
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EMPOWERING LLM TOOL INVOCATION WITH TOOL-
CALL REWARD MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have recently alleviated limitations in outdated
internal knowledge and computational inaccuracies by invoking external tools
such as search engines and code generation. While reinforcement learning (RL)
has substantially enhanced tool usage in LLMs, most existing agentic RL ap-
proaches rely solely on outcome-only reward signals, which assign credit at a
coarse granularity and often induce gradient conflict (e.g., correct tool calls may
be penalized due to incorrect final answers). To address this, we propose the
Tool-call Reward Model (TRM), a specialized process reward model meticulously
designed to evaluate and reward each tool invocation. Since previous PRM re-
search has predominantly focused on traditional reasoning tasks such as step-wise
mathematical reasoning, the introduction of TRM brings two unique challenges:
(1) limited understanding of how to construct effective TRMs, including data re-
quirements and model size; and (2) difficulties integrating TRM with classical RL
algorithms such as PPO and GRPO, where naive adaptation may lead to reward
hacking (minimizing tool calls to avoid penalties). To tackle these challenges, we
establish a systematic TRM construction workflow and propose refined credit as-
signment and turn-level advantage estimation for effective integration with PPO
and GRPO. Experiments show that a 3B TRM trained on 10K samples achieves
robust performance. On search-based QA and Python code-based math tasks, in-
tegrating TRM consistently outperforms outcome-only reward RL methods across
models of different sizes.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated sophisticated proficiency in addressing com-
plex tasks, profoundly impacting a broad spectrum of domains (OpenAI, 2023; Guo et al., 2025;
Yang et al., 2025). However, LLMs are fundamentally limited by the static nature of their inter-
nal knowledge and their propensity to make computational errors (Schick et al., 2023; Qian et al.,
2025a). To overcome these challenges, LLMs increasingly invoke external tools, such as search en-
gines for accessing up-to-date information (Jin et al., 2025; Chen et al., 2025b) and code generation
for solving complex mathematical problems (Liao et al., 2024; Feng et al., 2025).

With tool invocation playing an increasingly important role in overcoming LLM limitations, rein-
forcement learning (RL), proven effective in traditional reasoning tasks (Guo et al., 2025; Team,
2025; Team et al., 2025; Wang et al., 2024), has been widely used to enhance tool usage. In practice,
most RL-based approaches (Jin et al., 2025; Song et al., 2025; Feng et al., 2025; Li et al., 2025b)
for tool invocation rely solely on outcome reward signals, evaluating only the correctness of the
final output (e.g., math answer correctness) while overlooking the quality of intermediate tool calls.
Consequently, credit for each tool call in a trajectory is assigned solely based on the final outcome,
irrespective of its individual quality or usefulness. With uniform treatment of tool calls, this ap-
proach limits the ability of the model to learn effective tool usage, potentially resulting in unstable
or suboptimal performance. For example, if the final answer is incorrect, a trajectory with correct
intermediate tool usage is still penalized (Figure 1-a and Figure 1-b)1. This discourages learning of

1A reasonable way to determine the paternal grandfather of a person is to first determine the father of the
person, then the father of that father.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Who is Charles Bretagne
Marie De La Trémoille's
paternal grandfather?

Search (“who is Charles Bretagne
Marie De La Trémoille’s father”)

To determine Charles Bretagne Marie De La Trémoille’s
paternal grandfather, we may first need to identify his father.

… Charles Bretagne Marie De La Trémoille is the son of
Jean Bretagne Charles de La Trémoille ……

Jean Bretagne Charles
de La Trémoille

Tho
ug

ht

Too
l c

all

Obs
er

va
tio

n

Ans
wer

Outcome
Reward

Tool call
Reward Model

(a) Incorrect answer after suitable tool invocation by LLM (b) Tool call reward complementation
for outcome reward weaknesses

(c) Performance gain from
tool call reward

Creation Application

Challenges

Wrong!

LLM

solved

Figure 1: Overview of TRM for improving tool invocation in LLMs: (a) limitations of outcome-only
reward, (b) benefits of tool call reward, and (c) performance gains from integrating tool call reward.

effective tool invocation strategies and causes gradient conflict (Lightman et al., 2024; Deng et al.,
2025b), often leading to unstable tool usage and degraded performance.

To this end, we propose the Tool-call Reward Model (TRM), which quantitatively measures the
utility of each tool invocation and assigns corresponding rewards. Although TRM can be viewed as
a specific type of process reward model (PRM), prior PRM research (Lightman et al., 2024; Zhang
et al., 2025b; Setlur et al., 2025) has predominantly focused on traditional reasoning tasks, leaving
tool invocation underexplored. TRM fills this gap by enabling fine-grained monitoring of tool usage,
thereby facilitating more appropriate tool invocation (Figure 1-b). However, introducing TRM raises
two new key challenges (Figure 1-c): 1) TRM creation: how to construct an effective TRM, and 2)
TRM application: how to integrate it with classical RL algorithms.

For the first challenge, the main difficulty lies in the limited understanding of TRMs, including how
to construct training data, the required data volume, and the suitable model size. To address this, we
develop a workflow to distill training data from frontier LLMs (§ 2.2) and systematically analyze
the impact of data volume and model size on TRM performance (§ 3.1). Beyond this, integrating
TRM with classical RL algorithms such as PPO Schulman et al. (2017) and GRPO Shao et al. (2024)
remains an open challenge, as directly transferring approaches that combine standard PRM and RL
algorithms may not work well for TRM. For instance, in GRPO, our experiments demonstrate that
group-level advantage estimation (Shao et al., 2024) of tool call reward can result in reward hacking,
where the model prefers fewer tool calls over effective usage (see Appendix E.1). To address these
issues, we refine the credit assignment strategy by allocating tool call rewards to the end of each
tool invocation, and introduce turn-level advantage estimation in GRPO (§ 2.3). Ultimately, our
experiments show that the proposed methods yield better overall model performance (Figure 1-c,
§ 3.2). Furthermore, we observe that TRM enhances generalization in tool invocation, enabling the
model to flexibly adapt to unseen tools (§ 3.3).

In summary, this work makes the following three contributions:1) We propose the Tool-call Reward
Model (TRM) and conduct a thorough investigation into its construction. 2) We develop and analyze
new algorithms for integrating TRM with classical RL methods, including refined credit assign-
ment strategies (PPO) and step-wise advantage estimation (GRPO). 3) We validate our approaches
through extensive experiments, demonstrating significant improvements in model performance. We
plan to make our data and code publicly available to facilitate future research.

2 METHODOLOGY

We introduce a Tool-call Reward Model (TRM) to resolve gradient conflict from outcome-only
rewards by supplying fine-grained, per-call utility signals that stabilize the tool invocation. In this
section, we (i) formalize the multi-turn RL framework for tool invocation in LLMs, (ii) detail the
construction of TRM, including training data distillation and model optimization, and (iii) integrate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

TRM with classic RL algorithms by proposing turn-level credit assignment and enhancing GRPO
with turn-level advantage estimation.

2.1 PROBLEM FORMULATION

We formalize multi-turn tool invocation in LLMs as a sequential decision-making process under
the reinforcement learning framework. Following the ReAct paradigm (Yao et al., 2023), the LLM
alternates between reasoning steps and tool invocations, enabling dynamic planning and external
information gathering for more robust and interpretable task-solving. Formally, consider a prompt
p and an LLM π parameterized by θ. Given p, the LLM π engages in multiple rounds of tool
invocation, where at each round, the model reasons over the current information and decides on the
next tool action. This iterative process continues until the model is ready to produce the final answer.
Finally, the LLM π generates a trajectory

τ = (p, t1, a1, o1, . . . , tnτ
, anτ

, onτ
, tnτ+1, y) , (1)

where ti (1 ≤ i ≤ nτ +1) denotes the reasoning thought, ai and oi (1 ≤ i ≤ nτ) is the tool invoked
and its corresponding output at turn i, nτ is the total number of tool invocation rounds, and y is the
final answer produced by the LLM π. Here, we refer to each triplet (ti, ai, oi) as a single turn in the
interaction.2

Given this formulation, our objective is to optimize the policy πθ to maximize the likelihood of
producing the correct final answer y at the end of the trajectory. Formally, the learning objective is
to maximize the expected correctness of the final answer y over trajectories generated by the policy
πθ:

max
θ

Eτ∼πθ
[I (y = y∗)] , (2)

where y∗ is the ground-truth answer and I (·) is the indicator function.

2.2 CONSTRUCTION OF TRM

Data Distillation We first describe the process of distilling high-quality training data for TRM
from frontier LLMs (Figure 2-a). This process consists of two main steps: 1) rollout collection and
2) tool call evaluation. In the rollout collection step, the model is provided with a set of prompts and
a tool-enabled environment, and generates multi-turn trajectories by autonomously invoking tools
to complete the task. For each collected rollout, we further evaluate every tool call ai by re-feeding
the whole trajectory into the model to assess its utility. Specifically, we assign two binary scores for
each tool call ai:

• necessity sine: whether the tool call contributes substantive progress toward task completion
• quality siq: whether the tool is invoked with reasonable parameters or used correctly

Hence, a tool call is assigned a score of 1 only when it is both necessary for task progress and
executed with high quality; if either criterion is not met, the score is 0. Formally, for a tool call ai,
the final score is defined as:

si = sine · siq, (3)

where sine, s
i
q ∈ {0, 1}. The detailed design of prompts are illustrated in Appendix A.1.

TRM Training The TRM adopts a transformer-based (Vaswani et al., 2017) LLM as its back-
bone. To adapt the model for tool-call utility prediction, we replace the original language modeling
head (used for next-token prediction) with a binary classification head consisting of a single linear
layer. Specifically, for each tool call ai, the model produces a probability s̃i ∈ [0, 1] based on the
hidden state of the last token of the tool call output oi. This score indicates the predicted utility of
the tool call. During training, the TRM is optimized using a binary cross-entropy loss3:

LBCE = Eτ

[
− 1

nτ

nτ∑
i=1

(
si log s̃i +

(
1− si

)
log

(
1− s̃i

))]
. (4)

2The final turn consists of both reasoning and the generation of the final answer, without involving any tool
call.

3In practice, a score is also produced at the last token of the answer to indicate its correctness.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

TRM

Outcome

Tool poolLLM
Prompts

LLM

Rollout
collection

Tool call
evaluation (a) TRM Training

Data Workflow

Necessity

Quality

Turn 3Turn 2Turn 1
0

1 0 1

Tool call score

Rollout
Turn 1 Turn 2 Turn 3

thought tool call observation answer

Training
data

(b) Integration of TRM into RL
Turn-level credit

assignment

Turn-level
advantage
estimation
for GRPOTurn 1 Turn 2 Outcome

Normalize
independently

Figure 2: TRM-guided LLM tool invocation. (a) Generation of tool invocation trajectories and turn-
level utility labels for TRM training. (b) Turn-level credit assignment and GRPO adaptation via
turn-level advantage estimation.

2.3 INTEGRATION OF TRM WITH RL

With TRM in place, we proceed to integrate it into established RL algorithms to optimize tool
invocation in LLMs. Specifically, we focus on two representative policy optimization methods4:
Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO).

Turn-level Credit Assignment To achieve appropriate credit assignment throughout the trajec-
tory, we combine TRM scores for intermediate tool invocations with the outcome reward for the
final answer (Figure 2-b). In particular, for each turn i (1 ≤ i ≤ nτ) of trajectory τ , the reward is
given by the TRM score s̃i, and for the final reasoning step (i = nτ + 1), the reward is determined
by the correctness of the final answer. Mathematically, the turn-level reward r̃i is defined as

r̃i =

{
s̃i, 1 ≤ i ≤ nτ

I(y = y∗), i = nτ + 1
. (5)

Both PPO and GRPO perform policy optimization at the token level, whereas our reward signals
are defined at the turn level. To bridge this granularity gap, we also represent each trajectory as a
sequence of tokens, τ = (x1, x2, . . . , xL), where xj is the j-th token. For each turn i (1 ≤ i ≤ nτ),
we identify ei as the index of the last token of the tool call ai. The set E = {e1, . . . , enτ } thus marks
all tool-call-ending tokens. We further define a mapping I(j) that returns the corresponding turn
index for any j ∈ E , and set I(L) = nτ +1 for the final answer. To specify which tokens participate
in policy optimization, we define M ⊆ {1, . . . , L} as the set of indices of thought, tool call, and
answer tokens that are not masked during RL training. These notations facilitate our subsequent
discussion on the integration of TRM with RL.

Integration with PPO To enable token-level policy optimization, we map turn-level rewards to
the corresponding tokens by assigning the reward for each tool call to the last token of the associated
action, and the outcome reward to the last token of the answer. Formally, the reward rj of token
xj (1 ≤ j ≤ L) is defined as

rj =


α · r̃I(j), j ∈ E
r̃I(j), j = L

0, otherwise
, (6)

where α ∈ (0, 1] is a hyperparameter controlling the weight of the TRM score. Advantage Aj is
then computed from rj (e.g., Generalized Advantage Estimation (Schulman et al., 2016)). With this

4For clarity, KL regularization is omitted in our discussion.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

token-level advantage, the PPO objective is formulated as

LPPO = Eτ∼πθ

 1

|M|
∑
j∈M

min
(
wj(θ) ·Aj , clip

(
wj(θ), 1− ϵ, 1 + ϵ

)
Aj

) , (7)

where wj(θ) =
πθ(xj |x<j)
πθold (xj |x<j)

and ϵ is the clipping parameter.

Integration with GRPO GRPO is a policy optimization method that compares and normalizes
rewards across a batch of trajectories to increase training efficiency. In GRPO, a group refers to a
batch of G trajectories {τ1, . . . , τG}. For each trajectory τg (1 ≤ g ≤ G), variables such as nτg , Eg ,
Mg , and other notations follow the same definitions as in previous sections, with the addition of the
trajectory index g. Across the group, we collect the TRM rewards R̃i

trm (for any turn i) and outcome
rewards R̃out via

R̃i
trm =

{
r̃ig | 1 ≤ g ≤ G, i ≤ nτg

}
, R̃out =

{
r̃
nτg+1
g | 1 ≤ g ≤ G

}
. (8)

We then perform turn-level advantage estimation, where rewards for each turn are normalized inde-
pendently across trajectories (Figure 2-b). In detail, for each turn i and trajectory τg , the normalized
rewards are computed as

r̂ig =
r̃ig − mean

(
R̃i

trm

)
std

(
R̃i

trm

) (1 ≤ i ≤ nτg), r̂
nτg+1

g =
r̃
nτg+1

g − mean
(
R̃out

)
std

(
R̃out

) . (9)

These normalized rewards are then assigned to the corresponding tokens, and token-level advantages
are computed via discounted aggregation:

rjg =


α · r̂I(j)g , j ∈ Eg
r̂
nτg+1

g , j = Lg

0, otherwise
, Aj

g = rLg
g +

Lg−1∑
m=j

γm−jrmg , (10)

where α is a weighting hyperparameter and γ is the discount factor5. With this token-level advan-
tage, the GRPO objective is formulated as

LGRPO = E{τg}∼πθ

 1

G

G∑
g=1

1

|M|
∑
j∈M

min
(
wj

g (θ) ·Aj
g, , clip

(
wj

g (θ) , 1− ϵ, 1 + ϵ
)
Aj

g

) . (11)

3 EXPERIMENTS

In this section, we focus on two key aspects:

• TRM exploration: How can we obtain an effective TRM?

• TRM exploitation: Does introducing TRM improve the tool-use capabilities of LLMs?

3.1 EXPLORATION OF TRM

Training Model and Data We use the Qwen2.5 (Qwen et al., 2025) series as the backbone archi-
tecture for TRM. For training data, we sample 15K prompts each from the HotpotQA (Yang et al.,
2018) and NQ (Kočiský et al., 2018) training sets. Rollouts are generated using DeepSeek-R1 (Guo
et al., 2025), which interacts with a search environment (Jin et al., 2025) to produce multi-turn tra-
jectories. Each trajectory is annotated with turn-level utility labels based on necessity and quality
by DeepSeek-R1. Finally, we randomly sample 10K labeled trajectories for TRM training. More
training details are in Appendix B.1.

5Masked tokens are skipped when computing the discounted sum of normalized rewards.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

In
-d

om
ai

n
O

ut
-o

f-
do

m
ai

n

(a) Impact of model size with
 10K training data

(b) Impact of training data
Size for 3B model

(c) Comparison of TRM-3B and
Baselines with 10K training data.

Figure 3: TRM performance comparison under different settings

Evaluation To evaluate TRM effectiveness, we use a best-of-n strategy (Lightman et al., 2024;
Luo et al., 2025): for each prompt, n candidate trajectories are generated, and the one with the
highest TRM score is selected. The score for a trajectory τ is computed as the product of all tool call
scores, i.e., S(τ) =

∏nτ+1
i=1 s̃i.6 Evaluation is conducted in both in-domain (HotpotQA validation

prompts) and out-of-domain (2WikiMultiHopQA (Ho et al., 2020) validation prompts) settings. All
candidate trajectories are generated by the Search-R1 (Jin et al., 2025) model, which is PPO-trained
based on Qwen2.5-7B. More details are in Appendix C.1.

Results and Analysis According to the results in Figure 3, we observe following key trends:

Key Takeaways for TRM Exploration

• Mid-sized TRMs (1.5B/3B) deliver optimal performance with 10K training samples, while
larger models (e.g., 7B) may be prone to overfitting given the same data scale.

• 10K labeled trajectories are sufficient to achieve robust TRM training and stable results.
• TRM consistently outperforms the majority vote baseline, though there remains a gap to the

upper bound established by pass@n.

3.2 EXPLOITATION OF TRM

Setup We conduct experiments in two distinct scenarios: (1) answering questions using a search
tool, and (2) solving math problems by writing Python code. Following prior works (Jin et al.,
2025; Li et al., 2025b), for the search-based QA task, we evaluate on both Qwen2.5-3B-Instruct
and Qwen2.5-7B-Instruct models; for the code-based math task, we utilize Qwen2.5-Math-1.5B
and Qwen2.5-Math-7B (Yang et al., 2024). The training data for each scenario are also sourced
from the corresponding prior works to ensure consistency and comparability. The search tool is
allowed up to 5 rounds per query, while the code tool can be invoked up to 3 times per problem.
All implementations are based on the Verl (Sheng et al., 2025; Zhang et al., 2024) framework.
We set α = 0.05 for PPO and α = 0.01 for GRPO. Additional training details are provided in
Appendix B.2.

Evaluation For the search scenario, we evaluate performance on both general QA
datasets (NQ (Kočiský et al., 2018), TriviaQA (Joshi et al., 2017), PopQA (Mallen et al., 2023)) and

6s̃nτ+1 indicates the correctness score for the final answer as predicted by the TRM.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of Qwen2.5 variants with different methods on various QA tasks. Best results
are in bold; second best are underlined.

Method General QA Multi-Hop QA Avg.
NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle

Qwen2.5-3B-Instruct
Direct Inference 12.08 32.44 13.08 15.98 24.75 2.19 2.40 14.70
IRCoT 26.32 49.47 33.28 24.33 16.19 4.43 19.20 24.75
RAG 37.29 56.05 40.60 26.31 23.08 5.17 6.40 27.84
SFT 27.53 31.37 12.26 20.70 26.28 6.25 11.20 19.37
R1-PPO 19.09 42.16 16.35 19.04 25.91 3.14 8.00 19.10
R1-GRPO 25.10 45.89 18.10 21.55 27.98 5.42 20.00 23.43
Search-R1-PPO 36.93 54.48 35.85 32.65 32.47 12.08 24.80 32.75
Search-R1-PPO-TRM (ours) 39.58 57.78 40.61 34.80 33.22 12.91 25.60 34.93
Search-R1-GRPO 47.01 61.88 45.73 43.34 42.68 18.08 37.60 42.33
Search-R1-GRPO-TRM (ours) 47.89 62.57 47.20 44.47 43.48 19.65 39.20 43.49

Qwen2.5-7B-Instruct
Direct Inference 14.29 43.69 15.10 19.23 25.54 3.68 10.40 18.85
IRCoT 18.23 50.31 30.33 21.61 8.73 4.05 17.60 21.55
RAG 34.88 58.96 39.45 30.16 23.62 5.50 21.60 30.59
SFT 31.97 34.00 12.36 22.23 26.40 9.72 10.40 21.01
R1-PPO 22.13 49.60 17.51 22.31 28.15 6.95 30.40 25.29
R1-GRPO 31.61 53.69 21.60 24.96 27.47 8.77 32.00 28.59
Search-R1-PPO 40.86 61.42 40.15 37.84 35.27 14.81 35.20 37.94
Search-R1-PPO-TRM (ours) 43.99 61.18 41.56 39.11 37.76 17.63 38.40 39.95
Search-R1-GRPO 49.97 66.81 47.59 49.06 47.80 22.30 44.80 46.90
Search-R1-GRPO-TRM (ours) 52.11 66.90 48.52 51.32 47.67 24.99 48.80 48.62

multi-hop QA datasets (HotpotQA (Yang et al., 2018), 2Wiki (Ho et al., 2020), Musique (Trivedi
et al., 2022), Bamboogle (Press et al., 2023)). For the code-writing scenario, evaluation is con-
ducted on AIME24, AIME25, MATH500 (Hendrycks et al., 2021), Olympiad (He et al., 2024), and
AMC23. More evaluation details are in Appendix C.2.

Baselines For both search and code scenarios, we consider: (1) Direct Inference, which an-
swers questions without any tool usage; (2) SFT, supervised fine-tuning without tool usage; and (3)
R1-PPO/R1-GRPO, models trained with PPO or GRPO using outcome-only rewards, without tool
usage. Additional baselines for the search scenario include: (1) RAG, which retrieves relevant in-
formation once before answering; (2) IRCOT, iterative retrieval based on previous results; and (3)
Search-R1-PPO/Search-R1-GRPO, trained with PPO or GRPO and allowed to use the search tool.
For the code scenario, we further include: (1) Instruct, direct inference with the instruct version
of Qwen2.5-Math models; (2) Instruct+PAL (Gao et al., 2023), generating programs as the inter-
mediate reasoning steps; and (3) ToRL-PPO/ToRL-GRPO, trained with PPO or GRPO and allowed to
use the code tool. More details are shown in Appendix D.

Results and Analysis Table 1 and Table 2 summarize the performance of Qwen2.5 variants across
different QA and math tasks. Several key observations emerge:

Key Takeaways for TRM Exploitation

• TRM consistently enhances model performance in both search and code scenarios, across
various model sizes (1.5B, 3B, 7B) and training algorithms (PPO, GRPO), indicating that
TRM substantially strengthens the ability of LLMs to effectively utilize external tools.

• Enabling LLMs to dynamically learn tool use yields notable gains, while reinforcement
learning without tool integration leads to much lower performance. Importantly, TRM
plays a critical role by helping models utilize tools more effectively.

• GRPO generally outperforms PPO in our experiments; however, integrating TRM reliably
boosts performance for both approaches.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance of Qwen2.5-Math variants with different methods on various math problems.
Best results are in bold; second best are underlined.

Method AIME24 AIME25 MATH500 Olympiad AMC23 Avg.
Qwen2.5-Math-1.5B

Direct Inference 7.78 1.11 67.80 28.30 35.00 28.00

Instruct 10.67 7.22 72.60 36.59 57.50 36.92

Instruct+PAL 34.44 0.00 21.80 10.07 17.50 16.76

SFT 0.00 0.00 15.40 7.11 27.50 10.00

R1-PPO 11.00 10.00 74.80 33.48 55.00 36.86

R1-GRPO 14.11 3.67 73.40 31.70 57.50 36.08

ToRL-PPO 19.11 13.89 75.80 43.56 55.00 41.47

ToRL-PPO-TRM (ours) 26.00 19.89 75.80 45.78 50.00 43.49

ToRL-GRPO 25.56 19.33 75.80 45.19 50.00 43.18

ToRL-GRPO-TRM (ours) 26.00 27.00 75.80 45.78 52.50 45.42

Qwen2.5-Math-7B
Direct Inference 12.22 6.67 69.80 30.96 40.00 31.93

Instruct 5.11 8.11 79.60 37.33 52.50 36.53

SFT 0.00 0.00 12.80 5.19 42.50 12.10

R1-PPO 28.11 10.11 77.40 37.93 65.00 43.71

R1-GRPO 21.00 9.78 78.00 37.93 67.50 42.84

ToRL-PPO 32.56 23.11 82.60 53.04 67.50 51.76

ToRL-PPO-TRM (ours) 34.33 26.56 83.40 52.44 70.00 53.35

ToRL-GRPO 35.00 21.89 83.80 52.74 67.50 52.19

ToRL-GRPO-TRM (ours) 36.56 23.67 83.20 52.59 72.50 53.70

3.3 ADDITIONAL ANALYSIS

In this section, we provide further analysis on several key factors related to TRM exploitation and
some ablation studies.

Effect of Hyperparameter α Figure 5-a shows that for PPO, a very small α limits the effect of
TRM, while a very large α overemphasizes tool use. A moderate α balances final performance and
reasonable tool invocation. Figure 5-b shows a similar trend for GRPO. We therefore set α = 0.05
for PPO and α = 0.01 for GRPO in our experiments.

Improvement of Tool-Use Generalization by TRM We investigate the generalization ability of
LLMs in tool-use scenarios. Specifically, we evaluate models trained in the search scenario on their
ability to use Python code for solving mathematical problems. As shown in Figure 5-c, introducing
TRM significantly improves generalization in tool invocation across different scenarios.

40.0 40.5 41.0 41.5 42.0 42.5 43.0
Accuracy

group-level

turn-level

41.18

42.47

Figure 4: Comparison of group-level and turn-
level advantage estimation in GRPO

Effect of Turn-Level Advantage Estima-
tion in GRPO Unlike turn-level estimation,
which normalizes rewards for each turn indi-
vidually, group-level estimation normalizes all
tool-call rewards within a group together (Shao
et al., 2024). As shown in Figure 4, turn-
level advantage estimation achieves better per-
formance than group-level estimation.

Comparison with other process-supervised
tool-use methods We compare our method with two representative process-supervised baselines:
StepSearch (Wang et al., 2025b), which is tailored for search-based QA and evaluates intermediate
search queries for relevance and information gain, and AgentPRM (Choudhury, 2025), a general

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Impact of ⍺ for PPO (b) Impact of ⍺ for GRPO (c) TRM for generalization

Figure 5: Summary of key analysis results. Subfigures (a) and (b) present the influence of the
hyperparameter α on PPO and GRPO in conjunction with TRM. Subfigure (c) demonstrates that
TRM improves the generalization capability of LLM for tool-use.

(a) Performance of different tool-supervised methods. (b) Effect of distillation vs TRM (c) Impact of tool-call necessity and quality

Figure 6: Performance comparisons and ablations for tool-supervised methods.

process-supervised method that labels tool calls based on whether they can eventually lead to a
correct answer. Figure 6-a shows our method consistently outperforms both baselines in the search
scenario over Qwen2.5-3B-Instruct with PPO, highlighting the advantage of our per-tool-call reward
modeling over hand-crafted or generic process supervision signals.

Ablation study to disambiguate distillation and TRM To separate the effects of distillation
from TRM, we introduce two baselines: ORM, which scores entire trajectories, and TRM used as a
verifier, which aggregates per-tool-call scores. Figure 6-b shows that trajectory-level ORM under-
performs the answer-only baseline in the search scenario over Qwen2.5-3B-Instruct with PPO, likely
because scoring entire trajectories introduces additional noise. TRM as a verifier improves slightly
but still lags behind full TRM, suggesting that fine-grained per-tool-call evaluation is essential for
guiding the model effectively and fully leveraging the distillation data.

Ablation study on the necessity and quality of tool calls We evaluate the impact of tool-call ne-
cessity and quality on model performance and tool usage. Figure 6-c shows that using quality-only
yields the lowest performance, likely due to excessive tool usage that introduces noise. Necessity-
only reduces the number of tool calls but may compromise the quality of each call, limiting overall
effectiveness. Combining both necessity and quality achieves the best performance while maintain-
ing a relatively stable number of tool calls across datasets, suggesting that balancing necessity and
quality is important for efficient and effective tool use.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 RELATED WORK

Process Reward Model Reward models have been widely adopted in various reasoning tasks
to supervise output quality, such as mathematical problem-solving (Uesato et al., 2023; Shao
et al., 2024; Zhang et al., 2025a). These models are generally divided into outcome reward mod-
els (ORMs), which provide holistic evaluations, and process reward models (PRMs), which offer
fine-grained, step-level assessments. PRMs have shown strong effectiveness (Lightman et al., 2024;
Wang et al., 2024; Luo et al., 2024; Cheng et al., 2025), especially in mathematical problem-solving,
and have been used both for guiding inference (e.g., best-of-n selection) and for supervising post-
training. By providing more granular feedback, process reward models enable models to learn more
interpretable and robust reasoning strategies. However, most existing work on PRMs focuses on tra-
ditional reasoning tasks, with limited exploration in tool-use scenarios. In this work, we introduce
the Tool-call Reward Model (TRM), specifically designed for tool-invocation of LLMs, and con-
duct a comprehensive study on both the exploration and exploitation of TRM. Our approach aims to
extend process-level supervision to agentic tasks, enabling more effective and flexible tool usage in
LLMs.

Agentic RL for LLM Tool Invocation Recent advances in outcome-based RL have enabled
LLMs to achieve impressive performance in agentic reasoning tasks (Guo et al., 2025; Hu et al.,
2025). This paradigm has spurred active research in tool invocation for LLMs, with works such
as Search-R1 (Jin et al., 2025), ReSearch (Chen et al., 2025a), R1-Searcher (Song et al., 2025),
DeepResearcher (Zheng et al., 2025), WebRL (Qi et al., 2024), WebThinker (Li et al., 2025a), Ze-
roSearch (Sun et al., 2025), ToRL (Li et al., 2025b), and ToolRL (Qian et al., 2025b) extending
outcome-supervised RL to scenarios where LLMs autonomously utilize search engines or code ex-
ecution for complex reasoning and problem-solving. While these methods have improved agentic
capabilities, the reward signals are typically coarse-grained, focusing only on final outcomes and
providing limited guidance for efficient tool-use or search strategies. Atom-Searcher (Deng et al.,
2025a) and StepSearch (Wang et al., 2025a) further consider intermediate tool-use steps by lever-
aging existing large models or rule-based approaches. In contrast, our work designs and develops a
dedicated TRM to explicitly monitor and supervise intermediate tool invocations, and validates its
effectiveness on both search and code-generation scenarios.

5 CONCLUSION

We present the Tool-call Reward Model (TRM), a special process reward model that provides fine-
grained supervision for tool invocation in large language models. TRM enables more precise credit
assignment for each tool call, mitigating issues with outcome-only reward signals such as gradient
conflict. We systematically study TRM construction and propose effective integration strategies with
classical RL algorithms, including turn-level credit assignment and advantage estimation. Experi-
ments on search-based QA and code-based math tasks show that TRM consistently improves tool
usage and generalization across various model sizes and RL methods. Our findings demonstrate that
robust TRM performance can be achieved with moderate model sizes and limited training data. We
believe TRM offers a promising direction for advancing agentic capabilities in LLMs.

REFERENCES

Bytedance-Seed-Foundation-Code-Team, :, Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu
Chen, Wentao Chen, Zhengyu Chen, Shijie Geng, Aoyan Li, Bo Li, Bowen Li, Linyi Li, Boyi
Liu, Jiaheng Liu, Kaibo Liu, Qi Liu, Shukai Liu, Siyao Liu, Tianyi Liu, Tingkai Liu, Yongfei Liu,
Rui Long, Jing Mai, Guanghan Ning, Z. Y. Peng, Kai Shen, Jiahao Su, Jing Su, Tao Sun, Yifan
Sun, Yunzhe Tao, Guoyin Wang, Siwei Wang, Xuwu Wang, Yite Wang, Zihan Wang, Jinxiang
Xia, Liang Xiang, Xia Xiao, Yongsheng Xiao, Chenguang Xi, Shulin Xin, Jingjing Xu, Shikun
Xu, Hongxia Yang, Jack Yang, Yingxiang Yang, Jianbo Yuan, Jun Zhang, Yufeng Zhang, Yuyu
Zhang, Shen Zheng, He Zhu, and Ming Zhu. Fullstack bench: Evaluating llms as full stack coders,
2025. URL https://arxiv.org/abs/2412.00535.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to

10

https://arxiv.org/abs/2412.00535

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

reason with search for llms via reinforcement learning, 2025a. URL https://arxiv.org/abs/
2503.19470.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via reinforce-
ment learning. arXiv preprint arXiv:2503.19470, 2025b.

Jie Cheng, Ruixi Qiao, Lijun Li, Chao Guo, Junle Wang, Gang Xiong, Yisheng Lv, and Fei-Yue
Wang. Stop summation: Min-form credit assignment is all process reward model needs for rea-
soning, 2025. URL https://arxiv.org/abs/2504.15275.

Sanjiban Choudhury. Process reward models for llm agents: Practical framework and directions,
2025. URL https://arxiv.org/abs/2502.10325.

Yong Deng, Guoqing Wang, Zhenzhe Ying, Xiaofeng Wu, Jinzhen Lin, Wenwen Xiong, Yuqin Dai,
Shuo Yang, Zhanwei Zhang, Qiwen Wang, Yang Qin, Yuan Wang, Quanxing Zha, Sunhao Dai,
and Changhua Meng. Atom-searcher: Enhancing agentic deep research via fine-grained atomic
thought reward, 2025a. URL https://arxiv.org/abs/2508.12800.

Yong Deng, Guoqing Wang, Zhenzhe Ying, Xiaofeng Wu, Jinzhen Lin, Wenwen Xiong, Yuqin Dai,
Shuo Yang, Zhanwei Zhang, Qiwen Wang, et al. Atom-searcher: Enhancing agentic deep research
via fine-grained atomic thought reward. arXiv preprint arXiv:2508.12800, 2025b.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms,
2025. URL https://arxiv.org/abs/2504.11536.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: program-aided language models. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. StableToolBench: Towards stable large-scale benchmarking on tool learning
of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics: ACL 2024, pp. 11143–11156, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
664. URL https://aclanthology.org/2024.findings-acl.664/.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench:
A challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.211. URL https://aclanthology.org/2024.acl-long.211/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International Com-
mittee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL https:
//aclanthology.org/2020.coling-main.580/.

11

https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2504.15275
https://arxiv.org/abs/2502.10325
https://arxiv.org/abs/2508.12800
https://arxiv.org/abs/2504.11536
https://aclanthology.org/2024.findings-acl.664/
https://aclanthology.org/2024.acl-long.211/
https://openreview.net/forum?id=7Bywt2mQsCe
https://aclanthology.org/2020.coling-main.580/
https://aclanthology.org/2020.coling-main.580/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
robustness to both prompt and reward models. arXiv preprint arXiv:2501.03262, 2025.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan O Arik, Dong Wang, Hamed Za-
mani, and Jiawei Han. Search-r1: Training LLMs to reason and leverage search engines with
reinforcement learning. In Second Conference on Language Modeling, 2025. URL https:
//openreview.net/forum?id=Rwhi91ideu.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for
Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147/.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 6769–6781, Online, Novem-
ber 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550.
URL https://aclanthology.org/2020.emnlp-main.550/.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of
the Association for Computational Linguistics, 6:317–328, 2018. doi: 10.1162/tacl a 00023.
URL https://aclanthology.org/Q18-1023/.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability,
2025a. URL https://arxiv.org/abs/2504.21776.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025b.

Minpeng Liao, Chengxi Li, Wei Luo, Wu Jing, and Kai Fan. MARIO: MAth reasoning with code
interpreter output - a reproducible pipeline. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Findings of the Association for Computational Linguistics: ACL 2024, pp. 905–924,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.findings-acl.53. URL https://aclanthology.org/2024.findings-acl.53/.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=v8L0pN6EOi.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models by automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models with automated process supervision, 2025. URL https://openreview.net/forum?id=
KwPUQOQIKt.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 9802–9822, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.546. URL https://aclanthology.org/2023.acl-long.546/.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

12

https://openreview.net/forum?id=Rwhi91ideu
https://openreview.net/forum?id=Rwhi91ideu
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://aclanthology.org/2020.emnlp-main.550/
https://aclanthology.org/Q18-1023/
https://arxiv.org/abs/2504.21776
https://aclanthology.org/2024.findings-acl.53/
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=KwPUQOQIKt
https://openreview.net/forum?id=KwPUQOQIKt
https://aclanthology.org/2023.acl-long.546/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 5687–5711, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-emnlp.378. URL https://aclanthology.org/2023.
findings-emnlp.378/.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue
Yang, Jiadai Sun, Shuntian Yao, Tianjie Zhang, Wei Xu, Jie Tang, and Yuxiao Dong. Webrl:
Training llm web agents via self-evolving online curriculum reinforcement learning. CoRR,
abs/2411.02337, 2024. URL http://dblp.uni-trier.de/db/journals/corr/corr2411.
html#abs-2411-02337.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025a.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs, 2025b. URL https://arxiv.org/
abs/2504.13958.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı́, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: language models can
teach themselves to use tools. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for LLM reasoning. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=A6Y7AqlzLW.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models, 2024. URL https://arxiv. org/abs/2402.03300, 2(3):5, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297, New
York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400711961. doi: 10.
1145/3689031.3696075. URL https://doi.org/10.1145/3689031.3696075.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
learning. arXiv preprint arXiv:2503.05592, 2025.

13

https://aclanthology.org/2023.findings-emnlp.378/
https://aclanthology.org/2023.findings-emnlp.378/
http://dblp.uni-trier.de/db/journals/corr/corr2411.html#abs-2411-02337
http://dblp.uni-trier.de/db/journals/corr/corr2411.html#abs-2411-02337
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2412.15115
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://openreview.net/forum?id=A6Y7AqlzLW
https://doi.org/10.1145/3689031.3696075

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
searching, 2025. URL https://arxiv.org/abs/2505.04588.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https:
//qwenlm.github.io/blog/qwq-32b/.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
hop questions via single-hop question composition. Transactions of the Association for Computa-
tional Linguistics, 10:539–554, 2022. doi: 10.1162/tacl a 00475. URL https://aclanthology.
org/2022.tacl-1.31/.

Jonathan Uesato, Nate Kushman, Ramana Kumar, H. Francis Song, Noah Yamamoto Siegel, Lisa
Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with
process-based and outcome-based feedback, 2023. URL https://openreview.net/forum?id=
MND1kmmNy0O.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human anno-
tations. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9426–9439, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu.
Stepsearch: Igniting llms search ability via step-wise proximal policy optimization. arXiv preprint
arXiv:2505.15107, 2025a.

Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu.
Stepsearch: Igniting llms search ability via step-wise proximal policy optimization, 2025b. URL
https://arxiv.org/abs/2505.15107.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.

14

https://arxiv.org/abs/2505.04588
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://aclanthology.org/2022.tacl-1.31/
https://aclanthology.org/2022.tacl-1.31/
https://openreview.net/forum?id=MND1kmmNy0O
https://openreview.net/forum?id=MND1kmmNy0O
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2024.acl-long.510/
https://arxiv.org/abs/2505.15107
https://aclanthology.org/D18-1259/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
WE vluYUL-X.

Chi Zhang, Guangming Sheng, Siyao Liu, Jiahao Li, Ziyuan Feng, Zherui Liu, Xin Liu, Xiaoying
Jia, Yanghua Peng, Haibin Lin, et al. A framework for training large language models for code
generation via proximal policy optimization. In NL2Code Workshop of ACM KDD, 2024.

Yuxin Zhang, Meihao Fan, Ju Fan, Mingyang Yi, Yuyu Luo, Jian Tan, and Guoliang Li. Reward-
sql: Boosting text-to-sql via stepwise reasoning and process-supervised rewards, 2025a. URL
https://arxiv.org/abs/2505.04671.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathe-
matical reasoning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 10495–
10516, Vienna, Austria, July 2025b. Association for Computational Linguistics. ISBN 979-
8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.547. URL https://aclanthology.org/
2025.findings-acl.547/.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments, 2025. URL https://arxiv.org/abs/2504.03160.

15

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2505.04671
https://aclanthology.org/2025.findings-acl.547/
https://aclanthology.org/2025.findings-acl.547/
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2504.03160

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS

In this work, large language models were used solely for language polishing and improving the
clarity of the manuscript. The LLMs did not participate in any substantive aspects of the research,
including problem definition, research motivation, methodology, experimental design, or analysis.
All scientific contributions, conceptual developments, and experimental results were conducted and
validated by the authors without the involvement of LLMs in the core research process.

ETHICS STATEMENT

This work does not involve sensitive personal data, or practices that raise privacy or security con-
cerns. All datasets used are publicly available and do not contain personally identifiable information.
The research does not present potentially harmful methodologies, applications, or insights, and does
not raise issues related to discrimination, bias, or fairness. The authors have adhered to the ICLR
Code of Ethics throughout the research and submission process.

REPRODUCIBILITY STATEMENT

All experimental details are provided in the main text (§ 3) and Appendix to ensure reproducibility.
Key code components have been submitted with this paper, and the complete codebase will be
released publicly at an appropriate time.

LIMITATIONS AND IMPACTS

While the Tool-call Reward Model (TRM) demonstrates significant improvements in tool-use super-
vision for large language models, several limitations remain. First, our study is scoped to tasks with
verifiable final outcomes (e.g., factual QA and code generation), as our primary focus is to address
the limitations of outcome-only reward RL in such settings. Extending TRM to open-ended (Guo
et al., 2024) reinforcement learning, where correctness is difficult to assess, would require additional
mechanisms for outcome evaluation and is left for future work. Second, to keep rollouts manage-
able and reduce judge bias, we truncate trajectories to a moderate length, and our current framework
does not fully resolve the challenge of providing reliable process supervision for very long tool-use
trajectories. Finally, TRM models tool utility via a simple binary necessity–quality decomposition,
which may be insufficient to capture more nuanced, multi-objective notions of tool usefulness in
complex domains.

Despite these areas for improvement, TRM provides fine-grained supervision that enables more
interpretable and robust tool usage, advancing the agentic capabilities of large language models. This
approach can facilitate safer and more reliable deployment of LLMs in real-world tasks requiring
external tool invocation, and we hope our work inspires further research in process-level reward
modeling.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A PROMPTS

A.1 PROMPTS FOR TRM TRAINING DATA DISTILLATION

Prompt of Tool Call Evaluation for Search Scenario

TASK
You are a professional Tool Call Evaluator for AI agent trajectories. For a given

↪→ user question and its complete step-by-step trajectory, review every tool
↪→ call (all are of type ‘search‘) and assess each using the following
↪→evaluation dimensions:

- Tool Selection Accuracy
- correct (1): It is appropriate to use the ‘search‘ tool for this subtask;

↪→this call is necessary to make progress.
- incorrect (0): Using ‘search‘ is not appropriate here (the information is

↪→already available, the call is unnecessary, or it does not help answer
↪→the user’s question).

- Query Quality
- perfect (1): The ‘query‘ is clear, directly addresses the user’s need, and

↪→uses precise wording.
- minor or major error (0):
- minor error: There is some ambiguity or slight irrelevance, but the search

↪→will likely still provide useful results.
- major error: The query is unclear or unrelated to the user’s actual need.

INSTRUCTIONS
- Evaluate every tool call (all are ‘search‘) on both dimensions.
- Briefly justify each score you assign.

INPUT FORMAT
You will receive:
- ‘user_question‘: The original user question.
- ‘trajectory‘: The full step-by-step trajectory as a list of steps.
- Each step includes:
- ‘step_id‘
- ‘thought‘: The agent’s reasoning or intention before making the search.
- ‘query‘: The search query issued.
- ‘response‘: The information returned from the search.

Example:
‘‘‘
{{
"user_question": "What is the capital of France and the population of Germany

↪→in 2023?",
"trajectory": [
{{
"step_id": 0,
"thought": "I need to find the capital of France.",
"query": "capital of France",
"response": "Paris is the capital of France."

}},
{{
"step_id": 1,
"thought": "Now I should get the population figure for Germany in 2023.",
"query": "population of Germany 2023",
"response": "The population of Germany in 2023 is estimated to be about 84

↪→million."
}}

]
}}
‘‘‘

... (continued in next page)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt of Tool Call Evaluation for Search Scenario (continued)

OUTPUT FORMAT
Provide your evaluations as a JSON list.
For each step, output an object with:
- ‘step_id‘
- ‘tool_selection_accuracy‘: 1 or 0
- ‘tool_selection_justification‘: your brief justification
- ‘query_quality‘: 1 or 0
- ‘query_quality_justification‘: your brief justification
Example:
‘‘‘
[
{{
"step_id": 0,
"tool_selection_accuracy": 1,
"tool_selection_justification": "The user asked for the capital of France,

↪→which is factual information requiring a search.",
"query_quality": 1,
"query_quality_justification": "The query is clear and directly requests the

↪→needed information."
}},
{{
"step_id": 1,
"tool_selection_accuracy": 1,
"tool_selection_justification": "The user needs the population of Germany in

↪→2023, which requires a search.",
"query_quality": 1,
"query_quality_justification": "The query is specific and unambiguous."

}}
]
‘‘‘

INPUT
‘‘‘
{input}
‘‘‘

OUTPUT

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt of Tool Call Evaluation for Code Scenario

TASK
You are a professional Tool Call Evaluator for AI agent trajectories. For a given

↪→ user question and its complete step-by-step trajectory, review every tool
↪→ call (all are of type ‘program‘) and assess each using the following
↪→evaluation dimensions:

- Tool Selection Accuracy
- correct (1): It is appropriate to use the ‘program‘ tool for this subtask;

↪→writing and executing a program is necessary or clearly helpful for
↪→making progress (e.g., for calculation, verification, or complex
↪→reasoning).

- incorrect (0): Using ‘program‘ is not appropriate here (the calculation or
↪→reasoning can be done easily by hand, the program is unnecessary, or it
↪→does not help answer the user’s question).

- Code Quality
- perfect (1): The code is complete, correct, and directly serves the intended

↪→purpose (e.g., correct imports, clear logic, no errors, and directly
↪→answers the subtask).

- minor or major error (0):
- minor error: The progrcodeam has small issues (e.g., missing imports, minor

↪→ inefficiency), but will likely still work as intended.
- major error: The code is incomplete, incorrect, or does not address the

↪→intended purpose.
Note:
In this evaluation, it is acceptable for the program to be used for verifying

↪→or checking results that were derived by hand in previous reasoning
↪→steps. The code does not need to independently derive all intermediate
↪→parameters or replicate the full logical chain, as long as it correctly
↪→verifies or computes the intended result. This use of code for auxiliary
↪→ verification is considered sufficient for a perfect score, provided the
↪→ code is correct and complete.

INSTRUCTIONS
- Evaluate every tool call (all are ‘program‘) on both dimensions.
- Briefly justify each score you assign.
INPUT FORMAT
You will receive:
- ‘user_question‘: The original user question.
- ‘trajectory‘: The full step-by-step trajectory as a list of steps.
- Each step includes:
- ‘step_id‘
- ‘thought‘: The agent’s reasoning or intention before programming.
- ‘code‘: The code issued (if any; otherwise may be empty).
- ‘output‘: The output from executing the code (if any; otherwise may be

↪→empty).

... (continued in next page)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt of Tool Call Evaluation for Code Scenario (continued)

Example:
‘‘‘
{{
"user_question": "What is the sum of the first 100 positive integers?",
"trajectory": [
{{
"step_id": 0,
"thought": "I can use the formula for the sum of the first n integers, but

↪→I’ll write a program to verify the result.",
"code": "n = 100\nresult = n * (n + 1) // 2\nprint(result)",
"output": "5050"

}},
{{
"step_id": 1,
"thought": "Now I will write a program to sum the integers from 1 to 100

↪→directly.",
"code": "print(sum(range(1, 101)))",
"output": "5050"

}}
]

}}
‘‘‘
OUTPUT FORMAT
Provide your evaluations as a JSON list.
For each step, output an object with:
- ‘step_id‘
- ‘tool_selection_accuracy‘: 1 or 0
- ‘tool_selection_justification‘: your brief justification
- ‘code_quality‘: 1 or 0
- ‘code_quality_justification‘: your brief justification
Example:
‘‘‘
[
{{
"step_id": 0,
"tool_selection_accuracy": 1,
"tool_selection_justification": "Using a program to verify the formula is

↪→reasonable and helps ensure correctness.",
"code_quality": 1,
"code_quality_justification": "The program is correct, complete, and directly

↪→ computes the required sum."
}},
{{
"step_id": 1,
"tool_selection_accuracy": 0,
"tool_selection_justification": "Writing a second program to do the same

↪→calculation in a different way is redundant and not necessary for
↪→solving the user’s question.",

"code_quality": 1,
"code_quality_justification": "The program is correct and concise, but does

↪→not add value beyond the previous step."
}}

]
‘‘‘
INPUT
‘‘‘
{input}
‘‘‘
OUTPUT

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Prompt of Tool Call Evaluation for Multi-tool Scenario

TASK
You are a professional Tool Call Evaluator for AI agent trajectories.
For a given user question, a list of available tools (with descriptions and

↪→parameter schemas),
and the complete step-by-step trajectory, review every tool call and assess each

↪→using the
following evaluation dimensions:
- Tool Selection Accuracy
- correct (1):
- The chosen tool matches the intended subtask and is consistent with the

↪→tool’s description and schema.
- The call is necessary or clearly helpful for making progress toward

↪→answering the user’s question or fulfilling the user’s request.
- incorrect (0):
- The chosen tool does **not** match the subtask (e.g., wrong tool given the

↪→intention or user need).
- Or the call is redundant / unnecessary (e.g., the information is already

↪→available from earlier steps, or the call does not help answer the user
↪→’s question).

- Argument Quality
- perfect (1):
- The arguments to the tool are correct, complete, and specific.
- They respect the tool’s parameter schema (types, required fields) and align

↪→ with the user’s need or the agent’s stated intention.
- minor or major error (0):
- minor error:
- Small mismatch, ambiguity, or slight irrelevance in arguments that still

↪→likely allows the tool to work and return useful results.
- major error:
- Missing required fields, wrong types, wrong values, or arguments that do

↪→not actually reflect the intended subtask or the user request.
- The tool would likely fail, error, or return irrelevant / unusable

↪→results.

INSTRUCTIONS
- Evaluate every tool call on both dimensions.
- Briefly justify each score you assign.

INPUT FORMAT
You will receive:
- ‘user_question‘: The original user question.
- ‘trajectory‘: The full step-by-step trajectory as a list of steps.
- Each step includes:
- ‘step_id‘
- ‘thought‘: The agent’s reasoning or intention before making the search.
- ‘tool_calls‘: The tools invoked.
- ‘response‘: The information returned from the tool calls.

- ‘available_tools‘: A list of available tools with their descriptions and
↪→parameter schemas.

... (continued in next page)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt of Tool Call Evaluation for Multi-tool Scenario (continued)

Example:
‘‘‘
{{
"user_question": "What is the capital of France and the population of Germany

↪→in 2023?",
"available_tools": [
{{
"name": "search",
"description": "Use this tool to search for factual information from the

↪→web.",
"parameters": {{
"type": "object",
"properties": {{
"query": {{
"type": "string",
"description": "The search query string."

}}
}},
"required": ["query"]

}}
}}

],
"trajectory": [
{{
"step_id": 0,
"thought": "I need to find the capital of France.",
"tool_calls": [{{
"name": "search",
"arguments": {{
"query": "capital of France"

}}
}}],
"response": "Paris is the capital of France."

}},
{{
"step_id": 1,
"thought": "Now I should get the population figure for Germany in 2023.",
"tool_calls": [{{
"name": "search",
"arguments": {{
"query": "population of Germany 2023"

}}
}}],
"response": "The population of Germany in 2023 is estimated to be about 84

↪→million."
}}

]
}}
‘‘‘

... (continued in next page)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt of Tool Call Evaluation for Multi-tool Scenario (continued)

OUTPUT FORMAT
Provide your evaluations as a JSON list.
For each step, output an object with:
- ‘step_id‘
- ‘tool_selection_accuracy‘: 1 or 0
- ‘tool_selection_justification‘: your brief justification
- ‘argument_quality‘: 1 or 0
- ‘argument_quality_justification‘: your brief justification
Example:
‘‘‘
[
{{
"step_id": 0,
"tool_selection_accuracy": 1,
"tool_selection_justification": "The user asked for the capital of France,

↪→which is factual information requiring a search.",
"argument_quality": 1,
"argument_quality_justification": "The query is clear and directly requests

↪→the needed information."
}},
{{
"step_id": 1,
"tool_selection_accuracy": 1,
"tool_selection_justification": "The user needs the population of Germany in

↪→2023, which requires a search.",
"argument_quality": 1,
"argument_quality_justification": "The query is specific and unambiguous."

}}
]
‘‘‘

INPUT
‘‘‘
{input}
‘‘‘

OUTPUT

A.2 SYSTEM PROMPTS FOR TASKS

System Prompt for QA Tasks with Search Tool

Answer the given question. You must conduct reasoning inside <think> and </think>
↪→ first every time you get new information. After reasoning, if you find
↪→you lack some knowledge, you can call a search engine by <search> query </
↪→search> and it will return the top searched results between <tool_response
↪→> and </tool_response>. You can search as many times as your want. If you
↪→find no further external knowledge needed, you can directly provide the
↪→answer inside <answer> and </answer>, without detailed illustrations. For
↪→example, <answer> Beijing </answer>.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

System Prompt for QA Tasks without Search Tool

Answer the given question. You should first have a reasoning process in mind and
↪→then provides the answer. Show your reasoning in <think> </think> tags and
↪→ return the final answer in <answer> </answer> tags, for example <answer>
↪→Beijing </answer>.

System Prompt for Mathematical Problems with Code Tool

Solve the following problem step by step. You now have the ability to selectively
↪→ write executable Python code to enhance your reasoning process. The
↪→Python code will be executed by an external sandbox, and the output (
↪→wrapped in ‘<tool_response>output_str</tool_response>‘) can be returned to
↪→ aid your reasoning and help you arrive at the final answer. The Python
↪→code should be complete scripts, including necessary imports. Put your
↪→final answer within \\boxed{}.

System Prompt for Mathematical Problems without Code Tool

Please reason step by step, and put your final answer within \\boxed{}.

System Prompt for Real-world Problems with Multi Tools

In this environment you have access to a set of tools you can use to assist with
↪→the user query. You may perform multiple rounds of function calls. In each
↪→ round, you can call one or more functions.

Here are available functions in JSONSchema format:
‘‘‘json
{func_schemas}
‘‘‘

In your response, you need to first think about the reasoning process in the mind
↪→ and then conduct function calling to get the information or perform the
↪→actions if needed. The reasoning process and function calling are enclosed
↪→ within <think> </think> and <tool_call> </tool_call> tags. The results of
↪→ the function calls will be given back to you after execution, and you can
↪→ continue to call functions until you can provide the final answer
↪→enclosed within <answer> </answer> tags for the user’s question.

Tool call example:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
...
</tool_call>

Final answer example:
<answer> ... </answer>

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B TRAINING DETAILS

B.1 TRM TRAINING DETAILS

For the search scenario, we use Qwen2.5-3B-Instruct as the backbone model and train with 10K
examples. For the code scenario, we adopt Qwen2.5-Math-1.5B as the backbone and utilize 20K
training samples. The training process follows standard supervised fine-tuning procedures, and the
key hyperparameters are summarized as follows. We set the number of training epochs to 10, with
a learning rate of 1e-6. The global batch size 128. The maximum sequence length is 8192, and the
maximum prompt length is 1024. All experiments are conducted using Huggingface implementa-
tion7.

B.2 RL DETAILS

Tool Execution Environment For the search tool, we follow the setup of Search-R1 (Jin et al.,
2025) and use the 2018 Wikipedia dump (Karpukhin et al., 2020) as the knowledge source. The
E5 (Wang et al., 2022) retriever is employed to retrieve relevant passages for each query. For the
Python code execution environment, we follow the approach in ToRL (Li et al., 2025b) and utilize
the SandboxFusion environment (Bytedance-Seed-Foundation-Code-Team et al., 2025) to safely
execute code snippets. This setup ensures both the reliability and security of tool interactions during
reinforcement learning experiments.

Table 3: Hyperparameters in RL. The notation 3B / 1.5B and 7B / 7B denote the backbone model
sizes used for different tasks: the first value corresponds to the search tool for QA, and the second
value corresponds to the Python code tool for mathematical problem solving.

Hyperparameter PPO GRPO
3B / 1.5B 7B / 7B 3B / 1.5B 7B / 7B

trainer.total training steps 500 300 500 300
algorithm.adv estimator gae gae grpo grpo
data.train batch size 512 512 512 / 128 512 / 128
actor rollout ref.actor.ppo mini batch size 256 256 256 / 64 256 / 64
data.max prompt length 8192 / 3072 8192 / 3072 8192 / 3072 8192 / 3072
data.max response length 512 / 1024 512 / 1024 512 / 1024 512 / 1024
tools.max tool resp len 512 512 512 512
actor rollout ref.actor.optim.lr 2e-7 / 1e-6 2e-7 / 1e-6 2e-6 2e-6
critic.optim.lr 5e-7 / 5e-6 5e-7 / 5e-6 - -
actor rollout ref.actor.entropy coeff 0.001 0.001 0 0
actor rollout ref.rollout.temperature 1.0 1.0 1.0 1.0
actor rollout ref.rollout.n 1 1 5 / 8 5 / 8
tools.max turns 5 / 3 5 / 3 5 / 3 5 / 3
algorithm.kl ctrl.kl coef 0.001 0.001 - -
actor rollout ref.actor.kl loss coef - - 0.001 0.001

Training Hyperparameters Table 3 presents the key hyperparameters used in our RL experi-
ments. All other training configurations follow standard practices as described in the main text.

C EVALUATION DETAILS

C.1 TRM EVALUATION

For evaluation, we use the checkpoint8 from Search-R1 (Jin et al., 2025) to collect rollout candidates
from the prompts in validation sets of HotpotQA and 2wikimultihopQA. During rollout generation,
we set the sampling temperature to 0. Additionally, the agent is allowed to perform up to 3 search
steps per query.

7https://huggingface.co/docs/trl/prm trainer
8https://huggingface.co/PeterJinGo/SearchR1-nq hotpotqa train-qwen2.5-7b-em-ppo-v0.2

25

https://huggingface.co/docs/trl/prm_trainer
https://huggingface.co/PeterJinGo/SearchR1-nq_hotpotqa_train-qwen2.5-7b-em-ppo-v0.2

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) The trend of TRM scores with respect
to tool call rounds (b) The trend of average tool call counts during training

Figure 7: Reward hacking in group-level advantage estimation for GRPO: (a) TRM scores decrease
with more tool calls, and (b) turn-level estimation mitigates the penalization of longer tool call
sequences.

C.2 LLM EVALUATION

For LLM evaluation, we set the sampling temperature to 0 to encourage deterministic generation. 9

Other parameters, such as the maximum number of tool calls, are kept consistent with those used
during training. Notably, since AIME24 and AIME25 contain very few problems, we report the
average results over 30 repeated evaluations for these two datasets to ensure statistical reliability.

D BASELINE DETAILS

Training-free Methods For IRCoT and RAG, we mainly use the implementation10 of Re-
Search (Chen et al., 2025a).

Training Methods For SFT, we adopt LLaMA-Factory (Zheng et al., 2024). For R1, we simply
disable tool invocation in our framework.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 REWARD HACKING CAUSED BY GROUP-LEVEL ADVANTAGE ESTIMATION

Group-level advantage estimation in GRPO can lead to reward hacking, where the model prefers
shorter tool call sequences. This is because cascading errors make later tool calls less reliable,
resulting in lower scores and penalization for longer sequences (Figure 7-a). In contrast, turn-level
advantage estimation alleviates this issue by treating each tool call independently, encouraging more
stable tool usage (Figure 7-b). Tool-call numbers on evaluation benchmarks in Table 4 are consistent.
Notably, introducing TRM does not significantly increase the number of tool calls compared to
outcome-only training methods.

E.2 RESOURCE OVERHEAD INTRODUCED BY TRM

As shown in Table 5, incorporating TRM introduces only an 8.8% overhead per training step, indi-
cating minimal additional compute cost. BoN inference experiences a 50% increase in per-sample
time with TRM; however, the absolute time remains small (with the full BoN evaluation taking ∼ 20
minutes), which is practically negligible.

9Due to the use of the vLLM server, some randomness may still be present during evaluation.
10https://github.com/bytedance/SandboxFusion/tree/main

26

https://github.com/bytedance/SandboxFusion/tree/main

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 4: Average tol-call numbers on various QA tasks over Qwen2.5-3B-Instruct with PPO: turn-
level vs. group-level

Method General QA Multi-Hop QA Avg.
NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle

Group-level 1.99 1.93 2.00 2.42 2.81 3.01 2.37 2.36

Turn-level 2.59 2.44 2.48 2.68 3.01 3.19 2.68 2.72

Table 5: Training and BoN inference speed with vs. without TRM on Qwen2.5-3B-Instruct with
8xA800 GPUs under PPO

Method Training (s/step) BoN Inference (s/sample)
w/o TRM 56.9 0.14

w/ TRM 61.9 (+8.8%) 0.21 (+50%)

E.3 TRM TRAINING DATA QUALITY VERIFICATION

Regarding TRM training data quality, we randomly sampled 100 trajectories and evaluated them
using both human annotators and a multi-model judge (DeepSeek-R1, Qwen2.5-72B-Instruct, and
GPT-4o-mini). As shown in Table 6, the resulting dataset demonstrates relatively high quality.

Table 6: TRM Training Data Quality Evaluation (Accuracy)

Evaluation Method Necessity (%) Quality (%)
Human 89 89

Multi-model 86 75

E.4 GENERALITY BEYOND SEARCH AND CODE TOOLS

We follow the ReCall (Chen et al., 2025a) work to evaluate our method in more diverse multi-
tool scenarios. These scenarios include tasks such as library management, employee management,
and travel planning, which require the use of multiple APIs (e.g., searching and reserving books,
calculating salaries, updating flight bookings, etc.). These additional experiments (see Table 7) show
that introducing TRM continues to provide consistent improvements in broader multi-tool settings.

Table 7: Performance in more diverse multi-tool scenarios on Qwen2.5-7B-Instruct with GRPO

Method Qwen2.5-7B-Instruct ReCall ReCall-TRM

F1 7.37 39.71 43.28

E.5 CASE STUDY

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Model w/o TRM:

🤖 Turn 1:
Thought: To determine who wrote "Lord Have Mercy on the Working Man", I'll
start with a general search to iden=fy the song.
I need to find out which song this is referring to. It's possible that the =tle might
be a specific song or a phrase from a song.
Tool-call: who wrote lord have mercy on the working man
Observa8on: ... Lord Have Mercy on the Working Man "Lord Have Mercy on the
Working Man" is a song wriDen by Kostas and recorded by American country
music singer Travis TriD ...

🤖 Turn 2:
Thought: From the search results, I found that "Lord Have Mercy on the Working
Man" is a song wriDen by Kostas and recorded by American country music singer
Travis TriD. I need to confirm if this is the correct informa=on.
Tool-call: who is kostas in the context of the song Lord Have Mercy on the
Working Man
Observa8on: ... Kostas Hatzis Kostas Hatzis () (born August 13, 1936) is a Greek
singer-songwriter and musician of Romani origin...

🤖Turn 3:
Thought: <None>
🙋 Answer: Travis Tri<

Model w/ TRM:

🤖 Turn 1:
Thought: To determine who wrote "Lord Have Mercy on the Working Man," I will
start with a general search to gather this informa=on.
If I don't find direct informa=on online, I might need to look into historical
records or music archives.
Tool-call: who wrote lord have mercy on the working man
Observa8on:... Lord Have Mercy on the Working Man "Lord Have Mercy on the
Working Man" is a song wriDen by Kostas and recorded by American country
music singer Travis TriD ...

🤖Turn 2:
Thought: From the search results, I found that "Lord Have Mercy on the Working
Man" is a song wriDen by Kostas and recorded by American country music singer
Travis TriD.
🙋Answer: Kostas

 Comment:
Both models (with and without TRM) adopt reasonable tool call strategies, but only the TRM-integrated model produces the correct answer.
The error made by the model without TRM highlights the motivation for our approach and shows that TRM helps address cascading errors in
tool usage.

❓ Ques8on: who wrote lord have mercy on the working man?

Figure 8: Case 1

Model w/o TRM:

🤖Turn 1:
Thought: To solve the problem, we need to evaluate the product ∏ "2 −!"

#$%
2𝜔# + 𝜔"#' where 𝜔is a 13th root of unity, and then find the remainder when
this product is divided by 1000.
First, let's understand the proper?es of the 13th roots of unity. The 13th roots of
unity are the solu?ons to the equa?on 𝑥!& = 1. These roots can be wriAen as
𝜔#	for 𝑘	 = 	0, 1, 2, … , 12, where 𝜔 = 𝑒"'(/!&.
The expression we need to evaluate is ∏ 2 − 2𝜔# + 𝜔"#!"

#$% .We can use the
fact that the sum of all 13th roots of unity is zero, i.e., ∑ 𝜔#!"

#$% = 0.
Let's break down the problem into manageable steps:
1. Define the 13th roots of unity.
2. Compute the product ∏ 2 − 2𝜔# + 𝜔"#!"

#$% .
3. Find the remainder when the product is divided by 1000.
We will use Python and the sympy library to perform these calcula?ons.
Tool-Call:
```python
import sympy as sp
# Define the 13th root of unity
omega = sp.exp(2 * sp.pi * sp.I / 13)
# Compute the product
product = 1
for k in range(13):
 product *= (2 - 2 * omega**k + omega**(2 * k))

# Simplify the product
product = sp.simplify(product)
# Find the remainder when the product is divided by 1000
remainder = sp.Mod(product, 1000)
print(remainder)
```
Obeserva8on: Run result:<None>

…
(the Turn 2 generate similar analysis and the same code, skip)
…

🤖Turn 3:
Thought: The output of the code indicates that the remainder when the product
∏ 2 − 2𝜔# + 𝜔"#!"
#$% is divided by 1000 is 336 .
🙋 answer: 336

Model w/ TRM:

🤖Turn 1:
Thought: To solve the given problem, we need to evaluate the product
∏ 2 − 2𝜔# + 𝜔"#!"
#$% where 𝜔	is a 13th root of unity, and then find the

remainder when this product is divided by 1000
First, let's understand the proper?es of the 13th roots of unity. The 13th roots of
unity are the solu?ons to the equa?on 𝑥!& = 1. These roots can be wriAen as
𝜔# = 𝑒"'(/!&	for	 𝑘 = 0,1,2, … , 12 .
The expression 2 − 2𝜔# + 𝜔"# can be simplified using the proper?es of roots
of unity. We need to evaluate this product for all 𝑘 from 0 to 12.
Let's write a Python script to compute this product and then find the remainder
when the product is divided by 1000
Tool-Call:
.```python
import cmath
Define the 13th root of unity
n = 13
omega = cmath.exp(2j * cmath.pi / n)
Compute the product
product = 1
for k in range(n):
 term = 2 - 2 * omega**k + omega**(2 * k)
 product *= term
Get the real part of the product (since the imaginary part should be negligible)
product_real = round(product_real)
Find the remainder when the product is divided by 1000
remainder = product_real % 1000
print(remainder)
```
Obeserva8on: 321

🤖Turn 2
Thought: The remainder when the product ∏ 2 − 2𝜔# + 𝜔"#!"

#$% is divided by 
1000 is 321 .
🙋answer: 321

      Comment
Without TRM, the model generates overly complex code that fails during execution, resulting in a wrong answer. With TRM, the model produces 
higher-quality code and answers correctly. This case highlights how TRM improves code generation quality and helps mitigate errors, validating our 
motivation for its integration.

❓ Ques8on: Let 𝜔 ≠ 1 be a 13th root of unity. Find the remainder when
∏ 2 − 2𝜔# + 𝜔"#!"
#$% is divided by 1000.

sp.simplify is unable to 
deal with high-complexity 
problem here in 
reasonable time

Figure 9: Case 2

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Model w/o TRM:

🤖Turn 1:
Thought: I need to find informa.on about Arnold Palmer Regional Airport and 
Luis Muñoz Marín Interna.onal Airport and their loca.ons.
Tool-Call: Arnold Palmer Regional Airport
Observa8on:  ... Arnold Palmer Regional Airport Arnold Palmer Regional Airport 
is a public airport in the eastern United States, located in Westmoreland County, 
Pennsylvania...

🤖Turn 2:
Thought: The informa.on about Arnold Palmer Regional Airport is found in the 
United States. Now I need to find out about Luis Muñoz Marín Interna.onal 
Airport and its loca.on.
Tool-Call: Luis Muñoz Marín Interna.onal Airport
Observa8on: ... Luis Muñoz Marín Interna.onal Airport Luis Muñoz Marín 
Interna.onal Airport …is a joint civil-military interna.onal airport named for 
Puerto Rico's first democra.cally elected governor and located in suburban 
Carolina, Puerto Rico, southeast of San Juan…

🤖Turn 3:
Thought:  The informa.on about Arnold Palmer Regional Airport is found in the 
United States. Luis Muñoz Marín Interna.onal Airport is located in Puerto Rico. 
Now I need to determine if both airports are in the same country.
Tool-Call: United States and Puerto Rico in the same country
Observa8on: ... In 1898, following the Spanish–American War, the United States 
acquired Puerto Rico under the terms of the Treaty of Paris... 

🤖Turn 4:
Thought: The informa.on about Arnold Palmer Regional Airport is found in the 
United States. Luis Muñoz Marín Interna.onal Airport is located in Puerto Rico. 
Now I need to determine if both airports are in the same country.
Tool-Call: United States and Puerto Rico in the same country for airports
Observa8on: ... transporta.on in Puerto Rico Transporta.on in Puerto Rico 
includes a system of roads, highways, freeways, airports, ports and harbors,... 

🤖Turn 5:
Thought: <None>
🙋 answer: Tasman Sea

Model w/  TRM:

🤖 Turn 1:
Thought: I need to find out the loca.ons of Arnold Palmer Regional Airport and Luis 
Muñoz Marín Interna.onal Airport to determine if they are in the same country.
Tool-Call :Arnold Palmer Regional Airport loca.on
Observa8on: ... Arnold Palmer Regional Airport Arnold Palmer Regional Airport is a 
public airport in the eastern United States, located in Westmoreland County, 
Pennsylvania...

🤖Turn 2:
Thought: The Arnold Palmer Regional Airport is located in Westmoreland County, 
Pennsylvania, in the United States. Now I need to find the loca.on of Luis Muñoz 
Marín Interna.onal Airport.
Observa8on:... Luis Muñoz Marín Interna.onal Airport Luis Muñoz Marín 
Interna.onal Airport …is a joint civil-military interna.onal airport named for Puerto 
Rico's first democra.cally elected governor and located in suburban Carolina, 
Puerto Rico, southeast of San Juan…

🤖Turn 3:
Thought: Arnold Palmer Regional Airport is located in Pennsylvania, United States, 
while Luis Muñoz Marín Interna.onal Airport is located in Puerto Rico, which is also 
a territory of the United States. Therefore, both airports are located in the same 
country.
🙋answer: Yes

      Comment:
 The model without TRM overuses tools and misses key internal information, resulting in unnecessary tool calls and a wrong answer. With TRM, the 
model makes two well-targeted tool calls and answers correctly, showing that TRM helps reduce redundant tool usage and improves answer accuracy.

❓ Ques8on: Are Arnold Palmer Regional Airport and Luis Muñoz Marín Interna.onal Airport located in the same country?

Overuse of tools

Figure 10: Case 3

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.6 PROCESS-LEVEL TRANSPARENCY OF TRM

Table 8: Examples of failed tool calls

Question Tool Calls Comment Explanation
What was
Bill Dvorak’s
fifth cousin’s
nationality?

search(Bill
Dvorak na-
tionality)

low-quality The query asks about Bill Dvorak’s na-
tionality which is unrelated to the user’s
need (fifth cousin’s nationality). It re-
flects a major misinterpretation of the
question.

Are Arnold
Palmer Re-
gional Airport
and Luis
Muñoz Marı́n
International
Airport lo-
cated in the
same country?

search(Arnold
Palmer Re-
gional Air-
port)
search(United
States and
Puerto Rico
in the same
country)
search(United
States and
Puerto Rico
in the same
country for
airports)

unnecessary Invoke duplicate tools

The product
$8 * .25 * 2 *
.125 =$

# Calculate the
product step
by step

result = 8
* 0.25 * 2 *
0.125

print(result)

unnecessary The multiplication of four numbers (8,
0.25, 2, 0.125) is simple and can be eas-
ily computed by hand; writing a pro-
gram is unnecessary for this straightfor-
ward arithmetic.

Medians
$BD$ and
$CE$ of trian-
gle $ABC$ are
perpendicular,
$BD=8$, and
$CE=12$. The
area of trian-
gle $ABC$ is

Very long code
...

low-quality The code contains significant unused
symbolic logic (Sympy setup/solving)
that’s irrelevant to the final arithmetic
operation, which is inefficient and
shows flawed implementation. Though
the output is correct, the dead code con-
stitutes a major structural issue.

E.7 DETAILED EXPERIMENTAL RESULTS

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 9: Detailed results of Figure 3

Method Model Size Training Data Size 1 2 3 4 5 Avg
2wikimultihopqa [out-of-domain] (dev split)

Majority Vote
- -

11.73 11.73 10.82 10.76 10.56 11.12
Pass@n 11.73 15.16 17.40 19.02 20.26 16.71

TRM 3B

1K 11.73 13.53 14.58 15.33 15.76 14.19
2K 11.73 13.79 15.02 15.80 16.39 14.55
5K 11.73 14.33 15.94 16.94 17.80 15.35

10K 11.73 14.29 15.92 16.94 17.66 15.31

TRM
0.5B

10K
11.73 12.31 12.81 13.10 13.20 12.63

1.5B 11.73 13.88 15.17 15.97 16.68 14.69
7B 11.73 13.36 14.54 15.20 15.66 14.10

hotpotqa [in-domain] (dev split)
Majority Vote

- -
24.52 24.52 25.05 25.08 25.29 24.89

Pass@n 24.52 30.97 33.96 35.83 37.54 32.56

TRM 3B

1K 24.52 28.16 29.74 30.40 31.02 28.77
2K 24.52 26.85 27.93 28.66 28.82 27.36
5K 24.52 28.82 30.70 31.61 32.40 29.61

10K 24.52 29.03 30.90 32.14 32.88 29.89

TRM
0.5B

10K
24.52 25.23 25.28 25.21 24.85 25.02

1.5B 24.52 27.86 29.40 30.26 30.71 28.55
7B 24.52 26.91 27.75 28.53 28.94 27.33

Table 10: Detailed results of Figure 5-a and Figure 5-b

Method α NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

PPO

0.01 38.14 55.20 36.17 32.64 31.00 11.21 20.80 32.17
0.05 39.58 57.78 40.61 34.80 33.22 12.91 25.60 34.93
0.1 40.08 55.82 39.11 32.91 32.73 11.12 27.20 34.14
0.3 34.52 50.08 35.98 29.41 26.81 9.10 28.00 30.56

GRPO
0.01 47.89 62.57 47.20 44.47 43.48 19.65 39.20 43.49
0.05 48.09 63.04 46.93 44.66 43.45 19.20 37.60 43.28
0.1 46.68 62.58 45.93 43.47 42.89 16.88 38.40 42.40

Table 11: Detailed results of Figure 5-c

Method Search-2 Code Avg.
MATH500 Olympiad AMC23

ToRL-PPO 50.40 24.00 25.00 33.13
ToRL-PPO-TRM (ours) 54.20 26.22 27.50 35.97
ToRL-GRPO 52.80 22.81 30.00 35.20
ToRL-GRPO-TRM (ours) 56.60 27.70 35.00 39.77

Table 12: Detailed results of Figure 6

Method NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.
Performance

Search-R1 + StepSearch 37.53 55.17 39.20 29.75 27.65 7.74 17.60 30.66

Search-R1 + AgentPRM 38.01 54.62 37.07 32.78 31.15 10.22 19.20 31.86

Search-R1 + ORM 39.47 56.17 40.93 29.63 26.65 6.83 9.60 29.90

Search-R1 + TRM-verifier 35.65 54.10 36.46 33.91 33.90 13.86 27.20 33.58

quality-only 38.95 56.17 38.94 31.06 27.93 8.44 16.00 31.07

necessity-only 37.42 54.06 37.21 32.46 31.80 11.46 21.60 32.29

Tool-call Number
quality-only 3.96 3.94 3.93 3.96 3.98 3.99 3.93 3.96

necessity-only 2.58 2.68 2.58 2.83 2.95 3.31 2.84 2.82

both 2.37 2.39 2.37 2.85 3.35 3.23 2.71 2.75

31


	Introduction
	Methodology
	Problem Formulation
	Construction of TRM
	Integration of TRM with RL

	Experiments
	Exploration of TRM
	Exploitation of TRM
	Additional Analysis

	Related Work
	Conclusion
	Prompts
	Prompts for TRM Training Data Distillation
	System Prompts for Tasks

	Training Details
	TRM Training Details
	RL Details

	Evaluation Details
	TRM Evaluation
	LLM Evaluation

	Baseline Details
	Additional Experimental Results
	Reward Hacking Caused by Group-level Advantage Estimation
	Resource Overhead Introduced by TRM
	TRM Training Data Quality Verification
	Generality Beyond Search and Code Tools
	Case Study
	Process-level Transparency of TRM
	Detailed Experimental Results


