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ABSTRACT

Animating images with interactive motion control has garnered popularity for
image-to-video (I2V) generation. Modern approaches typically regard the con-
dition of Gaussian filtered point-wise trajectory as sole motion control signal.
Nevertheless, such flow approximation of trajectory via Gaussian kernel severely
limits the controllable capacity of fine-grained movement, and commonly fails to
disentangle object and camera moving. To alleviate these, we present ReMoCo, a
new recipe of region-wise motion controller that novelly leverages precise region-
wise trajectory and motion mask to regulate fine-grained motion synthesis and
identify exact target motion category (i.e., object or camera moving), respectively.
Technically, ReMoCo first estimates the flow maps on each training video via a
tracking model, and then samples the region-wise trajectories from multiple lo-
cal regions to simulate inference scenario. Instead of approximating flow distri-
bution via Gaussian filtering, our region-wise trajectory preserves original flow
information at local area and thus manages to characterize fine-grained move-
ment. A motion mask is simultaneously derived from the predicted flow maps
to present holistic motion dynamics. To pursue natural and controllable motion
generation, ReMoCo further strengthens video denoising with additional condi-
tions of region-wise trajectory and motion mask in a feature modulation manner.
More remarkably, we meticulously construct a benchmark called ReMoCo-Bench,
which consists of 1.1K real-world user-annotated image-trajectory pairs, for the
evaluation of both fine-grained and object-level motion synthesis in I2V gener-
ation. Extensive experiments conducted on WebVid-10M and ReMoCo-Bench
demonstrate the effectiveness of our ReMoCo for precise motion control.

1 INTRODUCTION

In recent years, diffusion models (Ho et al., 2022a; Blattmann et al., 2023b; Singer et al., 2023;
Ge et al., 2023; Brooks et al., 2024) have shown significant progress in revolutionizing text-to-
video (T2V) generation. Although promising visual appearance can be attained by these advances,
the controllable motion generation is still a grand challenge in video diffusion paradigm. There
are several attempts (Esser et al., 2023; Wang et al., 2023; Chai et al., 2023) to enhance controllable
capacity of video synthesis with additional guidance (e.g., depth, edge or optical flow). Nevertheless,
it might be impractical for users to conveniently provide such signals as input conditions. Hence, the
focus of this paper is to capitalize on the user-friendly conditions (i.e., sparse trajectory and region
mask) for enabling interactively controllable image-to-video (I2V) generation: given the reference
image as the first frame, the motion in the synthesized video should be natural and well-aligned with
the provided trajectory.

Pioneering practices (Yin et al., 2023; Wu et al., 2024) of controllable I2V generation usually guide
video denoising process with the single condition of Gaussian filtered trajectory. In the training
stage, the input trajectories are first sparsely sampled from the optical flow maps and then processed
by Gaussian filter. The flow approximation brought by Gaussian filtering inevitably results in the
inaccuracy of fine-grained motion details and limits the model capability for precise motion control.
Therefore, the generated fine-grained movement (e.g., the turning-head of first case in Figure 1)
is unnatural. Another issue is that the single condition of trajectory commonly fails to precisely
identify the target motion category (i.e., camera or object moving). For instance, as depicted in
Figure 1, the trajectory on the planet could be explained as two moving situations, i.e., the camera
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Motion control 
with Gaussian 

filtered trajectory 

Input Control Generated Video

Motion control 
with Gaussian 

filtered trajectory 

ReMoCo

ReMoCo

(a) Fine-grained motion control

(b) Object-level motion control

Figure 1: An illustration of (a) fine-grained and (b) object-level motion control by using typical
Gaussian filtered trajectory and our region-wise motion controller (ReMoCo). The trajectories of
generated videos are visualized in the last frame.

being pulled downwards with relative to static two planets (camera movement) or planet rising corre-
sponding to static background (object movement). Solely relying on the trajectory might lead to the
motion misinterpretation and thus hinder exactly controllable I2V generation. To address the above
two issues, we shape a new paradigm of motion controller that capitalizes on region-level trajectory
and motion region mask to enhance video denoising for controllable motion synthesis. Specifically,
we spatially sample multiple local regions in the video optical flow maps and directly employ the
trajectories in the sparse regions as input trajectory condition. In this way, no flow approximation is
included in such region-wise trajectory, which manages to adequately reflect the local fine-grained
motion details. Meanwhile, a region mask is estimated on the video optical flow maps which aims
to globally emphasize the motion area, thereby specifying the target motion category and alleviat-
ing misinterpretation. To further regulate the motion synthesis in I2V generation, we predict the
affine parameters on the collaboration of trajectory and motion mask to modulate the video latent
codes during denoising. As shown in Figure 1, our unique region-wise trajectory design and the
employment of motion mask complementarily achieves the better fine-grained (e.g., turning-head)
and object-level (e.g., planet-moving) motion generation.

By materializing the idea of facilitating controllable I2V generation with the proposed conditions,
we present a novel framework, namely ReMoCo, to execute Region-wise Motion Control. Specif-
ically, given the input video, ReMoCo first estimates the sequence of visibility masks and optical
flow maps by using an off-the-shelf optical tracking model. Next, the global visibility mask is ob-
tained through computing the intersection of all visibility masks, and further multiplied with the
flow map of each frame. Then, ReMoCo splits the masked flow maps into multiple local regions
(e.g., the region with the size of 8 × 8) and employs the trajectories on such sparsely-sampled re-
gions as region-wise trajectory. Meanwhile, ReMoCo attains the motion mask on the flow maps
via thresholding mechanism for representing holistic motion. Given the region-wise trajectory and
corresponding motion mask, the multi-scale features are learnt by a motion encoder, and further
employed to predict scale and bias for video latent feature modulation. Moreover, ReMoCo fine-
tunes all attention modules in 3D-UNet via utilizing the Low-Rank Adaptation (LoRA) technique to
pursue better motion-trajectory alignment.

In summary, we have made the following contributions:

• We introduce a new design of region-wise trajectory and motion mask as the complementary
control signals in I2V diffusion models for the interactive motion control.

• A novel approach, namely Region-wise Motion Controller (ReMoCo), seamlessly integrates the
proposed region-wise trajectory and motion mask into 3D-UNet to guide video denoising for
natural and precise motion synthesis in I2V generation.
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• We present ReMoCo-Bench, to our best knowledge, which is one of the first benchmarks with
real-world user-annotated image-trajectory pairs for controllable I2V generation. Extensive ex-
periments on WebVid-10M and ReMoCo-Bench verify the superiority of ReMoCo in terms of
both video quality and motion-trajectory alignment.

2 RELATED WORK

Image-to-Video Diffusion Models. The remarkable progress achieved by text-to-video genera-
tion (Ho et al., 2022b;a; Blattmann et al., 2023b; Khachatryan et al., 2023; Luo et al., 2023; Singer
et al., 2023; Ge et al., 2023; Gupta et al., 2023; Guo et al., 2024; Brooks et al., 2024) encourages
the development of image-to-video (I2V) diffusion models. These advances (Girdhar et al., 2024;
Blattmann et al., 2023a; Xing et al., 2024; Shi et al., 2024a; Zeng et al., 2024) treat static image as the
input condition for temporal coherent video synthesis. VideoComposer (Wang et al., 2023) is one
of the earlier works that integrates image condition into 3D-UNet through concatenating the clean
image latent with the noisy video latents. Based on this recipe, DynamiCrafter (Xing et al., 2024)
and SVD (Blattmann et al., 2023a) additionally inject the CLIP (Radford et al., 2021) feature of ref-
erence image into video denoising to enhance the information guidance. To achieve high-resolution
I2V generation, I2VGen-XL (Zhang et al., 2023b) introduces a cascading diffusion model to first
animate image in the low resolution and further magnifies it via video refinement. Besides, there
are several explorations (Chen et al., 2023b; Zeng et al., 2024) that simultaneously utilize two im-
ages (i.e., the first and last frames) as more powerful references to elevate I2V generation. In this
work, we choose the pre-trained I2V diffusion model SVD (Blattmann et al., 2023a) as our base
architecture for motion control.

Controllable Video Diffusion Models. Despite high-quality video synthesis via I2V diffusion mod-
els, the controllable motion generation still remains an under-explored problem. The early control-
lable video diffusion techniques (Wang et al., 2023; Esser et al., 2023; Chen et al., 2023a; Zhang
et al., 2024) typically leverage the condition of depth, edge or optical flow, for particular motion gen-
eration. Nevertheless, it is usually impractical for users to conveniently obtain such kinds of signals.
To address this issue, the studies exploring bounding box (Jain et al., 2024; Wang et al., 2024a) or
trajectory (Yin et al., 2023; Wu et al., 2024; Niu et al., 2024; Mou et al., 2024; Wang et al., 2024b)
as additional condition for motion control start to emerge. One representative of using bounding
box as control is PEEKABOO (Jain et al., 2024) which designs the training-free spatial-temporal
masked attention for visual-textual alignment in the box. In the direction of utilizing trajectory con-
dition, pioneering advance DragNUWA (Yin et al., 2023) exploits Gaussian filtered trajectory to
regulate motion synthesis via multi-scale feature fusion. Wu et al. (2024) further incorporate the
entity features of reference image into diffusion to facilitate object-level motion control. Recently,
MOFA-Video (Niu et al., 2024) devises a two-stage motion control framework that first densifies
input trajectories via conditional motion propagation (CMP), and further regulates video denoising
with the estimated dense trajectories. Nevertheless, most of the existing works employ the Gaussian
filtered trajectory as the single condition. The Gaussian filtering will lead to flow approximation in
local area, which constrains the capacity for fine-grained motion modeling. Solely capitalizing on
trajectory could also fail to disentangle object and camera moving in I2V motion synthesis.

In short, our work mainly focuses on a new recipe of motion condition, i.e., the region-wise trajec-
tory and motion mask, and the exploitation of these conditions for exact controllable I2V generation.
The proposal of ReMoCo contributes by studying not only how to express the motion trajectory ac-
curately, but also how to benefit natural and precise motion generation with the synergy of the
region-wise trajectory and motion mask.

3 OUR APPROACH

In this section, we introduce our Region-wise Motion Controller (ReMoCo) for controllable I2V
generation. Figure 2 illustrates an overview of our ReMoCo. Given a video clip at training, the
newly-minted region-wise trajectory and motion mask are first extracted as the control signals. Next,
multi-scale features are learnt on the concatenation of the trajectory and mask via a motion encoder.
These features are further injected into the 3D-UNet of SVD (Blattmann et al., 2023a) to regulate
video denoising. In each feature scale of the 3D-UNet, a scale and bias are predicted through
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Figure 2: An overview of our Region-wise Motion Controller (ReMoCo) for controllable image-
to-video generation. During training, ReMoCo first extracts the proposed region-wise trajectory
and motion mask on the input video as the control signals. The multi-scale features are then learnt
on these signals by a motion encoder, and further injected into the 3D-UNet of SVD in a feature
modulation manner. Meanwhile, LoRA layers are integrated into all attention modules in the trans-
former blocks to improve the optimization of motion-trajectory alignment. In the inference stage,
the region-wise trajectory and motion mask are first derived from the user provided trajectory and
brushed region, and then exploited as the guidance to calibrate I2V video generation.

convolutional layers to modulate the feature of video latent codes. Besides, all attention modules
are fine-tuned by LoRA (Hu et al., 2022) to attain better alignment between the synthesized motion
and input trajectory.

3.1 PRELIMINARIES: STABLE VIDEO DIFFUSION

To leverage comprehensive motion prior embedded in the pre-trained diffusion models for
video generation, we exploit the advanced I2V generation model, i.e., Stable Video Diffusion
(SVD) (Blattmann et al., 2023a) as the base architecture of our ReMoCo. To better understand
our proposal, we first revisit the training procedure of SVD. Formally, given an input video clip
x0 = {xi0}Li=1 with L frames, the clean video latent codes z0 = {zi0}Li=1 are first extracted via a
variational auto-encoder (VAE). Then, the Gaussian noise n is added to z0 through forward diffusion
procedure as:

z = z0 + n, (σ,n) ∼ p(σ,n), (1)
where z is the noised video latent codes and p(σ,n) = p(σ)N (0, σ2I). σ represents the noise level
and p(σ) is the pre-determined distribution over σ. Following the training protocol of EDM (Karras
et al., 2022), SVD leverages the 3D-UNet Fθ (with parameters θ) to predict the clean video latent
codes ẑ0 with the condition of input noised latents z, noise level σ and the reference image cI :

ẑ0 = cskip(σ)z + cout(σ)Fθ(cin(σ)z, cI ; cnoise(σ)), (2)

where cskip(σ), cout(σ), cin(σ) and cnoise(σ) are pre-defined hyper-parameters determined by noise
level σ. In SVD, the information of reference frame is injected into 3D-UNet along two pathways:
a) the channel-wise concatenation of noised video latent codes and first frame latent code; b) the
cross-attention between video latent feature and image CLIP (Radford et al., 2021) embedding of
first frame. The loss function is formulated via denoising score matching (DSM) as:

L = E(z0,cI)∼pdata(z0,cI),(σ,n)∼p(σ,n)
[
λσ‖ẑ0 − z0‖22

]
, (3)

where λσ is a weighting function. In the scenario of our work, besides the condition of reference
first frame, we additionally exploit a new kind of region-wise trajectory and motion mask as the
control signals to refine video denoising for motion control.
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3.2 MOTION CONDITION GENERATION
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Figure 3: Motion condition generation in the training
and inference stages of our ReMoCo.

Most existing controllable I2V approaches
calibrate the video denoising with the sole
guidance of Gaussian filtered point-wise
trajectory. Nevertheless, the flow approxi-
mation brought by Gaussian filtering may
result in inaccuracy of fine-grained motion
details. Therefore, the ability of precise
motion control could be limited. Besides,
solely relying on the trajectory for mo-
tion control might not exactly express tar-
get motion category (i.e., camera or object
moving), leading to motion misinterpreta-
tion in video generation. To alleviate these
issues, we propose to directly sample tra-
jectories from optical flow maps in multi-
ple local regions as the region-wise trajec-
tory. Such trajectory preserves the original
flow information in local regions, and thus
manage to characterize fine-grained move-
ment. In the meanwhile, a motion mask is
further derived from the flow maps to ex-
plicitly identify target motion category of the generated videos.

Region-wise Trajectory. As depicted in Figure 3, given the input video clip x0 = {xi0}Li=1 with the
size of L×H×W×3, we first employ a dense optical tracking model, i.e., DOT (Moing et al., 2024)
to estimate optical flow maps f = {f i}Li=1 and the sequence of visibility masks M = {M i}Li=1:

f i,M i = DOT(x1
0,x

i
0), i = 1, 2, ..., L, (4)

where f i ∈ RH×W×2 andM i ∈ {0, 1}H×W is the optical flow map and the visibility mask between
the first and the i-th frame, respectively. Then, we calculate the intersection on M to attain a global
visibility mask Mg ∈ {0, 1}H×W that indicates the locations having visible optical flow along
temporal dimension as:

Mg =

L∏
i=1

M i. (5)

Next, the masked flow maps fm = {f im}Li=1 are computed by frame-wisely multiplying the flow
maps f with the global visibility mask Mg as follows:

fm = {f i ·Mg}Li=1. (6)
We split the masked flow maps fm into multiple local regions and the spatial size of each region is
k× k. The region-wise trajectories Ts ∈ RL×H×W×2 are finally sampled from the region-split fm
with a region selection mask Msel ∈ {0, 1}

H
k ×

W
k :

Ts = {f im · Pad(Msel)}Li=1, (7)
where Msel is uniformly sampled from {0, 1} with the mask ratio rm, and Pad(·) denotes the
padding function which fills the mask value into the k × k region around each position. Instead
of exploiting a constant mask ratio for trajectory selection, we randomly choose rm in a range of
[rmin, 1.0] to simulate different real-world motion masking scenarios, which benefits the robust
network optimization. In this way, there is no flow approximation of the trajectories in each local
region, enhancing the control ability of fine-grained motion in I2V models.

Motion Mask. In addition to the region-wise trajectory for video denoising regulation, the motion
mask aims to specify the motion category and benefit the global motion correlation. Given the flow
maps f = {f i}Li=1 estimated by DOT, we first calculate the average flow magnitude favg ∈ RH×W

along temporal dimension as: favg = 1
L ·
∑L
i=1 ‖ f i ‖2. Then, we construct the motion mask

Mmot ∈ {0, 1}H×W from zero matrix, and set the value of the position where favg is greater than 1
as True. Mmot is finally repeated L times as the motion mask sequence Mmot ∈ {0, 1}L×H×W×1
to align the temporal length of input video for subsequent motion control learning.
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3.3 MOTION CONTROL LEARNING
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Figure 4: An illustration of adaptive feature
modulation in our ReMoCo.

With the obtained region-wise trajectory and mo-
tion mask, we aim to control motion generation
with the input signals. Inspired by the recipe of
feature adaptation in controllable image genera-
tion (Zhang et al., 2023a), we propose to exploit a
lightweight motion encoder to estimate multi-scale
features on the input conditions, and utilize these
features to adaptively modulate video latent fea-
ture in each corresponding scale. To further im-
prove the alignment between input trajectory and
generated video, we fine-tune all attention mod-
ules in the spatial-temporal transformer blocks of
3D-UNet via using LoRA (Hu et al., 2022).

Adaptive Feature Modulation. Given the attained region-wise trajectory Ts and motion mask
Mmot, we first concatenate them along channel dimension to form the input condition. As shown
in Figure 2, a lightweight motion encoder with a series of convolutional layers first encodes the
input condition into multi-scale feature maps. In each scale, the learnt feature map is employed to
modulate the video latent feature at the same scale in 3D-UNet. Figure 4 depicts an illustration of the
adaptive feature modulation by using the feature map ls in s-th scale. Particularly, we estimate the
scale γs and bias βs on ls via a spatial-temporal convolutional layer. Then, the normalized feature
map of the input video latent feature hs is modulated via γs and βs, and further added back to itself
in a skip-connection manner to form the output feature map h′s as:

h′s = GN(hs) · γs + βs + hs, (8)
whereGN(·) denotes the group normalization. Note that we implement zero initialization on tempo-
ral convolutional layers to initialize γs and βs as zero at the beginning of training, which guarantees
the stability of model optimization.

LoRA Integration. To preserve rich motion prior learnt by the pre-trained video diffusion model
and elevate the effectiveness of motion control, we employ LoRA layers in all attention modules of
spatial-temporal transformer blocks as demonstrated in Figure 2. Specifically, the LoRA parameters
∆W act as a residue part of the original weightsW as follows:

W ′ =W + ∆W =W +ABT , (9)
whereW ′ is the fused weights of attention module. A and B are trainable matrices in LoRA layers.

In the training stage, we fix all parameters in the pre-trained 3D-UNet, and only train the lightweight
motion encoder and all introduced LoRA layers of the attention modules.

3.4 INFERENCE PIPELINE OF REMOCO

Our ReMoCo is a user-friendly I2V generation framework for interactive motion control. In the
inference stage, as shown in Figure 3, users can readily brush the motion region on the uploaded
reference image and draw the trajectory of moving direction as input control signals. In detail, the
motion mask can be directly obtained from the user provided brush mask. Given the user trajectory
which generally describes the movement of a single pixel, we pad the trajectory value in the k × k
region around the pixel position to match the training paradigm. The padded trajectory in local
region is exploited as the input region-wise trajectory. Finally, ReMoCo regulates video denoising
with the guidance of the two collaborative control signals through adaptive feature modulation. Both
fine-grained and object-level motion control are facilitated by the synergy of the proposed region-
wise trajectory and motion mask.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmarks. We empirically verify the merit of ReMoCo on two benchmarks, i.e., WebVid-
10M (Bain et al., 2021) and our proposed ReMoCo-Bench. The WebVid-10M dataset consists
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Input Control DragNUWA DragDiffusion MOFA-Video ReMoCo

Figure 5: Examples of fine-grained motion control results on ReMoCo-Bench. The input control
signals include the reference image, trajectory and motion mask. Better viewed with Acrobat Reader
for the animated videos.

of 10.7M video-caption pairs. There are 5K videos in the validation set and we sample 1K videos
for evaluation. For each video, trajectories sampled at a ratio of 15% along with the first frame serve
as the input condition for fine-grained I2V motion generation. We follow the protocols in recent
controllable I2V advance (Niu et al., 2024) and choose the Frechet Video Distance (FVD) (Un-
terthiner et al., 2019), Frechet Image Distance (FID) (Heusel et al., 2017), and Frame Consistency
(Frame Consis.) (Qi et al., 2023) of CLIP (Radford et al., 2021) features as the evaluation metrics
on WebVid-10M.

In practical applications, users typically prefer to control video generation through a limited number
of representative trajectories, often just one or two. The automatically sampled trajectories employed
in WebVid-10M do not adequately represent this scenario, thereby potentially compromising the va-
lidity of the evaluation. To address this issue, we introduce ReMoCo-Bench, a new benchmark with
reference images and user-annotated trajectories, which is tailored for the evaluation of controllable
I2V generation. Specifically, we meticulously collect 412 high-quality reference images from the
internet and construct 1.1K image-trajectory pairs via human annotation. For each reference image,
the annotator is required to brush the motion region and draw the trajectory of movement direction
according to the user intention, i.e., fine-grained local part moving or global object moving. As
such, the motion control performance can be evaluated from both perspectives. Due to the absence
of ground-truth video, FVD and FID metrics are not applicable to ReMoCo-Bench. In addition to
Frame Consistency, we utilize the Mean Distance (MD) to measure the alignment between generated
motion and input trajectory. Two evaluation protocols are exploited for this target, i.e., MD-Img and
MD-Vid. MD-Img is proposed by DragDiffusion (Shi et al., 2024b) which estimates the frame-level
mean Euclidean distance between trajectories of input and generated frames. To further validate the
video-level trajectory accuracy via MD-Vid, we replace the image correspondence detection model
DIFT (Tang et al., 2023) in MD-Img with the video tracking model CoTracker (Karaev et al., 2024),
which supplies a more precise trajectory reference.

Implementation Details. In ReMoCo, we employ SVD (Blattmann et al., 2023a) as our base ar-
chitecture. Each training sample is 16-frames video clip and the sampling rate is 8 fps. We fix
the resolution of each frame as 320 × 512, which is centrally cropped from the resized video. The
local region size k is set as 8 and the minimal mask ratio rmin is set as 0.95 determined by cross
validation. We set the rank of LoRA parameters as 32. The motion encoder and LoRA layers are
trained via AdamW optimizer with the base learning rate 1× 10−5. All experiments are conducted
on 6 NVIDIA A800 GPUs with minibatch size 48.
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Table 1: Performances of fine-grained motion
control on WebVid-10M.

Approach FVD (↓) FID (↓) Frame Consis. (↑)
DragNUWA 96.65 13.19 0.9888
MOFA-Video 87.70 12.18 0.9895
ReMoCo 59.88 10.40 0.9895

Table 2: Performances of fine-grained motion
control on ReMoCo-Bench.

Approach MD-Img (↓) MD-Vid (↓) Frame Consis. (↑)
DragDiffusion 14.70 13.84 0.9947
MOFA-Video 13.94 10.50 0.9972
ReMoCo 10.56 8.34 0.9962

4.2 EVALUATION ON FINE-GRAINED MOTION CONTROL

Table 3: Performances of object-level motion
control on ReMoCo-Bench.

Approach MD-Img (↓) MD-Vid (↓) Frame Consis. (↑)
MOFA-Video 15.56 12.04 0.9951
DragAnything 12.30 11.37 0.9917
ReMoCo 10.48 8.59 0.9943

We first evaluate ReMoCo on the fine-grained
motion control for I2V generation. The perfor-
mances on WebVid-10M and ReMoCo-Bench
are summarized in Table 1 and Table 2, respec-
tively. Our ReMoCo consistently achieves bet-
ter performances on WebVid-10M across dif-
ferent metrics. In particular, ReMoCo attains
the FVD of 59.88, outperforming the best com-
petitor MOFA-Video (Niu et al., 2024) by 27.82. The better FVD indicates the better alignment of
data distribution between the generated and ground-truth videos. Such results basically verify the
superiority of exploring precise region-wise trajectory to strengthen fine-grained motion dynamic
learning. On ReMoCo-Bench, ReMoCo leads to performance boosts against baselines in terms of
MD-Img and MD-Vid, showing better alignment between the user input trajectory and synthesized
videos. Note that MOFA-Video exploits a two-stage controllable I2V framework that first densifies
the input trajectories through conditional motion propagation (CMP), and then calibrates video dif-
fusion process using the estimated dense trajectories. In contrast, ReMoCo learns precise motion
patterns by directly referring region-wise trajectory via adaptive feature modulation, thus enhancing
the motion-trajectory alignment, as evidenced by the better MD-Img and MD-Vid performances.
Besides, the CMP technique in MOFA-Video generally focuses on flow completion in the local re-
gion surrounding the input trajectory while neglecting potential movements in other areas. Thus,
MOFA-Video tends to synthesize videos with less motion dynamics and obtains slightly higher
Frame Consistency (approximately 0.001). To substantiate this, we calculate the average flow mag-
nitude of videos generated by MOFA-Video, which achieves 4.95. In comparison, ReMoCo attains a
higher value of 8.95, verifying that our model achieves greater motion variability while maintaining
better motion-trajectory alignment.

Figure 5 further showcases three I2V generation results controlled by the user input trajectory and
region mask on ReMoCo-Bench. Generally, the videos synthesized by our ReMoCo exhibits more
natural movement and better alignment with input trajectory than the baseline methods. For instance,
DragNUWA (Yin et al., 2023) suffers from motion misinterpretation issue which wrongly generates
videos with camera movement instead of object moving (e.g., the 1st and 2nd cases). The videos
generated by MOFA-Video (Niu et al., 2024) usually present unnatural object movement with local
part distortion, e.g., the nose of raccoon in the 2nd case. We speculate that such distortion is caused
by the lack of global region guidance in MOFA-Video, where the region mask is only employed
for flow masking as post-processing. Our ReMoCo, in comparison, integrates the information of
motion mask into 3D-UNet on the fly to facilitate the modeling of holistic motion correlation. Thus,
the synthesized videos by ReMoCo reflect more rational fine-grained movement.

4.3 EVALUATION ON OBJECT-LEVEL MOTION CONTROL

Next, we conduct evaluation on object-level motion control for I2V generation. Table 3 lists the
performances of different approaches on ReMoCo-Bench. Overall, ReMoCo attains the best perfor-
mances on the metrics of MD-Img and MD-Vid. Specifically, ReMoCo obtains 10.48 of MD-Img
and 8.59 of MD-Vid, reducing the Mean Distance of the best competitor DragAnything (Wu et al.,
2024) by 1.82 and 2.78, respectively. The improvements again confirm the merit of leveraging the
duet of region-wise trajectory and motion mask for precise motion control. Similar performance
trend on Frame Consistency can be also observed in the table.

Figure 6 shows the visual comparison of four object-level motion control results by using different
approaches on ReMoCo-Bench. Compared to the baseline methods, videos generated by ReMoCo
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Input Control MOFA-Video DragAnything ReMoCo

Figure 6: Examples of object-level motion control results on ReMoCo-Bench. The input control
signals include reference image, trajectory and motion mask. ReMoCo can successfully handle
complicated (e.g., the round trip of sun in the 1st case) and counterintuitive (e.g., the train moving
back in the 3rd case) motion-trajectory alignment. Better viewed with Acrobat Reader.

(b)(a)

Figure 7: Performance comparisons of MD-Vid and Frame Consistency on ReMoCo-Bench under
the settings of both fine-grained and object-level motion control by using different (a) local region
size k and (b) minimal mask ratio rmin in ReMoCo.

can precisely match the input trajectory and maintain natural object-level motion dynamics. MOFA-
Video still faces the challenge of local part distortion (e.g., only the train rear moving back in the
3rd case) and video generation with limited motion dynamics (e.g., the 4th case). Although Dra-
gAnything effectively aligns pixel movement with the input trajectory, certain instances (e.g., the
1st and 4th cases) misinterpret the trajectory as camera motion rather than object movement. In con-
trast, ReMoCo nicely capitalizes on trajectory information to calibrate video denoising and specifies
motion category with the region mask, endowing images with high-quality object-level motion.

4.4 ABLATION STUDY ON REMOCO

In this section, we perform ablation study to delve into the design of ReMoCo for controllable I2V
generation. Here, all experiments are conducted on ReMoCo-Bench for performance comparison.

Local Region Size. We first investigate the choice of local region size k for region-wise trajectory
design in our ReMoCo. Figure 7(a) compares the performances of MD-Vid and Frame Consistency
on both fine-grained and object-level motion control by using different k. The variation of Frame
Consistency is minor (less than 0.01) across different settings, and the MD-Vid decreases when us-
ing larger k. When k is small (e.g., 1 or 2), the kept trajectories are less in each local region and
the control signals are weaken for motion control, leading to the inferior trajectory matching perfor-
mance. Meanwhile, the improvement of MD-Vid is marginal when increasing k to 16. Specifically,
using large k will extend the input trajectory over a large region, which affects the fine-grained
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Control k=16 k=8 Control k=1 k=2 k=4 k=8

Figure 8: Visualization of controllable I2V generation results with different local region size k in
ReMoCo. Better viewed with Acrobat Reader for the animated videos.

motion control. Accordingly, we exploit k = 8 to extract the region-wise trajectory as the motion
condition. Figure 8 further illustrates the I2V generation results with different k. As shown in this
figure, the synthesized videos with k = 8 present more natural motion dynamics and more pre-
cise motion-trajectory alignment. Moreover, the unnatural fine-grained motion as shown in the case
when k = 16 validates our analysis on the influence of overlarge region size.

Fine-grained Object-level
8.0

8.4

8.8

9.2

9.6

10.0

M
D-

Vi
d

ReMoCoC

ReMoCo+

ReMoCo

Figure 9: MD-Vid (↓) among dif-
ferent multi-scale feature injection
approaches on ReMoCo-Bench.

Minimal Mask Ratio. To explore the effect of minimal mask
ratio rmin in trajectory selection stage, we then measure the
motion control performance by conducting different rmin in
Figure 7(b). Overall, Frame Consistency is not sensitive when
changing rmin on both fine-grained and object-level motion
control settings. Meanwhile, the performance of MD-Vid be-
comes better with the increase of the mask ratio at the be-
ginning. The results are expected since using small rmin
will sample more trajectories for model training, which en-
larges the gap between training and real-world inference (i.e.,
only using one or two trajectories). Conversely, employing a
large value of mask ratio (e.g., 0.99) could make it difficult to
optimize networks with scarce trajectory signals. Therefore,
we empirically set rmin as 0.95 to obtain the best motion-
trajectory alignment in the generated videos.

Multi-scale Feature Injection. We also investigate different multi-scale feature injection strategies
in ReMoCo. Figure 9 details the MD-Vid performance comparisons among different variants of our
ReMoCo. ReMoCoC concatenates the multi-scale features learnt by motion encoder with the video
latent features along channel dimension in each scale. ReMoCo+ replaces the channel-wise feature
concatenation in ReMoCoC with the feature summation. In comparison, our proposal (ReMoCo)
injects the control signals into 3D-UNet via the adaptive feature modulation. Overall, ReMoCo ex-
hibits better MD-Vid performances against other two variants. In direct feature aggregation methods
such as concatenation or summation, information exchange requires strict spatial-temporal align-
ment between each other. In contrast, there is no such requirement for feature modulation, as it
indirectly utilizes estimated scale and bias for feature regulation. Consequently, such feature injec-
tion approach demonstrates enhanced capacity to extract relevant information from input signals,
potentially leading to improved motion control performance.

5 CONCLUSIONS

This paper explores the motion condition formulation and the motion-trajectory alignment in diffu-
sion models for controllable I2V generation. In particular, we study the problem from the viewpoint
of integrating accurate motion control signals into video denoising to regulate motion generation.
To materialize our idea, we have devised ReMoCo, which leverages the region-wise trajectory and
motion mask as the condition to calibrate video generation in a feature modulation manner. The
region-wise trajectory preserves the original optical flow information in each local region, char-
acterizing the fine-grained motion details. The motion mask derived from the optical flow maps
presents holistic motion and aims to identify exact target motion category. The collaboration of
two signals regulates video denoising for natural motion synthesis with precise motion-trajectory
alignment. Moreover, we have carefully construct a new benchmark, i.e., ReMoCo-Bench, with
1.1K real-world user-annotated image-trajectory pairs for the evaluation of both fine-grained and
object-level motion control. Extensive experiments on WebVid-10M and ReMoCo-Bench validate
the superiority of our proposal over state-of-the-art approaches.
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6 ETHICS STATEMENT

The primary of this paper is to introduce a controllable image-to-video diffusion model for general
individuals to animate particular object motion. It is important to note that the visual contents of
our generated video are aligned with those of input reference image. Even though there could be
some ethical concerns for input image, employing an additional content safety checker to filter
reference image can potentially resolve this issue. We uphold the highest ethical standards in the
construction of our ReMoCo-Bench, and believe that all the contents in the dataset are appropriate
while respecting relevant privacy rights in data collection procedure.

7 REPRODUCIBILITY STATEMENT

We have introduced the model construction and implementation details in the paper. To enhance the
reproducibility of our approach, we attach the core code of ReMoCo in the supplementary material
with detailed explanations.

REFERENCES

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in Time: A Joint Video and
Image Encoder for End-to-End Retrieval. In ICCV, 2021.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, Wesam Manassra, Prafulla Dhariwal, Casey Chu, and Yunxin
Jiao. Improving Image Generation with Better Captions, 2023.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rom-
bach. Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets. arXiv
preprint arXiv:2311.15127, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your Latents: High-Resolution Video Synthesis with Latent Diffusion
Models. In CVPR, 2023b.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
Generation Models as World Simulators. 2024.

Wenhao Chai, Xun Guo, Gaoang Wang, and Yan Lu. StableVideo: Text-driven Consistency-aware
Diffusion Video Editing. In ICCV, 2023.

Weifeng Chen, Yatai Ji, Jie Wu, Hefeng Wu, Pan Xie, Jiashi Li, Xin Xia, Xuefeng Xiao, and Liang
Lin. Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Re-
ward Feedback Learning. arXiv preprint arXiv:2305.13840, 2023a.

Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang,
Dahua Lin, Yu Qiao, and Ziwei Liu. SEINE: Short-to-Long Video Diffusion Model for Generative
Transition and Prediction. In ICCV, 2023b.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germani-
dis. Structure and Content-Guided Video Synthesis with Diffusion Models. In ICCV, 2023.

Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, Andrew Tao, Bryan Catanzaro, David Jacobs,
Jia-Bin Huang, Ming-Yu Liu, and Yogesh Balaji. Preserve Your Own Correlation: A Noise Prior
for Video Diffusion Models. In ICCV, 2023.

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Sai Saketh Ramb-
hatla, Akbar Shah, Xi Yin, Devi Parikh, and Ishan Misra. Emu Video: Factorizing Text-to-Video
Generation by Explicit Image Conditioning. In ECCV, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. AnimateDiff:
Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning. In ICLR,
2024.

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang,
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Table 4: Human evaluation of user preference ratios (%) over both fine-grained and object-level
motion control across different approaches on ReMoCo-Bench.

Evaluation Items Fine-grained Motion Control Object-level Motion Control
DragDiffusion MOFA-Video ReMoCo MOFA-Video DragAnything ReMoCo

Motion Quality (↑) 3.12 21.88 75.00 12.50 18.75 68.75
Temporal Coherence (↑) 6.25 40.63 53.12 25.00 15.63 59.37
Trajectory Alignment (↑) 9.37 18.75 71.88 15.62 21.88 62.50

A APPENDIX: MORE DETAILS OF REMOCO-BENCH

The proposed ReMoCo-Bench consists of 412 high-quality reference images and corresponding
1.1K user-annotated trajectories. We collect the reference images with different visual contents, in-
cluding animal, human, vehicle, etc. There are 72 images sampled from the public DragBench (Shi
et al., 2024b) and we further extend it with 340 additional images. Specifically, all the self-collected
images about human are automatically generated by DALL·E3 (Betker et al., 2023) to avoid the po-
tential legal concerns. The remaining self-collected images are real photos which are first crawled
on the Pexels platform and then filtered according to the visual quality. For each reference image,
the annotator is required to brush the motion region and draw the movement trajectory according to
user intention (i.e., fine-grained local part moving or global object moving). During trajectory anno-
tation, all annotators are encouraged to ensure the trajectory diversity, including some complicated
trajectories. Finally, the benchmark is annotated with 460 image-trajectory pairs for fine-grained
motion control evaluation, and 680 image-trajectory pairs for object-level motion control evalu-
ation, respectively. Figure 10 and Figure 11 further illustrate several visual examples (reference
image, trajectory and motion mask) from ReMoCo-Bench for the two evaluations.

B APPENDIX: HUMAN EVALUATION

In addition to the evaluation over automatic metrics, we also conduct human evaluation to investigate
user preferences from three perspectives (i.e., motion quality, temporal coherence and trajectory
alignment) across different controllable I2V approaches. In particular, we randomly sample 200
generated videos from both fine-grained and object-level motion control for evaluation. Through
the Amazon MTurk platform, we invite 32 evaluators, and ask each evaluator to choose the best one
from the generated videos by all models given the same inputs.

Table 4 shows the user preference ratios across different models on ReMoCo-Bench. Overall, our
ReMoCo clearly outperforms all baselines in terms of the three criteria on both fine-grained and
object-level motion control. The results demonstrate the advantage of leveraging complementary
region-wise trajectory and motion mask to benefit video synthesis with natural motion, desirable
temporal coherence and precise motion-trajectory alignment.

C APPENDIX: OFFLINE PROJECT PAGE

We build an offline project page for our ReMoCo in the “ReMoCo.github.io” folder, and package it
into supplementary material. Please click the file of “index.html” in the folder with the Chrome or
Firefox browser for more vivid video presentation.

D APPENDIX: CODE RELEASE

Moreover, we package the core code of our ReMoCo in the “ReMoCo-Code” folder of supplemen-
tary material. Please refer to the example source code and README in the folder for more details.
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Figure 10: Visual examples from ReMoCo-Bench for fine-grained motion control evaluation. Each
reference image is annotated with trajectory and motion mask.

Figure 11: Visual examples from ReMoCo-Bench for object-level motion control evaluation. Each
reference image is annotated with trajectory and motion mask.
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