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ABSTRACT

The proliferation of large pre-trained neural networks has recently revived re-
search in both quantization of network weights (for faster inference), and in their
compression (to reduce file sizes). However, there has so far been little idea trans-
fer between the two lines of research. In this paper, we combine techniques from
quantization and compression to propose an efficient and highly effective post-
training compression method for large neural networks. Our method extends the
recently published quantization method OPTQ (Frantar et al. [2023) with a tun-
able rate/distortion trade-off by introducing a cost per bit into OPTQ’s rounding
operation. Crucially, we estimate the bit rate based on the predictive model used
in the state-of-the-art neural network compression method NNCodec (Becking
et al., 2023). In our experiments with several standard pre-trained networks from
the computer vision community, our method leads to significantly (up to 2.7x)
smaller file sizes than NNCodec at equal model performance, generally compress-
ing to less than half a bit per network weight and implicitly pruning insignificant
weights. Additionally, and in contrast to NNCodec, our method offers the same
opportunities for inference speed-ups as OPTQ. By proving that file size and in-
ference cost can be reduced simultaneously, we hope that our contribution shows a
path towards deploying large neural networks on end-user devices, alleviating pri-
vacy concerns, regulatory constraints, and dependency on large service providers.

1 INTRODUCTION

Neural networks have achieved impressive performances in a large variety of tasks from different
areas, from object recognition to language modeling. This performance usually comes at a price: in-
creasing empirical evidence, summarized today under the term “neural scaling laws” (Kaplan et al.,
2020), suggests that model size controls a fundamental bound on performance, and this insight has
recently driven a trend towards larger and larger neural networks. At the same time, neural networks
see adoption in more and more applications, creating the need for parameter sharing platforms such
as HuggingFace, where users can freely share parameters of their neural networks. Here, the large
sizes of neural networks directly translate to operating costs for server storage and network traffic.
Arguably even more importantly, the large file sizes of neural networks often makes it prohibitively
impractical to deploy them on end-user devices. As a result, it is today the norm that applications
relay any features that involve neural networks to a server, leading to increased latency and concerns
regarding privacy and regulatory constraints (Saravanan & Kouzanil 2023} |[Hohman et al.| 2024)).

With this development, there has been rising interest in the development of data compression tech-
niques for neural networks (Gholami et al.,[2022; |[Marino et al.,2023). Neural network compression
can help with two problems: improving the inference speed, allowing for faster and more energy
efficient neural networks (Chmiel et all 2019), and decreasing the actual network size, reducing
memory bottlenecks and hardware costs caused by storage and transmission of the model parame-
ters. Most of the works we have surveyed focus on either one of these problems, but not both.

To improve the inference speed of neural networks, quantization (Jacob et al., 2017 Dettmers
et al.,|2022) aims to represent the weights of a neural network in a lower bit precision, for example
4 bit integers, which can be processed much faster than normal 16 or 32 bit precision floating point
numbers on most GPUs. Pruning (LeCun et al.,|[1989; [Blalock et al.,[2020) tries to determine which
of the weights in a neural network are the most important for the correct model output, and removes
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a certain number of non-relevant weights, which allows for the usage of fast kernels for sparse
matrix multiplication or even skipping computations completely when whole groups of neurons are
removed in the case of structured pruning (He & Xiao|2024). Knowledge distillation (Hinton et al.,
2015} |Gou et al.| [2021)) trains a small student network on the outputs of a larger teacher network,
aiming to replicate the behavior of the larger teacher model exactly in the smaller model.

While these methods do reduce the required number or size of the parameters to store, their focus is
not the size of the neural network in a compressed representation (as it would, e.g., be transmitted
over the internet or stored in an end-user application). An important step to achieve a data repre-
sentation of minimal size is entropy coding (Shannon, |1948; MacKay, 2003)), where a probabilistic
model of the data source is built and then used to encode more probable symbols to shorter bit-
strings and less probable ones to longer bit-strings. Research on reducing the storage size of neural
networks (Choi et al.l 2020; [Becking et al., |2023)) is more scarce, and some techniques, such as
quantizing to non-uniform grids using vector quantization (Baalen et al.| [2024), prohibit inference
speed-ups, such as GPU kernels that can operate in low-bit integer arithmetic.

In this work, we propose a method that combines advantages from both quantization and entropy
coding, resulting in a practical and efficient algorithm. Our compression method

* achieves high compression strength (i.e., small compressed file sizes);
* is applicable to most neural networks without modifications;

» works in a post-training setting, i.e., no expensive re-training is required, and only a rela-
tively small calibration data set is needed to estimate Hessians;

* allows for a smooth trade-off between compression strength and accuracy (and trying out
many points on this trade-off is very cheap as no new Hessians have to be estimated);

* is compatible with existing methods for inference acceleration on GPUs through activation
quantization, with a barely noticeable impact on model performance; and

* has very high decoding speed and sufficient encoding speed for large neural networks.

We term our method OPTQ-RD, as it generalizes the recent state-of-the-art quantization framework
OPTQ (Frantar et al., [2023) by introducing a rate-distortion trade-off into the optimization objec-
tive. To estimate bit rates in this trade-off, we use the entropy model used by the DeepCABAC
entropy coder (Wiedemann et al., 2020a), which is specialized to achieve high coding speeds and
a high compression performance for neural networks. However, our method is agnostic to the ex-
act entropy model used, which can be easily swapped out to fit the needs of a practitioner, who
for example might opt to use a simpler model to achieve even higher coding speeds on heavily
resource-constrained devices. We empirically verify the effectiveness of our algorithm on various
neural network architectures from the computer vision community.

2 RELATED WORK

We make an effort to distinguish between methods focused on inference speed (quantization, prun-
ing, knowledge distillation) and methods focused on storage size (entropy based methods, parameter
sharing), although the techniques are often combined in some form.

Methods focused on inference speed can be categorized into methods that require (re-)training the
neural network (such as knowledge distillation or quantization aware training (Baskin et al.| 2021))
and post-training methods (such as post-training quantization and pruning), although the latter some-
times involve fine-tuning, a form of partial retraining. We focus on the post-training setting here,
under which our method also falls under. SynFlow (Tanaka et al., 2020) prevents layer collapse in
network pruning by using a data-independent score based on synaptic saliency. SparseML (Kurtz
et al., 2020; [Singh & Alistarhl [2020) provides an easy-to-use tool for inference speed-up on ar-
bitrary networks using fisher information based pruning and structured sparsification. PENNI (Li
et al.| |2020) decomposes the filters of a convolutional neural network into a set of shared basis
kernels, which are learned during a retraining process with a sparsity constraint.

On the frontier of storage-focused methods, efforts have been made to build very general compres-
sion algorithms and pipelines for neural networks. The Neural Network Compression and Represen-
tation Standard (Kirchhoffer et al.l [2022) defines a compression pipeline encompassing parameter
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reduction (pruning, sparsification, parameter sharing, et cetera), quantization and entropy coding.
Additionally, the standard defines interoperability with well-known neural network exchange for-
mats such as ONNX (Bai et al., [2019). Universal Neural Network Compression (Choi et al., 2020)
uses universal quantization (Ziv},[1983), i.e., it randomly perturbs the weights of a neural network be-
fore applying vector quantization, allowing their compression scheme to work independently of the
source statistics of the parameters. Wiedemann et al.| (2020b) propose to use an entropy-constraint
together with a sparsification process, resulting in parameter representations that allow for high
compression ratios and while keeping the inference speed-ups from general pruning techniques.

Additionally, a large body of work has recently appeared on the compression of very large language
models (Dettmers et al.,|2022;|Chee et al.,|2024; [Kim et al.| 2024} Ding et al., 2024]), but the proposed
methods address issues specific to LLMs (e.g., activation outliers (Xiao et al., [2023; [Lin et al.,
2024)). By contrast, our proposed method is agnostic to the network architecture.

3 BACKGROUND

3.1 INFORMATION THEORY AND COMPRESSION

The goal of compression is to map data from a data source to short bit strings. Lossy compression
further trades off inaccuracies in the reconstruction of the data for even shorter bit strings. Con-

sider a data source X ~ Px, X € X, a discrete reconstruction space X and a distortion function
D: X xX — [0, o0]. For a given acceptable amount D of expected distortion, lossy compression
aims to find an encoder ¢ : X — {0,1}" = (7, {0,1}" and a decoder d : {0,1}* — X that
minimize of the following rate-distortion problerrﬂ (where | - | denotes the length of a bit string):

RD(D) = midnEXNpX [le(X)|] with the constraint Ex.p, [D(X,d(e(X)))] <D. (1)

To simplify [Equation 1] we first break up the encoder e into two steps: a (typically non-invertible)
quantization step q : X — X, q(X) = d(e(X)), and an invertible entropy-coding step b : X —
{0,1}*, b(X) = d~*(X) (an optimal decoder d is indeed invertible since reserving two different
bit strings for the same reconstruction X would be wasteful). This separation allows us to easily
estimate the length |e(X)| = |b(¢(X))| of the compressed representation via the source coding
theorem (Shannon, |1948; MacKayl [2003). Assuming an optimal entropy coder b, this theorem
states that

[B(X)| € [~log, Py (X), ~logy Py (X) +1) 2
where Py is the push-forward of Px along g. In practice, Px is usually not known, and so neither
is P, and one has to resort to an empirical model for P¢ and optimize over its parameters.

For long bit strings (the relevant regime for data compression), the “+1” on the right-hand side of
is negligible, and the bit rate under an encoder that is optimal for P can thus be accu-

rately estimated by the information content, |b(X)| ~ — log, P¢(X). Finally, if RD(d) is assumed
to be convex, we can enforce the distortion constraint in by a Lagrange multiplier A > 0,

RD(}) = min Ex~py [D(X, ¢(X)) - Mog, Pg (¢(X))]- 3)

Sub 1-bit bit rates. fundamentally simplifies the rate-distortion optimization as it al-
lows accurately estimating the bit rate |e(X)| ~ —log, Py (¢(X)) without having to explicitly
construct an optimal entropy coder. It also allows splitting up the total bit rate for entropy- coding of
a high-dimensional X into 1nd1v1dual (amomzed) bit rates for each vector component X;: assuming
an autoregressive model Py (X X) = [T, Py (X |X<7) where n = dim(X’), each component 4

can be thought of as contributing — log, P (X | X <) bits to the total bit rate. Crucially, this split
holds even if the individual amortized bit rates are below 1 bit per component, which would make
them impossible to measure explicitly: to encode, e.g., n = 1,000 components with 0.3 bit of in-
formation content each, a practical near-optimal encoder such as arithmetic coding (Pasco, [1976;
Rissanen & Langdon), [1979) would generate a bit string of length very close to n x 0.3 = 300 bit.

"More general formulations admit for stochastic en-/decoders. But without an additional constraint such as
realism, there always exists a pair of deterministic en-/decoders among the minimizers of
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3.2 ENTROPY CODING: DEEPCABAC

In |Wiedemann et al.[(2020a)), the authors propose the compression method DeepCABAC, which is
specifically designed to deal well with the common weight distributions of neural networks, which
the authors found to be mostly symmetric, centered around zero and with quickly vanishing tails.
The lossless entropy coder of DeepCABAC is based on the Context-based Adaptive Binary Arith-
metic Coder (CABAC), used in the video codecs H.264/AVC (Marpe et al.,|2003) and H.265/HEVC
(Sze et al.,[2014). CABAC contains a context model to adapt the coder on-the-fly to the statistics of
the given data, making it universally usable. Additionally, stemming from its use in video coding,
CABAC has a high throughput and allows very efficient encoding and decoding, making it suitable
for encoding the large parameter sets from neural networks. In the rest of the paper, we use the term
DeepCABAC to refer specifically to this entropy-coder.

In DeepCABAC, a quantized weight W € Z is binarized as follows: first, a series of flag bits are set,
called sigFlag (whether the weight is 0), signFlag (whether the weight is positive) and absGr(n)Flag
(whether the absolute value of the weightis > n € {1,2,4,8,... N}). If this this does not uniquely
identify the weight, the remainder w — NN is transmitted directly. Additionally, if the absolute value
is larger than NV, the remainder is transmitted using an Exponential-Golomb code. To increase the
compression strength of the encoding scheme, a context model is used to predict the value of the
flag bits. The context model is initialized to 0.5, and every time it encounters a value of the flag
bit, updates its probability model by a small step accordingly (increasing for 1, decreasing for 0).
The context model is used as the probability model of an arithmetic coder (Pasco, [1976; |[Rissanen
& Langdon, [1979; MacKayl |2003) and can thus shorten the expected length of the bit string even
further, encoding probable flag bits with less than 1 bit on average. Since the context model is
state-based and only depends on all previously seen values, it does not have to be transmitted to the
decoder side as the decoder can reconstruct it step by step while decoding.

3.3 QUANTIZATION: OPTQ

When dealing with quantization, one has to choose a suitable distortion function D in A
naive way to define a distortion might be to measure the euclidean distance between the quantized
and original weights | W — W||2. This corresponds to simple quantization methods such as round-
to-nearest. However, closeness in weight space does not guarantee that the outputs of the network are
close. The distortion that actually interests us is the model performance, for example classification
accuracy or perplexity. This quantity is usually costly to evaluate and highly nontrivial to minimize.
A suitable trade-off between these two extremes is the layer-wise loss (Nagel et al., [2020),

LW) = WX, ~ Wi X3 )
where W, € RO*! are the weights of layer £ with O output and I input nodes, and X, € R'*5 are
the inputs to layer ¢ resulting from a forward pass of a small set of B calibration data points through

the network. This loss has the advantage of having a very simple Hessian H, € R?1*91 where the
rows of W, can be processed independently of each other:

H; =2 1040 ® (X, X]) (5)
where 1 is the identity matrix, and ® denotes the Kronecker product. is expressed for
general linear layers for notational simplicity, but its generalization to, e.g., convolutional layers is

straight-forward. As the Hessian is block-diagonal with all blocks having the same value, from now
on, we will use H to refer to a block 2X X7 € R/*! also dropping the subscript for the layer.

Based on this layer-wise loss, [Frantar et al.| (2023) propose OPTQ, a quantization method that can
efficiently quantize networks of arbitrary sizes. It quantizes a neural network layer by layer. In
each layer, the rows of the weight matrix W can be quantized in parallel. For each row W, .,
i € {1,...,0}, OPTQ iterates over its components W;, j € {1,...,I}. For each component,
OPTAQ first quantizes W;; and then optimally corrects the remaining weights W; - ; in the row by

minimizing £(W), resulting in (Hassibi et al.,|1993; [Frantar & Alistarh, 2022; Frantar et al.,[2023)
J—li MCJ‘,M (6)
[(H>j5)7 Cij

where (H>; >;)~! denotes the inverse of the lower right sub-block of H starting at row and col-
umn j, and the upper triangular matrix C is the transpose of the Cholesky decomposition of H ~*.

Wi Wi — [(H>j>) 7], o = Wisj -
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Algorithm 1 OPTQ-RD

Require: W = [W;;] > Input weight matrix of size rows x cols
Require: H =2X X7 > Hessian of layer-wise loss, see|[Equation 5[; cols x cols
Require: G = {g1,92,.--,9m} > Quantization grid (e.g., as in[Equation 8))
Require: A > Rate-Distortion trade-off parameter
Ensure: W = [IV;;] > Quantized output weight matrix
I: C <+ Cholesky(H )T > Upper triangular matrix with size cols x cols
2: E < initEntropyModel()
3. for j = 1tocolsdo
4: for i = 1 to rows do
5: Set W;; < Qoprgrn(Wij, A, S) > See S is the internal state of F.
6: Update W; ~; < W, ~; — WCJN > See [Equation 6
7: E .update(Wij) > Update internal state .S of the entropy model.
8: end for
9: end for
10: return W
4 METHOD

We now present OPTQ-RD, our proposed compression method for neural networks. OPTQ-RD
builds on the quantization method OPTQ (Frantar et al., 2023) (see[section 3.3), but it introduces a
rate-constraint into the quantization step so that the resulting quantized weights can be more effec-
tively entropy coded by DeepCABAC (Wiedemann et al., [2020a)) (see [section 3.2)).

The original OPTQ algorithm quantizes a given scalar weight W;; by simple rounding to the nearest
grid point, using a uniformly spaced grid with standard absmax quantization Dettmers et al.[(2022),

Wl

Qabsmax(Wij) = ’V (7)

m
where [-| denotes rounding to integers, and m € N controls the number of grid points. Thus,
Equation 7|rounds by minimizing the Lo-norm,

Qubsmax (Wij) = argmin(W; — g)>  where G = {(i/m) - [|[W| | i€ {-m,....m}}. (8

geG

OPTQ turns this simplistic optimization in weight space into an (approximate) optimization over a
layer-wise loss function that takes second-order information into account by introducing a correction
step for subsequent weights W; - ; after quantizing each weight W;; (see [Equation 6). However,
standard OPTQ does not take into account how much each quantized weight W;; will contribute to

the total bit rate when one entropy codes the quantized model to reduce its file size. We propose to
take bit rates into account during the quantization step of OPTQ.

Algorithm [1| presents our proposed OPTQ-RD algorithm. It is analogous to the original OPTQ
algorithm except for a different quantization method on line [5|and an extra model update on line
which we both discuss now. The proposed quantization step on line 5| uses a Lagrange multiplier A
to optimize a trade-off between (i) the amount A, by which the layer-wise loss £
increases if we round the current weight W;; to W;; and then correct subsequent weights W; - ;
using and (ii) the amount R that Wij contributes to the bit rate after entropy coding. By

following the derivation from Hassibi et al.|(1993) and substituting w, with W;; — lej, we find
L (Wij = Wi)?

AL L (W = Wyy)?
T 2[(Hsx) Y, 2 (G2 7

where C is the transpose of the Cholesky decomposition of H~!. To estimate the rate R of each
weight T;;, a simple method would be to use the information content — log, f(W;;), where f(g)
is the empirical frequency of grid point g € G obtained by pre-quantizing the weights with a simple
method such as round-to-nearest or vanilla OPTQ. However, we found that using the actual entropy

(€))
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model that is used in a specialized entropy coding method such as DeepCABAC (see [section 3.2)
leads to much better results. DeepCABAC uses an autoregressive model Ppeepcapac(Wij | S), i.e.,
it has an internal state S that needs to be updated after encoding each Wij so it can adapt to the

empirical distribution of quantized weights (see line[7in Algorithm[T). Thus, we propose to use the
following rate/distortion quantization method,

W.. —qg)2
Qoprorp(Wij, A, S) = argmin Az + AR = arg min M
geG geG 2(Cj )

where G is the same grid as in For A = 0, reduces to the original OPTQ
(Equation 8)). Runtime optimizations (e.g., grouping columns) are possible, cf. Frantar et al.|(2023).

—Alogy Ppeepcaac(g|S) (10)

4.1 CHOOSING PER-LAYER COMPRESSION STRENGTH

In our method, A controls to how strongly we compress the network. Instead of using a uniform A
for the whole network, we can also choose a different A, for each layer £. We motivate one particular
choice of selecting A\, in the following.

For vanilla OPTQ, the quantization procedure is invariant under independent scaling of each layer-
wise Hessian Hy, as this only changes the absolute value of the loss function in but not
the optimal solution. This is no longer the case for OPTQ-RD, as we trade off distortion against
rate. In fact, if we scaled the Hessians of different layers independently, H é = H, - oy, we would
have to set ), = O% for the solution of OPTQ-RD to remain unchanged. We notice this to be prob-
lematic with layers that include batch-norms, as these essentially scale the values of the calibration
samples X flowing through the network. Therefore, we propose to use

A=A\ Tr(Hg) (.e., ap = 1/T1"(Hg)) (11

for networks with batch-norms. renders the compression objective in
invariant under scaling of the Hessian. We report this version of our method as OPTQ-RD 1/tr.

5 EXPERIMENTS

For our experiments, we evaluate the following networks: ResNet18, ResNet50 (He et al., [2016)
(on CIFAR10), MobileNetV3 Large (Howard et al., 2019) and VGG16 (Simonyan & Zisserman,
2015) (on ImageNet). Additionally, we include the performance for ResNet34 in Appendix [A.T]
for space reasons. We use implementations from TorchVision for MobileNet and VGG16 and an
implementation of user edaltocg of the ResNets on CIFAR10 from HuggingFace.

We implement our algorithm in PyTorch (Paszke et al., 2019) and do all computations either on an
NVIDIA RTX 2080 (ResNets) or an NVIDIA A100 GPU (MobileNet, VGG16). To perform our
algorithm, we first calculate the layer-wise Hessians (and the Cholesky decompositions of their re-
spective inverses) with 40,000 calibration samples for ImageNet and 12,800 samples for CIFAR10,
unfolding convolutional layers into linear ones. Then, we run Algorithm [] for a set of different
grid sizes {2,4,5,7,9,16,25,36} and A parameters (which are iteratively sampled to ensure that
the curves have an accuracy resolution of < 0.02), resulting in a separate curve of model accu-
racy over bit rate for each grid size. As is typical in the literature of lossy compression, we re-
fer to these as rate/distortion curves for short. To ease the presentation of our results, we only
show the Pareto front of this set of rate/distortion curves, i.e., we iterate over a fine grid of val-
ues A = {0.02,0.04, . ..,1.0} for the model accuracy and report the lowest bit rate achievable over
all recorded combinations of A and grid sizes where the model achieves at least the target accuracy
(this corresponds to approximately solving[Equation I)). For comparison, Appendix[A.3] includes a
graph where we draw all rate/distortion curves (sweeping over ) for all included grid sizes. Run-
times are reported in Appendix [A.4]

Baselines. For entropy coding, we use the DeepCABAC implementation from NNCodec (Becking
et al.,2023), which we additionally report as a stand-alone baseline (NNCodec). Here, we scan the
elements in row-major order and use the universal scalar quantization (URQ) option. To create the
rate-distortion curve, we sweep over different values of the granularity of the grid (the qp parameter).
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As additional baselines, we use two variants of vanilla OPTQ (Frantar et al., |2023). The first
(OPTQ+BZ2) compresses the quantized weights from OPTQ with the well-known universal com-
pression algorithm bzip2 (for optimal performance of bzip2, quantized weights are represented as
bytes and concatenated without delimiters). This represents a typical approach on boosting the com-
pression strength of a quantization method, used for example in (Choi et al.| (2020). The second
variant (OPTQ+DeepCABAC) uses vanilla OPTQ for quantization and then DeepCABAC to com-
press the quantized weights. Additionally, as an ablation, we show the performance obtained by di-
rectly applying our rate-distortion quantization method without using the iterative weight-correction
process from OPTQ (Direct RD). This corresponds to quantizing each weight with the objective

Qpirect kD (Wij, A) = arg Igin(Wi- —9)* - Hjj — Alogy Poeepcasac(g ] S). (12)
ge

5.1 COMPRESSION PERFORMANCE

We report rate-distortion curves for our methods (OPTQ-RD and OPTQ-RD 1/tr) together with base-
lines in Our methods consistently perform better in terms of rate-distortion performance
than all other tested methods. Additionally, we observe that scaling A with the trace of the Hessian
(OPTQ-RD 1/tr) seems to be important for the performance of OPTQ-RD on ResNets, which use
batch-norm layers that scale the layer outputs. On these nets, OPTQ-RD 1/tr clearly outperforms
OPTQ-RD with uniform A. In Table|I} we report the lowest bit rate achieved by each method while
keeping 95% of the original performance of the network. There, our methods consistently achieve a
>30% increase in compression strength (reduction of bit rate) over the baselines for all networks.

—-— Original NNCodec Direct RD OPTQ+DeepCABAC —— OPTQ+BZ2 OPTQ-RD (ours) OPTQ-RD 1/tr (ours)
ResNet18 (11M Params) MobileNetV3 Large (SM Params)
1.0 = E
Y9
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Figure 1: Rate-distortion curve for each tested method. Dotted black lines: original Top-1 accuracy
of the network. ResNets were tested on CIFAR10; MobileNet and VGG16 on ImageNet. Small gray
numbers next to OPTQ show the number of grid points that were used to construct the grid.

5.2 COMPATIBILITY WITH ACTIVATION QUANTIZATION

While our main focus is on reducing the cost of storage and transmission of neural networks, we
also demonstrate that our method is compatible with activation quantization, which is the basis
for inference acceleration on GPUs, see Nagel et al.| (2021). We quantize VGG16 to the widely
supported W8AS (8-bit weights, 8-bit activations) format, using the PyTorch quantization library
for activation quantization, and the quantized weights from the tested compression methods (where
we typically use grids with far fewer than 2® grid points anyway, see gray numbers in |Figure 1)). In
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Table 1: Performance of different compression methods. For each method, we tried to find the best
achievable compression performance (represented by the bits-per-weight), while retaining 95% of
the original network accuracy. Best compression performance is marked bold. Compression Factor
(CF) is reported assuming an original weight size of 32 bits-per-weight (BPW). Additionally, we
report the compression factor and storage size obtained when accounting for the overheads required
to store additional network information (refer to Appendix for more information).

CF 1 CF Size
Method BPW | weights only with oveIhead Acct with overhead
Direct RD 0.96 33.47 31.67 0.92 1.4 MB
© NNCodec 0.73 43.59 40.58 0.92 1.1 MB
S OPTQ+BZ2 0.47 68.56 61.36 0.90 728.5 KB
% OPTQ+DeepCABAC 0.38 84.28 73.65 0.90 606.9 KB
~ OPTQ-RD (ours) 0.32 101.28 86.29 0.91 518.0 KB
OPTQ-RD 1/tr (ours) 0.27 118.92 98.76 0.91 452.6 KB
Direct RD 0.89 35.77 30.85 0.90 3.0 MB
2 NNCodec 0.60 53.69 43.28 0.91 2.2 MB
s OPTQ+BZ2 0.58 55.22 44.26 0.90 2.1 MB
% OPTQ-+DeepCABAC 0.46 68.95 52.65 0.90 1.8 MB
 OPTQ-RD (ours) 0.36 89.24 63.68 0.90 1.5 MB
OPTQ-RD 1/tr (ours) 0.32 98.53 68.26 0.90 1.4 MB
en Direct RD 5.40 5.93 5.52 0.72 4.0 MB
% NNCodec 3.52 9.09 8.15 0.73 2.7 MB
% OPTQ+BZ2 5.85 5.47 5.12 0.76 4.3 MB
Z OPTQ+DeepCABAC 5.42 591 5.50 0.76 4.0 MB
20 OPTQ-RD (ours) 2.52 12.69 10.90 0.73 2.0 MB
OPTQ-RD 1/tr (ours) 2.62 12.20 10.53 0.73 2.1 MB
Direct RD 2.52 12.72 12.69 0.69 43.6 MB
o NNCodec 0.88 36.33 36.08 0.69 15.3 MB
o OPTQ+BZ2 1.90 16.81 16.76 0.71 33.0 MB
O OPTQ+DeepCABAC 1.61 19.87 19.80 0.71 28.0 MB
> OPTQ-RD (ours) 0.65 49.17 48.71 0.68 11.4 MB
OPTQ-RD 1/tr (ours) 0.76 41.87 41.54 0.69 13.3 MB

IFigure 2| we see that activation quantization barely affects model accuracy, demonstrating that our
weight compression method is also suitable for efficient inference. Note that we have not included
NNCodec, as the quantized weights obtained from this method sometimes have more than 2% points.

5.3 DETERMINING THE NECESSARY CALIBRATION SET SIZE

As we use a data-driven method to estimate the parameter sensitivity, we are naturally interested
in how many samples are actually needed to achieve good results. In we have varied the
amounts of samples used to estimate the Hessian of VGG16. We notice a saturation at around 40,000
samples. As ImageNet consists of 1,281,167 images, this corresponds to seeing a mere 3.12% of
the training data just once, which is much cheaper than methods that rely on performing multiple
full iterations over the training dataset during training or fine-tuning. Additionally, we also have to
perform this iteration only once for the whole rate-distortion curve, allowing us to cheaply obtain
versions of the network tuned for different performance levels (using different values for \).

5.4 ENTROPY CONSTRAINTS CAN INDUCE SPARSITY

Entropy coding methods are often combined with some form of pruning (c.f. (Choi et al., 2020) to
achieve an even higher compression ratio. Additionally, weights with high sparsity ratios might
enable further speed ups in inference. Instead of adding an explicit pruning step to our method,
we observe that the weights we obtain tend to naturally be sparse for low bit-rates (i.e., high \).
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This is because the grid-value g = 0 usually incurs the lowest bit-cost (often by a large margin), as
the weights of the neural network are approximately centered and symmetric around 0, and Deep-
CABAC assigns 0 the lowest bit-cost by default (without taking into account the context-model).
shows that OPTQ-RD indeed finds sparser weight matrices than NNCodec and plain OPTQ.
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Figure 2: Performance of VGG16 before and af- Figure 3: Influence of the size of the calibration
ter 8-bit activation quantization (AS). set on OPTQ-RD with uniform A on VGG16.

5.5 CALIBRATION SET AND TRAINING SET MISMATCH

Although the neural networks used in our experiments were trained on widely available datasets,
in many real-world post-training settings one might not have access to the original training data.
Therefore, we investigate the scenario where we calculate the Hessian using a different dataset than
the one we use to evaluate the accuracy. We compress VGG16 using the Microsoft COCO dataset
as a calibration dataset (Lin et al.;|2014), and we evaluate on ImageNet. We use the same amount
of samples as in the original VGG16 setup (40,000) and plot the rate-distortion curve for OPTQ-RD
with uniform \. In we can see that this causes a performance drop, although our method
remains competitive with NNCodec while keeping its benefit of allowing faster inference.
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Figure 4: Sparsity of different compression
methods in fraction of total weights = 0 (y-axis)
against the classification accuracy (x-axis).

Figure 5: Effects of using a different calibra-
tion dataset than evaluation dataset (ImageNet)
on OPTQ-RD with uniform A on VGG16.

6 CONCLUSION AND FURTHER WORK

In this paper, we proposed OPTQ-RD, a compression method that creates highly compressible quan-
tized networks while keeping a simple and flexible uniform grid, suitable for accelerated inference.
There are still some promising research directions not fully mapped out yet, as our method has mul-
tiple building blocks that can be experimented on. For example, one might explore using differently
spaced grids to improve the compression performance even further (at the price of potentially slow-
ing down inference), or use different entropy models than DeepCABAC. One might also try different
methods of determining the compression strength A for each layer, for example by leveraging global
second order information such as the fisher information content of the weights.

A harder problem would be to investigate rate-constrained compression for (very) large language
models, as these are known to be much more difficult to compress down to the very low bit-rates
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we have reported in our results. While the computer vision networks tested in our experiments can
consistently be compressed to 0.5 bits-per-weight or lower with little performance drop, for LLMs,
sparsification of more than 50% of the weights has only recently been achieved (Frantar & Alistarh)
2023)) and even the sub 1-bit barrier has just been broken this year (Dong et al.| [2024). These
differences may indicate that language models may indeed encode more information per weight
than (convolutional) computer vision models.

Additionally, we hope that this work inspires other research that combines more traditional ideas
from general compression with modern techniques from the model compression community. For
example, our observation that sparsification can result from an entropy constraint could provide
some interesting avenue on works that combine quantization with pruning into a single, unified
framework.
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A ADDITIONAL PLOTS

A.1 RESULTS ON RESNET34
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Figure 6: Performance of our methods on ResNet34.
A.2 ROW-MAJOR VS COLUMN-MAJOR SCAN ORDER
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Figure 7: Effects of scan-order of weights when encoding ResNet18 with NNCodec.
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A.3 RATE-DISTORTION CURVES BY GRID SIZE
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Figure 8: Performance of OPTQ-RD with uniform A on VGG16, shown for each tested grid size.

The dashed curve corresponds to the RD-curve that we present on our other results, which is obtained
by optimizing the bit-rate for different accuracy values over all possible grids.

A.4 RUN-TIMES

B Hessian H OPTQ-RD Quant. DeepCABAC Decode
I GPTQ Quant. DeepCABAC Encode

1750 - 1706

1500

1250

1000 —

1526 1526

Time [s]

750 -
500 =

250 -
5

T
OPTQ OPTQ-RD (encode) OPTQ-RD (decode)

0 -

Figure 9: Run-times of our algorithm and OPTQ on VGG16 for a 16-point grid. We perform the
hessian estimation (which includes calculation of the Cholesky) on an A100 GPU, the quantization
and encoding/decoding are performed on a CPU. The hessian estimation only has to be done once
for each network, subsequent runs for our method can use a saved hessian and then only incur the
run-time for the quantization and DeepCABAC coding.
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B ADDITIONAL TABLES

B.1 COMPRESSION OVERHEAD

To estimate the overhead for storing the compressed networks, we assume that batch-norms are
not folded and all unquantised parameters (bias, batch norm statistics, scale factors ||[W/||__/m in
Equation 7)) are saved as fp32 (32 bits per parameter). This is the absolute maximum overhead
needed, which can be reduced in practice through entropy coding, saving in fp16 or even lower, and
by folding in batch norms into the preceding layers. lists the resulting overheads.

Table 2: Actual storage size of the uncompressed neural networks (using 32 bits per parameters),
together with the overhead needed for storage. The percentage indicates how large the overhead is
in relation to the uncompressed network size.

Network | Total Size | Overhead | Overhead (%)
ResNet18 447 MB 77.0 KB 0.17 %
ResNet34 85.1 MB 136.6 KB 0.16 %
ResNet50 94.1 MB | 425.5KB 0.45 %
MobileNetV3 Large | 21.9 MB | 294.6 KB 1.34 %
VGG16 553.4 MB | 107.5 KB 0.02 %
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