4. Here,
d is the dimension of noise data z, and it is 100 and 256 for CIFAR10 and CIFAR100, respectively.

13

Under review as a conference paper at ICLR 2022

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Training Data Distribution

(a) α = 0.1

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Training Data Distribution

(b) α = 0.3

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Training Data Distribution

(c) α = 0.6

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Training Data Distribution

(d) α = 1.0

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Training Data Distribution

(e) α = 10.0

1 2 3 4 5 6 7 8 9 10
Class ID

1
2
3
4
5
6
7
8
9

10

Cl
ie

nt
 ID

Training Data Distribution

(f) IID

Figure 6: Visualization of the number of samples per class allocated to each clients (indicated by
dot size), for different α values of Dirichlet distribution.

M is the class number of datasets, and it is 10 and 100 for CIFAR10 and CIFAR100 respectively.
The inplace of LeakReLU is 0.2 on both generators. Note that in Table 5(b) the output of generator
is 512-dimensional, as the input of the last FC layer in ResNet18 is 512-dimensional. For the other
classifiers, the dimensions are adjusted accordingly.

Table 5: The architecture of generator used in Section 4.
(a) Generator for FLBoost and FedDF

z ∈ Rd ∼ N (0,1)
m =Map(y) ∈ RM , y ∈ [1, ...,M]

FC(z)→ 4096
FC(m)→ 4096
Concat→ 8192

Reshape, BN→ 128× 8× 8
Conv2D, BN, LeakyReLU→ 128× 8× 8

Upsampling→ 128× 16× 16
Conv2D, BN, LeakyReLU→ 64× 16× 16

Upsampling→ 64× 32× 32
Conv2D, Tanh→ 64× 32× 32

(b) Generator for FedGen

z ∈ Rd ∼ N (0,1)
m =Map(y) ∈ RM , y ∈ [1, ...,M]

FC(z)→ 4096
FC(m)→ 4096

Concat, BN→ 8192
FC, BN, LeakyReLU→ 8192

FC→ 512

A.5 BASELINE DESCRIPTION

In the following, we introduce the baselines compared in the experiments.

• FedAvg (McMahan et al., 2017) is the first effective Federated Learning optimizer to learn a
shared model across multiple mobile devices, which contain rich data that is privacy sensitive and
large in quantity. It leaves the training data distributed on mobile devices, and learns a shared
model by aggregating locally computed updates. The whole training constantly happens between
a server and the devices for multiple communication rounds. In each round, the server first sends
the global model to devices. Then each device initializes the local model by global model and
trains it using local dataset. Finally, the devices send the local models back to server, and the
server aggregates new global model by averaging the local models according to the data propor-
tion. Note that in each round, only a fraction of clients will join the training, because of the
condition of network connection, the availability of devices, etc. Though the success of FedAvg
on protecting privacy and reducing the data transmission cost, it shows degraded performance and
slow convergence when the data is non-identically distributed across devices.

14

Under review as a conference paper at ICLR 2022

• FedProx (Li et al., 2018) is a generalization and re-parametrization of FedAvg to improve the
convergence in data heterogeneity scenario. It adds a proximal term to restrict the local updates to
be closer to the initial (global) model, which is formulated as the L2 norm between the parameters
of global and local models. As a result, the impact of variable local updates is limited, and the
global model is optimized with higher stability and faster convergence. Besides, it allows for
variable amounts of update steps to be performed locally across devices based on their available
systems resources.

• FedDyn (Acar et al., 2020) points out a fundamental dilemma in data heterogeneity scenario: the
minima of local empirical loss on clients are inconsistent with those of the global empirical loss.
Motivated by this, it proposes a dynamic regularizer to align the solutions of global and local.
Specifically, it adds a linear penalty term and a quadratic penalty term for each device at each
round, whose minima is consistent with the global stationary point. Here, the linear penalty term is
formulated as inner product between current local model and the gradient of previous local model,
and the quadratic penalty term is formulated as the L2 norm between the parameters of global and
local models. It further provides a theoretical analysis and demonstrates the convergence of the
local models with a rate of O(1

T), where T is the number of rounds communicated.

• SCAFFOLD (Karimireddy et al., 2020) proves that the data heterogeneity could introduce a drift
in the updates of each client, which will result in slow and unstable convergence. To mitigate
this issue, it maintains a state for each client (client control variate sk) and for the server (server
control variate s), which is an estimate of the update direction for the local model and for the
global model. The difference s − sk is then an estimate of the client-drift and is used to correct
the local update. In each round, the server sends the state s together with global model to the
participating clients, and each client makes use of s to correct the local update. After the local
training, the client updates the state sk using the gradient of local model, and sends back a variant
of sk to server, which will be used to update the server state s.

• FedGen (Zhu et al., 2021) utilizes the advantages of data-free knowledge distillation to eliminate
the client-drift in data heterogeneity scenario. Specifically, it learns a lightweight generator in
server to ensemble data information in a data-free manner, and uses it to regulate local training
through the learned knowledge. In each round, the generator in server is sent to each participating
client. Then it generates a set of pseudo data and trains the local model together with the local data
by minimizing the prediction error. After the clients upload the updated local models to server, the
server aggregated a new global model, and trains the generator using all local models via data-free
knowledge distillation technique.

• FedDF (Lin et al., 2020) investigates a flexible model aggregation scheme in server. Compared
with the aforementioned methods that mainly restrict the local model update to align the global
and local optimization objectives, FedDF explores a new solution for FL in data heterogeneity sce-
nario. In FedDF, an ensemble knowledge distillation method is proposed for model aggregation,
which fine-tune the global model using the ensemble knowledge in local models. The knowledge
is extracted through an unlabeled dataset in server, which may be infeasible in real-world tasks.

A.6 DETAILED HYPERPARAMETERS

Here we introduce the setting of hyperparameters for baselines during experiments. For FedProx,
the proximal regularization parameter µ is 1e − 4. α in FedDyn is 1e − 2. We set the local update
round in SCAFFOLD following Acar et al. (2020), which is 50 according to our experiment setting.
For FedGen and FedDF, the learning rate for generator is the same as FLBoost, i.e., it is initialized
as 0.01 and is decayed quadratically with weight 0.998. As Resnet18 only has one fully-connected
layer, l in FedGen is L− 1, where L is the total layer number.

A.7 PERFORMANCE OF FLBOOST ON OTHER NETWORK ARCHITECTURES

Table 6 displays the test accuracy when adopting VGG11 (Simonyan & Zisserman, 2014) and
ResNet34 (He et al., 2016) as the classifier. Tables 6 demonstrates FLBoost yields the best per-
formance compared with baselines, which further validates the efficacy of FLBoost on various ar-
chitectures of deep neural networks.

15

Under review as a conference paper at ICLR 2022

Table 6: Test Accuracy using VGG11 and ResNet34 on CIFAR10 with α = 0.3.

VGG11 ResNet34
FedAvg 82.05±0.59 80.48±0.89
FedProx 82.10±0.53 81.02±0.53
FedDyn 85.38±0.44 81.13±1.11
SCAFFOLD 86.78±0.37 83.31±0.71
FedGen 84.38±0.56 80.72±0.44
FedDF 84.71±0.78 81.20±0.46
FLBoost 87.46±0.49 85.00±0.45

A.8 DISCUSSION

Privacy issue. Since FLBoost trains a generator to recover the training data of clients, it may
violate the privacy protection regulation in FL. However, according to our observation, the generator
can only captures the high-level feature pattern of training, which can not be understand by human
beings (see Figure 1). Besides, as the generator is trained by all local models, the generated data tend
to show shared features of data, which means the attribute of individual data will not be revealed. In
addition, according to Yin et al. (2020) and Yin et al. (2021), the local model itself can be utilized
to recover the training data, without using an auxiliary generator.

On the other hand, uploading data statistics of clients to server may also leak privacy information.
One optional solution to alleviate the risk of it is using partial local data during local training, as
the global model training in FLBoost is based on the statistics of data involved in current round.
Using this strategy, the clients need to send the statistics of involved data in each round, rather than
upload the statistics of total data once before training. If client designs the data selection properly,
the server and data stealer will not know the precise data statistics. Note that partial local training is
adopted and tolerated in many methods, such as SCAFFOLD, FedProx and FedFR (Zhuang et al.,
2021). Besides, it is common in real-world FL tasks due to the system heterogeneity of clients.

Communication cost. FLBoost only need to additionally transmit the statistics of training data
in each round (i.e., nk,yt ,∀k ∈ St,∀y ∈ [1, ..,M], M the class number), which induces negligibly
extra transmission cost. If the training data and the local training epoch of clients keep the same
during training, the statistics of every client can be reported to server before training, so that no
extra transmission cost will be induced.

A.9 LEARNING CURVE ON THE WHOLE TRAINING PROCESS

0 200 400 600 800 10000.4

0.5

0.6

0.7

0.8

FedAvg
FedDyn
FLBoost

FedProx
FedGen

SCAFFOLD
FedDF

(a) Learning curve of CIFAR10.

0 200 400 600 800 10000.2

0.3

0.4

0.5

0.6

FedAvg
FedDyn
FLBoost

FedProx
FedGen

SCAFFOLD
FedDF

(b) Learning curve of CIFAR100.

Figure 7: Learning Curves of CIFAR10 and CIFAR100 on 1000 communication rounds (α = 0.3).

Figure 7 illustrates the learning curve of CIFAR10 and CIFAR100 on the whole 1000 communica-
tion rounds, which corresponds to the results in Table 2. In this figure, FLBoost exceeds the other
methods in about 150 and 100 rounds respectively, and it achieves distinct performance gain after
1000 rounds.

16

Under review as a conference paper at ICLR 2022

A.10 EXPERIMENTS ON MORE CHALLENGING DATASETS

Table 7: Test accuracy on real-world datasets MIP-TCD, Compcar and Tiny-ImageNet.

Method MIO-TCD CompCar Tiny-ImageNet
FedAvg 89.63±1.06 43.34±2.93 34.68±0.67
FedProx 89.69±1.00 44.07±3.41 35.39±0.54
FedDyn 90.47±0.99 50.46±2.57 41.77±0.28
SCAFFOLD 89.88±1.11 48.64±3.46 38.80±0.18
FedGen 89.85±1.03 45.96±4.18 35.44±0.35
FedDF 90.01±0.70 47.31±3.47 36.19±0.40
FLBoost 91.16±0.92 51.85±3.46 42.23±0.22

In this section, we test the performance of FLBoost on more challenging real-world datasets - vehicle
classification datasets MIOTCD (Luo et al., 2018) and CompCar (Yang et al., 2015), and large-scale
image classification dataset Tiny-ImageNet2. To better validate the efficacy of FLBoost in real-
world scenario, we use the surveillance subset of CompCar, of which the images are collected by
surveillance cameras. For MIO-TCD and Tiny-ImageNet, we assign the training data to 100 clients,
while for CompCar the client number is 50. α of Dirichlet distribution is 0.6 for all these datasets.
The images of MIO-TCD and CompCar are resized to 112 ∗ 112 before training, and we adopt a
deeper generator for them. The communication round is 50, 100 and 1000 for MIO-TCD, CompCar
and Tiny-ImageNet respectively. The other settings are the same as in Section 4.1. We display the
experiment results in Table 7.

From this table, we find that FLBoost consistently outperforms the other methods in all scenarios,
which verifies the effectiveness of FLBoost in real-world FL applications. FedDF and FedGen
adopt data-free knowledge generation to improve the federated model. Though they yield higher
performance than FedAVG and FedProx, FLBoost exceeds them by 1% ∼ 6%. This further validates
the effectiveness of the proposed modules in FLBoost.

2https://www.kaggle.com/c/tiny-imagenet

17

	Introduction
	Related Work
	FLBOOST: On-the-Fly Fine-Tune the Global Model
	Overview of FLBoost
	Focused Knowledge Distillation
	Attention-Based Ensemble

	Experiments
	Implementation Details
	Comparison of FLBoost With Existing FL Methods
	Ablation Study

	Conclusion
	Appendix
	Algorithm of Client Update in FLBoost
	Exploration of Long-Tail problem
	Visualization of Data Heterogeneity Among Clients
	Detailed Architecture of Generator
	Baseline Description
	Detailed Hyperparameters
	Performance of FLBoost on Other Network Architectures
	Discussion
	Learning Curve on the Whole Training Process
	Experiments on More Challenging Datasets

