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ABSTRACT

We tackle a novel few-shot learning challenge, few-shot semantic edge detection,
aiming to localize boundaries of novel categories using only a few labeled sam-
ples. Reliable boundary information has been shown to boost the performance of
semantic segmentation and localization, while also playing a key role in its own
right in object reconstruction, image generation and medical imaging. Few-shot
semantic edge detection allows recovery of accurate boundaries with just a few
examples. In this work, we present a Class-Agnostic Few-shot Edge detection
Network (CAFENet) based on meta-learning strategy. CAFENet employs a se-
mantic segmentation module in small-scale to compensate for lack of semantic
information in edge labels. The predicted segmentation mask is used to generate
an attention map to highlight the target object region, and make the decoder mod-
ule concentrate on that region. We also propose a new regularization method based
on multi-split matching. In meta-training, the metric-learning problem with high-
dimensional vectors are divided into smaller subproblems with low-dimensional
sub-vectors. Since there are no existing datasets for few-shot semantic edge de-
tection, we construct two new datasets, FSE-1000 and SBD-5i, and evaluate the
performance of the proposed CAFENet on them. Extensive simulation results
confirm that the proposed CAFENet achieves better performance compared to the
baseline methods using fine-tuning or few-shot segmentation.

1 INTRODUCTION

Semantic edge detection aims to identify pixels that belong to boundaries of predefined categories.
Boundary information has been shown to be effective for boosting the performance of semantic
segmentation (Bertasius et al., 2016; Chen et al., 2016) and localization (Yu et al., 2018a; Wang
et al., 2015). It also plays a key role in applications such as object reconstruction (Ferrari et al.,
2007; Zhu et al., 2018), image generation (Isola et al., 2017; Wang et al., 2018) and medical imaging
(Abbass & Mousa, 2017; Mehena, 2019). Early edge detection algorithms interpret the problem as
a low-level grouping problem exploiting hand-crafted features and local information (Canny, 1986;
Sugihara, 1986). Recently, there have been significant improvements on edge detection thanks to the
advances in deep learning. Moreover, beyond previous boundary detection, category-aware semantic
edge detection became possible (Acuna et al., 2019; Hu et al., 2019; Yu et al., 2018b). However, it
is impossible to train deep neural networks without massive amounts of annotated data.
To overcome the data scarcity issue in image classification, few-shot learning has been actively
discussed for recent years (Finn et al., 2017; Lifchitz et al., 2019). Few-shot learning algorithms train
machines to learn previously unseen classification tasks using only a few relevant labeled examples.
More recently, the idea of few-shot learning is applied to computer vision tasks requiring highly
laborious and expensive data labeling such as semantic segmentation (Dong & Xing, 2018; Wang
et al., 2019) and object detection (Fu et al., 2019; Karlinsky et al., 2019). Based on meta-learning
across varying tasks, the machines can adapt to unencountered environments and demonstrate robust
performance in various computer vision problems. In this paper, we consider a novel few-shot
learning challenge, few-shot semantic edge detection, to detect the semantic boundaries using only
a few labeled samples. Through experiments, we show that few-shot semantic edge detection can
not be simply solved by fine-tuning a pretrained semantic edge detector or utilizing a nonparametric
edge detector in a few-shot segmentation setting. To tackle this elusive challenge, we propose a
class-agnostic few-shot edge detector (CAFENet) and present new datasets for evaluating few-shot
semantic edge detection.
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Figure 1: Architecture overview of the proposed CAFENet. The feature extractor or encoder extracts feature
from the image, the segmentator generates a segmentation mask based on metric learning, and the edge detector
detects semantic boundaries using the segmentation mask and query features.

Fig. 1 shows the architecture of the proposed CAFENet. Since the edge labels do not contain
enough semantic information due to the sparsity of labels, performance of the edge detector severely
degrades when the training dataset is very small. To overcome this, we adopt the segmentation pro-
cess in advance of detecting edge with downsized feature and segmentation labels generated from
boundaries labels. We utilize a simple metric-based segmentator generating a segmentation mask
through pixel-wise feature matching with class prototypes, which are computed by masked average
pooling of (Zhang et al., 2018). The predicted segmentation mask provides the semantic information
to the edge detector. The multi-scale attention maps are generated from the segmentation mask, and
applied to corresponding multi-scale features. The edge detector predicts the semantic boundaries
using the attended features. Using this attention mechanism, the edge detector can focus on rele-
vant regions while alleviating the noise effect of external details. For meta-training of CAFENet,
we introduce a simple yet powerful regularization method, Multi-Split Matching Regularization
(MSMR), performing metric learning on multiple low-dimensional embedding sub-spaces during
meta-training.
The main contributions of this paper are as follows. First, we introduce a few-shot semantic edge
detection problem for performing semantic edge detection on previously unseen objects using only
a few training examples. Second, we introduce two new datasets of SBD-5i and FSE-1000 for
few-shot edge detection. Third, we propose a few-shot edge detector, CAFENet and validate the
performance of the proposed method through experiments.

2 RELATED WORK

2.1 FEW-SHOT LEARNING

To tackle the few-shot learning challenge, many methods have been proposed based on meta-
learning. Optimization-based methods (Finn et al., 2017; Ravi & Larochelle, 2016) train the meta-
learner which updates the parameters of the actual learner so that the learner can easily adapt to a new
task within a few labeled samples. Metric-based methods (Vinyals et al., 2016; Snell et al., 2017;
Yoon et al., 2019) train the feature extractor to assemble features from the same class together on the
embedding space while keeping features from different classes far apart. Recent metric-based ap-
proaches propose dense classification (Hou et al., 2019; Kye et al., 2020). Dense classification trains
an instance-wise classifier on pixel-wise classification loss which imposes coherent predictions over
the spatial dimension and prevents overfitting as a result. Our model adopts the metric-based method
for few-shot learning. Inspired by dense classification, we propose multi-split matching regulariza-
tion which divides the feature vector into sub-vector splits and performs split-wise classification for
regularization in meta-learning.

2.2 FEW-SHOT SEMANTIC SEGMENTATION

The goal of few-shot segmentation is to perform semantic segmentation within a few labeled samples
based on meta-learning (Shaban et al., 2017; Dong & Xing, 2018; Wang et al., 2019). OSLSM of
(Shaban et al., 2017) adopts a two-branch structure: conditioning branch generating element-wise
scale and shift factors using the support set and segmentation branch performing segmentation with
a fully convolutional network and task-conditioned features. Co-FCN (Rakelly et al., 2018) also
utilizes a two-branch structure. The globally pooled prediction is generated using support set in
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conditioning branch, and fused with query features to predict the mask in segmentation branch. SG-
One of (Zhang et al., 2018) proposes a masked average pooling to compute prototypes from pixels
of support features. The cosine similarity scores are computed between the prototypes and pixels
of query feature, and the similarity map guides the segmentation process. CANet of (Zhang et al.,
2019) also adopts masked average pooling to generate the global feature vector, and concatenate it
with every location of the query feature for dense comparison in predicting the segmentation mask.
PANet of (Wang et al., 2019) introduces prototype alignment, predicting the segmentation mask of
support samples using query prediction results as labels of query samples, for regularization. PMM
of Yang et al. (2020) utilizes multiple prototypes generated using Expectation-Maximization (EM)
algorithm to effectively leverage the semantic information from the few labeled samples.

2.3 SEMANTIC EDGE DETECTION

Semantic edge detection aims to find the boundaries of objects from image and classify the objects at
the same time. The history of semantic edge detection (Acuna et al., 2019; Hu et al., 2019) dates back
to the work of (Prasad et al., 2006) which adopts the support vector machine as a semantic classifier
on top of the traditional canny edge detector. Recently, many semantic edge detection algorithms
rely on deep neural network and multi-scale feature fusion. CASENET of (Yu et al., 2017) addresses
the semantic edge detection as a multi-label problem where each boundary pixel is labeled into
categories of adjacent objects. Dynamic Feature Fusion (DFF) of (Hu et al., 2019) proposes a novel
way to leverage multi-scale features. The multi-scale features are fused by weighted summation with
fusion weights generated dynamically for each images and each pixel. Meanwhile, Simultaneous
Edge Alignment and Learning (SEAL) of (Yu et al., 2018b) deals with severe annotation noise of
the existing edge dataset (Hariharan et al., 2011). SEAL treats edge labels as latent variables and
jointly trains them to align noisy misaligned boundary annotations. Semantically Thinned Edge
Alignment Learning (STEAL) of (Acuna et al., 2019) improves the computation efficiency of edge
label alignment through a lightweight level set formulation.

3 PROBLEM SETUP

For few-shot semantic edge detection, we use train set Dtrain and test set Dtest consisting of non-
overlapping categories Ctrain and Ctest. The model is trained only using Ctrain, and the test cat-
egories Ctest are never seen during the training phase. For meta-training of the model, we adopt
episodic training as done in many previous few-shot learning works. Each episode is composed of
a support set with a few-labeled samples and a query set. When an episode is given, the model
adapts to the given episode using the support set and detect semantic boundaries of the query set. By
episodic training, the model is learned so that it adapts to the unseen class using only a few labeled
samples and predict semantic edges of query samples.
For Nc-way Ns-shot setting, each training episode is constructed by Nc classes sampled from
Ctrain. When Nc categories are given, Ns support samples and Nq query samples are randomly
chosen from Dtrain for each class. In evaluation, the performance of the model is evaluated using
test episodes. The test episodes are constructed in the same way as the training episodes, except Nc

classes and corresponding support and query samples are sampled from Ctest and Dtest.
In this work, we address Nc-way Ns-shot semantic edge detection. The goal is training the model
to generalize to Nc unseen classes given only Ns images and their edge labels. Based on the few
labeled support samples, the model should produce edge predictions of query images which belong
to Nc unencountered classes.

4 METHOD

We propose a novel algorithm for few-shot semantic edge detection. Fig. 2 illustrates the network
architecture of the proposed method. The proposed CAFENet adopts the semantic segmentation
module to compensate for the lack of semantic information in edge labels. The predicted segmenta-
tion mask is utilized for attention in skip connection. The final edge detection is done using attentive
multi-scale features.

4.1 SEMANTIC SEGMENTATOR

Most previous works on semantic edge detection directly predict edges from the given input im-
age. However, direct edge prediction is a hard task when only a few labeled samples are given. To
overcome this difficulty in few-shot edge detection, we adopt a semantic segmentation module in ad-
vance of edge prediction. With the assistance of the segmentation module, CAFENet can effectively
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Figure 2: Network architecture overview of proposed CAFENet. ResNet-34 encoder E(1) ∼ E(4) extracts
multi-level semantic features. The segmentator module generates a segmentation prediction using query fea-
ture from E(4) and prototypes PFG, PBG from support set features. Small bottleneck blocks S(0) ∼ S(4)

transform the original image and multi-scale features from encoder blocks to be more suitable for edge detec-
tion. The attention maps generated from segmentation prediction are applied to multi-scale features to localize
the semantically related region. Decoder D(0) ∼ D(4) takes attentive multi-scale features to give edge predic-
tion.

localize the target object and extract semantic features from query samples. For few-shot segmen-
tation, we employ the metric-learning which utilizes prototypes for foreground and background as
done in (Dong & Xing, 2018; Wang et al., 2019). Given the support set S = {xsi , ysi }

Ns
i=1, the en-

coder E extracts features {E(xsi )}
Ns
i=1 from S. Also, for support labels {ysi }

Ns
i=1, we generate the

dense segmentation mask {Ms
i }

Ns
i=1 using a rule-based preprocessor, considering the pixels inside

the boundary as foreground pixels in the segmentation label. Using down-sampled segmentation
labels {ms

i}
Ns
i=1, the prototype for foreground pixels PFG is computed as

PFG =
1

Ns

1

H ×W
∑
i

∑
j

Ej(x
s
i )m

s
i,j (1)

where j indexes the pixel location, Ej(x) andms
i,j denote the jth pixel of featureE(x) and segmen-

tation mask ms
i . H,W denote height and width of the images. Likewise, the background prototype

PBG is computed as

PBG =
1

Ns

1

H ×W
∑
i

∑
j

Ej(x
s
i )(1−ms

i,j). (2)

Following the prototypical networks of (Snell et al., 2017), the probability that pixel j belongs to
foreground for the query sample xqi is

p(yqi,j = FG|xqi ;E) =
exp(−τd(Ej(x

q
i ), PFG))

exp(−τd(Ej(x
q
i ), PFG)) + exp(−τd(Ej(x

q
i ), PBG))

(3)

where d(·, ·) is squared Euclidean distance between two vectors and τ is a learnable temperature
parameter. With query samples {xqi }

Nq

i=1 and the down-sampled segmentation labels for query
{mq

i }
Nq

i=1, the segmentation loss LSeg is calculated as the mean-squared error (MSE) loss between
predicted probabilities and the down-sized segmentation mask

LSeg =
1

Nq

1

H ×W

Nq∑
i=1

H×W∑
j=1

{(p(yqi,j = FG|xqi ;E)−mq
i,j)

2}. (4)

Note that the segmentation mask is generated in down-sized scale so that any pixel near the bound-
aries can be classified into the foreground to some extent, as well as the background. Therefore, we
approach the problem as a regression using MSE loss rather than cross entropy loss.

4.2 MULTI-SPLIT MATCHING REGULARIZATION

The metric-based few-shot segmentation method utilizes distance metrics between the high-
dimensional feature vectors and prototypes, as seen in Fig. 3a. However, this approach is prone
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Figure 3: Comparison between (a) High-dimensional feature matching used in (Dong & Xing, 2018; Wang
et al., 2019) and (b) split-wise feature matching in MSMR

to overfit due to the massive number of parameters in feature vectors. To get around this issue,
we propose a novel regularization method, multi-split matching regularization (MSMR). In MSMR,
high-dimensional feature vectors are split into several low-dimensional feature vectors, and the met-
ric learning is conducted on each vector split as Fig. 3b.
With the query feature E(xqi ) ∈ RC×W×H , where C is channel dimension and H,W are spatial
dimensions, we divide E(xqi ) into K sub-vectors {Ek(xqi )}Kk=1 along channel dimension. Each
sub-vector Ek(xqi ) is in R C

K×W×H . Likewise, the prototypes PFG and PBG are also disassembled
into K sub-vectors {P k

FG}Kk=1 and {P k
BG}Kk=1 along channel dimension where P k

FG, P
k
BG ∈ R C

K

. For the kth sub-vector of query feature Ek(xqi ), the probability that the jth pixel belongs to the
foreground class is computed as follows:

pk(yqi,j = FG|xqi ;E) =
exp(−τd(Ek

j (x
q
i ), P

k
FG))

exp(−τd(Ek
j (x

q
i ), P

k
FG)) + exp(−τd(Ek

j (x
q
i ), P

k
BG))

. (5)

MSMR divides the original metric learning problem intoK small sub-problems composed of a fewer
parameters and acts as regularizer for high-dimensional embeddings. The prediction results of K
sub-problems are reflected on learning by combining the split-wise segmentation losses to original
segmentation loss in Eq. 4. The total segmentation loss is calculated as

LSeg =
1

Nq

1

H ×W

Nq∑
i=1

H×W∑
j=1

{(pi,j −mq
i,j)

2 +

K∑
i=1

(pki,j −mq
i,j)

2}. (6)

where pi,j = p(yqi,j = FG|xqi ;E) and pki,j = pk(yqi,j = FG|xqi ;E).

4.3 ATTENTIVE EDGE DETECTOR

As shown in Fig. 2, we adopt the nested encoder structure to extract rich hierarchical features. The
multi-scale side outputs from encoder E(1) ∼ E(4) are post-processed through bottleneck blocks
S(1) ∼ S(4). Since ResNet-34 gives side outputs of down-sized scale, we pass the original image
through bottleneck block S(0) to extract local details in original scale. In front of S(3), we employ
the Atrous Spatial Pyramid Pooling (ASPP) block of (Chen et al., 2017). We have empirically found
that locating ASPP there shows better performance.

In utilizing multi-scale features, we employ the predicted segmentation mask M̂ from the segmen-
tator where the jth pixel of M̂ is the predicted probability from Eq. 3. Note that we generate M̂
based on the entire feature vectors and the prototypes instead of utilizing sub-vectors, since the split-
wise metric learning is used only for regularizing the segmentation module. For each layer l, M̂ (l)

denotes the segmentation mask upscaled to the corresponding feature size by bilinear interpolation.
Using segmentation prediction mask M̂ (l), we generate attention map A(l), as follows. First, the
prediction with a value lower than threshold λ is rounded down to zero, to ignore activation in re-
gions with low confidence. Second, we broaden the attention map using morphological dilation of
(Feng et al., 2019) as a second chance, since the segmentation module may not always guarantee
fine results. The final attention map of lth layer A(l) is computed as follows

A(l) = 1(M̂ (l) > λ)M̂ (l) +Dilation(1(M̂ (l) > λ)M̂ (l)) (7)

where 1(M̂ (l) > λ)M̂ (l) is the rounded value of prediction mask M̂ (l). The attention maps are
applied to the multi-scale features of corresponding bottleneck blocks S(0) ∼ S(4). We apply the
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Figure 4: An example of activation map of (Yosinski et al., 2015) before and after pixel-wise semantic attention
(warmer color has higher value). As seen, the attention mechanism makes encoder side-outputs attend to the
regions of the target object (horse in the figure).

residual attention of (Hou et al., 2019), where the initial multi-level side outputs from S(l) are pixel-
wisely weighted by 1+A(l), to strengthen the activation value of the semantically important region.
We visualize the effect of semantic attention in Fig. 4.
As shown in Fig. 2, the decoder network is composed of five consecutive convolutional blocks.
Each decoder block D(l) contains three 3 × 3 convolution layers. The outputs of decoder blocks
D(1) ∼ D(4) are bilinearly upsampled by two and passed to the next block. Similar to (Feng et al.,
2019), the up-sampled decoder outputs are then concatenated to the skip connection features from
bottleneck blocks S(0) ∼ S(4) and previous decoder blocks. Multi-scale semantic information and
local details are transmitted through skip architectures. The hierarchical decoder network in turn
refines the outputs of the previous decoder blocks and finally produces the edge prediction ŷqi of
query samples xqi .
Following the work of (Deng et al., 2018), we combine cross-entropy loss and Dice loss to produce
crisp boundaries. Given a query setQ = {xqi , y

q
i }

Nq

i=1 and prediction mask ŷqi , the cross-entropy loss
is computed as

LCE = −
Nq∑
i=1

{
∑
j∈Y+

log(ŷqi ) +
∑
j∈Y−

log(1− ŷqi )} (8)

where Y+ and Y− denote the sets of foreground and background pixels. The Dice loss is then
computed as

LDice =

Nq∑
i=1

{
∑

j(ŷ
q
i,j)

2 +
∑

j(y
q
i,j)

2

2
∑

j ŷ
q
i,jy

q
i,j

} (9)

where j denotes the pixels of a label. The final loss for meta-training is given by

Lfinal = LSeg + LCE + LDice. (10)

5 EXPERIMENTS

5.1 DATASETS

5.1.1 SBD-5i

Based on the SBD dataset of (Hariharan et al., 2011) for semantic edge detection, we propose a
new SBD-5i dataset. With reference to the setting of Pascal-5i, 20 classes of the SBD dataset
are divided into 4 splits. In the experiment with split i, 5 classes in the ith split are used as test
classes Ctest. The remaining 15 classes are utilized as training classes Ctrain. The training set
Dtrain is constructed with all image-annotation pairs whose annotation include at least one pixel
from the classes in Ctrain. For each class, the boundary pixels which do not belong to that class are
considered as background. The test set Dtest is also constructed in the same way as Dtrain, using
Ctest this time. Considering the difficulty of few-shot setting and severe annotation noise of the
SBD dataset, we extract thicker edges. We utilize edges extracted from the segmentation mask as
ground truth instead of original boundary labels of the SBD dataset, and thickness of extracted edge
lies between 3 ∼ 4 pixels on average. We conduct 4 experiments with each split of i = 0 ∼ 3, and
report performance of each split as well as the averaged performance. Note that unlike Pascal-5i,
we do not consider division of training and test samples of the original SBD dataset. As a result, the
images in Dtrain might appear in Dtest with different annotation from class in Ctest.
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5.1.2 FSE-1000
The datasets used in previous semantic edge detection research such as SBD of (Hariharan et al.,
2011) and Cityscapes of (Cordts et al., 2016) are not suitable for few-shot learning as they have
only 20 and 30 classes, respectively. We propose a new dataset for few-shot edge detection, which
we call FSE-1000, based on FSS-1000 of (Wei et al., 2019). FSS-1000 is a dataset for few-shot
segmentation and composed of 1000 classes and 10 images per class with foreground-background
segmentation annotation. From the images and segmentation masks of FSS-1000, we build FSE-
1000 by extracting boundary labels from segmentation masks. As done in SBD-5i, we extract thick
edges of which thickness is around 2 ∼ 3 pixels on average in the light of difficulty associated
with few-shot setting. For dataset split, we split 1000 classes into 800 training classes and 200 test
classes. We will provide the detailed class configuration in the Supplementary Material.

5.2 EVALUATION SETTINGS

We use two evaluation metrics to measure the few-shot semantic edge detection performance of
our approach: the Average Precision (AP) and the maximum F-measure (MF) at optimal dataset
scale (ODS). In evaluation, we compare the unthinned raw prediction results and the ground truths
without Non-Maximum Suppression (NMS) following (Acuna et al., 2019; Yu et al., 2018b). For the
evaluation of edge detection, an important parameter is matching distance tolerance which is an error
threshold between the prediction result and the ground truth. Prior works on edge detection such as
(Acuna et al., 2019; Hariharan et al., 2011; Yu et al., 2017; 2018b) adopt non-zero distance tolerance
to resolve the annotation noise. However, the proposed datasets for few-shot edge detection utilize
thicker boundaries to overcome the annotation noise issue instead of adopting distance tolerance.
Moreover, evaluation with non-zero distance tolerance requires additional heavy computation. This
becomes more problematic under few-shot setting where the performance should be measured on
the same test image multiple times due to the variation in the support set. For these reasons, we
set distance tolerance to be 0 for both FSE-1000 and SBD-5i. In addition, we evaluate the positive
predictions from the area inside an object and zero-padded region as false positives, which is stricter
than the evaluation protocol in prior works of (Hariharan et al., 2011; Yu et al., 2017).

5.3 IMPLEMENTATION DETAIL

We implement our framework using Pytorch library and adopt Scikit-learn library to construct the
precision-recall curve and compute average precision (AP). For the encoder, ResNet-34 pretrained
on ImageNet is adopted. All parameters except the encoder parameters are learned from scratch.
The entire network is trained using the Adam optimizer of (Kingma & Ba, 2014) with weight decay
regularization of (Loshchilov & Hutter, 2017). In both experiments on FSE-1000 and SBD-5i, we
use a learning rate of 10−4 and an l2 weight decay rate of 10−2. For FSE-1000 experiments, the
model is trained with 40,000 episodes and the learning rate is decayed by 0.1 after training 38,000
episodes. For SBD-5i experiments, 30,000 episodes are used for training, and the learning rate is
decayed by 0.1 after training 28,000 episodes. Higher shot training of (Liu et al., 2019) is employed
in 1-shot experiments for both datasets.

5.3.1 DATA PREPROCESSING

During training, we adopt data augmentation with random rotation by multiples of 90 degrees for
both SBD-5i and FSE-1000. We additionally resize SBD-5i data to 320×320, while no such resizing
is performed on FSE-1000. During evaluation, images of SBD-5i are zero-padded to 512×512.
Again, the original image size is used for FSE-1000.

5.4 EXPERIMENT RESULT

Table 1 shows the experiment results on the SBD-5i dataset. To verify the value of the proposed
method, we compare CAFENet with two baselines. The first baseline is a fine-tuned edge detection
model with only a few labeled samples. Meta-learning strategy is not used for the first baseline.
We employ the DFF of (Hu et al., 2019), utilizing the implementation offered by the authors. For
each split of SBD-5i, we pretrain a 15-way semantic edge detector with training classes and fine-
tune the pretrained edge detector with a few labeled samples for new classes in test split. During
pretraining, we follow the training strategies and hyperparameters of (Hu et al., 2019). In fine-
tuning, we randomly initialize some sub-modules that are closely related to final prediction (”side5”,
”side5-w”, and ”ada-learner”) and train them altogether using the support images.
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The second baseline is constructed by combining a non-parametric edge detectors such as Canny
detector or Sobel detector with a few-shot segmentation algorithm. The semantic edge detection is
occasionally interpreted as a dual task of semantic segmentation, but prior work of (Acuna et al.,
2019) verifies that the semantic edge detector outperforms the segmentator combined with the Sobel
edge detector, and demonstrates the importance of semantic edge detection. In our experiments,
we combine PANet and PMM, the state-of-the-art few-shot segmentation method, with the Sobel
edge detector. To experiment with existing segmentation methods, we utilize the implementation
provided by the authors. For each split of SBD-5i, we meta-train the PANet and PMM on training
classes using the segmentation labels. In evaluation, we obtain the edge predictions of test classes
by applying the Sobel edge detector on the segmentation masks as done in (Acuna et al., 2019), and
compare the predictions with the edge labels of test classes.

We utilize the ResNet-34 backbone for CAFENet and PANet. For PMM, we utilize ResNet-50
backbone. We also employ higher shot training in 1-shot experiments for both baselines as done
in CAFENet experiments. The results in Table 1 show that the proposed CAFENet outperforms
all baselines in both MF and AP scores by significant margin. The experiment results prove that
the few-shot semantic edge detector can not be simply substituted by few-shot segmentator or the
fine-tuned semantic edge detector. In Table 2, the experiment results on the FSE-1000 dataset are
shown. For FSE-1000, we only experiment with the few-shot segmentation baseline since it is hard
to train a semantic edge detector with training set of FSE-1000, due to the large number of training
classes. We can see that the proposed CAFENet outperforms the baseline even when the dataset
contains more diverse classes.

Table 1: Evaluation results of proposed CAFENet on SBD-5i. 1000 randomly sampled test episodes are used
for evaluation. MF and AP scores are measured by %

Metric Method (5-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

DFF + Finetune 9.25 8.63 8.08 7.83 8.45
PANet + Sobel 19.66 23.48 21.10 18.09 20.58
PMM + Sobel 31.73 29.99 29.91 26.03 29.42
CAFENet (Ours) 34.71 36.81 32.02 28.37 32.98

AP

DFF + Finetune 9.17 6.77 7.04 6.14 7.28
PANet + Sobel 11.91 14.13 11.92 9.42 11.85
PMM + Sobel 23.26 20.76 20.38 17.94 20.59
CAFENet (Ours) 30.47 32.40 27.01 23.06 28.24

Metric Method (1-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

DFF + Finetune 8.87 5.54 4.91 2.95 5.57
PANet + Sobel 19.33 23.01 20.79 17.62 20.19
PMM + Sobel 31.18 29.23 29.38 25.65 28.86
CAFENet (Ours) 31.54 34.75 29.47 26.68 30.61

AP

DFF + Finetune 7.91 3.71 3.31 1.55 4.12
PANet + Sobel 12.32 14.39 12.13 9.76 12.15
PMM + Sobel 22.77 20.21 19.85 17.56 20.10
CAFENet (Ours) 26.81 29.08 23.77 20.44 25.03

Table 2: 1-way 1-shot and 1-way 5-shot results of proposed CAFENet on FSE-1000. 1000 randomly sampled
test episodes are used for evaluation. MF and AP scores are measured by %

Metric Method 1-way 1-shot 1-way 5-shot

MF
(ODS)

PANet + Sobel 38.38 38.78
PMM + Sobel 36.31 36.46
CAFENet (Ours) 58.47 60.63

AP
PANet + Sobel 27.85 28.11
PMM + Sobel 31.22 31.82
CAFENet (Ours) 60.54 63.92
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6 CONCLUSION

In this paper, we establish the few-shot semantic edge detection problem. We proposed the Class-
Agnostic Few-shot Edge detector (CAFENet) based on a skip architecture utilizing multi-scale fea-
tures. To compensate the shortage of semantic information in edge labels, CAFENet employs a
segmentation module in low resolution and utilizes segmentation masks to generate attention maps.
The attention maps are applied to multi-scale skip connection to localize the semantically related
region. We also present the MSMR regularization method splitting the feature vectors and pro-
totypes into several low-dimension sub-vectors and solving multiple metric-learning sub-problems
with the sub-vectors. We built two novel datasets of FSE-1000 and SBD-5i well-suited to few-shot
semantic edge detection. Experimental results demonstrate that the proposed method significantly
outperforms the baseline approaches relying on fine-tuning or few-shot semantic segmentation.
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A ADDITIONAL EXPERIMENTAL SETUP

In this section, we provide detailed information about experimental setup. We adopt the ImageNet
pretrained ResNet-34 with 64-128-256-512 channels for each residual block from [pytorch frame-
work] as the encoder. To construct the skip architecture, we employ the bottleneck block of ResNet
as the post-processing blocks S(1) ∼ S(4). Each bottleneck block consists of two 1x1 convolutional
layers and one 3x3 convolutional layer with expansion rate of 4. Dropout with the ratio of 0.25 is
applied to the end of each bottleneck block. For the ASPP Module in front of S(3), we adopt the
dilation rate of 1,4,7,11. The segmentation module generates a segmentation prediction with the
rounding threshold value λ of 0.4. For decoder, each decoder block is composed of three consecu-
tive 3x3 convolutional layers, and dropout with the ratio of 0.25 is again located at the end of each
layer.
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During meta-training of CAFENet, we set the number of query samples in training episodes to be
5 for FSE-1000 and 10 for SBD-5i, respectively. In evaluation, we employ average precision score
function of Scikit-learn library to measure the Average Precision (AP) score. We compute the AP
score for each image and average them to measure the overall performance. For Maximum F-
measure (MF) score, we measure true positives (TP), false positives (FP) and false negatives (FN) at
every 0.01 threshold intervals for each image, and accumulate the values for all images in 1000 test
episodes. The MF score is computed using the accumulated TP, FP, and FN values.

B ABLATION STUDIES

In this section, we shot the results of ablation experiments to examine the impact of proposed MSMR
and attentive decoder. Table B.1 shows the experiment results on the FSE-1000 dataset. The base-
line method in Table B.1 conducts edge prediction in low resolution and utilizes the auxiliary loss
from low resolution together with the loss from the edge prediction in original resolution for meta-
training. The edge prediction is done using a metric-based method utilizing prototypes which are
computed using down-sampled edge labels. The method dubbed as Seg utilizes a segmentation
module without MSMR or attentive decoding. Seg directly matches high-dimensional query feature
vectors with prototypes in both training and evaluation. In Seg, the segmentation module is utilized
only to provide the segmentation loss that assists for model learning to extract semantic features.
Seg + Att employs the predicted segmentation mask for the additional attention process in skip ar-
chitecture. Seg + MSMR + Att additionally utilizes the MSMR regularization for training. For
fair comparison, all methods use the same network architecture and training hyperparameters. For
SBD-5i datasets, the ablation experiments are done with same model variations as FSE-1000. The
results on SBD-5i are shown in Table B.2.

Table B.1: Ablation experiment results of proposed CAFENet on FSE-1000. 1000 randomly sampled test
episodes are used for evaluation. MF and AP scores are measured by %

Metric Method 1-way 1-shot 1-way 5-shot

MF
(ODS)

baseline 52.71 53.52
Seg 56.89 59.65
Seg + Att 58.00 60.14
Seg + Att + MSMR 58.47 60.63

AP

baseline 53.66 54.59
Seg 58.80 61.87
Seg + Att 59.81 62.37
Seg + Att + MSMR 60.54 63.92

Tables B.1 and B.2 demonstrate that the use of the segmentation module in Seg gives significant
performance advantages over baseline for both FSE-1000 and SBD-5i datasets. It is also seen that
the additional use of attentive decoding, Seg + Att, generally improves the performance over Seg.
Finally, adding the effect of MSMR regularization gives substantial extra gains, as seen by the scores
associated with Seg + MSMR + Att. Clearly, when compared with baseline, our overall approach
Seg + MSMR + Att provides large gains. In the main paper, we report the results of Seg + MSMR
+ Att as the results of CAFENet.

B.1 ADDITIONAL EXPERIMENTS ON MULTI-SPLIT MATCHING REGULARIZATION

B.1.1 FEATURE MATCHING METHOD FOR SEGMENTATION

In Table B.3, we have compared various feature matching methods between prototypes and query
feature vectors for producing segmentation prediction on SBD-5i. The method baseline refers to
the original method generating segmentation prediction using only the similarity metric between
high-dimensional vectors as done in Eq. 3. For the method average, segmentation predictions from
low-dimensional feature splits (Eq. 5) and original high-dimensional feature vectors (Eq. 5) are
averaged to generate the final prediction mask. The average method can be understood as a method
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Table B.2: Ablation experiment results of proposed CAFENet on SBD-5i. 1000 randomly sampled test
episodes are used for evaluation. MF and AP scores are measured by %

i=0 i=1 i=2 i=3
aeroplane,bike,bird,boat,bottle bus,car,cat,chair,cow table,dog,horse,mbike,person plant,sheep,sofa,train,tv

Metric Method (5-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

baseline 22.27 19.64 20.41 20.41 20.20
Seg 30.61 31.62 28.06 24.97 28.82
Seg + Att 31.75 33.41 28.44 26.03 29.91
Seg + Att + MSMR 34.71 36.81 32.02 28.37 32.98

AP

baseline 18.68 15.57 14.97 14.05 15.82
Seg 26.14 26.78 21.92 18.43 23.32
Seg + Att 27.61 28.39 22.66 20.11 24.69
Seg + Att + MSMR 30.47 32.40 27.01 23.06 28.24

Metric Method (1-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

baseline 21.81 19.49 20.34 18.06 19.93
Seg 29.89 31.64 27.89 24.41 28.46
Seg + Att 30.72 33.03 28.63 25.04 29.36
Seg + Att + MSMR 31.54 34.75 29.47 26.68 30.61

AP

baseline 18.11 15.47 14.73 13.89 15.55
Seg 25.16 26.15 21.52 18.52 22.84
Seg + Att 26.10 27.21 22.47 18.81 23.65
Seg + Att + MSMR 26.81 29.08 23.77 20.44 25.03

utilizing MSMR not only for regularization, but also for inference. In the weighted sum method,
the above five segmentation masks are combined using a weighted sum with learnable weights.
As we can see in Table B.3, the MSMR method shows the best performance when employed for
regularization.

Table B.3: Comparison of different feature matching method on SBD-5i under 1-way 5-shot setting. MF and
AP scores are averaged over 4 splits

Feature matching method baseline average weighted sum

AP 34.61 31.05 31.44
MF(ODS) 29.91 26.20 26.46

B.1.2 NUMBER OF VECTOR SPLITS

MSMR divides the high-dimensional feature into multiple splits. Table B.4 shows the performance
of proposed CAFENet with varying numbers of splits K. Comparing the K = 1 case with other
cases, we can see that applying MSMR regularization consistently improves performance. We can
see that K = 4 results in the best AP and MF performance. The performance gain is marginal when
we divide the embedding dimension into too small (K = 16) or too big (K = 2) a pieces.

Table B.4: Comparison of different numbers of vector splits K on SBD-5i under 1-way 5-shot setting. MF and
AP scores are averaged over 4 splits

Number of splits K = 1 K = 2 K = 4 K = 8 K = 16

AP 24.69 26.48 29.91 27.68 23.83
MF(ODS) 29.91 31.62 32.30 31.58 30.77
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B.1.3 RANDOM PROJECTION FOR VECTOR SPLITS

In MSMR, we divide query feature into K splits along the channel dimension, i.e. we apply deter-
ministic splitting. In Table B.5, we compare the performance of different splitting methods. The
method dubbed as Deterministic refers to the MSMR method that we utilize in CAFENet. The
Random method randomly splits feature vectors into 4 parts in each episode. The Baseline method
does not split features at all. Interestingly, Random’s performance significantly degrades, even
below that of Baseline.

Table B.5: Comparison of different splitting methods on SBD-5i. MF and AP scores are measured by %

Metric Method (5-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

Deterministic 34.71 36.81 32.02 28.37 32.98
Baseline 31.75 33.41 28.44 26.03 29.91
Random 23.67 17.22 21.16 20.51 20.64

AP
Deterministic 30.47 32.40 27.01 23.06 28.24
Baseline 27.61 28.39 22.66 20.11 24.69
Random 20.37 17.51 18.26 15.76 18.07

Metric Method (1-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

Deterministic 31.54 34.75 29.47 26.68 30.61
Baseline 30.72 33.03 28.63 25.04 29.36
Random 23.36 17.04 21.43 20.47 20.58

AP
Deterministic 26.81 29.08 23.77 20.44 25.03
Baseline 26.10 27.21 22.47 18.81 23.65
Random 20.12 17.35 18.57 15.64 17.92

B.2 ADDITIONAL EXPERIMENTS ON SEMANTIC ATTENTION

B.2.1 EXPERIMENTS ON APPLYING THE SEMANTIC ATTENTION

In the proposed CAFENet, we utilize the semantic attention in the attentive decoder. In Table B.6,
we compare three methods that utilize the attention in different manners. Attentive Decoding is
our proposed CAFENet that applies the semantic attention to the multi-scale features. The second
method, Direct Attention, is a method that directly passes the feature to the edge detector and
applies the semantic attention to the final edge prediction. The last method, No Attention is a
baseline where the edge detector generates prediction without any attention. For both 1-shot and
5-shot settings, regardless of how the attention is applied, semantic attention considerably improves
performance. These results show the effectiveness of semantic attention. The results also show that
the proposed approach of Attentive Decoding yields better results compared to Direct Attention.

B.2.2 EXPERIMENTS ON GENERATING THE ATTENTION

In the proposed attentive decoding, we can generate an attention map using various methods. In
Table.B.7, we compare two different methods to generate the attention map. Segmentation Atten-
tion is the method adopted in proposed CAFENet. In Segmentation Attention, the output of the
segmentation module S is utilized as the M̂ in equation 7. In Edge Attention, the edge prediction
E(S) is generated from segmentation mask S by equation 11 following (Feng et al. (2019)). The
generated edge prediction E(S) is then used as the M̂ in equation 7. Experiment results show that
utilizing the segmentation mask to generate the attention map performs better than utilizing the edge
prediction.

E(S) = |S −AvgPool(S)| (11)
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Table B.6: Comparison of different methods to apply attention on SBD-5i.

Metric Method (5-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

Attentive Decoding 34.71 36.81 32.02 28.37 32.98
Direct Attention 33.47 36.64 31.85 28.28 32.56
No Attention 31.75 33.41 28.44 26.03 29.91

AP
Attentive Decoding 30.47 32.40 27.01 23.06 28.24
Direct Attention 30.31 31.93 26.15 22.59 27.75
No Attention 27.61 28.39 22.66 20.11 24.69

Metric Method (1-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

Attentive Decoding 31.54 34.75 29.47 26.68 30.61
Direct Attention 31.27 34.53 30.01 26.41 30.56
No Attention 30.72 33.03 28.63 25.04 29.36

AP
Attentive Decoding 26.81 29.08 23.77 20.44 25.03
Direct Attention 26.46 28.61 23.64 20.23 24.74
No Attention 26.10 27.21 22.47 18.81 23.65

Table B.7: Comparison of different methods to generate attention on SBD-5i.

Metric Method (5-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

Segmentation Attention 34.71 36.81 32.02 28.37 32.98
Edge Attention 33.83 37.01 31.14 27.92 32.48

AP Segmentation Attention 30.47 32.40 27.01 23.06 28.24
Edge Attention 29.16 32.35 25.56 22.52 27.40

Metric Method (1-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

Segmentation Attention 31.54 34.75 29.47 26.68 30.61
Edge Attention 30.25 33.58 30.64 26.16 30.16

AP Segmentation Attention 26.81 29.08 23.77 20.44 25.03
Edge Attention 25.21 27.83 24.87 20.34 24.56

C QUALITATIVE RESULTS

In Figures C.1 and C.2, we visualize the qualitative results of CAFENet for FSE-1000 and SBD-
5i, respectively. We can see that the proposed CAFENet successfully detect the edge of the target
class from given images. In Figure C.1, we can compare the qualitative results of edge predictions
from different methods. We can see that the ’DFF + Finetune’ method succeeds in finding the
edges of the objects, but it lacks the ability to learn semantic information and hardly distinguish the
boundary of target class from the other boundaries. For ’PANet + Sobel’ method, on the other hand,
it successfully understands the semantic information and localizes the target object, but it fails to
refine the correct boundary. The proposed CAFENet, however, is capable of localizing the objects
from target class and detecting the correct boundary at the same time.

Figure C.3 visualizes more qualitative results on SBD-5i from ablation experiments. We illustrate
and compare the boundary prediction results of the baseline, Seg, Seg + Att, and Seg + Att +
MSMR methods. For fair comparison, all methods share the same support set. From the results,
we can clearly see that the techniques proposed in CAFENet steadily improve the quality of edge
prediction.
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image ground truth DFF + Finetune PANet + Sobel CAFENet

Figure C.1: Qualitative examples of 5-shot edge detection on SBD-5i dataset.

D LABEL GENERATOR

D.1 EDGE LABEL GENERATOR

Algorithm D.1 generates the edge labels from the segmentation labels. The edge label generator
finds the regions where the pixel value of segmentation label drastically changes, and determine
the pixels in the regions as the boundary. Note that the pixels at the border of the image are also
determined as the boundary.
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image ground truth PANet PANet + Sobel CAFENet

Figure C.2: Qualitative examples of 5-shot edge detection on FSE-1000 dataset.

D.2 SEGMENTATION LABEL GENERATOR

Algorithm D.2 is the segmentation label generator which generates the segmentation label from
the edge label. Before the label generation, the pixels are divided into several groups based on
boundary labels. We employ the Breadth-First Search (BFS) algorithm and divide pixels into groups
{G1, G2, ..., Gn}. The segmentation label generator of Algorithm D.2 classifies these groups into
foreground and background. First, the algorithm sweeps each column and row to count the number
of pixel value change in edge label. If there are certain numbers of changes, the algorithm again
sweeps the column or row and record the location of foreground pixels and mark the foreground
pixels in the column or row in a matrix T . Based on pixel groups {G1, G2, ..., Gn}, the marking
results in T are then divided into pixel value groups {T 1, T 2, ..., Tn}. The probability that each
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image ground truth baseline Seg Seg + Att Seg + Att + MSMR

Figure C.3: Qualitative results comparison of ablation experiments
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Algorithm D.1 Edge Label Generation
Input: Segmentation label M of an image
Output: Edge label y of an image.
y ← 0W×H . Initialize y as zero matrix having same shape with M
for (h,w) in (1, 1),...,(H ,W ) do . H/W is height/width of the image

if Mh,w = 1 then
for (a, b) = (-r,-r),...,(r,r) do . radius r determines thickness of edge

if Mh+a,w+b = 0 then
yh,w ← 1 . 0/1 means non-edge/edge pixel, respectively
break

else if (h+ a < 0) or (h+ a > H) or (w + b < 0) or (w + b > W ) then
yh,w ← 1
break

return y . Return label annotation

image segmentation label edge label image segmentation label edge label

Figure D.1: Result of edge label generator.

group Gi belongs to the foreground is calculated as the mean of pixel values T i. The groups with
probability above the threshold λ are determined as the foreground groups, and the pixels belongs
to foreground groups are marked as foreground pixels. We set the threshold value λ to be 20/255.

image edge label marking result 𝑇 pixel groups segmentation label

Figure D.2: Result of segmentation label generator.

E DETAILS ON DATASETS

E.1 FSE-1000

We build FSE-1000 using an existing few-shot segmentation dataset, FSS-1000. We extract the
boundary labels from segmentation annotations using Algorithm D.1. The radius value r in Algo-
rithm D.1 is set to 3 in FSE-1000. 1000 categories in FSE-1000 are split into 800 train classes and
200 test classes. For the detailed class configuration, the reader may refer to our attachment on class
configuration. Figure D.1 visualizes the result of our edge extraction algorithm.

E.2 SBD-5i

SBD-5i is constructed based on the existing semantic edge detection dataset (SBD). Due to the
noise of boundary annotations in original SBD, we utilize the thicker edge as done in FSE-1000. To
extract thicker edge, we generate the segmentation labels from the edge labels using Algorithm D.2
instead of using existing segmentation labels of SBD. Figure D.2 shows the process of generating
the segmentation label from the edge label. From the generated segmentation labels, we extract edge
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Algorithm D.2 Segmentation Label Generation
Input: Edge label y of an image, pixel groups G1, G2, ..., Gn

Output: Segmentation label M of an image.
M,T ← 0W,H . Initialize M,T as zero matrix having same shape with y
for h = 1,...,H do . H is height of the image

cnt,mode← 0
for w = 1,...,W do . W is width of the image

if yh,w = mod(mode+ 1, 2) then . Accumulate changes of pixel value
cnt← cnt+ 1
mode← mod(mode+ 1, 2)

if mod(cnt, 4) = 0 and cnt 6= 0 then . Check if there are FG pixels in the row
cnt′,mode′ ← 0
for w′ = 1,...,W do . Find location of FG pixels in the row

if yh,w′ = mod(mode′ + 1, 2) then
cnt′ ← cnt′ + 1
mode′ ← mod(mode′ + 1, 2)

if mod(cnt′, 4) = 2 then
Th,w′ ← 1 . Record location of FG pixels in the row

for w = 1,...,W do . Repeat the same process for every column
cnt,mode← 0
for h = 1,...,H do

if yh,w = mod(mode+ 1, 2) then
cnt← cnt+ 1
mode← mod(mode+ 1, 2)

if mod(cnt, 4) = 0 and cnt 6= 0 then
cnt′,mode′ ← 0
for h′ = 1,...,H do

if yh′,w = mod(mode′ + 1, 2) then
cnt′ ← cnt′ + 1
mode′ ← mod(mode′ + 1, 2)

if mod(cnt′, 4) = 2 then
Th′,w ← 1

for i = 1, ..., n do
T i ← Th,w|(h,w)∈Gi

if mean(T i) ≥ λ then . Check the probability that Gi belongs to foreground
Mh,w|(h,w)∈Gi ← 1 . 1 means a foreground pixel

else
Mh,w|(h,w)∈Gi ← 0 . 0 means a background pixel

return M . Return segmentation annotation

labels using Algorithm D.1 with a radius value of 4. This process allows us to train the proposed
CAFENet using only the edge labels.

While all images in FSE-1000 have the same size, images in SBD-5i have different size. However,
constructing the training episode as a mini-batch requires images with the same size. Previous
works on semantic edge detection typically apply random cropping to deal with this issue. For the
few-shot setting, however, random cropping severely degrades informativeness of support set and
consequently hinders learning. Alternatively, we utilize the training examples resized to 320× 320
to maintain the information of images as much as possible. When resizing the edge labels for
training, we first generate segmentation labels in original scale using Algorithm D.2 and resize the
segmentation labels to 320 × 320. Then, we extract edge labels from resized segmentation labels
using Algorithm D.1 with a radius value of 3.
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F ADDITIONAL RESULTS WITH MULTI-ANGLE INPUT TEST

In this section, we report the few-shot semantic edge prediction results with multi-angle input test.
In multi-angle input test, the model predicts the edge by averaging the 4 edge prediction results from
4 copies of an input image rotated by multiples of 90 degrees. We have empirically found that multi-
angle input test significantly improves the performance. Table F.1 and F.2 show the evaluation results
with multi-angle input test for FSE-1000 and SBD-5i, respectively. We can verify the effectiveness
of the multi-angle input test from the results.

Table F.1: 1-way 5-shot results with the multi-angle input test on FSE-1000. 1000 randomly sampled test
episodes are used for evaluation. MF and AP scores are measured by %

Metric Method 1-way 5-shot

MF
(ODS)

baseline 55.23
Seg 61.17
Seg + Att 61.90
Seg + Att + MSMR 62.23

AP

baseline 56.12
Seg 63.32
Seg + Att 63.83
Seg + Att + MSMR 65.81

Table F.2: 1-way 5-shot results with the multi-angle input test on SBD-5i. 1000 randomly sampled test episodes
are used for evaluation. MF and AP scores are measured by %

Metric Method(5-shot) SBD-50 SBD-51 SBD-52 SBD-53 Mean

MF
(ODS)

baseline 24.38 23.78 22.81 20.39 22.84
Seg 32.46 33.18 29.63 26.46 30.43
Seg + Att 34.29 35.76 32.25 28.12 32.61
Seg + Att + MSMR 36.13 37.92 34.18 30.21 34.61

AP

baseline 21.03 20.39 17.48 16.31 18.80
Seg 27.92 28.00 23.94 20.06 24.98
Seg + Att 29.94 30.40 24.34 21.38 26.52
Seg + Att + MSMR 31.92 33.51 29.28 24.91 29.91
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