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Abstract
We investigate how architectural inhomogeneities, such as biases, layer normalization, and residual
connections, affect the curvature of the loss landscape at initialization and its link to trainability.
We focus on the Goldilocks zone, a region in parameter space with excess positive curvature, pre-
viously associated with improved optimization in homogeneous networks. To extend this analysis,
we compare two scaling strategies: weight scaling and softmax temperature scaling. Our results
show that in networks with biases or residual connections, both strategies identify a Goldilocks zone
aligned with better training. In contrast, layer normalization leads to lower or negative curvature,
yet stable optimization, revealing a disconnect between curvature and trainability. Softmax tem-
perature scaling behaves more consistently across models, making it a more robust probe. Overall,
the Goldilocks zone remains relevant in inhomogeneous networks, but its geometry and predictive
power depend on architectural choices, particularly normalization.

1. Introduction

Understanding what makes neural networks easy or hard to train remains a core challenge in deep
learning. Among the many contributing factors, the geometry of the loss landscape, often captured
via the Hessian’s curvature, plays a key role in shaping optimization dynamics. A particularly
relevant region is the Goldilocks zone [3], located at a roughly constant radius in parameter space
where the loss shows excess positive curvature and training tends to be most effective.

This phenomenon has been primarily studied in homogeneous architectures, where scaling all
weights by a positive scalar α scales the output as fαθ(x) = αLfθ(x) for depth L. In this set-
ting, Fort and Scherlis [3] proposed probing the loss by adjusting α, effectively moving radially
and revealing a curvature peak at intermediate values. More recently, Vysogorets et al. [13] intro-
duced softmax temperature scaling (T ), which alters output confidence without changing the weight
norm. While both are equivalent in homogeneous networks when T = αL, this breaks down under
architectural inhomogeneities.

Practical networks are rarely homogeneous. Elements like non-zero biases, residual connec-
tions, and LayerNorm break the scaling property and reshape the loss landscape in nontrivial ways.
While recent work has questioned the predictive value of the Goldilocks zone even in idealized
settings [13], its behavior in realistic inhomogeneous architectures remains poorly understood.

In this work, we revisit the Goldilocks zone in inhomogeneous networks. We compare two
strategies for probing curvature at initialization: weight scaling (α) and softmax temperature scaling
(T ). While α-scaling modifies all trainable parameters (weights and biases), altering both norm and
output, its interaction with inhomogeneous components is often inconsistent. In contrast, T -scaling
adjusts model confidence at the output level, offering a cleaner control signal across architectures.
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We address two questions: (1) Can the Goldilocks zone be identified in inhomogeneous net-
works? (2) Does it correlate with trainability? For networks with biases or residual connections,
both scaling methods reveal a zone of high positive curvature aligned with improved optimiza-
tion. With layer normalization, however, curvature is lower or negative, yet training remains stable,
suggesting a more complex relationship between curvature and trainability. Overall, softmax tem-
perature scaling behaves more consistently across architectures and proves to be a more robust tool
for probing initialization geometry.

2. Methodology

We study how the Goldilocks zone behaves in the presence of architectural inhomogeneities, and
whether it remains predictive of trainability. Our approach combines curvature analysis at initial-
ization with optimization evaluations. We test two hypotheses: (1) temperature scaling is a more
robust and interpretable probe of the Goldilocks zone than weight scaling, and (2) excess positive
curvature at initialization does not consistently predict trainability in inhomogeneous networks.

Curvature Estimation. Following Vysogorets et al. [13], we approximate the Hessian spectrum
via a low-rank projection using a sparse orthogonal matrix R ∈ RP×50. The resulting matrix
Hd = R⊤HR captures essential curvature information. We quantify curvature using the excess of
positive curvature [3], where λi are the Hessian eigenvalues:

Tr(H)

∥H∥F
=

∑
i λi√∑
i λ

2
i

.

Architectures and Perturbations. We conduct experiments with LeNet-300-100 on Fashion-
MNIST [14], LeNet-5 [11] on CIFAR-10 [9], and a minimalist ResNet-4 on both datasets. To break
homogeneity, we introduce non-zero biases, layer normalization [2], and residual connections [7].
Each disrupts the standard scaling fαθ(x) = αLfθ(x) differently: biases alter intermediate scales,
LayerNorm nullifies scaling in some layers, and residuals introduce asymmetric pathways. Formal
analyses are in the Appendix. All networks use Kaiming normal initialization [6] for linear and
convolutional weights. Biases are zero-initialized by default, or sampled from U [−0.1, 0.1] in the
non-zero bias setting. We use pre-activation LayerNorm with ϵ = 10−5, and residual blocks of
the form y = x + W2ϕ(W1x). While this study focuses on classification, Appendix D discusses
potential extensions to regression settings.

Reconstructing the Goldilocks Zone. We vary two initialization parameters: weight scale α ∈
[10−3, 103] or α ∈ [10−3L, 103L], and softmax temperature T ∈ [10−3L, 103L], with L the network
depth. Excess of positive curvature is measured at initialization, typically using a batch size of 128.

Connecting to Optimization. We train all models with full-batch GD for 1000 epochs. To ac-
count for the interaction between scaling and gradient magnitudes, we adjust the learning rates
accordingly (derivations in Appendix I). Final train accuracy serves as our main metric to assess
whether initial curvature correlates with trainability under realistic optimization. It is worth noting
that test accuracy exhibits the same behavior and is presented in Appendix K.
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Figure 1: Excess Positive Curvature for Different Architectural Variants and Scaling Strate-
gies. Columns correspond to a distinct architectural settings: (A) homogeneous baseline, (B) non-
zero biases, (C) residual connections, (D) LayerNorm, and (E) a combined model with all three
inhomogeneities. Rows display results under different scaling strategies: (top) weight scaling α,
(middle) joint weight and temperature scaling, and (bottom) temperature T scaling.

3. Results

3.1. Recreating the Goldilocks zone

This study aims to examine how the Goldilocks zone manifests in inhomogeneous networks. A
common way to probe this zone is through weight scaling (α), which moves the model along rays
in parameter space and modulates output confidence. Small α values push the network toward
low-confidence, while large values lead to overconfidence. Softmax temperature scaling offers
an alternative that adjusts confidence directly, without altering the weight norm, and is therefore
especially useful for comparing architectures where α-scaling behaves inconsistently.

Results. Figure 1 shows the excess of positive curvature across scaling regimes for various archi-
tectures. In addition to weight scaling (α) and softmax temperature scaling (T ), we also analyze
their joint scaling (middle row) to understand where the two strategies are equivalent. Specifically,
we scale the softmax temperature to counteract the effect of α-scaling on the network output. If the
strategies are truly equivalent, the curvature should remain constant under joint scaling.

We observe that across all architectures, a Goldilocks zone, marked by a peak of positive curva-
ture, emerges under both scaling strategies. This includes networks with biases, residuals, and even
LayerNorm, although the curvature in LayerNorm models is much lower and can become negative
outside the 0-scaling zone. This general presence of a peak suggests that the Goldilocks zone is a
robust feature of neural networks, even beyond homogeneous cases.
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The baseline homogeneous model serves as a reference: it shows perfect symmetry between
α- and T -scaling, confirming that both can produce the same output effect [13]. In contrast, in-
homogeneous networks break this symmetry. Although a Goldilocks zone still emerges with both
strategies, their behavior diverges. This reflects the fact that in inhomogeneous architectures, small
and large α lead to markedly different dynamics, while softmax temperature, by acting only on
output confidence, is less sensitive to such effects.

The middle row of Figure 1, where both α and T are scaled jointly, is especially informative.
In homogeneous networks, the curvature stays flat across all α in this plot, confirming that T = αL

cancels the effect of α-scaling and matches the theoretical prediction.
In inhomogeneous networks, we also observe flat curvature in the large-α regime, indicating

that in this regime, weight scaling can still be compensated by an appropriate temperature scaling.
Specifically, we can choose T to recover the output confidence and match the curvature, at least
approximately or asymptotically. This includes: (i) biases and residuals, which behave similarly to
homogeneous networks when α is large, and (ii) LayerNorm, where the output scales linearly.

However, for small α, this cancellation breaks down. The output behavior no longer follows
simple scaling rules, and softmax temperature alone cannot recover the distortions caused by weight
scaling. Notably, in networks with biases, the last-layer bias dominates the output at small α, and
temperature has no effect on additive terms (Appendix E). In LayerNorm, the output becomes nearly
constant due to the dominance of the ε term (Appendix G), leading to curvature collapse or reversal.

Residual connections are a notable exception. In the small-α regime, the identity path dominates
and the output scales as αL−L, where L is the total number of layers in residual blocks. In this case,
the effect of weight scaling can be approximately canceled by scaling the temperature as T = αL−L

(Appendix F). This is the only architecture where small-α behavior remains recoverable through a
modified temperature scaling.

3.2. Connection to Optimization

The second goal of this study is to investigate whether there exists a consistent link between the
Goldilocks zone and trainability in inhomogeneous networks. While Vysogorets et al. [13] has
shown that this connection does not always hold for homogeneous settings, we aim to revisit this
question in the presence of architectural inhomogeneities. In particular, we focus on networks with
normalization, for which we observed notably different curvature behaviors (Figure 1).

To compare trainability across architectures, we focus on softmax temperature scaling rather
than weight scaling. As discussed, in inhomogeneous networks, α-scaling yields distinct behaviors
in small and large α regimes due to architecture-specific output scaling. For instance, at small α,
biases can dominate in biased networks, LayerNorm is governed by the ε term, and residuals are
dominated by the identity path. These effects alter output scaling and, in turn, the gradients, making
learning rate selection non-trivial and architecture-dependent. Appendix I details these dynamics,
including gradient behavior and learning rate adjustment rules.

In contrast, softmax temperature scaling modifies the output confidence directly and admits a
simple learning rate adjustment (η′ = T · η0) that remains valid across architectures (Appendix I).
For this reason, we use T -scaling to evaluate the relationship between curvature and trainability in
inhomogeneous settings. For completeness, results obtained under α-scaling are also reported in
Appendix J. While informative, they are harder to interpret due to architecture-specific dynamics
and inconsistent scaling behavior.
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Figure 2: Connection to Optimization - Train Accuracy for LeNet-300-100 under Varying
Learning Rates and Architectural Inhomogeneities. Each column corresponds to a different ar-
chitecture: (A) baseline (homogeneous), (B) non-zero biases, (C) residual connections, (D) Layer-
Norm, and (E) a mixture of all three inhomogeneities. Overlaid on each plot is the Goldilocks zone
boundary (as defined in Figure 1), allowing comparison between regions of favorable curvature and
trainability. Test accuracy exhibits the same general patterns and is presented in Appendix K.

Results. Figure 2 presents the train accuracy across temperature scales for each variant. The corre-
sponding test accuracy plots, which exhibit similar trends, are available in Appendix K. In networks
with biases and residual connections, we observe a strong alignment between the Goldilocks zone
and trainability: both architectures achieve their best performance near the temperature-defined cur-
vature peak.

For residual connections, however, we note a sharper decline in trainability as temperature in-
creases beyond this zone. This may suggest that residual architectures are more sensitive to initial-
ization. A similar observation was made by Zhang et al. [15], who showed that in deep residual
networks, failing to account properly for the scaling effects of residual paths, particularly in the
absence of normalization, can lead to unstable gradients and hinder optimization.

In contrast, LayerNorm (and the combined model, which is largely driven by LayerNorm be-
havior) displays a more surprising pattern. Despite weak or even negative excess positive curvature,
these models maintain stable and high training performance across a wide temperature range. This
supports prior observations on the stabilizing role of normalization [2, 12].

4. Conclusion

Our study extends the analysis of the Goldilocks zone to inhomogeneous neural networks. We show
that both weight and temperature scaling can reveal zones of high positive curvature in architectures
with biases and residual connections, and that these zones generally align with improved trainability.
However, the behavior becomes more complex in networks with normalization: while a weak sig-
nature of the Goldilocks zone remains, its predictive power for optimization becomes more illusive.
These findings highlight the need for new tools to understand how architectural choices, especially
normalization, alter the geometry of the loss landscape and its connection to learning dynamics.
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Appendix A. Related Work

Loss Landscape Geometry and Initialization. The geometry of neural network loss landscapes
is central to understanding optimization and initialization. Seminal work by Glorot and Bengio
[4] and He et al. [6] established initialization norms that empirically promote trainability. Fort and
Scherlis [3] later formalized this intuition by identifying the Goldilocks zone, a region of parameter
space where the loss exhibits excess positive curvature, measured via the Hessian matrix. They
showed that common initializers (e.g., [4, 6]) lie within this zone, explaining their effectiveness.
Crucially, they observed that training dynamics naturally pull networks into this region, suggesting
it contains a high density of optimal solutions. However, the zone’s outer edges exhibit unstable
curvature variance, leading to erratic optimization.

Refining the Goldilocks Zone. Recent work by Vysogorets et al. [13] challenges the assumption
that initialization norm alone governs positive curvature. They decompose the Hessian into its pos-
itive semi-definite component (G-term), linking curvature to softmax saturation and logit gradient
vanishing. Their analysis reveals that excess curvature correlates with low initial loss and gradient
norms but does not always predict final performance. Notably, they demonstrate that softmax tem-
perature scaling can mimic the effects of weight norm adjustments, offering an alternative control
mechanism. However, their study focuses on homogeneous networks, leaving open questions about
inhomogeneous architectures (e.g., with residuals, biases or LayerNorm).

Optimization Dynamics and Limitations. The connection between curvature and trainability re-
mains nuanced. While the Goldilocks zone facilitates gradient descent [5], Vysogorets et al. [13]
show that networks within the zone can still exhibit degenerate behaviors (e.g., zero logits). Adap-
tive optimizers (e.g., Adam) may further complicate this relationship by escaping flat regions more
effectively than SGD. These results suggest that initialization-induced curvature is neither neces-
sary nor sufficient to guarantee success, motivating further investigation of architecture-dependent
effects.

Our Contribution. We extend this line of work by investigating the Goldilocks zone in inho-
mogeneous networks (e.g., with biases, residuals, and LayerNorm), addressing gaps left by prior
studies. We empirically evaluate how weight scaling and softmax temperature interact with opti-
mization hyperparameters (e.g., learning rate), bridging theoretical curvature analysis with practical
trainability.

Appendix B. Relation to Curvature-Generalization Debates

Recent work has questioned the usefulness of curvature-based metrics, particularly the Hessian’s
largest eigenvalue (λmax), as predictors of generalization [1, 8]. These studies highlight that sharp-
ness measures may be sensitive to factors such as learning rate, batch size, reparameterization, or
the use of normalization, and that in some cases, flatter minima do not reliably correspond to better
generalization.

While we acknowledge this growing body of evidence, we emphasize that our study is focused
not on generalization, but on trainability. Specifically, we investigate how curvature, quantified
via the excess of positive eigenvalues of the Hessian, relates to the network’s ability to optimize
the training loss from a random initialization, and how this relationship is affected by architectural
inhomogeneities.
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We believe that decoupling these two aspects, trainability and generalization, is essential, and
hope that our results contribute to a more precise understanding of how initialization geometry
affects early optimization dynamics, particularly in inhomogeneous networks.

Appendix C. Preliminaries

We consider a K-way classification task with dataset D = {(Xµ, yµ)}Nµ=1, where Xµ ∈ Rd and

yµ ∈ [K]. A neural network fθ, parameterized by θ ∈ RP , maps each input to logits {z(µ)k }Kk=1,
which are transformed into class probabilities via the softmax function with temperature T :

p
(µ)
k = σT (z

(µ))k =
exp(z

(µ)
k /T )∑K

c=1 exp(z
(µ)
c /T )

.

The total loss is the average cross-entropy over the dataset:

L(θ) = 1

N

N∑
µ=1

ℓ(p(µ), yµ) = − 1

N

N∑
µ=1

log p(µ)yµ .

We study the curvature of this loss landscape through the Hessian matrix:

Hij =
∂2L

∂θi∂θj
,

which reflects second-order sensitivity of the loss over the entire dataset (or batch, in the minibatch
setting).

Appendix D. Extension to Regression Tasks

While our study focuses on classification, the broader question of how initialization curvature relates
to trainability also applies to regression tasks. Even though neural network regressors do not have a
softmax layer, the temperature scaling methodology can be extended to this setting as well.

Softmax temperature scaling, in practice, corresponds to dividing the logits (i.e., the pre-softmax
outputs) by a temperature parameter T , effectively modulating the model’s output confidence. For
regression, a direct analogue does not exist, since the output is not a probability distribution. Still, a
similar operation can be introduced by scaling the output of the final layer by a scalar 1/T , yielding
a controllable ”output temperature” that influences the magnitude of predictions. This leads to a
natural analogue of temperature scaling for regression tasks.

Such a temperature-like parameter could be introduced post hoc or implemented by scaling only
the final layer’s weights. In contrast, weight scaling uniformly rescales all learnable parameters,
including earlier layers. This distinction offers a parallel between full-network scaling and output-
only scaling.

Appendix E. Scaling Properties with non-zero biases

Consider a fully connected neural network with L layers, ReLU activation functions, and non-zero
biases. Let fθ(x) denote the output before the softmax for an input x, where θ represents the
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network’s parameters (weights and biases). In homogeneous models (without biases), scaling the
weights by α > 0 scales the output by αL. However, with biases, this property breaks due to their
additive nature. We analyze how biases affect the scaling behavior and discuss the implications for
the Goldilocks zone and softmax temperature.

Scaling with Non-Zero Biases. For a network with non-zero biases, the output of each layer hl
is given by:

h1 = αW1x+ αb1,

h2 = αW2h1 + αb2 = αW2(αW1x+ αb1) + αb2,

h2 = α2W2W1x+ α2W2b1 + αb2.

Extending this to L layers, the output hL becomes:

hL = αL(WL . . .W1x) + αL(WL . . .W2b1) + αL−1(WL . . .W3b2) + · · ·+ αbL.

Large and Small Scaling Regimes.

• Large α (α ≫ 1): The term αL [(WL . . .W1x) + (WL . . .W2b1)] dominates the output,
while the remaining bias terms (· · ·+ α2WLbL−1 + αbL) become negligible. In this regime,
the output scales approximately as αLfθ(x), as long as the depth of the network is reasonable.
Indeed for homogeneous, the theoretically expected behavior, including all biases, is:

αLfθ(x) = αL [(WL . . .W1x) + (WL . . .W2b1) + · · ·+ bL] ,

This could correspond to the case where each bias bl is scaled by αl. However, for networks
with α-scaled biases, for large α, the output effectively reduces to a truncated form that de-
pends only on the input and the first-layer bias αL [(WL . . .W1x) + (WL . . .W2b1)]. As the
depth L increases, this divergence from the full homogeneous behavior grows: deeper net-
works amplify only the early components, leading to an increasingly distorted representation.
Thus, paradoxically, large α does not lead to homogeneous behavior, but rather to a biased
approximation dominated by early layers. In our experiments, which use networks of depth
3 and 5, the behavior remains close to the homogeneous case (Figure 1.B). However, we ex-
pect that for significantly deeper architectures, the divergence from the full expression would
become much more pronounced.

• Small α (α ≪ 1): The last bias terms dominate, and the output scales as αbL. In this regime,
the scaling behavior deviates significantly from the homogeneous case, as the biases break
the homogeneity of the network.

These theoretical insights are empirically validated in Figure 1.B of the main text, which illus-
trates how the excess positive curvature varies across different scaling regimes in networks with
non-zero biases.
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Appendix F. Scaling Properties in Networks with Residual Connections

In this section, we analyze the scaling properties of neural networks with residual connections [7].
Residual blocks introduce a skip connection that adds the input x directly to the output of a sequence
of transformations. We assume no biases and no layer normalization in the residual block. We show
that the output of the scaled model depends on α, with αL-behavior (homogeneous) for large α and
αL−L-behavior for small α, where L is the total number of layers in residual blocks.

Effect of Residual Connections. Consider a residual block defined as follows:

ResidualBlock(x) = F (x) + x,

where F (x) represents a sequence of transformations (e.g., linear layers and activations). In our
case, F (x) consists of:

F (x) = W2 · ReLU(W1x),

where W1 and W2 are weight matrices. When scaling the weights by α > 0, the residual block
becomes:

ResidualBlock′(x) = αW2 · ReLU(αW1x) + x.

Asymptotic Scaling Regimes. The residual connection introduces two distinct scaling regimes:

• Large α (α ≫ 1): The term αW2 · ReLU(αW1x) dominates, and the residual block be-
haves like a homogeneous transformation: ResidualBlock′(x) ≈ α2W2 · ReLU(W1x). In
this regime, the output scales with αL, and the network behaves similarly to a homogeneous
model.

• Small α (α ≪ 1): The term αW2 ·ReLU(αW1x) becomes negligible, and the residual block
reduces to the identity function: ResidualBlock′(x) ≈ x. In this regime, the output scales
with αL−L.

These theoretical insights are validated by the empirical results shown in Figure 1.C of the main
text. The middle line of 1.C further confirms them under both scaling of T (αL and αL−L), aligning
with the network transformation passing through the identity path.

Appendix G. Scaling Properties in Networks with Layer Normalization

In this section, we analyze the scaling properties of neural networks with layer normalization (Lay-
erNorm, Ba et al. [2]) applied after each linear or convolutional layer. LayerNorm introduces a
different form of inhomogeneity by normalizing the activations at each layer. We show that Layer-
Norm cancels out the effect of weight scaling for some layers, making the output independent of the
network’s depth. The behavior of those networks can align with homogeneous models but requires
more extreme scaling of weights and softmax temperature to observe similar effects.

Consider a fully connected neural network with L layers, ReLU activation functions, and Lay-
erNorm applied after each linear transformation. Let fθ(x) denote the output before the softmax for
an input x, where θ represents the network’s parameters. We assume no biases are present in the
linear layers.

11



REVISITING THE GOLDILOCKS ZONE

Effect of Layer Normalization. Layer normalization normalizes the activations of each layer to
have zero mean and unit variance. For a given layer l with input hl−1, the output hl is computed as:

hl = LayerNorm(Wlhl−1),

where LayerNorm(z) is defined as:

LayerNorm(z) = γ ⊙ z − µ√
σ2 + ε

+ β,

with µ and σ being the mean and standard deviation of z, and γ and β being learnable parame-
ters. For simplicity, we assume γ = 1, β = 0, and ε negligible, reducing LayerNorm to:

LayerNorm(z) =
z − µ

σ
.

Scaling Invariance of LayerNorm. Suppose we scale the weights of each layer by α > 0, i.e.,
W ′

l = αWl. The output of the first layer becomes:

h′1 = LayerNorm(αW1x) =
αW1x− µ′

1

σ′
1

,

where µ′
1 and σ′

1 are the mean and standard deviation of αW1x. Since scaling W1 by α scales
both the mean and standard deviation by α, we have:

h′1 =
αW1x− αµ1

ασ1
=

W1x− µ1

σ1
= h1.

Thus, LayerNorm cancels out the effect of weight scaling at each layer, making the output
invariant to α:

h′l = hl for all layers l containing LayerNorm.

Output Scaling. The final output of the network before the softmax is given by the last linear
layer, which does not have LayerNorm applied:

fθ′(x) = W ′
Lh

′
L−1 = αWLhL−1.

Since h′L−1 = hL−1, the output scales linearly with α:

fθ′(x) = αfθ(x).

Implications for Scaling. Scaling the weights by α scales the output by α, but the intermediate
activations remain invariant due to LayerNorm. This behavior is similar to homogeneous mod-
els but does not depend on the network’s depth. However, when α becomes very small, the pre-
normalization activations zℓ = αWℓhℓ−1 approach zero. In this regime, the normalization oper-
ation becomes unstable: the standard deviation of the activation vector tends to zero, and the ε
term (typically added for numerical stability) begins to dominate. Consequently, the output be-
comes insensitive to both the input and the parameters, leading to vanishing gradients and degraded
trainability. Figure 3 shows the Kullback-Leibler Divergence [10], as a similarity metric, between
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Figure 3: DKL divergence between expected logits αfθ and the actual logits fθ′ .

the expected scaled output αfθ(x) and the actual output fθ′(x), confirming that the linear scaling
relationship holds except when α becomes very small.

These theoretical insights are empirically validated in Figure 1.D of the main text, which presents
three subplots highlighting the impact of LayerNorm on the emergence of the Goldilocks zone. In-
terestingly, networks initialized with LayerNorm struggle to reach a well-defined Goldilocks region.

Appendix H. Scaling Properties in Networks with Layer Normalization, Residual
Connections, and Biases

Consider a neural network with L layers. Let fθ(x) denote the output before the softmax for an
input x, where θ represents all parameters (weights, biases). In this section we analyze the effect of
scaling the weights and biases by α > 0 for a residual model with biases and LayerNorm.

Scaling invariance of LayerNorm. When we scale the weights and biases by α, the pre-norm
activations become:

zl = αWlhl−1 + αbl = α(Wlhl−1 + bl).

The mean and standard deviation scale linearly with α:

µ′
l = αµl, σ′

l = ασl,

where µl and σl are the mean and standard deviation of Wlhl−1 + bl. Thus, LayerNorm cancels the
scaling:

LayerNorm(zl) =
α(Wlhl−1 + bl)− αµl

ασl
=

Wlhl−1 + bl − µl

σl
= LayerNorm(Wlhl−1 + bl).

This shows that the output of LayerNorm is invariant to α, regardless of the presence of biases.

Residual connection preserves scaling invariance. The layer output with residual connection is:

hl = LayerNorm(Wlhl−1 + bl) + hl−1,

which is independent of α. Thus, all intermediate activations hl remain unchanged when scaling
weights and biases by α.

13
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Final layer scaling. The network’s final output (before softmax) is:

fθ′(x) = αWLhL−1 + αbL,

since the last layer typically does not have LayerNorm or residual connections. This scales linearly
with α:

fθ′(x) = α(WLhL−1 + bL) = αfθ(x).

In this combined architecture, LayerNorm dominates the scaling behavior, resulting in a linear
scaling relationship with α that is independent of network depth. This behavior is empirically
validated in Figure 1.E of the main text.

Appendix I. Learning Rate Adjustments for Scaled Models

To ensure that training dynamics remain comparable across different scaling regimes, we adjust
the learning rate depending on (1) the type of scaling applied (weight or softmax temperature) and
(2) the architectural components present in the network. We consider three types of architectural
inhomogeneities (biases, residual connections, and layer normalization) and analyze their behavior
under both small and large scaling factors. When possible, we derive learning rate rules that preserve
the relative update magnitude with respect to the model’s output and parameter norm.

Softmax Temperature Scaling

Scaling the softmax by a temperature T modifies the gradient of the cross-entropy loss as follows:

∇θℓ =
1

T

(
∂z

∂θ

)⊤
(σT (z)− y) ,

which leads to the update rule:

θt+1 = θt −
η

T

(
∂z

∂θ

)⊤
(σT (z)− y) .

To maintain a consistent effective step size, we set the scaled learning rate as:

η′ = T · η0.

This rule is simple, general, and largely independent of architectural details, making softmax tem-
perature scaling a robust baseline for connecting initialization and trainability.

Weight Scaling and Architectural Inhomogeneities

Let θ′ = αθ be the weight-scaled parameters and fθ′(x) the corresponding network output. The
required learning rate adjustment depends strongly on how the architecture responds to the scaling
factor α. We now analyze each case.
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Biases. Large α: In relatively shallow networks, the output scales as fθ′(x) ≈ αLfθ(x), re-
sembling homogeneous behavior (Appendix E). The logit gradients scale as ∇θ′z

′
k = αL−1∇θzk,

and to preserve update size relative to parameter norm, we adopt the scaling as previously used by
Vysogorets et al. [13]:

η′ = α2−L · η0.

Small α: The network collapses toward a constant function, dominated by the output bias term,
which is only scaled linearly. In this case, the homogeneity assumption fails, and no clear gradient
scaling rule applies.

Residual Connections. Large α: The residual branch dominates and the output scales as αL, as
in homogeneous networks (Appendix F). The same learning rate scaling rule applies:

η′ = α2−L · η0.

Small α: The skip (identity) path dominates, and the output scales as αL−L, where L is the
number of layers in residual branches. The gradient then scales as ∇θ′z

′
k = αL−L−1∇θzk, and the

appropriate learning rate is:
η′ = α2−L+L · η0.

Layer Normalization. Large α: The normalization cancels out intermediate scaling effects, and
the output scales linearly with α: fθ′(x) = αfθ(x) (Appendix G). The gradient remains invariant:
∇θ′z

′
k = ∇θzk. Thus, the learning rate should scale linearly:

η′ = α · η0.

Small α: The output becomes nearly constant due to the dominance of the ε term in the nor-
malization denominator. In this regime, scaling effects vanish and gradient magnitudes become un-
predictable. Consequently, no principled learning rate adjustment can be applied, and performance
becomes sensitive to initialization noise.

Appendix J. Connection to Optimization with weight scaling

While our main analysis focuses on softmax temperature scaling, we also report results under weight
scaling α for completeness (Figure 4). As discussed in the main text and in Appendix I, optimization
under α-scaling introduces architecture-dependent effects on gradient magnitude and learning rate
adjustment, especially for small α. To minimize these complications, we focus on the large-α
regime where the scaling behavior is more predictable.

For networks with biases or residual connections, we apply the learning rate adjustment η′ =
α2−L·η0, which holds under the assumption of homogeneous-like scaling at large α. For LayerNorm
and the combined model, where the output scales linearly with α, we use η′ = α·η0, again assuming
the scaling behavior holds in the large-α limit.

Results. For homogeneous networks, as well as those with biases and residual connections, we
recover similar trends as previous work [13] and as our experiment with softmax temperature scal-
ing. In these cases, the divergence observed at low α (analogous to high temperatures) is consistent
across both methods. Since the divergence regime correspond to the most sensitive region to learn-
ing rate and gradient dynamics, the differences between the two scaling strategies remain relatively
small.
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Figure 4: Connection to Optimization - Train (top) and Test (bottom) Accuracy across Weight
Scaling for LeNet-300-100 under Varying Learning Rates and Architectural Inhomogeneities.
Each column corresponds to a different architectural configuration: (A) baseline (homogeneous),
(B) non-zero biases, (C) residual connections, (D) LayerNorm, and (E) a mixture of all three in-
homogeneities. Overlaid on each plot is the Goldilocks zone boundary (as defined in Figure 1),
allowing comparison between regions of favorable curvature and actual generalization.

However, for LayerNorm and the combined model, the behavior diverges more clearly. Under
α-scaling, these models exhibit early training instability at small α, while they remain stable under
large softmax temperatures. This instability is explained by the dominant role of the ε term in
LayerNorm, which affects the backward gradients and disrupts the relationship between output
scaling and update magnitude.

These results offer additional empirical support for our decision to focus on softmax temperature
scaling in the main analysis. Temperature scaling provides more reliable and architecture-agnostic
behavior, aligning better with theoretical expectations and enabling consistent learning rate adjust-
ments.

Appendix K. Connection to Optimization: Test Accuracy and Temperature Scaling

Figure 5: Connection to Optimization - Test Accuracy across Softmax Temperature for LeNet-
300-100 under Varying Learning Rates and Architectural Inhomogeneities. Each column cor-
responds to a different architectural configuration: (A) baseline (homogeneous), (B) non-zero bi-
ases, (C) residual connections, (D) LayerNorm, and (E) a mixture of all three inhomogeneities.
Overlaid on each plot is the Goldilocks zone boundary (as defined in Figure 1), allowing compari-
son between regions of favorable curvature and actual generalization.
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The test accuracy results shown in Figure 5 mirror the trends observed in training accuracy
(Figure 2). Across all architectures, the alignment between the Goldilocks zone and trainability
remains consistent, further supporting the relevance of our analysis beyond the training set.

Appendix L. Limitations and Future Work

Our work investigates the Goldilocks zone in a range of inhomogeneous networks, focusing on
curvature at initialization and its link to trainability. We highlight differences between weight and
temperature scaling, and show how elements like biases, residuals, and LayerNorm reshape the loss
landscape, but several questions remain.

First, our analysis is limited to initialization and early training. We do not track how curvature
evolves during training or how it interacts with optimization steps. In particular, we do not separate
Gauss-Newton and full Hessian contributions, which play distinct roles in homogeneous networks
[13]. Extending this analysis to inhomogeneous settings would provide a fuller picture of how
curvature relates to optimization dynamics.

Second, our experiments use controlled setups with fixed architectures and datasets. Whether
these findings hold across tasks, depths, or training regimes remains open. Studying how learn-
ing rate schedules, optimizers (e.g., Adam), or regularization interact with initialization-induced
curvature could clarify the Goldilocks zone’s practical impact.

Although our study focuses on classification, we provide an initial discussion in Appendix D on
how similar ideas may extend to regression.

Finally, while we use softmax temperature as a reliable probe of model confidence and cur-
vature, it likely has a broader impact on training dynamics, which should be examined in future
work.
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