
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RATE/DISTORTION CONSTRAINED MODEL QUANTI-
ZATION FOR EFFICIENT STORAGE AND INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The proliferation of large pre-trained neural networks has recently revived re-
search in both quantization of network weights (for faster inference), and in their
compression (to reduce file sizes). However, there has so far been little idea trans-
fer between the two lines of research. In this paper, we combine techniques from
quantization and compression to propose an efficient and highly effective post-
training compression method for large neural networks. Our method extends the
recently published quantization method OPTQ (Frantar et al., 2023) with a tun-
able rate/distortion trade-off by introducing a cost per bit into OPTQ’s rounding
operation. Crucially, we estimate the bit rate based on the predictive model used
in the state-of-the-art neural network compression method NNCodec (Becking
et al., 2023). In our experiments with several standard pre-trained networks from
the computer vision community, our method leads to significantly (up to 2.7x)
smaller file sizes than NNCodec at equal model performance, generally compress-
ing to less than half a bit per network weight and implicitly pruning insignificant
weights. Additionally, and in contrast to NNCodec, our method offers the same
opportunities for inference speed-ups as OPTQ. By proving that file size and in-
ference cost can be reduced simultaneously, we hope that our contribution shows a
path towards deploying large neural networks on end-user devices, alleviating pri-
vacy concerns, regulatory constraints, and dependency on large service providers.

1 INTRODUCTION

Neural networks have achieved impressive performances in a large variety of tasks from different
areas, from object recognition to language modeling. This performance usually comes at a price: in-
creasing empirical evidence, summarized today under the term “neural scaling laws” (Kaplan et al.,
2020), suggests that model size controls a fundamental bound on performance, and this insight has
recently driven a trend towards larger and larger neural networks. At the same time, neural networks
see adoption in more and more applications, creating the need for parameter sharing platforms such
as HuggingFace, where users can freely share parameters of their neural networks. Here, the large
sizes of neural networks directly translate to operating costs for server storage and network traffic.
Arguably even more importantly, the large file sizes of neural networks often makes it prohibitively
impractical to deploy them on end-user devices. As a result, it is today the norm that applications
relay any features that involve neural networks to a server, leading to increased latency and concerns
regarding privacy and regulatory constraints (Saravanan & Kouzani, 2023; Hohman et al., 2024).

With this development, there has been rising interest in the development of data compression tech-
niques for neural networks (Gholami et al., 2022; Marinó et al., 2023). Neural network compression
can help with two problems: improving the inference speed, allowing for faster and more energy
efficient neural networks (Chmiel et al., 2019), and decreasing the actual network size, reducing
memory bottlenecks and hardware costs caused by storage and transmission of the model parame-
ters. Most of the works we have surveyed focus on either one of these problems, but not both.

To improve the inference speed of neural networks, quantization (Jacob et al., 2017; Dettmers
et al., 2022) aims to represent the weights of a neural network in a lower bit precision, for example
4 bit integers, which can be processed much faster than normal 16 or 32 bit precision floating point
numbers on most GPUs. Pruning (LeCun et al., 1989; Blalock et al., 2020) tries to determine which
of the weights in a neural network are the most important for the correct model output, and removes

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a certain number of non-relevant weights, which allows for the usage of fast kernels for sparse
matrix multiplication or even skipping computations completely when whole groups of neurons are
removed in the case of structured pruning (He & Xiao, 2024). Knowledge distillation (Hinton et al.,
2015; Gou et al., 2021) trains a small student network on the outputs of a larger teacher network,
aiming to replicate the behavior of the larger teacher model exactly in the smaller model.

While these methods do reduce the required number or size of the parameters to store, their focus is
not the size of the neural network in a compressed representation (as it would, e.g., be transmitted
over the internet or stored in an end-user application). An important step to achieve a data repre-
sentation of minimal size is entropy coding (Shannon, 1948; MacKay, 2003), where a probabilistic
model of the data source is built and then used to encode more probable symbols to shorter bit-
strings and less probable ones to longer bit-strings. Research on reducing the storage size of neural
networks (Choi et al., 2020; Becking et al., 2023) is more scarce, and some techniques, such as
quantizing to non-uniform grids using vector quantization (Baalen et al., 2024), prohibit inference
speed-ups, such as GPU kernels that can operate in low-bit integer arithmetic.

In this work, we propose a method that combines advantages from both quantization and entropy
coding, resulting in a practical and efficient algorithm. Our compression method

• achieves high compression strength (i.e., small compressed file sizes);
• is applicable to most neural networks without modifications;
• works in a post-training setting, i.e., no expensive re-training is required, and only a rela-

tively small calibration data set is needed to estimate Hessians;
• allows for a smooth trade-off between compression strength and accuracy (and trying out

many points on this trade-off is very cheap as no new Hessians have to be estimated);
• is compatible with existing methods for inference acceleration on GPUs through activation

quantization, with a barely noticeable impact on model performance; and
• has very high decoding speed and sufficient encoding speed for large neural networks.

We term our method OPTQ-RD, as it generalizes the recent state-of-the-art quantization framework
OPTQ (Frantar et al., 2023) by introducing a rate-distortion trade-off into the optimization objec-
tive. To estimate bit rates in this trade-off, we use the entropy model used by the DeepCABAC
entropy coder (Wiedemann et al., 2020a), which is specialized to achieve high coding speeds and
a high compression performance for neural networks. However, our method is agnostic to the ex-
act entropy model used, which can be easily swapped out to fit the needs of a practitioner, who
for example might opt to use a simpler model to achieve even higher coding speeds on heavily
resource-constrained devices. We empirically verify the effectiveness of our algorithm on various
neural network architectures from the computer vision community.

2 RELATED WORK

We make an effort to distinguish between methods focused on inference speed (quantization, prun-
ing, knowledge distillation) and methods focused on storage size (entropy based methods, parameter
sharing), although the techniques are often combined in some form.

Methods focused on inference speed can be categorized into methods that require (re-)training the
neural network (such as knowledge distillation or quantization aware training (Baskin et al., 2021))
and post-training methods (such as post-training quantization and pruning), although the latter some-
times involve fine-tuning, a form of partial retraining. We focus on the post-training setting here,
under which our method also falls under. SynFlow (Tanaka et al., 2020) prevents layer collapse in
network pruning by using a data-independent score based on synaptic saliency. SparseML (Kurtz
et al., 2020; Singh & Alistarh, 2020) provides an easy-to-use tool for inference speed-up on ar-
bitrary networks using fisher information based pruning and structured sparsification. PENNI (Li
et al., 2020) decomposes the filters of a convolutional neural network into a set of shared basis
kernels, which are learned during a retraining process with a sparsity constraint.

On the frontier of storage-focused methods, efforts have been made to build very general compres-
sion algorithms and pipelines for neural networks. The Neural Network Compression and Represen-
tation Standard (Kirchhoffer et al., 2022) defines a compression pipeline encompassing parameter

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

reduction (pruning, sparsification, parameter sharing, et cetera), quantization and entropy coding.
Additionally, the standard defines interoperability with well-known neural network exchange for-
mats such as ONNX (Bai et al., 2019). Universal Neural Network Compression (Choi et al., 2020)
uses universal quantization (Ziv, 1985), i.e., it randomly perturbs the weights of a neural network be-
fore applying vector quantization, allowing their compression scheme to work independently of the
source statistics of the parameters. Wiedemann et al. (2020b) propose to use an entropy-constraint
together with a sparsification process, resulting in parameter representations that allow for high
compression ratios and while keeping the inference speed-ups from general pruning techniques.

Additionally, a large body of work has recently appeared on the compression of very large language
models (Dettmers et al., 2022; Chee et al., 2024; Kim et al., 2024; Ding et al., 2024), but the proposed
methods address issues specific to LLMs (e.g., activation outliers (Xiao et al., 2023; Lin et al.,
2024)). By contrast, our proposed method is agnostic to the network architecture.

3 BACKGROUND

3.1 INFORMATION THEORY AND COMPRESSION

The goal of compression is to map data from a data source to short bit strings. Lossy compression
further trades off inaccuracies in the reconstruction of the data for even shorter bit strings. Con-
sider a data source X ∼ PX , X ∈ X , a discrete reconstruction space X̂ and a distortion function
D : X × X̂ → [0,∞]. For a given acceptable amount D of expected distortion, lossy compression
aims to find an encoder e : X → {0, 1}∗ :=

⋃∞
k=0 {0, 1}

k and a decoder d : {0, 1}∗ → X̂ that
minimize of the following rate-distortion problem1 (where | · | denotes the length of a bit string):

RD(D) = min
e,d

EX∼PX

[
|e(X)|

]
with the constraint EX∼PX

[
D(X, d(e(X)))

]
≤ D. (1)

To simplify Equation 1, we first break up the encoder e into two steps: a (typically non-invertible)
quantization step q : X → X̂ , q(X) = d(e(X)), and an invertible entropy-coding step b : X̂ →
{0, 1}∗, b(X̂) = d−1(X̂) (an optimal decoder d is indeed invertible since reserving two different
bit strings for the same reconstruction X̂ would be wasteful). This separation allows us to easily
estimate the length |e(X)| = |b(q(X))| of the compressed representation via the source coding
theorem (Shannon, 1948; MacKay, 2003). Assuming an optimal entropy coder b, this theorem
states that

|b(X̂)| ∈
[
− log2 PX̂(X̂),− log2 PX̂(X̂) + 1

)
(2)

where PX̂ is the push-forward of PX along q. In practice, PX is usually not known, and so neither
is PX̂ , and one has to resort to an empirical model for PX̂ and optimize over its parameters.

For long bit strings (the relevant regime for data compression), the “+1” on the right-hand side of
Equation 2 is negligible, and the bit rate under an encoder that is optimal for PX̂ can thus be accu-
rately estimated by the information content, |b(X̂)| ≈ − log2 PX̂(X̂). Finally, if RD(d) is assumed
to be convex, we can enforce the distortion constraint in Equation 1 by a Lagrange multiplier λ > 0,

RD(λ) = min
q,PX̂

EX∼PX

[
D(X, q(X))− λ log2 PX̂(q(X))

]
. (3)

Sub 1-bit bit rates. Equation 2 fundamentally simplifies the rate-distortion optimization as it al-
lows accurately estimating the bit rate |e(X)| ≈ − log2 PX̂(q(X)) without having to explicitly
construct an optimal entropy coder. It also allows splitting up the total bit rate for entropy-coding of
a high-dimensional X̂ into individual (amortized) bit rates for each vector component X̂i: assuming
an autoregressive model PX̂(X̂) =

∏n
i=1 PX̂(X̂i | X̂<i), where n = dim(X̂), each component i

can be thought of as contributing − log2 PX̂(X̂i | X̂<i) bits to the total bit rate. Crucially, this split
holds even if the individual amortized bit rates are below 1 bit per component, which would make
them impossible to measure explicitly: to encode, e.g., n = 1,000 components with 0.3 bit of in-
formation content each, a practical near-optimal encoder such as arithmetic coding (Pasco, 1976;
Rissanen & Langdon, 1979) would generate a bit string of length very close to n× 0.3 = 300 bit.

1More general formulations admit for stochastic en-/decoders. But without an additional constraint such as
realism, there always exists a pair of deterministic en-/decoders among the minimizers of Equation 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 ENTROPY CODING: DEEPCABAC

In Wiedemann et al. (2020a), the authors propose the compression method DeepCABAC, which is
specifically designed to deal well with the common weight distributions of neural networks, which
the authors found to be mostly symmetric, centered around zero and with quickly vanishing tails.
The lossless entropy coder of DeepCABAC is based on the Context-based Adaptive Binary Arith-
metic Coder (CABAC), used in the video codecs H.264/AVC (Marpe et al., 2003) and H.265/HEVC
(Sze et al., 2014). CABAC contains a context model to adapt the coder on-the-fly to the statistics of
the given data, making it universally usable. Additionally, stemming from its use in video coding,
CABAC has a high throughput and allows very efficient encoding and decoding, making it suitable
for encoding the large parameter sets from neural networks. In the rest of the paper, we use the term
DeepCABAC to refer specifically to this entropy-coder.

In DeepCABAC, a quantized weight ŵ ∈ Z is binarized as follows: first, a series of flag bits are set,
called sigFlag (whether the weight is 0), signFlag (whether the weight is positive) and absGr(n)Flag
(whether the absolute value of the weight is ≥ n ∈ {1, 2, 4, 8, . . . N}). If this this does not uniquely
identify the weight, the remainder ŵ −N is transmitted directly. Additionally, if the absolute value
is larger than N , the remainder is transmitted using an Exponential-Golomb code. To increase the
compression strength of the encoding scheme, a context model is used to predict the value of the
flag bits. The context model is initialized to 0.5, and every time it encounters a value of the flag
bit, updates its probability model by a small step accordingly (increasing for 1, decreasing for 0).
The context model is used as the probability model of an arithmetic coder (Pasco, 1976; Rissanen
& Langdon, 1979; MacKay, 2003) and can thus shorten the expected length of the bit string even
further, encoding probable flag bits with less than 1 bit on average. Since the context model is
state-based and only depends on all previously seen values, it does not have to be transmitted to the
decoder side as the decoder can reconstruct it step by step while decoding.

3.3 QUANTIZATION: OPTQ

When dealing with quantization, one has to choose a suitable distortion function D in Equation 3. A
naive way to define a distortion might be to measure the euclidean distance between the quantized
and original weights ∥W − Ŵ ∥22. This corresponds to simple quantization methods such as round-
to-nearest. However, closeness in weight space does not guarantee that the outputs of the network are
close. The distortion that actually interests us is the model performance, for example classification
accuracy or perplexity. This quantity is usually costly to evaluate and highly nontrivial to minimize.
A suitable trade-off between these two extremes is the layer-wise loss (Nagel et al., 2020),

L(Ŵ) = ∥ŴXℓ −WℓXℓ∥22 (4)
where Wℓ ∈ RO×I are the weights of layer ℓ with O output and I input nodes, and Xℓ ∈ RI×B are
the inputs to layer ℓ resulting from a forward pass of a small set of B calibration data points through
the network. This loss has the advantage of having a very simple Hessian Hℓ ∈ ROI×OI where the
rows of Wℓ can be processed independently of each other:

Hℓ = 2 · 1O×O ⊗ (XℓX
T
ℓ) (5)

where 1 is the identity matrix, and ⊗ denotes the Kronecker product. Equation 5 is expressed for
general linear layers for notational simplicity, but its generalization to, e.g., convolutional layers is
straight-forward. As the Hessian is block-diagonal with all blocks having the same value, from now
on, we will use H to refer to a block 2XXT ∈ RI×I , also dropping the subscript for the layer.

Based on this layer-wise loss, Frantar et al. (2023) propose OPTQ, a quantization method that can
efficiently quantize networks of arbitrary sizes. It quantizes a neural network layer by layer. In
each layer, the rows of the weight matrix W can be quantized in parallel. For each row Wi,:,
i ∈ {1, . . . , O}, OPTQ iterates over its components Wij , j ∈ {1, . . . , I}. For each component,
OPTQ first quantizes Wij and then optimally corrects the remaining weights Wi,>j in the row by
minimizing L(Ŵ), resulting in (Hassibi et al., 1993; Frantar & Alistarh, 2022; Frantar et al., 2023)

Wi,>j ←Wi,>j −
Wij − Ŵij[

(H≥j,≥j)−1
]
jj

[
(H≥j,≥j)

−1
]
j,>j

= Wi,>j −
Wij − Ŵij

Cjj
Cj,>j (6)

where (H≥j,≥j)
−1 denotes the inverse of the lower right sub-block of H starting at row and col-

umn j, and the upper triangular matrix C is the transpose of the Cholesky decomposition of H−1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 OPTQ-RD

Require: W = [Wij] ▷ Input weight matrix of size rows× cols
Require: H = 2XXT ▷ Hessian of layer-wise loss, see Equation 5; cols× cols
Require: G = {g1, g2, . . . , gm} ▷ Quantization grid (e.g., as in Equation 8)
Require: λ ▷ Rate-Distortion trade-off parameter
Ensure: Ŵ = [Ŵij] ▷ Quantized output weight matrix

1: C ← Cholesky(H−1)T ▷ Upper triangular matrix with size cols × cols
2: E ← initEntropyModel()
3: for j = 1 to cols do
4: for i = 1 to rows do
5: Set Ŵij ← QOPTQ-RD(Wij , λ, S) ▷ See Equation 10; S is the internal state of E.

6: Update Wi,>j ←Wi,>j − Wij−Ŵij

Cjj
Cj,>j ▷ See Equation 6.

7: E.update(Ŵij) ▷ Update internal state S of the entropy model.
8: end for
9: end for

10: return Ŵ

4 METHOD

We now present OPTQ-RD, our proposed compression method for neural networks. OPTQ-RD
builds on the quantization method OPTQ (Frantar et al., 2023) (see section 3.3), but it introduces a
rate-constraint into the quantization step so that the resulting quantized weights can be more effec-
tively entropy coded by DeepCABAC (Wiedemann et al., 2020a) (see section 3.2).

The original OPTQ algorithm quantizes a given scalar weight Wij by simple rounding to the nearest
grid point, using a uniformly spaced grid with standard absmax quantization Dettmers et al. (2022),

Qabsmax(Wij) =

⌈
m ·Wij

∥W ∥∞

⌋
·
∥W ∥∞

m
(7)

where ⌈·⌋ denotes rounding to integers, and m ∈ N controls the number of grid points. Thus,
Equation 7 rounds by minimizing the L2-norm,

Qabsmax(Wij) = argmin
g∈G

(Wij − g)2 where G =
{
(i/m) · ∥W ∥∞

∣∣ i ∈ {−m, . . . ,m}
}
. (8)

OPTQ turns this simplistic optimization in weight space into an (approximate) optimization over a
layer-wise loss function that takes second-order information into account by introducing a correction
step for subsequent weights Wi,>j after quantizing each weight Wij (see Equation 6). However,
standard OPTQ does not take into account how much each quantized weight Ŵij will contribute to
the total bit rate when one entropy codes the quantized model to reduce its file size. We propose to
take bit rates into account during the quantization step of OPTQ.

Algorithm 1 presents our proposed OPTQ-RD algorithm. It is analogous to the original OPTQ
algorithm except for a different quantization method on line 5 and an extra model update on line 7,
which we both discuss now. The proposed quantization step on line 5 uses a Lagrange multiplier λ
to optimize a trade-off between (i) the amount ∆L by which the layer-wise loss L (Equation 4)
increases if we round the current weight Wij to Ŵij and then correct subsequent weights Wi,>j

using Equation 6, and (ii) the amount R that Ŵij contributes to the bit rate after entropy coding. By
following the derivation from Hassibi et al. (1993) and substituting wq with Wij − Ŵij , we find

∆L =
1

2

(Wij − Ŵij)
2

[(H≥j,≥j)−1]jj
=

1

2

(Wij − Ŵij)
2

(Cjj)2
, (9)

where C is the transpose of the Cholesky decomposition of H−1. To estimate the rate R of each
weight Ŵij , a simple method would be to use the information content − log2 f(Ŵij), where f(g)
is the empirical frequency of grid point g ∈ G obtained by pre-quantizing the weights with a simple
method such as round-to-nearest or vanilla OPTQ. However, we found that using the actual entropy

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

model that is used in a specialized entropy coding method such as DeepCABAC (see section 3.2)
leads to much better results. DeepCABAC uses an autoregressive model PDeepCABAC(Ŵij |S), i.e.,
it has an internal state S that needs to be updated after encoding each Ŵij so it can adapt to the
empirical distribution of quantized weights (see line 7 in Algorithm 1). Thus, we propose to use the
following rate/distortion quantization method,

QOPTQ-RD(Wij , λ, S) = argmin
g∈G

∆L+λR = argmin
g∈G

(Wij − g)2

2(Cjj)2
−λ log2 PDeepCABAC(g |S) (10)

where G is the same grid as in Equation 8. For λ = 0, Equation 10 reduces to the original OPTQ
(Equation 8). Runtime optimizations (e.g., grouping columns) are possible, cf. Frantar et al. (2023).

4.1 CHOOSING PER-LAYER COMPRESSION STRENGTH

In our method, λ controls to how strongly we compress the network. Instead of using a uniform λ
for the whole network, we can also choose a different λℓ for each layer ℓ. We motivate one particular
choice of selecting λℓ in the following.

For vanilla OPTQ, the quantization procedure is invariant under independent scaling of each layer-
wise Hessian Hℓ, as this only changes the absolute value of the loss function in Equation 4, but not
the optimal solution. This is no longer the case for OPTQ-RD, as we trade off distortion against
rate. In fact, if we scaled the Hessians of different layers independently, H ′

ℓ = Hℓ · αℓ, we would
have to set λ′

ℓ =
λ
αℓ

for the solution of OPTQ-RD to remain unchanged. We notice this to be prob-
lematic with layers that include batch-norms, as these essentially scale the values of the calibration
samples X flowing through the network. Therefore, we propose to use

λℓ = λ · Tr(Hℓ) (i.e., αℓ = 1/Tr(Hℓ)) (11)

for networks with batch-norms. Equation 11 renders the compression objective in Equation 10
invariant under scaling of the Hessian. We report this version of our method as OPTQ-RD 1/tr.

5 EXPERIMENTS

For our experiments, we evaluate the following networks: ResNet18, ResNet50 (He et al., 2016)
(on CIFAR10), MobileNetV3 Large (Howard et al., 2019) and VGG16 (Simonyan & Zisserman,
2015) (on ImageNet). Additionally, we include the performance for ResNet34 in Appendix A.1
for space reasons. We use implementations from TorchVision for MobileNet and VGG16 and an
implementation of user edaltocg of the ResNets on CIFAR10 from HuggingFace.

We implement our algorithm in PyTorch (Paszke et al., 2019) and do all computations either on an
NVIDIA RTX 2080 (ResNets) or an NVIDIA A100 GPU (MobileNet, VGG16). To perform our
algorithm, we first calculate the layer-wise Hessians (and the Cholesky decompositions of their re-
spective inverses) with 40,000 calibration samples for ImageNet and 12,800 samples for CIFAR10,
unfolding convolutional layers into linear ones. Then, we run Algorithm 1 for a set of different
grid sizes {2, 4, 5, 7, 9, 16, 25, 36} and λ parameters (which are iteratively sampled to ensure that
the curves have an accuracy resolution of < 0.02), resulting in a separate curve of model accu-
racy over bit rate for each grid size. As is typical in the literature of lossy compression, we re-
fer to these as rate/distortion curves for short. To ease the presentation of our results, we only
show the Pareto front of this set of rate/distortion curves, i.e., we iterate over a fine grid of val-
ues A = {0.02, 0.04, . . . , 1.0} for the model accuracy and report the lowest bit rate achievable over
all recorded combinations of λ and grid sizes where the model achieves at least the target accuracy
(this corresponds to approximately solving Equation 1). For comparison, Appendix A.3, includes a
graph where we draw all rate/distortion curves (sweeping over λ) for all included grid sizes. Run-
times are reported in Appendix A.4.

Baselines. For entropy coding, we use the DeepCABAC implementation from NNCodec (Becking
et al., 2023), which we additionally report as a stand-alone baseline (NNCodec). Here, we scan the
elements in row-major order and use the universal scalar quantization (URQ) option. To create the
rate-distortion curve, we sweep over different values of the granularity of the grid (the qp parameter).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

As additional baselines, we use two variants of vanilla OPTQ (Frantar et al., 2023). The first
(OPTQ+BZ2) compresses the quantized weights from OPTQ with the well-known universal com-
pression algorithm bzip2 (for optimal performance of bzip2, quantized weights are represented as
bytes and concatenated without delimiters). This represents a typical approach on boosting the com-
pression strength of a quantization method, used for example in Choi et al. (2020). The second
variant (OPTQ+DeepCABAC) uses vanilla OPTQ for quantization and then DeepCABAC to com-
press the quantized weights. Additionally, as an ablation, we show the performance obtained by di-
rectly applying our rate-distortion quantization method without using the iterative weight-correction
process from OPTQ (Direct RD). This corresponds to quantizing each weight with the objective

QDirect RD(Wij , λ) = argmin
g∈G

(Wij − g)2 ·Hjj − λ log2 PDeepCABAC(g |S). (12)

5.1 COMPRESSION PERFORMANCE

We report rate-distortion curves for our methods (OPTQ-RD and OPTQ-RD 1/tr) together with base-
lines in Figure 1. Our methods consistently perform better in terms of rate-distortion performance
than all other tested methods. Additionally, we observe that scaling λ with the trace of the Hessian
(OPTQ-RD 1/tr) seems to be important for the performance of OPTQ-RD on ResNets, which use
batch-norm layers that scale the layer outputs. On these nets, OPTQ-RD 1/tr clearly outperforms
OPTQ-RD with uniform λ. In Table 1, we report the lowest bit rate achieved by each method while
keeping 95% of the original performance of the network. There, our methods consistently achieve a
>30% increase in compression strength (reduction of bit rate) over the baselines for all networks.

0.0 0.2 0.4 0.6 0.8 1.0

Bits Per Weight

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
A

cc
ur

ac
y

22

44

55 77 99

ResNet18 (11M Params)

0 1 2 3 4 5

Bits Per Weight

To
p-

1
A

cc
ur

ac
y

22 44 55 77 99

1616

2525

MobileNetV3 Large (5M Params)

0.0 0.2 0.4 0.6 0.8 1.0

Bits Per Weight

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
A

cc
ur

ac
y

22
44

55
77 99

ResNet50 (24M Params)

0.0 0.2 0.4 0.6 0.8 1.0

Bits Per Weight

To
p-

1
A

cc
ur

ac
y

22 44 55
77

VGG16 (138M Params)

Original NNCodec Direct RD OPTQ+DeepCABAC OPTQ+BZ2 OPTQ-RD (ours) OPTQ-RD 1/tr (ours)

Figure 1: Rate-distortion curve for each tested method. Dotted black lines: original Top-1 accuracy
of the network. ResNets were tested on CIFAR10; MobileNet and VGG16 on ImageNet. Small gray
numbers next to OPTQ show the number of grid points that were used to construct the grid.

5.2 COMPATIBILITY WITH ACTIVATION QUANTIZATION

While our main focus is on reducing the cost of storage and transmission of neural networks, we
also demonstrate that our method is compatible with activation quantization, which is the basis
for inference acceleration on GPUs, see Nagel et al. (2021). We quantize VGG16 to the widely
supported W8A8 (8-bit weights, 8-bit activations) format, using the PyTorch quantization library
for activation quantization, and the quantized weights from the tested compression methods (where
we typically use grids with far fewer than 28 grid points anyway, see gray numbers in Figure 1). In

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of different compression methods. For each method, we tried to find the best
achievable compression performance (represented by the bits-per-weight), while retaining 95% of
the original network accuracy. Best compression performance is marked bold. Compression Factor
(CF) is reported assuming an original weight size of 32 bits-per-weight (BPW). Additionally, we
report the compression factor and storage size obtained when accounting for the overheads required
to store additional network information (refer to Appendix B.1 for more information).

Method BPW ↓ CF ↑
weights only

CF ↑
with overhead

Acc ↑ Size
with overhead

R
es

N
et

18

Direct RD 0.96 33.47 31.67 0.92 1.4 MB
NNCodec 0.73 43.59 40.58 0.92 1.1 MB
OPTQ+BZ2 0.47 68.56 61.36 0.90 728.5 KB
OPTQ+DeepCABAC 0.38 84.28 73.65 0.90 606.9 KB
OPTQ-RD (ours) 0.32 101.28 86.29 0.91 518.0 KB
OPTQ-RD 1/tr (ours) 0.27 118.92 98.76 0.91 452.6 KB

R
es

N
et

50

Direct RD 0.89 35.77 30.85 0.90 3.0 MB
NNCodec 0.60 53.69 43.28 0.91 2.2 MB
OPTQ+BZ2 0.58 55.22 44.26 0.90 2.1 MB
OPTQ+DeepCABAC 0.46 68.95 52.65 0.90 1.8 MB
OPTQ-RD (ours) 0.36 89.24 63.68 0.90 1.5 MB
OPTQ-RD 1/tr (ours) 0.32 98.53 68.26 0.90 1.4 MB

M
ob

ile
N

et
V

3 Direct RD 5.40 5.93 5.52 0.72 4.0 MB
NNCodec 3.52 9.09 8.15 0.73 2.7 MB
OPTQ+BZ2 5.85 5.47 5.12 0.76 4.3 MB
OPTQ+DeepCABAC 5.42 5.91 5.50 0.76 4.0 MB
OPTQ-RD (ours) 2.52 12.69 10.90 0.73 2.0 MB
OPTQ-RD 1/tr (ours) 2.62 12.20 10.53 0.73 2.1 MB

V
G

G
16

Direct RD 2.52 12.72 12.69 0.69 43.6 MB
NNCodec 0.88 36.33 36.08 0.69 15.3 MB
OPTQ+BZ2 1.90 16.81 16.76 0.71 33.0 MB
OPTQ+DeepCABAC 1.61 19.87 19.80 0.71 28.0 MB
OPTQ-RD (ours) 0.65 49.17 48.71 0.68 11.4 MB
OPTQ-RD 1/tr (ours) 0.76 41.87 41.54 0.69 13.3 MB

Figure 2, we see that activation quantization barely affects model accuracy, demonstrating that our
weight compression method is also suitable for efficient inference. Note that we have not included
NNCodec, as the quantized weights obtained from this method sometimes have more than 28 points.

5.3 DETERMINING THE NECESSARY CALIBRATION SET SIZE

As we use a data-driven method to estimate the parameter sensitivity, we are naturally interested
in how many samples are actually needed to achieve good results. In Figure 3, we have varied the
amounts of samples used to estimate the Hessian of VGG16. We notice a saturation at around 40,000
samples. As ImageNet consists of 1,281,167 images, this corresponds to seeing a mere 3.12% of
the training data just once, which is much cheaper than methods that rely on performing multiple
full iterations over the training dataset during training or fine-tuning. Additionally, we also have to
perform this iteration only once for the whole rate-distortion curve, allowing us to cheaply obtain
versions of the network tuned for different performance levels (using different values for λ).

5.4 ENTROPY CONSTRAINTS CAN INDUCE SPARSITY

Entropy coding methods are often combined with some form of pruning (c.f. Choi et al., 2020) to
achieve an even higher compression ratio. Additionally, weights with high sparsity ratios might
enable further speed ups in inference. Instead of adding an explicit pruning step to our method,
we observe that the weights we obtain tend to naturally be sparse for low bit-rates (i.e., high λ).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

This is because the grid-value g = 0 usually incurs the lowest bit-cost (often by a large margin), as
the weights of the neural network are approximately centered and symmetric around 0, and Deep-
CABAC assigns 0 the lowest bit-cost by default (without taking into account the context-model).
Figure 4 shows that OPTQ-RD indeed finds sparser weight matrices than NNCodec and plain OPTQ.

0.0 0.5 1.0 1.5 2.0 2.5

Bits Per Weight

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
A

cc
ur

ac
y

OPTQ+DeepCABAC
OPTQ+DeepCABAC (A8)
OPTQ-RD (ours)
OPTQ-RD (A8)
OPTQ-RD 1/tr (ours)
OPTQ-RD 1/tr (A8)

Figure 2: Performance of VGG16 before and af-
ter 8-bit activation quantization (A8).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Bits Per Weight

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
A

cc
ur

ac
y

4000 samples
8000 samples
16000 samples
40000 samples
80000 samples
160000 samples
800000 samples

Figure 3: Influence of the size of the calibration
set on OPTQ-RD with uniform λ on VGG16.

5.5 CALIBRATION SET AND TRAINING SET MISMATCH

Although the neural networks used in our experiments were trained on widely available datasets,
in many real-world post-training settings one might not have access to the original training data.
Therefore, we investigate the scenario where we calculate the Hessian using a different dataset than
the one we use to evaluate the accuracy. We compress VGG16 using the Microsoft COCO dataset
as a calibration dataset (Lin et al., 2014), and we evaluate on ImageNet. We use the same amount
of samples as in the original VGG16 setup (40,000) and plot the rate-distortion curve for OPTQ-RD
with uniform λ. In Figure 5, we can see that this causes a performance drop, although our method
remains competitive with NNCodec while keeping its benefit of allowing faster inference.

0.0 0.2 0.4 0.6 0.8 1.0

Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
A

cc
ur

ac
y

NNCodec
OPTQ+DeepCABAC
OPTQ-RD (ours)
OPTQ-RD 1/tr (ours)

Figure 4: Sparsity of different compression
methods in fraction of total weights = 0 (y-axis)
against the classification accuracy (x-axis).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Bits Per Weight

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
A

cc
ur

ac
y

OPTQ-RD COCO
OPTQ-RD Imagenet
NNCodec
OPTQ COCO
OPTQ Imagenet

Figure 5: Effects of using a different calibra-
tion dataset than evaluation dataset (ImageNet)
on OPTQ-RD with uniform λ on VGG16.

6 CONCLUSION AND FURTHER WORK

In this paper, we proposed OPTQ-RD, a compression method that creates highly compressible quan-
tized networks while keeping a simple and flexible uniform grid, suitable for accelerated inference.
There are still some promising research directions not fully mapped out yet, as our method has mul-
tiple building blocks that can be experimented on. For example, one might explore using differently
spaced grids to improve the compression performance even further (at the price of potentially slow-
ing down inference), or use different entropy models than DeepCABAC. One might also try different
methods of determining the compression strength λ for each layer, for example by leveraging global
second order information such as the fisher information content of the weights.

A harder problem would be to investigate rate-constrained compression for (very) large language
models, as these are known to be much more difficult to compress down to the very low bit-rates

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

we have reported in our results. While the computer vision networks tested in our experiments can
consistently be compressed to 0.5 bits-per-weight or lower with little performance drop, for LLMs,
sparsification of more than 50% of the weights has only recently been achieved (Frantar & Alistarh,
2023) and even the sub 1-bit barrier has just been broken this year (Dong et al., 2024). These
differences may indicate that language models may indeed encode more information per weight
than (convolutional) computer vision models.

Additionally, we hope that this work inspires other research that combines more traditional ideas
from general compression with modern techniques from the model compression community. For
example, our observation that sparsification can result from an entropy constraint could provide
some interesting avenue on works that combine quantization with pruning into a single, unified
framework.

REFERENCES

Mart Van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Artem Bolshakov, Cedric Bas-
toul, Eric Mahurin, Tijmen Blankevoort, and Paul Whatmough. GPTVQ: The blessing of di-
mensionality for LLM quantization. In Workshop on Efficient Systems for Foundation Models II,
International Conference on Machine Learning (ICML), 2024.

Junjie Bai, Fang Lu, Ke Zhang, et al. ONNX: Open neural network exchange, 2019.

Chaim Baskin, Brian Chmiel, Evgenii Zheltonozhskii, Ron Banner, Alex M. Bronstein, and Avi
Mendelson. CAT: Compression-Aware Training for bandwidth reduction. Journal of Machine
Learning Research, 22(269):1–20, 2021. ISSN 1533-7928.

Daniel Becking, Paul Haase, Heiner Kirchhoffer, Karsten Müller, Wojciech Samek, and Detlev
Marpe. NNCodec: An Open Source Software Implementation of the Neural Network Coding
ISO/IEC Standard. In Workshop Neural Compression: From Information Theory to Applications,
International Conference on Machine Learning (ICML), 2023.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the State of
Neural Network Pruning? In Machine Learning and Systems (MLSys), 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. QuIP: 2-Bit Quantization of
Large Language Models With Guarantees. arXiv preprint arXiv:2307.13304, 2024.

Brian Chmiel, Chaim Baskin, Ron Banner, Evgenii Zheltonozhskii, Yevgeny Yermolin, Alex Kar-
bachevsky, Alex M. Bronstein, and Avi Mendelson. Feature Map Transform Coding for Energy-
Efficient CNN Inference. arXiv preprint arXiv:1905.10830, 2019.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Universal Deep Neural Network Compression.
IEEE Journal of Selected Topics in Signal Processing, 14(4):715–726, 2020. ISSN 1941-0484.
doi: 10.1109/JSTSP.2020.2975903.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.int8(): 8-bit Matrix
Multiplication for Transformers at Scale. Neural Information Processing Systems (NeurIPS),
2022.

Xin Ding, Xiaoyu Liu, Zhijun Tu, Yun Zhang, Wei Li, Jie Hu, Hanting Chen, Yehui Tang, Zhiwei
Xiong, Baoqun Yin, and Yunhe Wang. CBQ: Cross-Block Quantization for Large Language
Models. arXiv preprint arXiv:2312.07950, 2024.

Peijie Dong, Lujun Li, Dayou Du, Yuhan Chen, Zhenheng Tang, Qiang Wang, Wei Xue, Wenhan
Luo, Qifeng Liu, Yike Guo, and Xiaowen Chu. STBLLM: Breaking the 1-Bit Barrier with Struc-
tured Binary LLMs. arXiv preprint arXiv:2408.01803, 2024.

Elias Frantar and Dan Alistarh. Optimal Brain Compression: A Framework for Accurate Post-
Training Quantization and Pruning. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Elias Frantar and Dan Alistarh. SparseGPT: Massive Language Models Can Be Accurately Pruned
in One-Shot. arXiv preprint arXiv:2301.00774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for
generative pre-trained transformers. In International Conference on Learning Representations
(ICLR), 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Jianping Gou, Baosheng Yu, Stephen John Maybank, and Dacheng Tao. Knowledge Distillation: A
Survey. International Journal of Computer Vision, 129(6):1789–1819, 2021. ISSN 0920-5691,
1573-1405. doi: 10.1007/s11263-021-01453-z.

B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal Brain Surgeon and general network pruning. In
IEEE International Conference on Neural Networks, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

Yang He and Lingao Xiao. Structured Pruning for Deep Convolutional Neural Networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(5):2900–2919, 2024. ISSN
0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2023.3334614.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In
Advances in Neural Information Processing Systems (NeurIPS), 2015.

Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz. Model Compression in Prac-
tice: Lessons Learned from Practitioners Creating On-device Machine Learning Experiences. In
Proceedings of the CHI Conference on Human Factors in Computing Systems, 2024.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Search-
ing for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference. arXiv preprint arXiv:1712.05877, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. SqueezeLLM: Dense-and-Sparse Quantization. arXiv preprint
arXiv:2306.07629, 2024.

Heiner Kirchhoffer, Paul Haase, Wojciech Samek, Karsten Müller, Hamed Rezazadegan-Tavakoli,
Francesco Cricri, Emre B. Aksu, Miska M. Hannuksela, Wei Jiang, Wei Wang, Shan Liu,
Swayambhoo Jain, Shahab Hamidi-Rad, Fabien Racapé, and Werner Bailer. Overview of the
Neural Network Compression and Representation (NNR) Standard. IEEE Transactions on
Circuits and Systems for Video Technology, 32(5):3203–3216, 2022. ISSN 1558-2205. doi:
10.1109/TCSVT.2021.3095970.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and Exploiting Acti-
vation Sparsity for Fast Inference on Deep Neural Networks. In International Conference on
Machine Learning (ICML), 2020.

Yann LeCun, John Denker, and Sara Solla. Optimal Brain Damage. In Advances in Neural Infor-
mation Processing Systems (NeurIPS). Morgan-Kaufmann, 1989.

Shiyu Li, Edward Hanson, Hai Li, and Yiran Chen. PENNI: Pruned Kernel Sharing for Efficient
CNN Inference. In International Conference on Machine Learning (ICML). PMLR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware Weight Quantization
for LLM Compression and Acceleration. arXiv preprint arXiv:2306.00978, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), European Converence on Computer
Vision (ECCV), Cham, 2014. Springer International Publishing.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

Giosué Cataldo Marinó, Alessandro Petrini, Dario Malchiodi, and Marco Frasca. Deep neural net-
works compression: A comparative survey and choice recommendations. Neurocomputing, 520:
152–170, 2023. ISSN 0925-2312. doi: 10.1016/j.neucom.2022.11.072.

D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic coding in the
H.264/AVC video compression standard. IEEE Transactions on Circuits and Systems for Video
Technology, 13(7):620–636, 2003. ISSN 1558-2205. doi: 10.1109/TCSVT.2003.815173.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
or Down? Adaptive Rounding for Post-Training Quantization. In International Conference on
Machine Learning (ICML), 2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen,
and Tijmen Blankevoort. A White Paper on Neural Network Quantization. arXiv preprint
arXiv:2106.08295, 2021.

Richard Clark Pasco. Source coding algorithms for fast data compression. PhD thesis, Stanford
University CA, 1976.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. arXiv preprint arXiv:1912.01703, 2019.

Jorma Rissanen and Glen G Langdon. Arithmetic coding. IBM Journal of research and development,
23(2):149–162, 1979.

Kavya Saravanan and Abbas Z. Kouzani. Advancements in On-Device Deep Neural Networks.
Information, 14(8):470, 2023. ISSN 2078-2489. doi: 10.3390/info14080470.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27
(3):379–423, 1948. ISSN 0005-8580. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image
Recognition. In International Conference on Learning Representations (ICLR), 2015.

Sidak Pal Singh and Dan Alistarh. WoodFisher: Efficient Second-Order Approximation for Neural
Network Compression. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Vivienne Sze, Madhukar Budagavi, and Gary J. Sullivan (eds.). High Efficiency Video Coding
(HEVC): Algorithms and Architectures. Integrated Circuits and Systems. Springer Interna-
tional Publishing, Cham, 2014. ISBN 978-3-319-06894-7 978-3-319-06895-4. doi: 10.1007/
978-3-319-06895-4.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Simon Wiedemann, Heiner Kirchoffer, Stefan Matlage, Paul Haase, Arturo Marban, Talmaj Marinc,
David Neumann, Tung Nguyen, Ahmed Osman, Detlev Marpe, Heiko Schwarz, Thomas Wie-
gand, and Wojciech Samek. DeepCABAC: A Universal Compression Algorithm for Deep Neural
Networks. IEEE Journal of Selected Topics in Signal Processing, 14(4):700–714, 2020. ISSN
1932-4553, 1941-0484. doi: 10.1109/JSTSP.2020.2969554.

Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Compact and computationally
efficient representation of deep neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 31(3):772–785, 2020. doi: 10.1109/TNNLS.2019.2910073.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. SmoothQuant:
Accurate and Efficient Post-Training Quantization for Large Language Models. In International
Conference on Machine Learning (ICML), 2023.

J. Ziv. On universal quantization. IEEE Transactions on Information Theory, 31(3):344–347, 1985.
ISSN 1557-9654. doi: 10.1109/TIT.1985.1057034.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL PLOTS

A.1 RESULTS ON RESNET34

0.0 0.2 0.4 0.6 0.8 1.0

Bits Per Weight

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1
A

cc
ur

ac
y

ResNet34

Original
NNCodec

Direct RD
OPTQ+DeepCABAC

OPTQ+BZ2
OPTQ-RD (ours)

OPTQ-RD 1/tr (ours)

Figure 6: Performance of our methods on ResNet34.

A.2 ROW-MAJOR VS COLUMN-MAJOR SCAN ORDER

0.0 0.5 1.0 1.5 2.0 2.5

Bits Per Weight

0.2

0.4

0.6

0.8

To
p-

1
A

cc
ur

ac
y

Column-Major
Row-Major

Figure 7: Effects of scan-order of weights when encoding ResNet18 with NNCodec.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 RATE-DISTORTION CURVES BY GRID SIZE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Bits Per Weight

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

1
A

cc
ur

ac
y

7 grid points
9 grid points
16 grid points
25 grid points
36 grid points
OPTQ-RD Optimized RD
OPTQ+DeepCABAC

Figure 8: Performance of OPTQ-RD with uniform λ on VGG16, shown for each tested grid size.
The dashed curve corresponds to the RD-curve that we present on our other results, which is obtained
by optimizing the bit-rate for different accuracy values over all possible grids.

A.4 RUN-TIMES

OPTQ OPTQ-RD (encode) OPTQ-RD (decode)

0

250

500

750

1000

1250

1500

1750

Ti
m

e
[s

]

1526

55
1581

1526

153
27

1706

5

Hessian
GPTQ Quant.

OPTQ-RD Quant.
DeepCABAC Encode

DeepCABAC Decode

Figure 9: Run-times of our algorithm and OPTQ on VGG16 for a 16-point grid. We perform the
hessian estimation (which includes calculation of the Cholesky) on an A100 GPU, the quantization
and encoding/decoding are performed on a CPU. The hessian estimation only has to be done once
for each network, subsequent runs for our method can use a saved hessian and then only incur the
run-time for the quantization and DeepCABAC coding.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDITIONAL TABLES

B.1 COMPRESSION OVERHEAD

To estimate the overhead for storing the compressed networks, we assume that batch-norms are
not folded and all unquantised parameters (bias, batch norm statistics, scale factors ||W||∞/m in
Equation 7) are saved as fp32 (32 bits per parameter). This is the absolute maximum overhead
needed, which can be reduced in practice through entropy coding, saving in fp16 or even lower, and
by folding in batch norms into the preceding layers. Table 2 lists the resulting overheads.

Table 2: Actual storage size of the uncompressed neural networks (using 32 bits per parameters),
together with the overhead needed for storage. The percentage indicates how large the overhead is
in relation to the uncompressed network size.

Network Total Size Overhead Overhead (%)

ResNet18 44.7 MB 77.0 KB 0.17 %
ResNet34 85.1 MB 136.6 KB 0.16 %
ResNet50 94.1 MB 425.5 KB 0.45 %
MobileNetV3 Large 21.9 MB 294.6 KB 1.34 %
VGG16 553.4 MB 107.5 KB 0.02 %

16

	Introduction
	Related Work
	Background
	Information Theory and Compression
	Entropy Coding: DeepCABAC
	Quantization: OPTQ

	Method
	Choosing per-layer compression strength

	Experiments
	Compression performance
	Compatibility with activation quantization
	Determining the necessary calibration set size
	Entropy Constraints can induce sparsity
	Calibration set and training set mismatch

	Conclusion and further work
	Additional plots
	Results on ResNet34
	Row-Major vs Column-Major Scan Order
	Rate-distortion curves by grid size
	Run-times

	Additional Tables
	Compression Overhead

