
ROBO-INSTRUCT: Simulator-Augmented Instruction
Alignment For Finetuning CodeLLMs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language models (LLMs) have shown great promise at generating robot pro-1

grams from natural language given domain-specific robot application programming2

interfaces (APIs). However, the performance gap between proprietary LLMs and3

smaller open-weight LLMs remains wide. This raises a question: Can we fine-4

tune smaller open-weight LLMs for generating domain-specific robot programs to5

close the performance gap with proprietary LLMs? While SELF-INSTRUCT is a6

promising solution by generating a diverse set of training data, it cannot verify the7

correctness of these programs. In contrast, a robot simulator with a well-defined8

world can identify execution errors but limits the diversity of programs that it can9

verify. In this work, we introduce ROBO-INSTRUCT, which brings the best of10

both worlds — it promotes the diversity of SELF-INSTRUCT, while providing cor-11

rectness of simulator-based checking. ROBO-INSTRUCT introduces ROBOSIM to12

synthesize a consistent world state on the fly by inferring properties relevant to the13

program being checked, and simulating actions accordingly. Furthermore, the in-14

structions and programs generated by SELF-INSTRUCT may be subtly inconsistent15

— such as the program missing a step implied by the instruction. ROBO-INSTRUCT16

further addresses this with INSTALIGN, an instruction-program alignment pro-17

cedure that revises the task instruction to reflect actual results of the generated18

program. Given a few seed task descriptions and the robot APIs, ROBO-INSTRUCT19

is capable of generating a training dataset using only a small open-weight model.20

This dataset is then be used to fine-tune small open-weight language models, en-21

abling them to even exceed the performance of several proprietary LLMs including22

GPT-3.5-Turbo and Gemini-Pro.23

1 Introduction24

Large language models (LLMs) have demonstrated great promise at generating robot programs from25

natural language instructions [3, 10–12, 17, 18, 31, 39]. For example, consider an instruction for26

a service mobile robot: "Check how many conference rooms have no markers." The robot may27

be equipped with a domain-specific robot application programming interface (API) that includes28

skills such as go_to(location) for navigation and is_in_room(object) for perception. Since29

such domain-specific APIs do not exist in the training dataset of general-purpose LLMs, in-context30

learning (ICL) via few-shot examples is often employed to describe and use such APIs for performing31

few-shot inference. However, there is a significant performance gap [10] in the correctness of32

programs generated by ICL for large proprietary models and smaller open-weight models that can be33

deployed locally on robots. This raises a question: can we fine-tune small open-weight LLMs for34

generating domain-specific robot programs to close the performance gap with proprietary LLMs?35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Instruction-Program Pair

Check if there is a key here. If
so, pick it up.
1 def task_program():
2 if is_in_room("key"):
3 pick("key")

Gen.
Program

Robo-Instruct

InstAlign

Fai
lur
e

Su
cc
ess

In
st

ru
ct

io
n

1 def task_program():

2 if not is_in_room("key"):

3 pick("key")

Program

1 def task_program():
2 if not is_in_room("key"):
3 pick("key")

RobotPickError: 'key' does not
exist in the current location

Instruction

Ask if there is a key here. If so, pick
it up.

Misalignment: The robot doesn't
verbally ask but visually check
if a key is present.

Fail, Resample up to m times

 Input Prompt
Aligned
Instruction

Instruction

 Program
E

xa
m

pl
es

Fl
ow

 c
ha

rt
Success

Fail

Self-Instruct Gen.
Instruction

Robo-Instruct

Input Prompt

Here is a robot that has the following
skills:
{RoboEval APIs}
{Seed Examples}
Generate an interesting robot task that
can be accomplished using above skills.

P
as

s@
1

1. World state
2.

RoboSimRobot World State Init

Program Translation

Exec Program
1

2
3

Query & Update

Return Values w.r.t to
the Current State

Robot APIs

×k

+→

→ Valid
Program

❓

❓

Figure 1: High-Level Overview of ROBO-INSTRUCT. This figure also illustrates an example of an
invalid SELF-INSTRUCT-generated instruction and program, as well as pass@1 results of different
LLMs on ROBOEVAL.

Since training datasets of the domain-specific robot programs are often unavailable, SELF-INSTRUCT36

might seem like a promising solution [29, 36]. Consider the setting of generating programs for37

service mobile robots that can perceive objects, navigate to various locations, manipulate items, and38

communicate with humans. By formulating these robot skills into APIs, we can create a few seed39

task examples demonstrating their use case and employ SELF-INSTRUCT to generate a diverse set of40

instruction-program pairs as training data, as illustrated in Fig. 1. However, using SELF-INSTRUCT41

naïvely may generate infeasible instructions—e.g., asking the robot to pick up multiple objects at once42

when it cannot due to physical constraints. They can also violate domain-specific constraints. For43

example, in Fig. 1, after line 2 confirms the absence of a key at the current location, line 3 erroneously44

attempts to pick up a key. Further, these instructions may not align with the generated programs, even45

if these programs are valid. For example, Fig. 1 shows an example instruction directing the robot to46

verbally ask in each room if a key exists, whereas the program instructs the robot to visually check47

in each room. Finally, the generated programs may have execution errors. These challenges may48

appear to be solvable using a simulator, but a simulator needs an initial world state to check against49

programs. A simulator using a hand-curated world state will end up rejecting the wide diversity of50

programs generated by SELF-INSTRUCT, even if they are executable, just because the world state did51

not capture some aspect relevant to them (e.g., the presence of a “key”).52

This work introduces ROBO-INSTRUCT, a new framework based on SELF-INSTRUCT, to address these53

issues and improve the performance of small open-weight language models for generating domain-54

specific robot programs. As shown in Fig. 1, ROBO-INSTRUCT introduces two novel components:55

(1) ROBOSIM, a task-agnostic simulator that encodes domain-specific constraints and validates56

robot programs generated from SELF-INSTRUCT. Critically, ROBOSIM dynamically synthesizes57

a consistent world state starting from arbitrary programs. (2) INSTALIGN, an instruction-program58

alignment procedure that revises the generated instructions to better reflect the intent of the generated59

programs. ROBO-INSTRUCT also employs a rejection-sampling mechanism that rejects invalid60

programs detected by ROBOSIM and queries SELF-INSTRUCT for a new program corresponding to61

the same generated instruction.62

We validate ROBO-INSTRUCT by fine-tuning Codellama-Python-7B [30] and evaluate on ROBOEVAL,63

a domain-specific code generation benchmark for service mobile robots. We show that ROBO-64

INSTRUCT is capable of improving the performance of the Codellama model by using only a small65

open-weight model to generate the training dataset. Compared to the base Codellama-Python-66

7B model without fine-tuning, our ROBO-INSTRUCT fine-tuned models outperform by 28.75% in67

average pass@1 scores; and, compared to SELF-INSTRUCT fine-tuned model, our model outperform68

by 13.75%.; and the best pass@1 of ROBO-INSTRUCT fine-tuned model achieves a 68.75% match,69

surpassing the performance of the proprietary GPT-3.5-Turbo and Gemini-1.0-Pro.70

2

Contributions Our main contributions are as follows:71

1. We introduce ROBO-INSTRUCT, a new framework for improving the code generation72

performance of small open-weight language models for domain-specific robot programs.73

This framework introduces two novel components, ROBOSIM and INSTALIGN.74

2. We introduce a dynamic world synthesis and evaluation process for generating relevant75

world states for automated code checking for diverse, arbitrary tasks in ROBOSIM.76

3. We introduce INSTALIGN, an instruction alignment procedure to refine instruction-code77

pairs to improve alignment between instructions and code generated by SELF-INSTRUCT.78

4. We fine-tune a small open-weight model, Codellama-Python-7B [30], using ROBO-79

INSTRUCT, and improve its performance to outperform several CodeLLMs, including80

Deepseek-Coder-33B [8], and Starcoder2-15B [21] and two proprietary LLMs, GPT-3.5-81

Turbo [27] and Gemini-1.0-Pro [33] on the ROBOEVAL benchmark.82

Our code and data will be released at URL anonymized.83

2 ROBO-INSTRUCT84

In this section, we present how ROBO-INSTRUCT generates training datasets of domain-specific robot85

programs. Alg. 1 shows a broad overview of the framework. To add an entry in the training dataset,86

SELF-INSTRUCT first generates an instruction-program pair, (I,P), from the robot APIs and seed87

tasks, shown in Appendix A.4. Then, ROBOSIM dynamically synthesizes a consistent world state on88

the fly as it executes and validates P . If P is invalid, ROBO-INSTRUCT employs a rejection-sampling89

method, which generates a new program P given the same I and evaluates the new P again. This90

process repeats until P becomes valid or a predefined maximum resampling limit is reached. If the91

limit is reached, the instruction might be invalid given the domain-specific APIs or too complex to92

generate a program, so the instruction-program pair is discarded. Finally, if P is valid, INSTALIGN93

takes in (I,P) to revise I to better reflect the intent of P and the aligned instruction and program is94

saved to the training dataset. In the following subsections, we elaborate on the specific design of each95

component.96

Algorithm 1 ROBO-INSTRUCT: Instruction-Program Generation
Require: S, ▷ Robot API and seed tasks,

Let P ← Program, ▷ The program begin checked
Let I ← Instruction, ▷ The instruction corresponding to P
Let ROBOSIM: P → bool, ▷ Domain-specific task-agnostic simulator
Let INSTALIGN: S × I × P → I, ▷ Instruction-program alignment model
Let SELF-INSTRUCTinst: S → I, ▷ SELF-INSTRUCT instruction generation model
Let SELF-INSTRUCTcode: S × I → P , ▷ SELF-INSTRUCT program generation model

1: Initialize: D = ∅ ▷ Training dataset
2: Initialize: N ▷ Training dataset size
3: Initialize: m ▷ Maximum resampling limit
4: while len(D) < N do
5: I ← SELF-INSTRUCTinst(S)
6: P ← SELF-INSTRUCTcode(S, I)
7: for i = 1 to m do
8: is_program_valid = ROBOSIM(P) ▷ Validate the program
9: if is_program_valid = FALSE then

10: P ← SELF-INSTRUCTcode(S, I) ▷ Rejection-sampling
11: else
12: Ialigned ← INSTALIGN(S, I,P) ▷ Align instruction with the program
13: D ← (Ialigned,P)
14: break
15: end if
16: end for
17: end while
18: return D

3

2.1 ROBOSIM: A Task-Agnostic Simulator For Domain-Specific Programs97

We present a principled approach to design ROBOSIM for validating domain-specific robot programs.98

Alg. 2 illustrates the high-level algorithm used to assess the correctness of a robot program. ROBOSIM99

employs the concept of world state to simulate the robot actions directed by a program, ensuring100

consistent and reliable evaluation. A world state is a symbolic representation of the environment101

in which the robot operates, and it keeps track of the high-level changes in the robot state and the102

surrounding environment as the robot performs actions in order. For example, consider a program103

instruction that commands a robot to check if an apple is nearby. The world state queries the stored104

information about the surrounding environment, identifies all objects at the robot’s current location,105

and informs the program whether an apple is present.106

However, since SELF-INSTRUCT generates arbitrary programs based on the provided APIs, ROBOSIM107

does not know what a plausible world state relevant to the program would be a priori — e.g., reasoning108

about the existence of an apple in the example program. Thus, we equip ROBOSIM with the ability109

to expand the world state as more robot actions are performed. Our approach is inspired by angelic110

execution [4], which has previously been used for software verification of programs with partially111

defined library functions. In our case, instead of partially defined library functions, we have unknown112

plausible world states. ROBOSIM dynamically synthesizes and grows a world state based on domain-113

specific constraints (e.g., object permanence, robot skills, etc.) and the execution trace of the program,114

which allows it to infer a consistent and relevant world state.115

Specifically, ROBOSIM modifies the program to replace all API calls with the DYNAMICEVAL116

function (Alg. 2 line 4) — when an API function is called during execution, the DYNAMICEVAL117

function is invoked instead.118

DYNAMICEVAL makes an important extension to the formulation of STRIPS [7] to integrate with119

API functions. DYNAMICEVAL equips each API function with specific pre-conditions, effects, and120

return values. The pre-conditions are composed of literals tailored to the function’s requirements.121

For instance, the API function is_in_room(‘apple’), which determines if an object ‘apple’ is in122

the same room as the robot, uses two literals for its pre-condition: robot_at(X) and obj_at(X,123

‘apple’). Generally, STRIPS assigns one of two possible values to each literal: True if the literal is124

defined, otherwise False. However, prior to program execution, DYNAMICEVAL is unaware of the125

program-relevant literals. Thus we assign a third value, undefined, to such unknown literals. Literals126

must thus be explicitly defined as either True or False, or they remain undefined if not specified.127

Alg. 3 demonstrates how DYNAMICEVAL executes an API function and updates the world state. First,128

it calculates the precondition specified for the function. It then checks each literal in the precondition129

to see if it is defined. If a literal is undefined, DYNAMICEVAL invokes GROWWORLD, a stochastic130

function that assigns a random truth value to the literal and updates the world state accordingly.131

Finally, DYNAMICEVAL proceeds to execute the API function using the current world state, retrieves132

the return values, and applies the function’s effects to update the world state.133

Fig. 2 illustrates an example of ROBOSIM executing a generated program. Initially, ROBOSIM’s134

world state only specifies the robot’s current location, and whether a pie is in the same room135

as the robot remains undefined (line 2). Therefore, DYNAMICEVAL invokes GROWWORLD to136

Algorithm 2 ROBOSIM(P)

Require: Program P ▷ Generated program
1: Initialize: Set A ▷ A set of domain-specific robot APIs
2: Initialize: k ▷ Number of evaluation iterations
3: Initialize: Winit ▷ An initial world state with or without predefined information
4: Ptrans ← TRANSLATE(P,A, DYNAMICEVAL) ▷ Replace each API call with DYNAMICEVAL
5: for i = 1 to k do ▷ Then, evaluate P k times to catch program errors
6: try:
7: W ←Winit ▷ Initialize a new world state
8: exec(Ptrans,W)
9: catch:

10: return False
11: end for
12: return True ▷ Return True if all program executions are successful

4

Algorithm 3 DYNAMICEVAL(api_fn, params,W)

1: p← GETPRECOND(api_fn, params) ▷ Get the parameter-specific precondition for api_fn
2: for l ∈ p do ▷ Loop through every literal in the precondition
3: if CHECKDEFINED(W, l) == undefined then
4: W ← GROWWORLD(l,W) ▷ Instantiate the literal and growW to include it
5: end if
6: end for
7: retval,W ← EXECUPDATE(api_fn, params,W) ▷ Execute api_fn and updateW
8: return retval,W

Exec(fn, params, W):
 p = get_precond(fn)
 r = eval(p, W)
 if r == unknown:
 L = GetUnknownLiterals(r)
 forall l in L:
 W = GrowWorld(l, W)
 W, retval = Exec(fn, W)

World

robot_at(start_loc): True
is_reachable(start_loc):True

1 def task_program():
2 if is_in_room("pie")
3 pick("pie")
4 go_to("kitchen")
5 place("pie")
6 else:
7 say("there is no pie")

robot_at(start_loc):
is_reachable(start_loc)
obj_at(start_loc, "pie") True

World State
robot_at(start_loc): True

object_at(start_loc, key): True
robot_holding(key): True
is_navigatable(“kitchen”)

robot_at(start_loc):
is_reachable(start_loc):
robot_holding("pie"): e
obj_at(start_loc, "pie") x

robot_at(start_loc)
is_reachable(start_loc)
obj_at(start_loc, "pie") False

robot_at(start_loc)
is_reachable(start_loc)
obj_at(start_loc, "pie")

pick("key")

robot_at(start_loc) False
is_reachable(start_loc)
robot_holding("pie")
is_reachable("kitchen") d
robot_at("kitchen") True

def task_program():
 if is_in_room("pie")
 pick("pie")
 go_to("kitchen")
 place("pie")
 else:
 say("there is no pie")

def task_program():
 if is_in_room("pie")
 pick("pie")
 go_to("kitchen")
 place("pie")
 else:
 say("there is no pie")

def task_program():
 if is_in_room("pie")
 pick("pie")
 go_to("kitchen")
 place("pie")
 else:
 say("there is no pie")

def task_program():
 if is_in_room("pie")
 pick("pie")
 go_to("kitchen")
 place("pie")
 else:
 say("there is no pie")

def task_program():
 if is_in_room("pie")
 pick("pie")
 go_to("kitchen")
 place("pie")
 else:
 say("there is no pie")

def task_program():
 if is_in_room("pie")
 pick("pie")
 go_to("kitchen")
 place("pie")
 else:
 say("there is no pie")

robot_at(start_loc)
is_reachable(start_loc)
robot_holding("pie") dd
is_reachable("kitchen")
robot_at("kitchen")
obj_at("kitchen", "pie") x

World State

Program

RoboSim

No change False
True

False
True
True
True

True
True
True

False
True
False
True
True
True

True
True
True
Undef.

False
True
True
True
True

True
True
False

True
True
False

1 2 3

421

API Definitions

is_in_room(obj) -> Bool
pick(obj) -> None
go_to(loc) -> None
place(obj) -> None
say(msg) -> None

Figure 2: Example of ROBOSIM executing a generated program and updating the world state.
Initially, ROBOSIM begins with a world state that includes only the robot’s current location. As the
program executes, two distinct execution paths emerge, depicted in light purple and blue. This figure
demonstrates how the world state is updated along each execution path.

randomly determine a truth value for the obj_at(start_loc, "pie") literal, leading to two137

distinct execution paths depicted in light purple and blue. Subsequently, as additional API functions138

are called, more literals are introduced or updated in the world state to ensure consistent evaluations.139

Finally, due to the stochastic nature of DYNAMICEVAL, ROBOSIM must execute the generated140

program multiple times to validate the program. If all executions are successful, the program is141

deemed correct (Alg. 2 line 5-11).142

2.2 INSTALIGN: Instruction-Program Alignment Procedure143

Given that LLMs are extensively trained in code understanding [30], INSTALIGN is a procedure that144

prompts an LLM to revise I to better reflect the intent of P . This procedure involves two steps: first,145

given I and P , INSTALIGN leverages Chain-of-Thought reasoning [37] (CoT) to prompt an LLM146

to generate a revised instruction, Irevised; second, INSTALIGN invokes the LLM again to determine147

whether I or Irevised is more aligned with P’s intent and output the chosen instruction as Ialigned.148

To generate Irevised, the prompt to the LLM comprises the robot API function definitions, I, P , and149

CoT instructions. The CoT asks the LLM to perform the following three steps in order: 1. write down150

all the robot APIs used in the program; 2. examine these APIs and write down step by step what151

the program does; 3. combine all the information above to revise the robot instruction. Similarly,152

to determine Ialigned, an LLM is prompted to think step by step about P , I and Irevised to arrive at a153

conclusion. Detailed prompt is shown in Appendix A.6.154

3 Analysis and Experiments155

In this section, we investigate the following two research questions:156

5

1. Is ROBO-INSTRUCT effective at generating training data to fine-tune a small language model157

for generating domain-specific robot programs?158

2. How do ROBOSIM and InstAlign impact the effectiveness of ROBO-INSTRUCT?159

We conduct our investigation by fine-tuning the Codellama-Python-7B model [30] on the synthetic160

dataset generated by ROBO-INSTRUCT and evaluate the fine-tuned model using ROBOEVAL [10], a161

domain-specific code generation benchmark for service mobile robots. In the following subsections,162

we first provide a brief description of ROBOEVAL. Then we present our experimental results address-163

ing the two main research questions. Finally, we offer more analysis of ROBOSIM, INSTALIGN, and164

the synthetic dataset.165

3.1 ROBOEVAL: A Domain-Specific Robot Code Generation Benchmark166

RoboEval Benchmark Tasks
ElevatorTour FindBackpack GetDrink GrilledCheese
CountSavory MailDelivery MovieMessenger SayGoodDay
HalloweenList Halloween Shopping LunchBreak LunchTime
SetTemperature StaplerDelivery StaplerSupply WeatherPoll

Task Instruction
Go to the elevator. Wait until someone shows up and ask them if they are here for the tour. If
yes, welcome them to the university, tell them to follow you, and take them to the main
conference room. If not, wait for the next person. When you get to the conference room, say
you have arrived at the conference room and also say enjoy your visit here!

Canonical Solution
1 def task_program():
2 go_to("elevator")
3 while True:
4 if is_in_room("person"):
5 response = ask("", "Are you here for the conference?", ["Yes", "No"])
6 if response == "Yes":
7 say("Welcome to the university. Please follow me.")
8 break
9 time.sleep(1)
10 go_to("conference room”)
11 say("We have arrived. Enjoy your time here")

Get the current location of the robot.
def get_current_location() -> str

Get a list of all rooms.
def get_all_rooms() -> list[str]

Check if an object is in the current room.
def is_in_room(object : str) -> bool

Go to a specific named location.
def go_to(location : str) -> None

Ask a person a question, and offer a set of specific
options for the person to respond. Returns the response
selected by the person.
def ask(person : str, question : str,

 options: list[str]) -> str

Say the message out loud.
def say(message : str) -> None

Pick up an object if you are not already holding one. You
can only hold one object at a time.
def pick(obj: str) -> None

Place an object down if you are holding one.
def place(obj: str) -> None

16 RoboEval Benchmark TasksRoboEval Domain-Specific API Definitions

FindBackpackElevatorTour …GetDrink WeatherPoll

Figure 3: ROBOEVAL APIs and benchmark task example.

ROBOEVAL is a domain-specific code generation benchmark, featuring a suite of 16 tasks designed167

to evaluate the ability of LLMs to understand custom APIs and generate programs for service robots.168

In this domain, a service robot can perceive objects, navigate to various locations, manipulate items,169

and communicate with humans. Furthermore, the robot should be capable of basic commonsense170

reasoning and executing complex tasks that involve conditional and repetitive actions. To facilitate171

these capabilities, ROBOEVAL defines a set of 8 API functions in Python as skill primitives. Fig. 3172

illustrates these function signatures and definitions, alongside an example task instruction and its173

canonical solution from the benchmark. In addition, unlike other popular code generation benchmark174

tasks [2, 6, 9, 14, 16, 19], the order of the robot’s actions is crucial for successfully completing the175

specified tasks. For instance, in the task "bring me a marker from the classroom that does not have a176

whiteboard," the robot must check each classroom until it finds one without a whiteboard, whereas177

simply bringing back a marker is insufficient. Hence, ROBOEVAL evaluates the generated program by178

executing it in a simulator to capture the action traces, which are subsequently validated for sequence179

correctness using temporal logic.180

3.2 RQ1: Is ROBO-INSTRUCT Effective at Generating Training Data to Fine-Tune a Small181

Language Model for Generating Domain-Specific Robot Programs?182

Experiment Setup. We use the open-weight LLM, Llama3-8B-Inst, for ROBO-INSTRUCT. To183

generate a diverse dataset, we employ nucleus sampling for creating instruction-program pairs,184

setting the temperature T = 1 and top p = 0.95. The maximum resampling limit is capped at 3 to185

accommodate instructions that initially produce invalid programs. For the LLM used in INSTALIGN,186

we empirically adjust the generation temperature to T = 0.3 to optimize performance. Furthermore,187

we assess the edit similarity between token sequences of each instruction pair in the dataset [15],188

removing duplicates where the similarity score exceeds 0.6. We use the same setup to generate189

data via SELF-INSTRUCT. Instead of discarding invalid programs, SELF-INSTRUCT includes every190

generated instruction-program pair in the training dataset. Finally, we create two datasets with 5K191

instruction-program pairs each using SELF-INSTRUCT and ROBO-INSTRUCT respectively. These192

datasets are then used to fine-tune the Codellama-Python-7B model. The learning rate is set to be193

6

ROBOEVAL pass@1
Fine-tune Model # Param T = 0 T = 0.2 Licensing

- GPT-4 - 83.75% 85.81% Proprietary
- GPT-3.5 - 67.5% 65.56% Proprietary
- Gemini-1.0-Pro - 60.00% 59.88% Proprietary

- Codellama-Python 7B 40.00% 39.31% Open
- Codellama-Python 34B 46.25% 48.25% Open
- Starcoder2 15B 62.5% 60.94% Open
- Deepseek-Coder 33B 53.75% 52.13% Open
- Llama3-Inst 8B 48.75% 48.38% Open
Self-Instruct Codellama-Python 7B 55.00% 52.69% Open
Robo-Instruct (ours) Codellama-Python 7B 68.75% 66.00% Open

Table 1: Pass@1 results of different LLMs on ROBOEVAL computed with greedy decoding T = 0
and nucleus sampling T = 0.2.

3e-5 with a warmup ratio of 3% and a constant lr scheduler. We employ the AdamW optimizer [20]194

with an effective batch size of 8, training each model for 5 epochs using a sequence length of 2048195

tokens. We train all our models on a single H-100 GPU using unsloth [35].196

Baselines. We divide our baseline models into 2 categories: 1) proprietary LLMs, including197

GPT4 [28], GPT3.5-Turbo [27], Gemino-Pro [33], and 2) open-weight LLMs, including Codellama-198

Python-7B [30], Codellama-Python-34B, Starcoder2-33B [21], Deepseek-Coder-33B [8], and199

Llama3-8B-Inst [1]. All the results are evaluated using ROBOEVAL and reported in Tab. 1.200

Tab. 1 presents the average pass@1 results for different LLMs on ROBOEVAL, using two different201

temperature settings for generation: greedy decoding at a temperatures of T = 0 and nucleus202

sampling at a temperature of T = 0.2. The results show that ROBO-INSTRUCT-fine-tuned Codellama203

significantly improves upon the base Codellama-Python-7B and outperforms the SELF-INSTRUCT-204

fine-tuned variant. Notably, it surpasses all open-weight models, including larger ones like Codellama-205

Python-34B and Deepseek-Coder-33B. Additionally, although the training dataset was generated206

using Llama3-8B-Inst, which scores less than 50% pass@1 on ROBOEVAL, our ROBO-INSTRUCT-207

fine-tuned model still achieves a significant improvement, scoring 68.75% under deterministic208

temperature settings for generation. Finally, compared to proprietary models, while our ROBO-209

INSTRUCT-fine-tuned model trails the more powerful GPT-4, it outperforms GPT-3.5-Turbo and210

Gemini-1.0-Pro in generating programs for service mobile robots. This result demonstrates the211

effectiveness of our approach in generating domain-specific robot program data for fine-tuning a212

small language model. It suggests that the fine-tuned model could potentially replace some proprietary213

models, providing a more cost-effective and private option for local deployment.214

3.3 RQ2: How Do ROBOSIM and InstAlign Impact the Effectiveness of ROBO-INSTRUCT?215

T=0 T=0.2 Invalid
Method pass@1 Improv. pass@1 Improv. Programs

Codellama-7B-Python 40.00% +0% 39.31% +0% 38.31%
SELF-INSTRUCT 55.00% +15.00% 52.69% +13.38% 20.94%
+Reject Unsolvable (RU) 60.00% +20.00% 57.62% +18.31% 23.38%
+ROBOSIM + RU 63.75% +23.75% 63.88% +24.57% 14.13%
+INSTALIGN + RU 58.75% +18.75% 59.81% +20.50% 23.44%
+Both (ROBO-INSTRUCT) 68.75% +28.75% 66.00% +26.69% 17.07%

Table 2: Pass@1 results of different LLMs on ROBOEVAL computed with greedy decoding T = 0
and nucleus sampling T = 0.2.

Using the same setup as in the previous section, we investigate the effectiveness of ROBOSIM216

and INSTALIGN. Since SELF-INSTRUCT may generate invalid instructions that no corresponding217

valid program can pass in ROBOSIM, we propose rejecting these unsolvable instructions (we name218

7

this process RU) to evaluate the upperbound performance of SELF-INSTRUCT. Tab. 2 shows the219

average pass@1 results from Codellama-7B-Python fine-tuned on different datasets generated by220

each method. First, findings from SELF-INSTRUCT + RU indicate that simply discarding invalid221

instructions could also improve model performance. Additionally, fine-tuning with a dataset created222

from SELF-INSTRUCT+RoboSim results in the smallest proportion of invalid program errors. Finally,223

while incorporating either ROBOSIM or INSTALIGN individually offers some improvement over the224

baseline SELF-INSTRUCT + RU results, ROBO-INSTRUCT still results in the best performance. This225

indicates that the integration of these two components is important to the framework’s effectiveness.226

3.4 Qualitative analysis of the generated program errors227

Violation of Constraints

1 def task_program():
2 current_location =
get_current_location()
3 all_rooms = get_all_rooms()
4 for room in all_rooms:
5 go_to(room)
6 if is_in_room("small
toy"):
7 pick("small toy")
8 go_to(current_location)

RobotPickError: robot can only
hold one thing at a time and is
already holding 'small toy'

Logical Error

1 def task_program():
2 if not is_in_room("watering
can"):
3 pick("watering can")
4 go_to("flower bed")
5 response = ask("John",
 "Do you want the watering
can?",
 ["yes", "no", "ask
Susan"])
6 say("John said: " +
response)

RobotPickError: 'watering can'
does not exist in the current
location

Instruction-Program

Misalignment

1 def task_program():
2 for room in get_all_rooms():
3 go_to(room)
4 if is_in_room("key"):
5 say("Report: " + room +
" Key found\n")

Misalignment: The robot
visually checks with the
is_in_room() function rather
than ask()

Logical Error

1 def task_program():
2 go_to("game room")
3 if is_in_room("Jack"):
4 say("Hello Jack")
5 response = ask("Jack",
 "Do you want to play a
game?",
 ["Yes", "No"])

RobotAskError: 'Jack' is not at
the 'game room' location

Syntax Error

1 def task_program():
2 go_to("David's office")
3 response = ask("David",
 "Where do you want to meet tomorrow?",
 ["") + get_all_rooms() + [""])
4 go_to(response)
5 say("Tomorrow's Meeting at 10am")

SyntaxError: closing parenthesis ')' does not
match opening parenthesis '['

Hallucination of New APIs

1 def task_program():
2 go_to("main hall")
3 say("Everyone, stop what you're doing. I
 need your help with a quick survey.")
4 for person in get_people_in_room():
5 response = ask(person,
 "How do you feel about the sofa?",
 ["Good", "Bad", "Neutral"])
6 say(person + " thinks the sofa is "
 + response)

NameError: name 'get_people_in_room' is not
defined

Incorrect Use of API

1 def task_program():
2 current_location = get_current_location()
3 all_rooms_in_location =
 get_all_rooms(current_location)
4 for room in all_rooms_in_location:
5 go_to(room)
6 go_to(current_location)
7 say("I am now back at my initial
 location")

TypeError: get_all_rooms() takes 0 positional
arguments but 1 was given

Incorrect Use of API Return Value

1 def task_program():
2 list_of_rooms = get_all_rooms()
3 rooms_with_robots = []
4 for room in list_of_rooms:
5 if "robot" in is_in_room("robot"):
6 go_to(room)

TypeError: is_in_room("robot") returns a
'bool' type and it is not iterable

Instruction-Program Misalignment

1 def task_program():
2 for room in get_all_rooms():
3 go_to(room)
4 if is_in_room("key"):
5 say("Report:" + room + " Key found\n")

Instruction: Ask in each room if there is a
key in it, and if so, print out a report with
the room name and "Key found"

Misalignment: the robot visually checks with
the is_in_room() function rather than ask()

Logical Error

1 def task_program():
2 if not is_in_room("watering can"):
3 pick("watering can")
4 go_to("flower bed")
5 response = ask("John",
 "Do you want the watering can?",
 ["yes", "no", "ask Susan"])
6 say("John said: " + response)

RobotPickError: 'watering can' does not exist
in the current location

Logical Error

1 def task_program():
2 go_to("game room")
3 if is_in_room("Jack"):
4 say("Hello Jack")
5 response = ask("Jack",
 "Do you want to play a game?",
 ["Yes", "No"])

RobotAskError: 'Jack' is not at the 'game
room' location

Logical Error

1 def task_program():
2 go_to("item storage room")
3 pick("item storage room")

RobotPickError: 'item storage room' is a
location that cannot be picked

Logical Error

1 def task_program():
2 for room in get_all_rooms():
3 go_to(room)
4 pick("toy")
5 go_to("living room")
6 if not is_in_room("toy"):
7 place("toy")

RobotPickError: robot can only hold one thing at
a time and is already holding 'toy'

××

×

× ×

×

×

×

×

Syntax Error

1 def task_program():
2 go_to("David's office")
3 response = ask("David", "Where do you want to meet
 tomorrow?",["") + get_all_rooms() + [""])
4 go_to(response)
5 say("Tomorrow's Meeting at 10am")

SyntaxError: closing parenthesis ')' does not match opening
parenthesis '['

Hallucination of New APIs

1 def task_program():
2 go_to("main hall")
3 say("Everyone, stop what you're doing. I need your help
 with a quick survey.")
4 for person in get_people_in_room():
5 response = ask(person, "How do you feel about the
 sofa?",["Good", "Bad", "Neutral"])
6 say(person + " thinks the sofa is "+ response)

NameError: name 'get_people_in_room' is not defined

Incorrect Use of API

1 def task_program():
2 current_location = get_current_location()
3 all_rooms_in_location =
 get_all_rooms(current_location)
4 for room in all_rooms_in_location:
5 go_to(room)
6 go_to(current_location)
7 say("I am now back at my initial location")

TypeError: get_all_rooms() takes 0 positional arguments but 1
was given

Incorrect Use of API Return Value

1 def task_program():
2 list_of_rooms = get_all_rooms()
3 rooms_with_robots = []
4 for room in list_of_rooms:
5 if "robot" in is_in_room("robot"):
6 go_to(room)

TypeError: is_in_room("robot") returns a 'bool' type and it is
not iterable

Logical Error

1 def task_program():
2 if not is_in_room("watering can"):
3 pick("watering can")
4 go_to("flower bed")
5 response = ask("John", "Do you want the watering
 can?",["yes", "no", "ask Susan"])
6 say("John said: " + response)

RobotPickError: 'watering can' does not exist in the current
location

Logical Error

1 def task_program():
2 go_to("game room")
3 if is_in_room("Jack"):
4 say("Hello Jack")
5 response = ask("Jack","Do you want to play a game?",
 ["Yes", "No"])

RobotAskError: 'Jack' is not at the 'game room' location

Logical Error

1 def task_program():
2 go_to("item storage room")
3 pick("item storage room")

RobotPickError: 'item storage room' is a location that cannot
be picked

Logical Error

1 def task_program():
2 for room in get_all_rooms():
3 go_to(room)
4 pick("toy")
5 go_to("living room")
6 if not is_in_room("toy"):
7 place("toy")

RobotPickError: robot can only hold one thing at a time and is
already holding 'toy'

× ×

× ×

× ×

× ×

Figure 4: SELF-INSTRUCT-Generated Program Errors: Examples 1 to 4 illustrate errors specific to
the Python language, and Examples 5 to 8 highlight errors rooted in domain-specific constraints.2

We analyze invalid programs identified by ROBOSIM, categorizing the errors into two types: language-228

native errors and domain-specific constraint violations. Fig. 4 displays eight examples of these229

programs, with Examples 1 to 4 illustrating errors specific to the Python language, and Examples 5230

to 8 highlighting errors rooted in domain-specific constraints. Language-native errors are generally231

straightforward, such as syntax errors, the use of undefined variables or functions, or improper use of232

provided APIs.233

In contrast, errors related to domain-specific constraints tend to be more complex to detect. For234

instance, Example 5 illustrates the program incorrectly trying to pick up a watering can (line 3) after235

establishing that it is not present at the location (line 2). Similarly, Example 6 demonstrates an error236

where the program inappropriately asks Jack (line 5) after confirming his absence from the room237

2Programs have been adapted to succinctly demonstrate the types of errors and fit within the figure.

8

(line 3). Example 7 illustrates a scenario in which ROBOSIM updates the world state by labeling238

"item storage room" as a location after executing the go_to command (line 2). Subsequently, the239

robot attempts to pick up this location (line 3), resulting in an error. Example 9 is the most intricate240

scenario where the world state in the living room is updated to include a toy after the robot places it241

there (line 7). When the robot returns to the living room for the second time (line 5), it does not place242

down what it holds (line 7). Hence, in the third room the robot visits (line 3), when it attempts to pick243

up a toy again (line 4), an error occurs because the robot can only carry one item at a time.244

4 Related Work245

4.1 LLMs for Robot Code Generation246

LLMs have shown impressive capabilities in generating robot programs from natural language247

[11, 17, 31]. One popular approach uses LLMs to generate composable costmaps for robots to248

plan their motion on. In this approach, Voxposer [12] focuses on the tabletop manipulation setting249

and NavCon [3] focuses on creating composable maps for navigation. Using LLM to create reward250

functions is also promising. Eureka [23, 24] and Language to Rewards for Robotic Skill Synthesis [41]251

both show that LLM can generate good reward functions that allows robots to acquire complex skills.252

Finally, LLM can also be used to generate programs for high-level planning. LLM+p [18] outputs a253

robot plan in the form of the well-defined planning domain definition language (PDDL). Tidybot [39]254

uses an LLM to generate a rule that captures user preferences from examples and executes a program255

to sequentially complete the task in order. RoboEval [10] focuses on generating domain-specific256

programs for service mobile robots. It generates a program that allows the service robot to carry out257

long-horizon tasks and then validates the correctness of the program.258

4.2 Generating Datasets For Fine-tuning LLMs259

To enhance LLMs’ performance in code generation, numerous studies have explored the creation260

of specialized datasets [13, 25, 26]. SELF-INSTRUCT [36] is one popular method for generating261

synthetic datasets using an LLM. Following this methodology, Alpaca [32] generates 52K instruction-262

following demonstrations and subsequently fine-tunes the LLaMA 7B model [34] to create Alpaca 7B,263

which can behave qualitatively similarly to OpenAI’s text-davinci-003. Code Alpaca [5] extends this264

approach to generate code instructions using 21 seed tasks, while Gorilla-LM [29] adapts the method265

to focus on ML domain-specific APIs from Huggingface, TensorFlow Hub, and Torch Hub. To create266

more complex instructions, Evol-Instruct [22, 40] proposes iteratively updating instructions to become267

more complex through different prompting strategies. In addition to Evol-Instruct, OSS-Instruct [38]268

uses open-source code snippets to generate 75K high-quality instruction data and fine-tunes the269

Codelllama-Python-7B model to create Magicoder, which can match the performance of GPT-3.5-270

Turbo [27] on HumanEval [6]. While these works focus on creating seed instruction sets to generate271

synthetic data for effectively fine-tuning an LLM, our research investigates post-processing methods272

in addition to SELF-INSTRUCT. Specifically, we concentrate on generating domain-specific programs273

in robotics [10], where we can effectively leverage constraints to filter out erroneous programs.274

5 Conclusion, Limitation and Future Works275

In this work, we introduce ROBO-INSTRUCT, a novel framework to generate synthetic training data276

to fine-tune small language models for domain-specific robot programs. ROBO-INSTRUCT comprises277

two novel components: 1) ROBOSIM, an angelic-execution-based algorithm to effectively validate278

SELF-INSTRUCT-generated programs, and 2) INSTALIGN, an instruction alignment procedure to279

revise instructions to better align with the generated programs. The experimental results demonstrate280

that the Codellama-Python-7B model fine-tuned on the ROBO-INSTRUCT-generated dataset can281

significantly outperform many popular open-weight LLMs for generating domain-specific robot282

programs. It also outperforms two proprietary LLMs, GPT-3.5-Turbo and Gemino-1.0-Pro, as well283

as the SELF-INSTRUCT-fine-tuned variant. A limitation of this study is that ROBO-INSTRUCT284

relies on SELF-INSTRUCT to filter invalid programs, making the dataset quality dependent on SELF-285

INSTRUCT’s performance. This can introduce biases if SELF-INSTRUCT consistently fails in certain286

areas. Future work will explore integrating ROBO-INSTRUCT with advanced methods like Evol-Inst287

and OSS-Inst to enhance dataset quality for domain-specific robot programs.288

9

References289

[1] Meta AI. Introducing meta llama 3: The most capable openly available llm to date. https:290

//ai.meta.com/blog/meta-llama-3/, 2024. Accessed: 2024-05-21.291

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David292

Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis293

with large language models, 2021.294

[3] Harel Biggie, Ajay Narasimha Mopidevi, Dusty Woods, and Christoffer Heckman. Tell me295

where to go: A composable framework for context-aware embodied robot navigation, 2023.296

[4] Manfred Broy and Martin Wirsing. On the algebraic specification of nondeterministic program-297

ming languages. In Proceedings of the 6th Colloquium on Trees in Algebra and Programming,298

CAAP ’81, page 162–179, Berlin, Heidelberg, 1981. Springer-Verlag. ISBN 3540108289.299

[5] Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation.300

https://github.com/sahil280114/codealpaca, 2023.301

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,302

Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul303

Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke304

Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad305

Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias306

Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex307

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,308

William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,309

Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,310

Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech311

Zaremba. Evaluating large language models trained on code. 2021.312

[7] Richard E. Fikes and Nils J. Nilsson. Strips: a new approach to the application of theorem313

proving to problem solving. In Proceedings of the 2nd International Joint Conference on314

Artificial Intelligence, IJCAI’71, page 608–620, San Francisco, CA, USA, 1971. Morgan315

Kaufmann Publishers Inc.316

[8] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,317

Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder:318

When the large language model meets programming – the rise of code intelligence, 2024. URL319

https://arxiv.org/abs/2401.14196.320

[9] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,321

Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding322

challenge competence with apps. NeurIPS, 2021.323

[10] Zichao Hu, Francesca Lucchetti, Claire Schlesinger, Yash Saxena, Anders Freeman, Sadanand324

Modak, Arjun Guha, and Joydeep Biswas. Deploying and evaluating llms to program service325

mobile robots. IEEE Robotics and Automation Letters, 9(3):2853–2860, 2024. doi: 10.1109/326

LRA.2024.3360020.327

[11] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps328

for robot navigation. In Proceedings of the IEEE International Conference on Robotics and329

Automation (ICRA), London, UK, 2023.330

[12] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Vox-331

poser: Composable 3d value maps for robotic manipulation with language models. In 7th332

Annual Conference on Robot Learning, 2023. URL https://openreview.net/forum?id=333

9_8LF30mOC.334

[13] Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith335

Stevens, Abdullah Barhoum, Duc Minh Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul336

ES, Sameer Suri, David Alexandrovich Glushkov, Arnav Varma Dantuluri, Andrew Maguire,337

Christoph Schuhmann, Huu Nguyen, and Alexander Julian Mattick. Openassistant conversations338

10

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2401.14196
https://openreview.net/forum?id=9_8LF30mOC
https://openreview.net/forum?id=9_8LF30mOC
https://openreview.net/forum?id=9_8LF30mOC

- democratizing large language model alignment. In Thirty-seventh Conference on Neural339

Information Processing Systems Datasets and Benchmarks Track, 2023. URL https://340

openreview.net/forum?id=VSJotgbPHF.341

[14] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-342

Tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for343

data science code generation. ArXiv, abs/2211.11501, 2022.344

[15] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris345

Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language models better.346

In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th347

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),348

pages 8424–8445, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:349

10.18653/v1/2022.acl-long.577. URL https://aclanthology.org/2022.acl-long.577.350

[16] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,351

Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,352

Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,353

Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,354

Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level355

code generation with alphacode. Science, 378(6624):1092–1097, 2022. doi: 10.1126/science.356

abq1158. URL https://www.science.org/doi/abs/10.1126/science.abq1158.357

[17] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,358

and Andy Zeng. Code as policies: Language model programs for embodied control. In arXiv359

preprint arXiv:2209.07753, 2022.360

[18] Bo Liu, Yuqian Jiang, et al. LLM+P: Empowering Large Language Models with Optimal361

Planning Proficiency. arXiv:2304.11477, 2023.362

[19] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated363

by chatGPT really correct? rigorous evaluation of large language models for code generation.364

In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:365

//openreview.net/forum?id=1qvx610Cu7.366

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International367

Conference on Learning Representations, 2019. URL https://openreview.net/forum?368

id=Bkg6RiCqY7.369

[21] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-370

mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,371

Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,372

Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,373

Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan374

Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang,375

Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra,376

Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu,377

Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane378

Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz379

Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and380

Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024.381

[22] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing382

Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models383

with evol-instruct. In The Twelfth International Conference on Learning Representations, 2024.384

URL https://openreview.net/forum?id=UnUwSIgK5W.385

[23] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh386

Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design387

via coding large language models. arXiv preprint arXiv: Arxiv-2310.12931, 2023.388

[24] Yecheng Jason Ma, William Liang, Hungju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert389

Bastani, and Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer. 2024.390

11

https://openreview.net/forum?id=VSJotgbPHF
https://openreview.net/forum?id=VSJotgbPHF
https://openreview.net/forum?id=VSJotgbPHF
https://aclanthology.org/2022.acl-long.577
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=UnUwSIgK5W

[25] Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman,391

Teven Le Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, et al. Crosslin-392

gual generalization through multitask finetuning. arXiv preprint arXiv:2211.01786, 2022.393

[26] Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue394

Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack:395

Instruction tuning code large language models. In The Twelfth International Conference on396

Learning Representations, 2024. URL https://openreview.net/forum?id=mw1PWNSWZP.397

[27] OpenAI. Chatgpt: Optimizing language models for dialogue. https://openai.com/blog/398

chatgpt/, 2022.399

[28] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-400

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red401

Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-402

mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher403

Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-404

man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,405

Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,406

Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey407

Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,408

Thomas Degry, Noah Deutsch, Damien Deville, et al. Gpt-4 technical report, 2024.409

[29] Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language410

model connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.411

[30] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,412

Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,413

Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan414

Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas415

Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for416

code, 2024.417

[31] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,418

Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task419

plans using large language models. In 2023 IEEE International Conference on Robotics and420

Automation (ICRA), pages 11523–11530, 2023. doi: 10.1109/ICRA48891.2023.10161317.421

[32] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy422

Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.423

https://github.com/tatsu-lab/stanford_alpaca, 2023.424

[33] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,425

Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson,426

Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy427

Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul R. Barham, Tom428

Hennigan, Benjamin Lee, Fabio Viola, et al. Gemini: A family of highly capable multimodal429

models, 2024.430

[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-431

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,432

Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation433

language models, 2023.434

[35] Unslothai. Unsloth: Finetune llama 3, mistral & gemma llms 2-5x faster with 80 URL435

https://github.com/unslothai/unsloth. Accessed: 2024-05-22.436

[36] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,437

and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instruc-438

tions, 2022.439

12

https://openreview.net/forum?id=mw1PWNSWZP
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/unslothai/unsloth

[37] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,440

Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language441

models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,442

Advances in Neural Information Processing Systems, 2022.443

[38] Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source444

code is all you need, 2023.445

[39] Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette446

Bohg, Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot assistance447

with large language models. Autonomous Robots, 2023.448

[40] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qing-449

wei Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language models to follow450

complex instructions. In The Twelfth International Conference on Learning Representations,451

2024. URL https://openreview.net/forum?id=CfXh93NDgH.452

[41] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonza-453

lez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian454

Ichter, Ted Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie455

Tan, Yuval Tassa, and Fei Xia. Language to rewards for robotic skill synthesis. Arxiv preprint456

arXiv:2306.08647, 2023.457

13

https://openreview.net/forum?id=CfXh93NDgH

A Appendix458

A.1 Overview459

In this appendix, we first present ablation experiments to investigate the percentage of invalid460

programs generated by SELF-INSTRUCT and examine how the generation temperature in INSTALIGN461

affects final performance. Next, we analyze and compare the datasets generated by ROBO-INSTRUCT462

and SELF-INSTRUCT. Finally, we list the seed tasks used in ROBOEVALand the CoT prompt.463

A.2 Ablation Exmperiments464

Figure 5: Ablation Experiments

A.2.1 effectivenss of the simulator465

We analyze the percentage of instruction-program pairs discarded by ROBOSIM at various maximum466

resampling limits, as shown in Fig. 5. Initially, with the maximum resampling limit set to 0, disabling467

the rejection-sampling method, approximately 51% of the programs generated by SELF-INSTRUCT468

contain errors. As the limit increases, fewer programs are discarded. However, there is a diminishing469

return; even with the maximum resampling limit set to 10, about 15% of the instructions still result in470

invalid programs.471

A.2.2 Instruction Alignment model temperature472

We further investigate how varying LLM temperatures for generating Irevised in INSTALIGN impact473

the performance of the fine-tuned model. Fig. 5 shows the bar chart of the pass@1 score of the474

models fine-tuned over datasets generated using different LLM temperatures in INSTALIGN. The475

model performs the best when fine-tuned on the dataset generated using LLM temperature T = 0.3.476

As the temperature increases, we observe a decrease in performance.477

A.3 Analysis of the Generated Datasets478

14

(a) Token Length Distribution for SELF-INSTRUCT
vs.ROBO-INSTRUCT

(b) Cosine Similarity with ROBOEVALfor SELF-
INSTRUCT vs.ROBO-INSTRUCT

Figure 6: Dataset Analysis

Method Size Ngram=4 Score # Synth. Loc. # Synth. Obj.
ROBO-INSTRUCT 5K 0.587 1025 928
SELF-INSTRUCT 5K 0.581 956 1060

Table 3: Dataset Statistics

We first compute and plot the distribution of token lengths in the SELF-INSTRUCT-generated dataset479

and the ROBO-INSTRUCT-generated dataset, as shown in Fig. 6(a). Next, we measure the cosine480

similarity between each dataset and the ROBOEVALbenchmark tasks following the approach in481

Magicoder [38], as depicted in Fig. 6(b). Finally, Tab. 3 presents the n-gram diversity score of each482

dataset, along with the number of synthesized locations and objects. Our findings indicate that both483

distributions and dataset statistics are very similar, suggesting that ROBO-INSTRUCT enhances the484

quality of the generated data over SELF-INSTRUCT rather than merely aligning the dataset towards485

the benchmark tasks.486

A.4 ROBOEVALSeed Task Example487

1 # Instruction: Go to Arjun ’s office ,488

2 # ask him if he is ready to head out ,489

3 # and come back and tell me what he said490

4 def task_program ():491

5 start_loc = get_current_location ()492

6 go_to("Arjun’s office")493

7 response = ask("Arjun",494

8 "Are you ready to go?",495

9 ["Yes", "No"])496

10 go_to(start_loc)497

11 say("Arjun said: " + response)498

Listing 1: Seed Task Example 1

1 # Instruction: Ask Alice if she needs 1, 2, or 3 boxes.499

2 # Go to the storage room and ask if they have that many boxes.500

3 # If so, go place the boxes in Alice ’s office.501

4 # Otherwise , tell Alice you could not get the boxes.502

5 def task_program ():503

6 go_to("Alice’s office")504

7 num_boxes = ask("Alice",505

8 "How many boxes do you need?",506

9 ["1", "2", "3"])507

10 go_to("storage room")508

11 response = ask("",509

12 "Do you have" + num_boxes + " boxes?",510

13 ["Yes", "No"])511

15

14 if response == "Yes":512

15 for _ in range(int(num_boxes)):513

16 pick("box")514

17 go_to("Alice’s office")515

18 place("box")516

19 go_to("storage room")517

20 else:518

21 go_to("Alice’s office")519

22 say("I could not get the boxes")520

Listing 2: Seed Task Example 2

1 # Instruction: Check if there is a red marker in the main521

2 # office , and if so , tell Eve that there is a marker there.522

3 # If not , go to the supply room and523

4 # bring a red marker to the main office.524

5 def task_program ():525

6 go_to("main office")526

7 red_marker_found = is_in_room("red marker")527

8 if red_marker_found:528

9 go_to("Eve’s office")529

10 say("There is a red marker in the main office")530

11 else:531

12 go_to("supply room")532

13 pick("red marker")533

14 go_to("main office")534

15 place("red marker")535

Listing 3: Seed Task Example 3

1 # Instruction: Check every classroom if there is a whiteboard.536

2 # Go to Aiden ’s office to tell him which room does not537

3 # have a whiteboard. Come back and tell me task is completed.538

4 def task_program ():539

5 start_loc = get_current_location ()540

6 list_of_rooms = get_all_rooms ()541

7 room_without_whiteboard = []542

8 for room in list_of_rooms:543

9 if "classroom" not in room:544

10 continue545

11 go_to(room)546

12 if not is_in_room("whiteboard"):547

13 room_without_whiteboard.append(room)548

14 go_to("Aiden’s office")549

15 if len(room_without_whiteboard) > 0:550

16 message = ""551

17 for room in room_without_whiteboard:552

18 message += room + ", "553

19 message += "do not have a whiteboard"554

20 else:555

21 message = "all classrooms have a whiteboard"556

22 say(message)557

23 go_to(start_loc)558

24 say("task is completed")559

Listing 4: Seed Task Example 4

1 # Instruction: Go to the kitchen and wait for someone560

2 # to show up. When someone shows up , ask them to open561

3 # the fridge , then pick up a diet coke.562

4 # Finally , put the diet coke in the living room.563

5 def task_program ():564

6 go_to("kitchen")565

7 while True:566

8 if is_in_room("person"):567

16

9 response = ask("",568

10 "Please open the fridge",569

11 ["Yes", "No"])570

12 if response == "Yes":571

13 pick("diet coke")572

14 break573

15 time.sleep (1)574

16 go_to("living room")575

17 place("diet coke")576

Listing 5: Seed Task Example 5

1 # Instruction: Take a bed sheet from the laundry room577

2 # and put it in each of the bedrooms.578

3 def task_program ():579

4 start_loc = get_current_location ()580

5 list_of_rooms = get_all_rooms ()581

6 for room in list_of_rooms:582

7 if "bedroom" not in room:583

8 continue584

9 go_to("laundry room")585

10 pick("bed sheet")586

11 go_to(room)587

12 place("bed sheet")588

13 go_to(start_loc)589

Listing 6: Seed Task Example 6

A.5 Prompts to Generate Synthetic Dataset Using SELF-INSTRUCT590

You are a helpful assistant. Here is a robot that has the following capabilities:
- def get_current_location() -> str:
- def get_all_rooms() -> list[str]:
- def is_in_room(object : str) -> bool:
- def go_to(location : str) -> None:
- def ask(person : str, question : str, options: list[str]) -> str:
- def say(message : str) -> None:
- def pick(obj: str) -> None:
- def place(obj: str) -> None:
Generate an interesting robot task that can be accomplished using the above capabilities.
{{SEED EXAMPLE}}

Generate an interesting robot task that can be accomplished using the above capabilities.
...

Table 4: Prompts to Generate Synthetic Dataset Using SELF-INSTRUCT.

A.6 CoT Prompts for INSTALIGN591

17

Role: You are an expert at understanding robot programs. You will be given a task instruction
and robot program pair. However, the instruction may not align with the program well. You need
to correct the task instruction to match the given robot program.

Context: The robot only has access to the following 8 APIs and standard Python functions
- def get_current_location() -> str:
- def get_all_rooms() -> list[str]:
- def is_in_room(object : str) -> bool:
- def go_to(location : str) -> None:
- ask(person : str, question : str, options: list[str]) -> str:
- say(message : str) -> None:
- def pick(obj: str) -> None:
- def place(obj: str) -> None:

Inputs
Original Instruction: This is a task instruction that may not align with the robot program Robot
Program: This is a python function starting with ‘def task_program():‘

Task:
1. Write down all the provided APIs used in the program and explain the effect of each API in
this program
2. Examine these APIs and write down step by step what the program does
3. Combine all the results above and rewrite the instruction under # Final Corrected Instruction:
You need to be specific and clear in your final corrected instruction.

Table 5: CoT Prompts for INSTALIGN.

18

B CheckList592

1. [Claims] Yes. The research questions listed in the evaluation section are formulated so as to593

directly reflect the claims of the paper.594

2. [Limitations] Yes. This is discussed in Section 5.595

3. [Theory, Assumptions and Proofs] N/A. We do not have any theoretical results.596

4. [Experimental Result Reproducibility] Yes. We provide the training hyperparameters in597

Section 4. We will also release our model upon acceptance.598

5. [Open Access to Data and Code] Yes. We provide the prompts that are used to generate599

the training dataset. We will also release our training dataset upon acceptance.600

6. [Experimental Setting/ Details] Yes. We discuss the details of the training scheme in601

Section 3.2, which follows the standard approach to fine-tuning an LLM.602

7. [Experiment Statistical Significance] Yes. We performed ablation studies to validate our603

methods in Section 3.3.604

8. [Experiments Compute Resource] Yes. We mention that we train all our models on a605

single H-100 GPU using unsloth in Section 3.2.606

9. [Code Of Ethics] Yes607

10. [Broader Impacts] N/A: This paper addresses an existing problem (using LLMs to synthe-608

size robot programs [10, 12, 17]), and does not introduce any novel concerns beyond the609

existing scope.610

11. [Safeguards] N/A: the programs we will generate or release are domain-specific with611

respect to RoboEval [10], which has existing safeguards in place.612

12. [Licenses] Yes — we build on SELF-INSTRUCT, Llamav3 [30], and RoboEval [10] with613

attribution, and Table 1 refers to the licenses of the models used in the evaluation.614

13. [Assets] N/A. The code we will release will include details of documentation, training,615

license, and limitations. The code will be released upon acceptance.616

14. [Crowdsourcing and Research with Human Subjects] N/A617

15. [IRB Approvals] N/A618

19

	Introduction
	Robo-Instruct
	RoboSim: A Task-Agnostic Simulator For Domain-Specific Programs
	InstAlign: Instruction-Program Alignment Procedure

	Analysis and Experiments
	RoboEval: A Domain-Specific Robot Code Generation Benchmark
	RQ1: Is Robo-Instruct Effective at Generating Training Data to Fine-Tune a Small Language Model for Generating Domain-Specific Robot Programs?
	RQ2: How Do RoboSim and InstAlign Impact the Effectiveness of Robo-Instruct?
	Qualitative analysis of the generated program errors

	Related Work
	LLMs for Robot Code Generation
	Generating Datasets For Fine-tuning LLMs

	Conclusion, Limitation and Future Works
	Appendix
	Overview
	Ablation Exmperiments
	effectivenss of the simulator
	Instruction Alignment model temperature

	Analysis of the Generated Datasets
	RoboEvalSeed Task Example
	Prompts to Generate Synthetic Dataset Using Self-Instruct
	CoT Prompts for InstAlign

	CheckList

