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ABSTRACT

Sign language generation faces the challenge of producing natural and expressive
results due to the complexity of sign language, which involves hand gestures, fa-
cial expressions, and body movements. In this work, we propose a novel method
called SignAligner for realistic sign language generation. The framework con-
sists of three stages: text-driven multimodal co-generation, online collaborative
correction, and realistic video synthesis. First, a joint generator incorporating
a Transformer-based text encoder and cross-modal attention simultaneously pro-
duces posture, gesture, and body movements from text. Next, an online correc-
tion module refines the generated modalities using dynamic loss weighting and
cross-modal attention to resolve spatiotemporal conflicts and enhance semantic
consistency. Finally, the corrected poses are input into a pre-trained video gen-
eration network to synthesize high-fidelity sign language videos. Additionally,
we introduce a dataset extension scheme that derives three new landmark repre-
sentations (i.e., Pose, Hamer, and Smplerx) via pre-trained models, validated on
PHOENIX14T and CSL-daily. Extensive experiments show that SignAligner sig-
nificantly improves the accuracy and expressiveness of generated sign videos.

1 INTRODUCTION

Sign language is both a rich visual language and a primary form of communication within the deaf
community. As a result, Sign Language Generation (SLG) is gaining significant attention in the
field of visual languages and has become a classical yet challenging task. SLG encompasses various
representational forms, including pose, avatar, and realistic video, each emphasizing different levels
of action details and semantic representations.

Early SLG works primarily focus on avatar-based methods Baldassarri et al. (2009); Glauert et al.
(2006), which require expensive pre-acquisition of poses due to rule-based lookups in a pre-set
database. Given the critical role of pose in conveying the semantics of sign language, there has been
a growing shift towards the study of text-to-pose generation Zelinka et al. (2019); Stoll et al. (2020);
Krishna & Ukey (2021); Xiao et al. (2020). Inspired by the success of transformer models Unanue
et al. (2021); Radford et al. (2021), Saunders et al. introduce a progressive transformer for end-
to-end sign pose generation Saunders et al. (2020). Similarly, Huang et al. Huang et al. (2021)
propose a non-autoregressive model with parallel decoding, alleviating the error accumulation and
high inference latency issues of autoregressive models in previous G2P approaches. LVMCNWang
et al. (2025) addresses the SLG challenge by bridging the modality semantic gap and addressing
the lack of word-action correspondence labels. With the rapid advancements in diffusion models,
Sign-IDD Tang et al. (2025a) leverages limb skeleton modeling to constrain joint associations and
gesture details, significantly improving the accuracy and naturalness of generated poses.

With the booming development of large-scale pre-trained modeling techniques Fu et al. (2025); Li
et al. (2022); Hu et al. (2023), research on generating sign language videos based on digital humans
is becoming a cutting-edge hotspot. Saunders et al. Saunders et al. (2022) propose SIGNGAN,
which directly maps parameterized skeletal pose sequences to high-fidelity sign language videos,
achieving end-to-end integration of motion generation and rendering. Xie et al. Xie et al. (2024a)
eliminate explicit pose representations and jointly train a video generator and a latent space decoder
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Figure 1: Overview of the proposed SignAligner. It contains three stages: text-driven pose modalities co-
generation, online collaborative correction of multimodality, and realistic sign video synthesis. First, a joint
sign language generator produces three pose modalities: p̃1:m, h̃1:m, s̃1:m, representing posture, handshape, and
body motion. Next, an online collaborative correction mechanism refines these representations, enhancing
their naturalness and spatial accuracy. Finally, a photo-realistic sign language video is synthesized using a pre-
trained video synthesis network.

to directly generate realistic sign language videos. However, the existing research paradigms are still
limited by the shackles of modal fragmentation: they are either confined to single-modal information
representation or rely on multi-stage pipeline architectures, resulting in inherent shortcomings such
as reduced semantic fidelity and lack of multimodal co-evolutionary mechanisms in the sign lan-
guage generation process. Specifically, the separate processing of gestures and avatars ignores the
multimodal coupling of sign language, while the staged generation strategy weakens motion details
due to quantization loss of intermediate representations, undermining the spatiotemporal continuity
that sign language is supposed to maintain. As shown in Table 1, real sign language videos better re-
flect its essential semantic properties than any single-modal Pose, Hamer and Smplerx. Therefore,
building a unified sign language video generation model is crucial.

To this end, we propose a novel method termed SignAligner for realistic sign language genera-
tion. As shown in Figure 1, SignAligner consists of three stages: text-driven pose modalities co-
generation, online collaborative correction, and realistic sign video synthesis. Firstly, by combining
text information, three sign language representation generators are used to simultaneously obtain
posture coordinates, gesture actions, and body motion trajectories. Here, the text encoder uses Trans-
former architecture to extract semantic features, and the generation module combines text semantic
information through cross modal attention mechanism, and simultaneously generates multi-source
sign language representations to ensure accurate mapping and diversity control of modal features.
In online collaborative correction of multimodality, we use a cross-modal attention mechanism and
a dynamic loss weighting strategy to optimize the generated pose modalities, achieving information
complementarity between different modalities, dynamically eliminating spatiotemporal conflicts be-
tween modalities, and ensuring semantic coherence and action consistency of the generated results.
Finally, the corrected pose modalities are input into a pre-trained synthesis network to obtain high-
fidelity sign videos. Our main contributions are summarized as follows:

• To address the limited and homogeneous nature of existing sign language datasets, we
propose a dataset expansion scheme that integrates multiple sign language representations
through pre-trained models, expanding widely used sign language corpora. These include
high-precision skeleton data with facial keypoints (Pose), hand details (Hamer), and 3D
full-body posture (Smplerx), which aims to provide a novel, diverse, and high-quality
resource for the sign language community.

• We establish a three-stage sign video generation method, which utilizes the complemen-
tarity among pose modalities and introduces textual information to guide the generation
process, thereby achieving sign language videos that can more accurately reflect the se-
mantic content of the text.

• We propose a joint generation mechanism that collaboratively generates sign language rep-
resentations and utilizes a multimodal correction strategy combined with dynamic loss con-
straints to fully explore complementary information between modalities, ensuring higher
quality sign language video generation in terms of semantic consistency, naturalness of
actions, and spatial expression accuracy.
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2 RELATED WORK

2.1 SINGLE-STAGE SIGN LANGUAGE GENERATION

Table 1: Semantic evaluation performance of different sign language
representations on the PHOENIX14T dataset.

Ground Truth BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑
Pose 30.11 20.86 15.70 12.50 29.68

Hamer 31.90 22.43 16.68 13.24 31.21
Smplerx 30.18 20.40 14.92 11.84 28.91

Video 38.45 28.23 21.65 17.42 37.65

Sign language is both a rich vi-
sual language and a preferred
mode of communication for
the deaf community. With
the growing need for effective
communication between deaf
and hearing people in recent
decades, Sign Language Gener-
ation (SLG) Cui et al. (2019); Krishna & Ukey (2021); Stoll et al. (2020); Krishna & Ukey (2021);
Saunders et al. (2020); Tang et al. (2025b) have received significant attention in recent years. Current
work focuses on single-stage SLG, i.e., text-to-pose, text-to-avatar, and text-to-video.

Text to Pose. Sign language pose videos are widely used because they can capture the semantic and
dynamic characteristics of actions through sequences of skeletal key points. Inspired by the great
success of transformer Unanue et al. (2021); Radford et al. (2021); Yang et al. (2023a), Saunders et
al. design a progressive transformer to generate sign poses in an end-to-end manner Saunders et al.
(2020). LVMCN Wang et al. (2025) solves the semantic gap between modalities and the lack of
word-action correspondence labels required for strong supervised alignment in SLG. With the rapid
development of diffusion models, Xie et al. Xie et al. (2024b) ingeniously combine VAE with vector
quantization to propose Pose-VQVAE, which effectively generates discrete potential representations
for continuous pose sequences. Sign-IDD Tang et al. (2025a) enhances the accuracy and naturalness
of pose generation by constraining joint associations and gesture details through skeletal modeling.

Text to Avatar. Early SLG studies often rely on avatar-based approaches, as a single skeletal rep-
resentation is insufficient for realistic visual presentation. Baldassarri et al. Baldassarri et al. (2009)
develop an animation engine that enables avatars to adapt signs and expressions to the interpreter’s
mood. Glauert et al. Glauert et al. (2006) design the VANESSA system, which converts speech
or text into virtual sign language avatars. T2S-GPT Yin et al. (2024) introduces a dynamic vector
quantization DVA-VAE that adjusts encoding length to the density of sign information, generating
corresponding 3D avatars. Baltatzis et al. Baltatzis et al. (2024) further advance this direction by
combining SMPL-X with a graph neural network in a diffusion model, producing dynamic 3D avatar
sequences from unconstrained inputs and pushing SLG closer to realistic neural avatars.

Text to Video. Thanks to the rapid development of artificial intelligence technology, generating
realistic sign language videos has gradually become possible. Kaur et al. Kaur & Kumar (2016)
develop HamNoSys, a sign language transcription system that can be directly mapped to an avatar,
and each of its symbols contains a description of the initial posture and the movement over time. Xie
et al. Xie et al. (2024a) develop a new method to produce high-quality sign language videos without
the intermediate step of human pose. It first learns from the generator and the hidden features of the
video, and then uses another model to understand the order of these hidden features.

2.2 MULTI-STAGE SIGN LANGUAGE GENERATION

The first deep learning-based SLG pipeline decomposes the task into three stages: Text-to-Gloss
(T2G) translation, Gloss-to-Pose (G2P) generation, and Pose-to-Video (P2V) synthesis Stoll et al.
(2020). Building on this paradigm, Brock et al. Brock et al. (2020) generate 3D kinematic skeletons
from monocular video and estimate joint angular displacements via inverse kinematics to animate
virtual sign characters. Stoll et al. Stoll et al. (2018) develop a system that translates speech into
gloss sequences with an encoder–decoder network, maps gloss to pose through data-driven learning,
and synthesizes sign language videos driven by the generated poses. Saunders et al. Saunders et al.
(2022) further advance this line with FS-NET and SIGNGAN, enabling direct video generation from
skeletal inputs. Despite these advances, existing methods remain constrained by reliance on single
modalities or limited information representations, making it difficult to capture the full semantic
and visual richness of sign language. To address this, we propose a multi-stage SLG framework that
leverages text to guide the generation of multimodal representations, ultimately producing videos
with greater realism and semantic consistency.
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3 DATASET CURATION

Figure 2: Examples of the PHOENIX14T.

Since the variety of datasets available for existing
sign language generation tasks is relatively limited
and monolithic in form, most of them are confined
to only videos and the corresponding skeleton coor-
dinates. Not only that, with the rapid development
of large-scale, more and more demands pay more at-
tention to the generation of real-life sign language
videos, but only the skeleton form of the data can not
do such an effect, lack of many details, can not meet
the needs of reality. Therefore, we formally augment
the widely used sign language datasets, German
sign language corpus PHOENIX14T Camgoz et al.
(2018) and Chinese Sign Language Corpus CSL-
daily Zhou et al. (2021), using pre-trained mod-
els DWPose Yang et al. (2023b), HaMeR Pavlakos
et al. (2024) and SMPLer-X Cai et al. (2023), re-
spectively. Specifically, this includes high-precision
skeleton data (Pose) containing facial keypoints, 3D
full-body pose (Smplerx), and (Hamer) reflecting
hand details, aiming to provide the community with
a novel and diverse large-scale sign language corpus
suitable for both practical applications and academic
research. Figure 2 shows the three types of sign rep-
resentations from the PHOENIX14T dataset. For more details, please refer to the section A.2.4.

Figure 3: User study on extraction quality.

Extraction quality discussion. We systematically
discuss the quality of data extraction from two
perspectives: (1) objective performance analysis
based on experimental details reported in the orig-
inal paper; and (2) correspondence analysis based
on subjective perception scores from user studies.
On the one hand, for the three models DWPose,
HaMeR, and SMPLer-X, we observe that they are
all fully trained and tested on large-scale and diverse
datasets, such as 3DPW Von Marcard et al. (2018),
MTC Xiang et al. (2019), FreiHAND Zimmermann
et al. (2019), COCO Jin et al. (2020), HO3D Ham-
pali et al. (2020), InterHand2.6M Moon et al. (2020),
AGORA Patel et al. (2021), Halpe Fang et al. (2022)
and UBody Lin et al. (2023). These datasets cover
a wide range of scenarios, from everyday natural
scenes to specialized tasks such as hand manipula-
tion and multi-person interaction. They include both
high-resolution 2D image annotations and detailed
3D pose and mesh annotations, with a sample size
of millions, ensuring the model’s generalization and robustness in complex environments. Based on
this comprehensive data foundation, three models achieve superior results across multiple metrics in
a systematic comparison with dozens of mainstream methods, demonstrating the advanced quality
of our methods across diverse data extraction capabilities. On the other hand, we also recruit 100
volunteers with varying levels of sign language proficiency to further validate the quality of key-
point extraction from a subjective perspective. Specifically, we use six key evaluation dimensions:
Temporal Consistency, Shape Similarity, Visual Clarity, Gesture Transitions, Naturalness, Joint Con-
sistency. Each volunteer independently scores 10 random samples from the three modalities (out of
5 points) to fully reflect the perceptual differences between different audiences during actual view-
ing. As shown in the Figure 3, our extracted modalities consistently achieved high subjective scores
exceeding 4.0, demonstrating their superior visual presentation and dynamic coherence. This also
confirms the effectiveness of our objective performance evaluation from a perceptual perspective.
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4 METHOD

This work introduces SignAligner, a novel framework for generating realistic sign language videos
from text. It consists of three stages: text-driven pose modalities co-generation, online collaborative
correction and realistic sign video synthesis. A joint sign generator integrates textual semantics
via a Transformer encoder and cross-modal attention to produce pose, hamer and smplerx. Then,
an online correction strategy weighted by a dynamic loss enforces inter-modality complementarity.
High-fidelity sign language videos are then rendered using a pre-trained video generator.

4.1 TEXT-DRIVEN POSE MODALITIES CO-GENERATION.

Text Semantic Feature Extraction. To extract the semantic features of text, we build a
transformer-based encoder. A linear embedding layer is adopted to map text into a high-dimensional
feature space. We further apply a positional coding layer to complement the temporal order of the
text vectors. The computation is as follows:

t′n =W t · tn + bt + PE(n), (1)
where tn is a one-hot vector of the n-th text over the text vocabulary V , PE is conducted by the
sine and cosine functions on the temporal text and pose order as in Vaswani et al. (2017). W t and bt

represent the weight and bias respectively.

Next, we input the obtained text embeddings {t′}N
n=1 into the TextEncoder to capture the global

semantics of the text. Here, the encoder consists of n identical blocks which include Multi-Head
Attention, Normalisation and Feedforward Layers. The calculation process can be expressed as:

t̃1:N = TextEncoder(t′1:N). (2)
The self-attention mechanism computes contextual dependencies using scaled dot-product attention:

Attention(Q,K, V ) = softmax
(
QK⊤
√
d

)
V, (3)

where Q,K, V ∈ Rd×d are the query, key, and value matrices derived from t′n, and d is the feature
dimension.

Pose Modalities Co-generation. In this work, we aim to simultaneously generate pose modalities
including Pose, Hamer, and Smplerx for temporal consistency. Therefore, similar to text encoding,
we encode pose, hamer and smplerx as high-dimensional feature spaces through linear and positional
encoding layers PEp, PEh and PEs, respectively. The computational formula is as follows:

p′m =W p · pm + bp + PEp(m);h′m =W h · hm + bh + PEh(m); s′m =W s · sm + bs + PEs(m), (4)
where pm, hm and sm denote the coordinates of pose, hamer and smplerx at m-th timestamp, respec-
tively. W p, W h, W s and bp, bh, bs denote the learnable weights and bias, respectively.

To avoid spatiotemporal discrepancies between modalities and generate three sign language rep-
resentations simultaneously, we input visual features into a multimodal joint training framework
built on Transformer. This framework consists of three components: PoseDecoder, HamerDecoder,
and SmplerxDecoder. Take the PoseDecoder as an example, it can predict the next pose p̃m+1 by
aggregating all previously generated poses p̃1:m.

We also use an cross-attention mechanism in the transformer to enable semantic interaction between
textual and visual sequences. The various decoders can be represented as:

p̃m+1 = PD(p′1:m, t̃1:N); h̃m+1 = HD(h′1:m, t̃1:N); s̃m+1 = SD(s′1:m, t̃1:N), (5)
where PD, HD and SD stand for PoseDecoder, HamerDecoder and SmplerxDecoder respectively.

After M time stamps, we obtain the pose representation {p̃}M
m=1, hamer representation {h̃}M

m=1, sm-
plerx representation {s̃}M

m=1. In the training stage, the Mean Absolute Error (MAE) loss is used to
constraint the consistency of the generated poses {p̃}M

m=1, generated hamers {h̃}M
m=1 and generated

smplerxs {s̃}M
m=1, respectively, with the ground truth P̂ = {p̂}M

m=1, Ĥ = {ĥ}M
m=1 and Ŝ = {ŝ}M

m=1.

LTMC =
1

M

M∑
m=1

(|p̃m − p̂m|+ |h̃m − ĥm|+ |s̃m − ŝm|). (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.2 ONLINE COLLABORATIVE CORRECTION

Direct fusion of heterogeneous modalities introduces inconsistency and noise, while separate de-
coders limit feature learning. To address this, we propose an online multimodal correction strategy
that dynamically regulates inter-modal correlations, enhancing robustness and interaction. A triple
cross-modal attention pathway exploits skeleton priors to refine hand features and uses local seman-
tics to enhance full-body spatio-temporal representations. Dynamic complementarity is achieved by
back-optimizing skeleton confidence with global pose information, as formulated below:

p̃′1:m = CA(p̃1:m, h̃1:m, s̃1:m); h̃′1:m = CA(h̃1:m, p̃1:m, s̃1:m); s̃′1:m = CA(s̃1:m, p̃1:m, h̃1:m), (7)

where CA stand for cross-attention.

In the correction stage, we design a dynamic loss weighting module that adaptively adjusts the
importance of each loss. Specifically, learnable parameters α, β, γ ∈ R+ are normalized via softmax
to obtain weight coefficients, and are automatically updated through backpropagation to achieve
dynamic synergy and adaptive optimization across modalities:

wA, wB , wC = softmax(α, β, γ) = [
eα

eα + eβ + eγ
,

eβ

eα + eβ + eγ
,

eγ

eα + eβ + eγ
], (8)

where wA, wB and wC are the weights of modes Pose, Hamer and Smplerx respectively.

Finally, to enforce semantic consistency and cross-modal complementarity, we apply adaptive
weights to dynamically constrain the generative features of the three modalities, ensuring that the
refined sign language representations align more closely with real semantics.

LOMC = wA · ||p̃′m − p̂m||22 + wB · ||h̃′m − ĥm||22 + wC · ||s̃′m − ŝm||22, (9)

where p̃′
M
m=1, h̃′

M
m=1 and s̃′

M
m=1 are generated features after calibration, and p̂M

m=1, ĥM
m=1 and ŝM

m=1 are
the corresponding real labels.

4.3 REALISTIC SIGN VIDEO SYNTHESIS

In order to generate highly realistic sign language videos, we adopt the RealisDance Zhou et al.
(2024) and retrain it with PHOENIX14T and CSL-daily to meet the specific needs of sign language
video generation. First, we pass the corrected pose, hamer and smplerx through a gating module,
and integrate this information to fine-tune the RealisDance main framework. The specific process
can be expressed as follows:

V ideo = RealisDance(p̃′1:m, h̃
′
1:m, s̃′1:m). (10)

In the model training process, we define a joint loss function LEVS, consisting of Lrec and loss Ladv.

LEVS = Lrec + λLadv, (11)

where the reconstruction loss Lrec measures the difference between the generated video and the
real video, the adversarial loss Ladv improves the realism of the generated video by introducing a
discriminator, and λ is a weighting coefficient to balance the two.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Implementation Details. In the text-driven pose modalities co-generation, we use a Transformer-
based generative model with the Adam optimizer for training. For the OCC, the cross-modal multi-
head attention mechanism is configured with 2 layers, 4 attention heads batch size of 64. Finally,
end-to-end video generation is achieved using the RealisDance Zhou et al. (2024), retrained on the
PHOENIX14T and CSL-daily datasets. All experiments are conducted on 8 NVIDIA A40 GPUs.

Evaluation Metrics. We adopt NSLT Camgoz et al. (2018) as an offline back-translation tool for
pose evaluation, following prior work Saunders et al. (2020); Tang et al. (2022). Since Hamer, Sm-
plerx, and Video rely on video modality rather than pose keypoints, we employ GFSLT Zhou et al.
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Table 2: Quantitative results on the PHOENIX14T dataset.
Methods

DEV TEST

BLEU-1↑ BLEU-4↑ ROUGE↑ SSIM↑ PSNR↑ FID↓ BLEU-1↑ BLEU-4↑ ROUGE↑ SSIM↑ PSNR↑ FID↓
PTSLP Saunders et al. (2020) 8.55 1.68 9.15 0.584 11.282 51.643 8.86 1.52 8.83 0.584 11.452 52.122

GEN-OBT Tang et al. (2022) 13.70 5.47 16.08 0.690 13.772 30.114 13.31 4.94 14.32 0.689 13.842 32.231

CogvideoX Yang et al. (2024) 8.14 0.46 7.21 0.292 3.822 263.823 8.40 0.51 7.33 0.287 3.819 264.751

LVMCN Wang et al. (2025) 12.61 4.94 14.34 0.689 13.726 31.667 14.57 5.61 16.07 0.689 13.853 34.278

SignAligner (Ours) 19.33 7.36 21.08 0.729 15.292 25.978 20.56 8.17 20.88 0.731 15.322 26.257

Figure 4: Visualization examples of produced sign language video sequence of SignAligner.
(2023) and retrain it on PHOENIX14T and CSL-Daily for direct video evaluation. To comprehen-
sively assess our method, we combine semantic and visual quality metrics. At the semantics level,
we report BLEU Papineni et al. (2002), ROUGE Lin (2004), and WER Wang et al. (2025), where
BLEU measures semantic completeness and fluency via n-gram recall. At the vision level, we adopt
SSIM Wang et al. (2004), PSNR Hore & Ziou (2010), and FID Heusel et al. (2017) to quantify
visual similarity, detail fidelity, and distribution alignment with real videos.

5.2 COMPARISON WITH STATE-OF-THE-ARTS

Comparison on PHOENIX14T. As shown in Table 2, our multi-stage SLG method consistently
outperforms existing approaches on PHOENIX14T. Compared with baseline PTSLP, SignAligner
achieves substantial gains across all metrics, with BLEU-1 and ROUGE improvements of 10.78%
and 11.83% on the DEV/TEST sets. We still achieve considerable improvement over the state-of-
the-art sign language generation method, LVMCN, and a fine-tuned CogvideoX. Beyond language
accuracy, SignAligner also enhances video quality, achieving an SSIM of 0.731 and PSNR of 15.322
on the test set, surpassing PTSLP in visual fidelity and clarity. As shown in Figure 4, this highlights
SignAligner’s robustness in generating semantically accurate and high-quality sign language videos.

Figure 5: Visualization examples of PTSLP,
CogvideoX and SignAligner on PHOENIX14T.

We further provide a visualization example to
clearly show the performance differences of
different methods in sign video generation, as
shown in Figure 5. Compared to PTSLP and
CogvideoX, SignAligner demonstrates signifi-
cant advantages, particularly in hand structure,
movement trajectory, and spatiotemporal coor-
dination. PTSLP and CogvideoX often suffer
from blurred hands, misaligned postures, and
discontinuous movements, making fine ges-
ture details and movement continuity difficult
to restore. In contrast, SignAligner produces
more natural hand movements and smoother
transitions, closely matching the ground truth.
This convincingly demonstrates SignAligner’s
effectiveness in improving clarity, accuracy,
and consistency in generated sign language
videos through multimodal collaborative mod-
eling and realistic video synthesis.
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Table 3: Quantitative results on the CSL-daily.
Methods SSIM↑ PSNR↑ FID↓

PTSLP Saunders et al. (2020) 0.817 14.073 36.575

GEN-OBT Tang et al. (2022) 0.823 14.072 33.288

LVMCN Wang et al. (2025) 0.826 14.402 33.584

SignAligner (Ours) 0.839 14.753 26.589

Comparison on CSL-Daily. As shown in Table 3,
SignAligner achieves superior performance on CSL-
daily. It obtains SSIM of 0.839, PSNR of 14.753,
and FID of 26.589. Compared with existing meth-
ods, gains in SSIM and PSNR highlight its ability to
capture structural features and ensure reconstruction
quality, while the lower FID confirms the authentic-
ity and diversity of generated videos, demonstrating overall superiority in sign language generation.

Figure 6: Visualization examples of PTSLP, LVMCN
and SignAligner on CSL-daily.

Furthermore, as shown in Figure 6, we also
conducted a qualitative comparison on the
CSL-daily dataset. The results clearly demon-
strate that our proposed SignAligner generates
significantly more accurate, natural, and visu-
ally coherent gestures. Specifically, PTSLP fre-
quently produces blurry or distorted gestures,
while LVMCN often suffers from severe spa-
tial misalignment, particularly in fast or com-
plex motion situations. In particular, the hands
in the third row of PTSLP’s results are al-
most completely misaligned and visually im-
plausible. In contrast, SignAligner better pre-
serves the structural integrity of both hands and
achieves higher temporal consistency. This im-
provement is evident from the more accurate
and fine-grained finger details observed in the
zoomed-in area, thereby further validating the
robustness and effectiveness of our approach.

Table 4: User study comparison.
Methods Temporal consistency Visual clarity Gesture transitions Naturalness

PTSLP 2.09 1.92 2.03 2.17

GEN-OBT 3.59 3.34 3.66 3.61

LVMCN 3.32 3.28 3.51 3.45

CogvideoX 1.36 2.61 2.45 1.99

SignAligner (Ours) 4.27 (19%↑) 4.11 (23%↑) 4.23 (16%↑) 4.36 (21%↑)

User Study. We further con-
ducted subjective evaluations
on the PHOENIX14T and
CSL-Daily datasets, focusing
on four key metrics: natural-
ness, visual clarity, temporal
consistency, and smoothness.
In the experiments, 100 volunteers with varying levels of sign language proficiency rated the gen-
eration results of the five comparison methods. Each evaluation set included anonymous, randomly
sorted samples from PTSLP, GEN-OBT, LVMCN, CogVideoX, and our proposed SignAligner,
along with corresponding ground-truth reference videos as a control baseline. Scoring uses a scale
of 1 to 5 to ensure quantitative evaluation of different dimensions. Table 4 shows that SignAligner
outperforms other methods across all four dimensions, particularly achieving a significant improve-
ment of up to 23% in visual clarity, fully demonstrating its superiority in perceptual quality.

5.3 ABLATION STUDY

Table 5: Ablation results on PHOENIX14T dataset.
Methods BLEU-1↑ BLEU-4↑ ROUGE↑ SSIM↑ PSNR↑ FID↓

w/o co-gen 14.50 5.11 15.54 0.675 13.791 38.158

w/o OCC 17.84 7.07 19.01 0.698 14.673 37.229

SignAligner (Ours) 20.56 8.17 20.88 0.731 15.322 26.257

The impact of co-gen and OCC. To
verify the effectiveness of the pro-
posed pose modalities co-generation
(co-gen) and Online Collaborative
Correction (OCC) mechanisms, we
conduct ablation experiments on the
PHOENIX14T dataset. As shown in Table 5, removing (co-gen) reduces BLEU-1 to 14.50% and
BLEU-4 to 5.11%, while SSIM and PSNR also drop notably, confirming its role in enhancing lan-
guage accuracy and visual fidelity. Without it, the model struggles to integrate posture information,
leading to reduced coherence and accuracy. Similarly, removing (OCC) lowers BLEU-1 to 17.84%
and ROUGE to 19.01%, together with declines in visual quality, highlighting the importance of real-
time correction for semantic consistency. The full model achieves the best results across all metrics,
validating the synergistic effect of co-generation and online collaborative correction.
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Table 6: Results on PHOENIX14T for Text to Pose.
Methods BLEU-1↑ BLEU-4↑ ROUGE↑ WER↓

PTSLP Saunders et al. (2020) 13.35 4.31 13.17 96.50
NAT-AT Huang et al. (2021) 14.26 5.53 18.72 88.15
NAT-EA Huang et al. (2021) 15.12 6.66 19.43 82.01

DET Viegas et al. (2023) 17.18 5.76 17.64 –
G2P-DDM Xie et al. (2024b) 16.11 7.50 – 77.26
GCDM Tang et al. (2025b) 22.03 7.91 23.20 81.94

GEN-OBT Tang et al. (2022) 23.08 8.01 23.49 81.78
SignAligner (Ours) 24.39 8.47 25.21 73.89

Generate more accurate skeleton pose.
Here, as shown in Table 6, our proposed
SignAligner achieves significantly better per-
formance than existing models in the Text
to Pose task, reaching BLEU-1 24.39% and
ROUGE 25.21%. This shows that our method
can not only effectively capture the semantic
information in the text, but also generate ac-
tion sequences with good language structure
and coherence. The high semantic fidelity and sequence generation quality fully verify our design
advantages in multimodal modeling and cross-modal alignment, and further prove the strong poten-
tial of SignAligner in text-driven sign language generation tasks.

Table 7: Results on PHOENIX14T dataset for Text to Hamer/Smplerx tasks.

Methods
Text to Hamer Text to Smplerx

BLEU-1↑ ROUGE↑ SSIM↑ PSNR↑ FID↓ BLEU-1↑ ROUGE↑ SSIM↑ PSNR↑ FID↓
PTSLP Saunders et al. (2020) 13.26 13.03 0.948 19.061 25.652 9.89 9.65 0.792 16.228 7.584

GEN-OBT Tang et al. (2022) 22.44 21.87 0.951 19.769 19.999 25.87 25.43 0.803 16.844 3.968

CogvideoX Yang et al. (2024) 15.16 14.17 0.915 14.932 36.587 9.85 7.67 0.724 12.033 43.228

LVMCN Wang et al. (2025) 22.20 22.23 0.951 19.903 22.475 23.75 24.25 0.807 17.047 4.106

SignAligner (Ours) 29.94 29.12 0.958 21.314 4.428 27.48 27.43 0.832 18.651 3.607

Capture fine finger details. As shown in Table 7, SignAligner achieves the best performance
across all metrics on the Text to Hamer task. BLEU-1 reaches 29.94%, markedly higher than the
baseline method PTSLP with 13.26%, and it significantly outperforms the widely used text-driven
video model CogVideoX. Moreover, SignAligner demonstrates superior video generation quality,
achieving an SSIM of 0.958, a PSNR of 21.314, and reducing FID to 4.428, substantially better than
CogVideoX, which had an FID of 36.587.

Maintain stronger body expressiveness. We further evaluated the model on the Text to Smplerx
task. As shown in Table 7, our model achieved the best performance. It excelled in video quality
metrics, achieving an SSIM of 0.832, a PSNR of 18.651, and an FID of 3.607.

Table 8: Results for missing modalities on PHOENIX14T.
Methods BLEU-1↑ BLEU-4↑ ROUGE↑ SSIM↑ PSNR↑ FID↓
w/o Pose 14.35 4.19 6.63 0.637 13.285 50.234

w/o Hamer 11.70 4.17 13.66 0.682 13.848 45.071

w/o Smplerx 17.65 6.52 16.33 0.704 14.129 41.245

SignAligner (Ours) 20.56 8.17 20.88 0.731 15.322 26.257

The importance of trimodal com-
plementarity. To address the spe-
cific contributions of each modality
in the multimodal architecture: by re-
moving the pose, hamer, and smplerx
modalities separately, we evaluated
the final performance of the model under the same experimental setup. As shown in Table 8, no
single modality significantly degrades the quality of the generated videos. Through the generated
videos, we further discovered that when pose is missing, facial orientation is misaligned and the
face appears backward; when hamer is missing, fingers are undermodeled and multiple joints are
distorted; and when smplerx is missing, body shape is deviated and becomes unnatural. These
phenomena confirm the irreplaceable role of each modality in the framework: pose provides essen-
tial spatial localization for sign language movements, hamer ensures the semantic accuracy of fine
hand movements, and smplerx maintains the natural coordination of full-body posture. The three
complement each other, supporting a complete mapping of multimodal information to video.

6 CONCLUSIONS

In this work, we proposed a dataset extension scheme and expanded the PHOENIX14T and CSL-
daily datasets to include three gesture representations: Pose, Hamer, and Smplerx, aiming to improve
the expressiveness and realism of sign language generation. Building on this, we propose a novel
method called SignAligner for realistic sign language generation. By leveraging a Transformer-
based text encoder and a cross-modal attention mechanism, SignAligner effectively models semantic
and motion relationships across pose modalities. The online collaborative correction further refines
consistency and realism through dynamic loss adjustment. Finally, these refined representations
are synthesized into accurate and realistic sign language videos. Experimental results show that
SignAligner significantly outperforms existing methods in both accuracy and expressiveness.
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A APPENDIX

A.1 MORE TECHNICAL DETAILS

Text Encoder & Poes Modalities Decoder Details Since our Pose Modalities Decoder contains
three parallel decoders, for the sake of convenience, we take the Text-to-Pose branch as an example
for detailed introduction. As shown in Figure 7, this branch mainly includes two core parts: the text
encoder and the pose decoder.

In the text encoder part, we adopted a stacked structure, which consists of n encoder blocks with
exactly the same structure. Each encoder block contains three parts: a Multi-Head Attention layer
(MHA), two Normalization Layers (NL) and a Feed-Forward Layer (FL). The calculation process
of each block can be expressed as:

t̃n = NL(FL(MHA(NL(t′n)) + t′n-1)), (12)
where t′n-1 is the text feature of the previous moment.

Correspondingly, in the Pose decoder part, we also use n decoder blocks with the same structure.
Specially, each block contains two MHA layers (the first one is masked MHA, which is used to mask
future posture information. Its calculation process can be formalized as:

p̃m+1 = PoseDecoder(p′1:m, t̃1:N )

⇔
{
zm = FL(MHA1(p

′
1:m) + p̃m),m ∈ [1,M ];

p̃m+1 = FL(MHA2(zm, t̃1:N )),

(13)

where zm is the result after the first self-attention layer MHA1. Here, MHA1 is a self-attention
layer with an extra masking operation (i.e., Q=K=V =p′1:m) and MHA2 tackles the semantic inter-
action between sign text and pose sequences (i.e., Q=zm and K=V =t̃1:N ).

Figure 7: The details of Text Encoder and Pose Decoder.

RealisticDance Details Realisdance is a video generation model based on a dual UNet structure,
which is jointly constructed by Reference UNet and Main UNet, as shown in Figure 8. Reference
UNet extracts static features of the input image through VAE (Variational Autoencoder) and DINO
(Deep Image Feature Extractor) modules, and uses the Self-Attention and Cross-Attention mecha-
nisms in UNet for feature enhancement. Main UNet focuses on dynamic information processing,
introduces motion data through the Gate module, and combines the motion perception module with
the attention mechanism to model spatiotemporal dependencies. Finally, the two-stage network
jointly outputs a video frame sequence, which is optimized by VAE post-processing, significantly
improving the visual quality and spatiotemporal consistency of the generated video. This architec-
ture achieves high-quality and natural video generation effects through the decoupling and fusion of
static and dynamic features.

A.2 MORE EXPERIMENTAL DETAILS

Section A.2.1 introduces the hyperparameters used in Text-driven Pose Modalities Co-generation.
Section A.2.2 analyzes the semantic and visual effects of different pose modalities. Section A.2.3
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Figure 8: The details of RealisDance.

further analyzes the generation effect of SignAligner with more detailed visual examples. Section
A.2.5 describes in detail the composition and implementation methods of different back-translators.
Section A.2.4 describes the details of different modality extraction models. Section A.2.6 describes
the details of evaluation metrics.

A.2.1 HYPER-PARAMETERS OF BASELINES

Table 9 presents the hyper-parameters of text-driven pose modalities co-generation used in this
work.

Table 9: Hyper-parameters of text-driven pose modalities co-generation.
Parameters TextEncoder PoseDecoder HamerDecoder SmplerxDecoder

layers 2 2 2 2
attention heads 4 4 4 4

hidden size 512 512 512 512
learning rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3

optimizer Adam Adam Adam Adam
dropout 0 0 0 0

batch-size 64 64 64 64
trg-size – 120 156 96

A.2.2 SEMANTIC AND VISUAL QUALITY ANALYSIS OF DIFFERENT POSE MODALITIES

Figure 9: Visualization examples on Text to Pose task.
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Table 10: All results on PHOENIX14T for Text to Pose task.
Methods

DEV TEST
B1↑ B2↑ B3↑ B4↑ ROUGE↑ WER↓ B1↑ B2↑ B3↑ B4↑ ROUGE↑ WER↓

PTSLP Saunders et al. (2020) 12.51 6.50 4.76 3.88 11.87 96.85 13.35 7.29 5.33 4.31 13.17 96.50
NAT-AT Huang et al. (2021) – – – – – – 14.26 9.93 7.11 5.53 18.72 88.15
NAT-EA Huang et al. (2021) – – – – – – 15.12 10.45 7.99 6.66 19.43 82.01

DET Viegas et al. (2023) 17.25 10.17 7.04 5.32 17.85 – 17.18 10.39 7.39 5.76 17.64 –
G2P-DDM Xie et al. (2024b) – – – – – – 16.11 11.37 9.22 7.50 – 77.26
GCDM Tang et al. (2025b) 22.88 14.28 10.01 7.64 23.35 82.81 22.03 14.21 10.16 7.91 23.20 81.94

GEN-OBT Tang et al. (2022) 24.92 15.72 11.20 8.68 25.21 82.36 23.08 14.91 10.84 8.01 23.49 81.78
w/o co-gen 19.26 11.33 7.79 5.84 20.17 87.86 18.41 11.18 7.75 5.89 19.79 87.13
w/o OCC 19.68 11.81 8.48 6.66 19.78 89.78 19.61 11.96 8.53 6.65 19.81 89.48

SignAligner (Ours) 25.13 15.88 11.87 8.71 25.33 75.55 24.39 15.61 11.09 8.47 25.21 73.89

Analysis of Text to Pose task. Due to space limitations, Table 4 in the main text only shows some
core indicators on the test set that can intuitively reflect the semantic accuracy. To supplement the
complete evaluation, we list all evaluation indicators on the validation set and test set in Table 10.
It is worth emphasizing that our method outperforms existing mainstream methods in all indicators,
especially in terms of WER, which has achieved a significant decrease, further verifying our advan-
tages in semantic modeling and action consistency. In addition, as shown in Figure 9, we compare
the baseline method PTSLP, the pose results without Online Collaborative Correction(OCC), and
the results generated by our SignAligner. It can be observed in multiple examples that PTSLP pro-
duces obviously wrong or distorted pose sequences, while SignAligner can effectively restore the
key points of the action and visually present more natural and coherent sign language movements.
Its generated results are closer to the ground truth in both morphology and semantics, reflecting the
comprehensive advantages of our method in pose accuracy and visual fidelity.

Table 11: All results on PHOENIX14T for Text to Hamer task.
Methods

DEV TEST

B1↑ B2↑ B3↑ B4↑ ROUGE↑ SSIM↑ PSNR↑ FID↓ B1↑ B2↑ B3↑ B4↑ ROUGE↑ SSIM↑ PSNR↑ FID↓
PTSLP Saunders et al. (2020) 13.75 7.84 5.58 4.42 13.67 0.948 19.041 24.007 13.26 7.71 5.45 4.32 13.03 0.948 19.061 25.652

GEN-OBT Tang et al. (2022) 22.75 14.99 11.35 9.15 23.48 0.951 19.848 19.626 22.44 14.66 10.76 8.52 21.87 0.951 19.769 19.999

CogvideoX Yang et al. (2024) 15.42 8.79 6.26 4.89 14.67 0.915 14.924 36.093 15.16 9.14 6.83 5.62 14.17 0.915 14.932 36.587

LVMCN Wang et al. (2025) 21.95 14.45 10.76 8.56 22.25 0.952 19.986 21.953 22.20 14.61 10.74 8.48 22.23 0.951 19.903 22.475

w/o co-gen 24.40 16.07 12.03 9.56 25.08 0.953 20.227 6.292 24.06 15.97 11.93 9.55 23.73 0.952 20.184 6.302

w/o OCC 27.61 18.70 14.05 11.16 27.79 0.958 21.124 5.541 27.98 19.15 14.33 11.43 27.59 0.958 21.107 5.552

SignAligner (Ours) 30.09 20.52 15.36 12.19 29.89 0.959 21.319 4.510 29.94 20.74 15.53 12.27 29.12 0.958 21.314 4.428

Analysis of Text to Hamer task. To further analyze the performance of Text-to-Hamer, we sup-
plemented the complete semantic evaluation results in Appendix Table 11 that are not shown in
Table 5 of the main text due to space limitations. Overall, SignAligner achieved the best perfor-
mance in all semantic indicators on the validation set and test set, with BLEU-4 and ROUGE scores
of 12.27% and 29.12% on the test set, respectively, significantly outperforming the existing methods
PTSLP (B4: 5.42%, ROUGE: 13.03%) and CogvideoX (B4: 6.52%, ROUGE: 14.17%). This fully
demonstrates that our method has significant advantages in generating semantically consistent and
well-structured sign language representations. In addition, compared with the ablation experiments
that removed the pose modalities co-generation (co-gen) or Online Collaborative Correction (OCC),
the complete SignAligner model has further improved in all indicators, verifying the effectiveness
of the (co-gen) and (OCC). In terms of image quality, SignAligner also achieved the best results in
terms of SSIM (0.958), PSNR (21.314) and FID (4.428), further demonstrating its strong capabilities
in visual fidelity and spatiotemporal consistency. In particular, the FID index was reduced by 21.224
and 32.159 compared with PTSLP (25.652) and CogvideoX (36.587), respectively, indicating that
the generated video is closer to the real data in distribution and the visual effect is more natural and
credible.

Moreover, we show the Hamer of various methods in Figure 10. It can be observed that PTSLP and
CogvideoX have gesture blur, unclear structure or motion misalignment in multiple frames, espe-
cially in some high-dynamic actions, the generated results are far behind Ground Truth. Although
the results of co-generation (w/o OCC) have greatly solved the problem of motion misalignment,
there are still problems in finger details. In comparison, the gesture morphology generated by Sig-
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nAligner is clearer and more accurate, and is overall closer to the true label than the result before
correction, verifying the effectiveness of our proposed SignAligner in modeling semantic and tem-
poral information.

Figure 10: Visualization examples on Text to Hamer task.

Analysis of Text to Smplerx task. Table 12 shows the fully quantified results of Text to Sm-
plerx on the PHOENIX14T dataset. Compared with the existing methods PTSLP and CogvideoX,
SignAligner has also achieved significant advantages in all evaluation indicators, verifying the com-
prehensive improvement of our method in semantic expression and visual quality. On the test set,
SignAligner achieved 27.48%, 18.78%, 14.00%, and 11.20% in BLEU-1 to BLEU-4, and 27.43%
in ROUGE, which are much higher than PTSLP (BLEU-4 is only 3.36%) and CogvideoX (BLEU-4
is 2.45%), indicating that the generated action sequence is more accurate in semantic consistency
with the reference sequence. In addition, in the image quality evaluation, SignAligner’s SSIM is
0.832, PSNR is 18.651, and FID is reduced to 3.607, which is significantly better than PTSLP and
CogvideoX, showing higher visual fidelity and spatiotemporal consistency. At the same time, the
ablation experiment results also show that the pose modalities co-generation (co-gen) and online
collaborative correction (OCC) modules play a key role in performance improvement. Removing
any module will cause a significant decrease in indicators such as BLEU, ROUGE and FID, further
proving the effectiveness of SignAligner’s design and the synergy between modules.

Table 12: All results on PHOENIX14T for Text to Smplerx task.
Methods

DEV TEST

B1↑ B2↑ B3↑ B4↑ ROUGE↑ SSIM↑ PSNR↑ FID↓ B1↑ B2↑ B3↑ B4↑ ROUGE↑ SSIM↑ PSNR↑ FID↓
PTSLP Saunders et al. (2020) 10.35 4.66 2.92 2.19 10.25 0.790 16.104 7.415 9.89 4.85 3.36 2.62 9.65 0.790 16.228 7.584

GEN-OBT Tang et al. (2022) 24.56 16.52 12.37 9.91 26.06 0.803 16.777 3.848 25.87 17.52 13.16 10.55 25.43 0.803 16.844 3.968

CogvideoX Yang et al. (2024) 13.31 5.74 2.69 1.50 11.05 0.712 12.047 62.301 9.85 4.46 2.45 1.56 7.67 0.724 12.033 43.228

LVMCN Wang et al. (2025) 22.79 15.32 11.52 9.27 24.19 0.806 16.985 4.596 23.75 16.11 12.04 9.77 24.25 0.807 17.047 4.106

w/o co-gen 18.84 12.42 9.49 7.75 21.10 0.806 17.003 6.882 19.89 12.87 9.88 8.01 19.98 0.808 17.068 6.842

w/o OCC 19.97 12.87 9.69 7.91 21.33 0.832 18.560 4.879 20.38 13.49 10.24 8.33 20.87 0.832 18.582 4.861

SignAligner (Ours) 25.42 16.98 12.66 10.04 26.00 0.831 18.619 3.570 27.48 18.78 14.00 11.20 27.43 0.832 18.651 3.607

Figure 11 shows a visual comparison of Smplerx sequences generated by different methods. It
can be observed that the sequences generated by PTSLP and CogvideoX have obvious defects,
such as incoherent gestures, blurred motion, distorted posture structures, etc., and overall show
poor temporal consistency and motion expression capabilities. In contrast, SignAligner maintains
a clear and stable posture trajectory in each frame, with natural and smooth movement transitions
and good structural consistency. Its generated sequence is closer to Ground Truth in terms of spatial
configuration and dynamic evolution trend. Especially at key action nodes, SignAligner shows
higher control accuracy and is significantly better than other methods in terms of arm coordination
and movement range consistency. This result not only verifies its sophisticated ability to model
postures under semantic drive, but also reflects its structural control advantage in complex dynamic
action generation.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 11: Visualization examples on Text to Smplerx task.

A.2.3 VISUALIZATION EXAMPLES OF SIGNALIGNER

Figure 12: Visualization examples of produced sign language video sequence on PHOENIX14T dataset. We
compare our method with PTSLP Saunders et al. (2020), CogvideoX Yang et al. (2024) and the ground truth.

Figure 12 shows the visual comparison results of sign language video sequences generated by differ-
ent methods on the PHOENIX14T dataset. We selected an input text ”WETTER WIE-AUSSEHEN
MORGEN SONNTAG SECHS SEPTEMBER” as an example and compared the video frames gen-
erated by Ground Truth, PTSLP, CogvideoX and our proposed SignAligner. Overall observation
shows that SignAligner can generate more natural, coherent and close to real video sequences, with
clear action boundaries, natural expressions, and strong spatial consistency and temporal coherence.

The yellow dotted box (a) in the figure shows the frame area with incorrect labels. We found that
although Ground Truth has a certain degree of annotation deviation, SignAligner can still robustly
generate frames with reasonable structure and correct actions. In contrast, the outputs of PTSLP
and CogvideoX are more susceptible to incorrect labels, and the actions are offset or missing. The
blue dotted box (b) marks the keyframes of action details. From the enlarged red box area, it can be
observed that SignAligner shows higher fidelity and visual detail restoration capabilities in gesture
edges, action amplitudes, and hand postures. For example, PTSLP has blurred or misaligned hands
in some frames, while CogvideoX’s action connection is not natural enough and easily causes frame
skipping. The above analysis shows that SignAligner not only shows stronger robustness in the face
of real label noise, but also has better modeling capabilities in action details and temporal structures.
The generated results are closer to real videos, verifying its comprehensive advantages in the sign
language video generation task.
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A.2.4 DETAILS OF DATA EXTRACTION FROM DIFFERENT MODALITIES

Pose. We use the efficient full-body state estimation model DWPose Yang et al. (2023b) to extract
the 2D coordinates of 60 key points across the human body, including joints, hands, and face, with
poses ∈ RT×60×2. Unlike the traditional OpenPose Cao et al. (2017) method, DWPose achieves
high-precision keypoint extraction through an innovative two-stage refinement strategy combined
with hierarchical knowledge transfer from a teacher-student model. It demonstrates higher accuracy
in hand details, especially when processing large movements.

Hamer. In sign language video analysis, hand movements serve as the core semantic carriers,
and their refined spatial representations are crucial for accurately conveying semantic information,
especially the subtle deformations of the finger joints. Therefore, we adopt the state-of-the-art 3D
gesture estimation method HaMeR Pavlakos et al. (2024), which is based on a transformer model
trained on a large-scale hand dataset, and is able to provide high-quality 3D and depth information
about the hand for more accurate understanding of the spatial structure of gestures. Specifically,
we decode two sets of key parameters from the pre-trained model: the hand gesture parameter
θh ∈ R16×3 (characterizing the joint rotations and displacements) and the shape parameter βh ∈ R10

(describing the morphological differences of individual hands). These parameters are mapped by
the function M(θh, βh) to a high-resolution hand mesh M ∈ RV×3, where V = 778 vertices are
connected by triangular facets to form a complete 3D hand model.

Smplerx. We estimate expressive human pose and shape parameters by means of a 3D paramet-
ric human model, SMPLer-X Cai et al. (2023). Specifically, we first estimate the pose parameters
θs ∈ R55×3, including body, hand, eye, and chin poses; joint body, hand, and face shapes βs ∈ R10

as well as facial expressions ψ ∈ R10 by pretraining the model, and then model the body, hand,
and face geometries by combining the parameters through a joint regressor, which results in 10475
3D mesh vertices, and finally use rendering techniques to draw the Video. In this way, the rendered
results simultaneously integrate 3D spatial, depth and continuous semantic information, thus effec-
tively compensating for the lack of conventional skeletal data that contains only 2D information.
However, compared with Smplerx, Hamer has higher accuracy in complex gesture estimation, so
we use Hamer to supplement the hand information in Smplerx.

A.2.5 CONSTRUCTION OF DIFFERENT BACK-TRANSLATORS

Back translation model NSLT. Based on previous research Saunders et al. (2020); Huang et al.
(2021); Tang et al. (2022), we used the back-translation model NSLT Camgoz et al. (2018) as an
evaluation tool for our Text to Pose task. To achieve fairness in the experiment, we retrained a fair
back-translator NSLT-new on the same setting using our data PHOENIX14T. We can obtain BLEU,
ROUGE, WER and other indicators that can describe the semantic accuracy of pose in detail. NSLT-
new is only used for the evaluation of subsequent experiments.

Back translation model GFSLT. In order to comprehensively evaluate our different sign lan-
guage representations - Hamer, Smplerx and Video, we adopted the current advanced sign language
translation method GFSLT Zhou et al. (2023) as a unified evaluation framework, which can obtain
multiple semantic accuracy indicators including BLEU, ROUGE, etc. Specifically, we used Hamer,
Smplerx and video in the dataset PHOENIX14T as training data, and independently trained the cor-
responding evaluation models according to the training strategy given by GFSLT. This method has a
strong ability to restore text semantics from sign language expression, and can complete high-quality
semantic decoding. Therefore, with the help of GFSLT, we can directly evaluate the effectiveness
of different sign language representations in semantic communication. Through a unified training
process and evaluation criteria, the fairness and scientificity of the comparison are ensured, and the
quality of the content generated by SignAligner in terms of semantic expression and visual restora-
tion can also be verified.

A.2.6 MORE DETAILS OF EVALUATION METRICS

In the experimental section, we use multiple metrics for quantitative analysis from different dimen-
sions. We use SSIM, PSNR and FID to measure the visual similarity between the generated videos
and the real videos at the image and video levels. In addition, we use BLEU, ROUGE and WER
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Table 13: Evaluation indicator classification.
Dimensions Metrics

Visual similarity SSIM, PSNR, FID
Semantic quality BLEU, ROUGE, WER

to evaluate semantic performance. Subsequently, we will interpret the above evaluation metrics in
more detail.

SSIM (Structural Similarity Index): The SSIM Wang et al. (2004) is a perceptual metric that
quantifies image quality degradation by comparing structural information, luminance, and contrast
between a reference and a distorted image. It ranges from -1 to 1, where 1 indicates perfect similarity.

• x: reference image patch
• y: distorted image patch
• µx, µy: mean intensities of x and y

• σ2
x, σ

2
y: variances of x and y

• σxy: covariance between x and y

• C1 = (K1L)
2, C2 = (K2L)

2: stabilization constants, where L is the dynamic range (255
for 8-bit images), K1 = 0.01, K2 = 0.03

• The SSIM formula is:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(14)

• For full images, Mean SSIM (MSSIM) is calculated by averaging SSIM values over all
patches

PSNR (Peak Signal-to-Noise Ratio): The PSNR Hore & Ziou (2010) is a widely used metric
for measuring the quality of reconstructed images. It quantifies the ratio between the maximum
possible power of a signal and the power of corrupting noise, expressed in decibels (dB). Higher
PSNR values indicate better image quality.

• I: reference image of size m× n

• K: reconstructed image of same size
• MAXI : maximum possible pixel value (255 for 8-bit images)
• MSE: mean squared error between images

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (15)

• The PSNR formula is:

PSNR = 10 · log10
(

MAX2
I

MSE

)
(16)

FID (Fréchet Inception Distance): The FID Heusel et al. (2017) measures the similarity between
generated and real image distributions using features from the Inception network. Lower FID scores
indicate better quality and diversity of generated images (perfect match = 0).

• pr: real image distribution
• pg: generated image distribution
• µr, µg: mean features of real and generated images from Inception-v3 pool3 layer
• Σr,Σg: covariance matrices of real and generated features
• The FID formula is:

FID = ∥µr − µg∥2 + Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)

(17)

where Tr denotes the matrix trace operation.
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BLEU (Bilingual Evaluation Understudy): The BLUE Papineni et al. (2002) is a commonly
used metric to assess the quality of machine translation. It is calculated by the following formula:

BLEU = BP · exp

(
N∑

n=1

wn · log pn

)
(18)

where:

• BP (Brevity Penalty): A brevity penalty factor used to penalize candidate translations that
are shorter than the reference translations.

BP =

{
1 if c > r

e(1−
r
c ) if c ≤ r

(19)

• c denotes the length of the candidate translation.
• r denotes the length of the reference translation.
• pn: The precision for n-grams, defined as the number of matching n-grams between the

candidate and reference translations divided by the total number of n-grams in the candidate
translation.

pn =
Number of matched n-grams

Total number of n-grams in candidate translation
(20)

• wn: The weight assigned to each n-gram precision, typically set as wn = 1
N , where N

represents the maximum length of the n-grams considered (commonly N = 4, covering
1-gram through 4-gram precision).

• exp: Represents the exponentiation of the sum of the weighted logarithmic precisions.

In our main experiments, we mainly use BLEU-1 and BLEU-4 scores to reflect the accuracy of
word-level translation and the quality of overall sentence translation, respectively.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation): The ROUGE Lin (2004) is
a metric based on the Longest Common Subsequence (LCS), used to evaluate the sequence and
content matching between generated text and reference text. It captures the similarity in sentence
structure. We set it to 1.2.

• X be the reference sentence with a length of m, and Y be the generated sentence with a
length of n. β represents the ratio of precision to recall.

• LCS: The longest subsequence of elements that appear in both sequences in the same
order.

• RCSL: Indicates the ratio of the LCS length to the length of the reference text.

RCSL =
LCS(X,Y )

m
(21)

• PCSL: Indicates the ratio of the LCS length to the length of the generated text.

PCSL =
LCS(X,Y )

n
(22)

• FLCS : The harmonic mean of LCS recall and precision.

FLCS =
(1 + β2)RLCSPLCS

RLCS + β2PLCS
(23)

WER (Word Error Rate): The WER ? is a commonly used evaluation metric to measure the
accuracy of a translation system. WER measures the error rate in the generated text, accounting for
three types of errors: substitutions, insertions, and deletions. It is expressed as the ratio of the total
number of errors to the total number of words in the reference text. The formula for calculating
WER is:

WER =
S +D + I

N
(24)

where:
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• S represents the number of substitutions.
• D represents the number of deletions.
• I represents the number of insertions.
• N is the total number of words in the reference text.
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