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ABSTRACT

Earthquake monitoring is a fundamental task to unravel the underlying physics of
earthquakes and mitigate associated hazards for public safety. Distributed acoustic
sensing, or DAS, transforms pre-existing telecommunication cables into ultra-dense
seismic networks, offers a cost-effective and scalable solution for next-generation
earthquake monitoring. However, current DAS-based approaches for earthquake
monitoring primarily rely on supervised learning, while manually labeled DAS data
is quite limited and it is difficult to obtain more annotated datasets. In this paper,
we present DASFormer, a novel self-supervised pretraining technique on DAS data
with a coarse-to-fine framework that models spatial-temporal signal correlation.
We treat earthquake monitoring as an anomaly detection task and demonstrate
DASFormer can be directly utilized as a seismic phase detector. Experimental
results demonstrate the effectiveness of DASFormer on the unsupervised seismic
detection task and the potential of applying to downstream tasks.

1 INTRODUCTION

Earthquake, as a natural disaster, poses a constant threat to public safety due to its randomness and
potentially catastrophic damage. Monitoring earthquakes using large networks of seismic sensors,
such as seismometers, is a fundamental task to unravel the underlying physics and mitigate associated
hazards Ringler et al. (2022). Conventional seismic networks with sensor spacing of 10 to 100
km limit the capability of earthquake monitoring at finer scales. To overcome the bottleneck, a
new technology called Distributed Acoustic Sensing (DAS) offers a cost-effective and scalable
solution Hartog (2017); Zhan (2020); Lindsey & Martin (2021). Figure 1 illustrates how DAS works:
by sensing ground motion from back-scattered laser light due to fiber defects, DAS can transform
ubiquitous telecommunication cables into ultra-dense monitoring networks. With thousands of
seismic sensors in meter-scale spacing, DAS continuously records a wide range of natural signals,
paving the way for next-generation earthquake monitoring Zhan (2020); Lindsey & Martin (2021).

Recently, deep learning techniques have achieved progressive breakthroughs in extensive areas.
Deep-learning-based methods Ross et al. (2018); van den Ende et al. (2021b); Zhu & Beroza (2019);
Spoorthi et al. (2020); Kuang et al. (2021); Smith et al. (2020); Dahmen et al. (2022); Mousavi
et al. (2020); McBrearty & Beroza (2023); Sun et al. (2023); Smith et al. (2022) have been credited
with significant advancements in earthquake monitoring. However, earthquake monitoring using
DAS remains challenging due to the lack of manually labeled DAS data, especially P and S phase
labels that carry vital information about seismic sources. Furthermore, it is a fundamental problem to
generalize deep foundation models well for a wide range of downstream tasks, such as denoising, P/S
phase picking, etc. Current studies generally build on labeled or synthetic datasets Ross et al. (2018);
Zhu & Beroza (2019); Spoorthi et al. (2020); Kuang et al. (2021); Smith et al. (2020); Dahmen et al.
(2022); Mousavi et al. (2020); McBrearty & Beroza (2023); Sun et al. (2023); Smith et al. (2022) or
focus on denoising task van den Ende et al. (2021b).

Inspired by the success of BERT Devlin et al. (2019) in natural language processing, we develop
a novel self-supervised framework named DASFormer, which is pre-trained on a mask prediction
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Figure 1: Illustration of how Distributed Acoustic Sensing (DAS) works for earthquake monitoring.
An example of DAS data collected in Ridgecrest City, CA is shown on the right.

task to empower the representation ability for DAS data. For the ability for downstream tasks,
we demonstrate that the well-pretrained DASFormer can be served as a time series detector for
earthquake monitoring. The underlying assumption here is that earthquakes occur randomly and
thus are much more challenging to causally predict alongside the time direction than other sources.
Figure 1 shows an example that earthquake-generated P and S phases sharply appear as vertical
anomalies on the DAS data whereas malfunctioning sensors and traffic signals have more temporal
causality. Furthermore, we also demonstrate the potential of DASFormer on other downstream tasks
like malfunctioning detection, semi-supervised P/S phase picking prediction, etc. In our practical
experiments, our method outperforms a variety of state-of-the-art time series forecasting, anomaly
detection, and time series foundation models on realistic DAS data collected in Ridgecrest city, CA Li
et al. (2021a).

The contributions of this paper can be summarized as follows:

• We propose a novel self-supervised framework for DAS data named DASFormer, which
can be applied to downstream tasks for earthquake monitoring. DASFormer leverages the
unique characteristics of DAS data to learn meaningful representations without the need for
manually labeled data. By exploiting the temporal and spatial information captured by DAS,
our framework can effectively capture the dynamic nature of seismic activities and extract
valuable features for earthquake monitoring.

• The model comes with a well-designed coarse-to-fine framework built on the top of Swin
U-Net Cao et al. (2022) and Convolutional U-Net Ronneberger et al. (2015) to effectively
capture both spatial and temporal patterns in DAS data. To further enhance the framework,
we introduce several key components such as preprocessing strategy, patching strategy,
DASFormer blocks, and GAN-like training scheme Goodfellow et al. (2020).

• We demonstrate the effectiveness of our method mainly on the task of unsupervised P/S
phase detection on realistic DAS data. Our experimental results show that DASFormer
outperforms 13 and 7 state-of-the-art methods for time series forecasting and anomaly
detection, respectively, as well as 2 advanced time series foundation models. Furthermore,
we also show the potential for other downstream tasks through case studies.

2 RELATED WORK

Deep Learning on DAS Data Treating DAS data as time series with deep learning (DL) methods
enhances sensitivity to small-magnitude earthquake signals compared to traditional techniques like
STA/LTA Allen (1978) or template matching Gibbons & Ringdal (2006). Notwithstanding, lacking
precise arrival times for P/S phases remains a crucial challenge for the aforementioned methods. New
deep-learning-based methods such as PhaseNet Zhu & Beroza (2019) and PhaseNet-DAS Zhu et al.
(2023) used supervised U-Net networks for P/S phase picking when large datasets with manual labels
are available; FMNet Kuang et al. (2021), EikoNet Smith et al. (2020), and MarsQuakeNet Dahmen
et al. (2022) apply synthetic data to bypass label scarcity; j-DAS van den Ende et al. (2021a) offers
a self-supervised framework only for signal denoising. This paper presents DASFormer, a self-
supervised technique effective in both unlabeled and minimally labeled scenarios, with the potential
for various downstream tasks.
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Time Series Modeling Temporal variation modeling, integral to time series analysis, has seen
significant advancements recently. Classical methods such as the ARIMA families Box et al. (2015)
were proposed based on prior assumptions of temporal variations. However, these fail to capture
the non-stationarity and complexity of real-world time series. Consequently, deep learning-based
models for time series have emerged, adapting MLPs Oreshkin et al. (2020); Challu et al. (2022);
Zeng et al. (2022); Zhang et al. (2022) to time-series data and introducing temporal-aware neural
networks like TCN Franceschi et al. (2019), RNN and LSTM Hochreiter & Schmidhuber (1997a).
Recently, Transformer Vaswani et al. (2017) has garnered attention for time series modeling, with
architectures like Informer Zhou et al. (2021), LogTrans Li et al. (2019b), and ASTrans Wu et al.
(2020) addressing resource consumption issues. Autoformer Wu et al. (2021) and FEDformer Zhou
et al. (2022b) focus on novel decomposition schemes for trend-cyclical component extraction in time
series. TimesNet Wu et al. (2022) proposes a task-general foundation model for time series analysis.
Moreover, PatchTST Nie et al. (2023) and ViTST Li et al. (2023) adapt the Vision Transformer
(ViT) Dosovitskiy et al. (2021) for time series modeling, akin to our method. However, both of them
use time series line graphs to illustrate temporal data points, while our method directly utilizes the
magnitude of time points as values, leveraging the scalable window mechanism in Swin U-Net Liu
et al. (2021b); Cao et al. (2022); Li et al. (2022) to learn spatial and temporal patterns. Unlike
previous methods that overlook the correlation and invariance in multi-variate time series like DAS
data, our model considers spatial patterns in variates to complement temporal patterns, serving as a
general foundation model.

Anomaly Detection The P/S-phase detection task is a primary task in earthquake monitoring,
which can be viewed as an anomaly detection problem. Anomaly detection methods typically
fall into three categories: clustering-based, reconstruction-based, and forecasting-based methods.
Clustering-based methods Tax & Duin (2004); Ruff et al. (2018a) measure anomaly scores based on
the sample’s distance to the cluster center. Reconstruction-based methods evaluate anomaly scores
via the reconstruction error. Deep learning-based generative models like Variational AutoEncoders
(VAEs) Park et al. (2018); Su et al. (2019); Li et al. (2021b) and GANs Goodfellow et al. (2014);
Li et al. (2019a); Schlegl et al. (2019); Zhou et al. (2019) have been widely investigated to generate
reconstructed time series for anomaly detection. Recently, Anomaly Transformer Xu et al. (2022)
proposes to utilize the great sequential modeling capacity of Transformer Vaswani et al. (2017)
and renovate the self-attention mechanism specific to anomaly detection tasks. Forecasting-based
methods Hundman et al. (2018); Tariq et al. (2019) typically leverage temporal models like ARIMA
and LSTMs to forecast time series, identifying anomalies based on the discrepancy between predicted
and actual values. This paper illustrates how our base model can be used directly as a forecasting-
based anomaly detection method for the P/S phase detection task in earthquake monitoring.

3 PROBLEM FORMULATION OF EARTHQUAKE DETECTION

In this paper, our main downstream task is the earthquake detection, as known as P/S phase detection,
which is based on the DAS data, a kind of spatial-temporal multi-variate time series data. Formally,
assume we have N DAS sensors that record measurements over a period of T time units. Let
X ∈ RN×T denote the DAS collected data matrix, with Xi,j being the measurement recorded by
the i-th sensor at time j. The task of earthquake detection is to identify earthquake signals from
background noise and other signals in the data matrix X. The labels categorize each measurement
Xi,j into binary 1/0 indicating whether an earthquake signal is present.

As a new technology, DAS has limited annotated earthquake labels. We tackle the lack of ground truth
labels by considering an unsupervised setting in this paper. We train our model on a massive number
of unlabeled raw DAS data, and evaluate it on a small labeled DAS signal subset. To effectively
capture the temporal dynamics of DAS data, we pose this problem as a multi-variate time series
forecasting task, which can be formulated as follows:

Given a multi-variate time series of DAS data from multiple sensors over a historical period k
observed at the current time t, I = {X:,t−k, X:,t−k+1, ..., X:,t}, the goal is to train a model to predict
the future time series in p time steps O = {X:,t+1, X:,t+2, ..., X:,t+p}. When an earthquake suddenly
occurs, it generates seismic waves (i.e., P and S wave) that vibrate the fiber cables and are recorded
by DAS. Because the occurrence of earthquakes is temporally unpredictable, the difference between
predicted and real data becomes larger, implying the detection of an earthquake.
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Figure 2: The pipeline of DASFormer with the coarse-to-fine framework including (i) Coarse Genera-
tor instantiated by Swin U-Net networks with DASFormer blocks, (ii) Fine Generator instantiated
by Convolutional U-Net networks, and (iii) Noise-injected Discriminator instantiated by CNNs. For
simplicity, here we omit patch-merging and patch-upsampling blocks between DASFormer blocks.

4 DASFORMER

In this section, we introduce a self-supervised pretraining scheme on DAS data named DASFormer.
Our approach is basically built on the top of Swin U-Net Liu et al. (2021b); Cao et al. (2022) and
Convolutional U-Net Ronneberger et al. (2015), and trained on the mask prediction task to learn the
spatial-temporal representation of DAS data.

4.1 DAS DATA PREPROCESSING

DAS data can be typically represented as a time series with a large number of continuous variates
(1250 in our datasets), which could be resource-consuming if we directly feed them into the model.
To address this issue, we split the DAS data into segments based on its spatial-temporal invariance:
(i) spatially uniform DAS sensor spacing and (ii) regular temporal sampling rate. Specifically, the
raw DAS data is split into segments in size V × L with a stride of V

2 and L
2 alongside time and space

dimensions, respectively, so that half of every two adjacent small blocks overlap.

4.2 ARCHITECTURAL DESIGN OF DASFORMER

The pipeline of our DASFormer model is illustrated in Figure 2.

Part 1: Multi-variate Time Series Masking Inspired by pretrained language models like BERT De-
vlin et al. (2019), we mask a certain percentage of the input DAS data across both the temporal and
variate dimensions in multi-variate time series. The goal is to learn robust and generalizable time
series representations by predicting the masked data points from the context of the remaining data.
Practically, we obscure values using a combination of masks with both regular and irregular shapes
(see the input in Figure 2). Please refer to Appendix C.1 for more details.

Specifically, given a segment X in shape V × L, our masking strategy entails selecting a data subset
and applying a mask. This mask, a binary matrix M with the same shape V ×L as the input segment
X, assigns the value of 1 to masked data points and 0 to unmasked points. Thus, our input comprises
the segment X and the corresponding mask M.

Part 2: Overlapping Convolutional Patching The non-overlapping linear patching strategy in
the standard Swin Transformer is unsuitable for multi-variate time series data due to its neglect of
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temporal dependencies between adjacent patches, potentially disrupting local neighboring struc-
tures, particularly when discriminative regions are divided. To rectify this, we instead employ 2D
convolutions to generate overlapping feature maps as patches, thereby capturing both temporal and
spatial relationships. In this way, the input resolutions are not required to be strictly divisible by the
predetermined patch size as the linear patching strategy. Formally, given the input in shape V × L,
we use two convolutional layers and produce 1

2 sized feature maps as our patches.

Part 3: Coarse-to-Fine Multi-variate Time Series Generator The DASFormer generator, de-
signed to accurately predict missing data points, comprises two stages: a Swin U-Net-based network
for coarse prediction and a U-Net network for fine prediction. This coarse-to-fine framework provides
key advantages: (i) The coarse stage focuses on high-level features like contextual interaction in
both temporal and spatial dimensions, while the fine stage refines predictions based on mask-specific
detailed information, resulting in more realistic pretraining outcomes. (ii) The contextual knowledge
acquired from the coarse stage can be transferred to downstream tasks, negating the need for training
from scratch.

DASFormer Block. To enable the model to dynamically update the mask state based on the unmasked
data points, we propose the DASFormer block to adapt DAS time series data. Specifically, we first
modify the multi-head attention mechanism in the vanilla Swin-Transformer block to let tokens only
attend to the unmasked tokens. Additionally, the global nature of the vanilla attention mechanism
lacks the local temporal dependencies in time series Li et al. (2019b); Xu et al. (2022), so we propose
an additional mask B with Gaussian distribution to enhance the locality perception of the attention
block. Formally, the attention in our DASFormer can be formulated as follows:

ah = softmax
[
(
QhK

⊤
h√

dk
) + M̃+Bh

]
Vh, M̃i,j =

{
0 if Mtokeni,j = 0

−inf if Mtokeni,j = 1
, (1)

where h = 1, ...,H denotes the h-th head. Qh, Kh, Vh denote Query, Key, and Value embed-
dings, respectively. dk denotes the dimension of embedding vectors. Mtokeni,j denotes the mask,
and M̃ denotes the corresponding attention biases. B denotes the additional mask with Gaussian
distribution (Bh)i,j = −d(p(i),p(j))

2σ2
h

, where p(i) = (ix, iy) the 2-D absolute position of token i, and

d(p(i), p(j)) = (ix − jx)
2 denotes 1-D Euclidean distance representing time distance between i and

j. The σh for each head of attention can be different to learn multi-scale temporal dependencies.
Please refer to Appendix C.3 for more details.

Dynamic Masking. Let Mtoken denote the token mask, and we define the initial token mask as
M

(0)
token = M. In each training step, Mtoken is dynamically updated by an alternating strategy until all

tokens are exposed as unmasked, meaning all masked tokens are learned and predicted. Specifically,
in the m-th update, the mask M

(m)
token is obtained by applying a convolutional min-pooling over the

recovered 2-D space of previous token mask M
(m−1)
token using a kernel in size K ×K (with K being

even) with stride K. In the next update, an extra K/2 padding size is applied to have overlapping
update pairs, which make the masked region gradually shrink and eventually disappear, i.e. eventually
Mtoken = 0. Please refer to Appendix C.2 for more details.

Fine Generator. We instantiate the fine generator with vanilla convolutional U-Net networks Ron-
neberger et al. (2015), which takes the predicted segment from the coarse generator as input.

Part 4: Noise-injected Discriminator DAS data includes various stochastic noise, such as environ-
mental and instrumental noise. To alleviate this stochastic variation and encourage more pluralistic
generation, we inject stochastic noise into (i) the features after each convolution layer, and (ii) the
weights of each convolution layer.

Specifically, the discriminator in DASFormer is basically instantiated by stacked convolution layers.
Inspired by StyleGAN family Karras et al. (2019; 2020), we utilize a style manipulation module to
reduce the sensitivity of the model to noisy inputs and encourage more diverse generations:

s = f(C + nc), w
′

ijk = si ·wijk, w
′′

ijk = w
′

ijk

/√∑
i,k

w
′
ijk

2
+ ϵ , (2)

where we inject a noise nc ∼ N (0, σ2
cI) to the code C learned from the generator.
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Figure 3: Visual comparison between forecasting methods. The dashed frame and the blue arrow
denote the forecasting window and direction, respectively. The red arrow in the Real panel indicates
an earthquake signal (P-phase) in real data. Note that our DASFormer successfully predicts the
temporal trends of background signals while all baselines fail. Therefore, the earthquake can be easily
exposed by measuring the distance between the forecasting region of Real and DASFormer panels.

Objective Function Due to the presence of random noise in DAS data, it is not appropriate to
evaluate the generation quality by measuring the point-wise error like MSE. Therefore, we aim to
minimize the error of high-level feature maps instead of raw signals as the training objective of the
generator. Specifically, we trained an extra VGG-based autoencoder Simonyan & Zisserman (2014)
on our DAS data with reconstruction loss. Then we utilize its encoder as our high-level feature
extractor for DAS data. Finally, the training objective of both coarse and fine generators is:

argmin
θg

L(θg,X) + α||∇XL(θg,X)||+ βLG + ||θg|| (3)

where L(θg,X) =
∑
i

||ϕi(X̂)− ϕi(X)||1 (4)

where ϕi(·) denotes the i-th feature map extracted from the pretrained encoder, θg denotes the
parameters of the generator, X̂ denotes the generated segment. ||∇XL(θg,X)|| denotes the regular-
ization trick on the gradient Mescheder et al. (2018), and LG is the adversarial loss for generator in
GAN Goodfellow et al. (2020). The loss for discriminator is the same as GAN.

4.3 APPLY DASFORMER TO DOWNSTREAM TASKS

Earthquake Detection DAS signals comprise ubiquitous, uniform random noise and environmental
noises like traffic, which exhibit explicit temporal patterns due to repetitive or cyclical processes.
Conversely, P and S signals are influenced by unpredictable events like earthquakes, resulting in
complex and irregular patterns. We can directly utilize DASFormer as a forecasting-based anomaly
detector, capable of identifying irregular patterns that significantly deviate from predicted values,
especially in the absence of ground-truth earthquake event labels.

To derive predicted values, we introduce a causal mask (only mask the tail p time steps of the segment,
see inputs in Figure 3). To have causal forecasting, we shift a 1-D window in size K alongside only
the time axis instead of the 2-D window in dynamic masking.

Other Downstream Tasks As a pre-trained model, DASFormer can be naturally fine-tuned to
adapt to arbitrary downstream tasks. Typically, we take the coarse part of DASFormer, the Swin
U-Net-based blocks, as the feature extractor, and fine-tune the subsequent convolutions. Take the task
of precise (point-level prediction) P/S phase picking as an example, we first freeze the blocks, then
change the dimension of the output layers and apply the point-wise classification loss function, and
finally re-train the DASFormer in a supervised-learning setting.
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Table 1: Comparison results between state-of-the-art methods of time series forecasting, anomaly
detection, and foundation models. We measure the distance by absolute error (AE), Earth-Mover
Distance (EMD), and sliced EMD. For forecasting methods, the look-back and forecasting window
sizes are set to 100 and 10, respectively. Method-specific denotes the distance proposed by the
specific method. For reconstruction methods, we reconstruct all 110 time steps and use the last 10
for distance measuring. We use ROC-AUC score (AUC) and F1 score (F1) as metrics. The best and
second-best results are in bold and underlined, respectively. ‘-’ denotes not available. To save space,
we select and present representative models here. For complete results, please refer to Table 6 in
Appendix.

Methods Distance AE EMD sliced EMD Method-specific

Metric AUC F1 AUC F1 AUC F1 AUC F1

Traditional
method

Aggregation-0 0.730 0.246 0.692 0.277 0.709 0.246 - -
Aggregation-inf 0.509 0.014 0.501 0.006 0.497 0.009 - -

Forecasting

LSTM 0.726 0.243 0.691 0.277 0.709 0.253 - -
TCN 0.730 0.240 0.701 0.277 0.700 0.253 - -
Transformer 0.736 0.245 0.695 0.276 0.702 0.251 - -
FEDformer 0.522 0.071 0.492 0.130 0.508 0.131 - -
DLinear 0.729 0.233 0.690 0.272 0.703 0.247 - -
Autoformer 0.727 0.233 0.691 0.265 0.707 0.246 - -

Anomaly
detection

LSTM-VAE 0.727 0.241 0.698 0.273 0.707 0.251 - -
ConvNet-GAN 0.724 0.244 0.695 0.270 0.707 0.249 - -
Deep-SVDD 0.726 0.234 0.694 0.277 0.702 0.251 0.564 0.176
GDN 0.732 0.247 0.698 0.279 0.708 0.255 0.618 0.114
Anomaly-Trans 0.730 0.245 0.694 0.275 0.710 0.252 0.543 0.156

Foundation
model

TimesNet 0.733 0.243 0.699 0.277 0.708 0.255 - -
j-DAS 0.754 0.249 0.703 0.272 0.698 0.263 - -
Dasformer (Ours) 0.886 0.552 0.890 0.527 0.906 0.565 - -

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We conduct experiments using DAS data collected by Caltech in Ridgecrest city, Cali-
fornia Li et al. (2021a) as shown in Figure 1, of which one month of data is publicly available via
Southern California Earthquake Data Center Center (2013)1. The Ridgecrest DAS transforms a 10
km telecommunication cable into 1250 sensors in 8 m spacing and records the continuous data at
250 Hz sampling rate. We follow the filtering and cleaning procedure introduced in Zhu & Beroza
(2019) to preprocess the raw signals. We split 90 earthquake events into training/validation/testing
sets alongside the timeline with 45/20/25 events, respectively. Then we downsample the cleaned
signals to 10Hz and cut the DAS signals into 128× 128 segments with a stride of 64 steps using the
preprocessing scheme aforementioned in Section 4.1. After that, we obtain 31,464 segments in total
and 21,672/4,352/5,440 segments in training/validation/testing sets pertaining on the mask prediction
task. The segmentation for evaluating the performance on the P/S phase detection task is different
and will be introduced later.

Benchmarks To demonstrate the superiority of the proposed DASFormer method, we extensively
select 12 and 7 recent state-of-the-art methods on time series forecasting and anomaly detection
tasks, respectively, as the benchmarks in this paper, including LSTM Hochreiter & Schmidhuber
(1997b), TCN Lea et al. (2017), Transformer Vaswani et al. (2017), Crossformer Zhang & Yan (2023),
Reformer Kitaev et al. (2020), Pyraformer Liu et al. (2021a), Nonstationary Transformer (Non-
Trans) Liu et al. (2022), Informer Zhou et al. (2021), FEDformer Zhou et al. (2022b), DLinear Zeng
et al. (2022), Autoformer Wu et al. (2021), MICN Wang et al. (2023), and FiLM Zhou et al. (2022a) for
forecasting-based methods, and LSTM-VAE Lin et al. (2020), LSTM-GAN Goodfellow et al. (2014),
ConvNet-VAE Kingma & Welling (2014), ConvNet-GAN Goodfellow et al. (2014), Deep-SVDD Ruff
et al. (2018b), GDN Deng & Hooi (2021), Anomaly Transformer (Anomaly-Trans) Xu et al. (2022)

1Ridgecrest DAS data is available on SCEDC AWS S3 bucket s3://scedc-pds/Ridgecrest_DAS
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Figure 4: (Left) The input DAS signals. (Middle) Three selected feature maps extracted from the last
DASFormer block of the pretrained DASFormer before fine-tuning. (Right) The P/S phase picking
results of DASFormer in a semi-supervised setting trained with only 20 labeled samples.

for anomaly detection-based methods. For forecasting-based methods, we use the distance between
the predicted values and the real values in the forecasting window as the anomaly score. For anomaly
detection-based methods, the anomaly score is the distance between the reconstructed values and the
observed values in the forecasting window. For Deep-SVDD, GDN, and Anomaly Transformer, we
further show the results with their specific distances as anomaly scores. We involve two foundation
models, TimesNet Wu et al. (2022) and j-DAS van den Ende et al. (2021b) and two traditional
methods in Zhu & Beroza (2019).

Implementation Details & Metrics For earthquake detection task, we adopt a shift window with a
smaller stride of 10 time steps (1 second) and predict the next 10 time steps to have non-overlapped
forecasting alongside the time axis. We use window-wise labels instead of point-wise labels for a
more robust evaluation. A forecasting region is designated as an anomaly if it contains at least one
annotated anomaly data point. An anomaly score is defined by the distance between the realistic
signal values and the predicted signal values within the forecasting region. We investigate several
distance functions in practice, including absolute error with Euclidean distance (AE), Earth Mover’s
Distance (EMD) Rubner et al. (2000), and sliced EMD Deshpande et al. (2018). We calculate metrics,
such as ROC-AUC and F1-score, for this binary classification.

For P/S phase picking task, we adopt convolutions on the top of the DASFormer blocks of the coarse
generator and then fine-tune these convolutions with a point-wise loss function on the labeled DAS
data. To make the model more robust to the signals, following Zhu & Beroza (2019), we soften the
point-wise hard-encoded labels (1 for P/S phases, 0 for others) to values ranging from 0 to 1 by a
Gaussian distribution.

5.2 RESULTS AND ANALYSIS

Comparison Results We compare our method with the aforementioned baselines on the earthquake
detection task. Results in Table 1 suggest an overwhelmingly high ROC-AUC score and F1 score
achieved by DASFormer. We also notice that AE and sliced EMD are both appropriate distance
functions for this task. The visual comparison of forecasting-based methods is in Figure 3, where
we can observe all baselines fail to forecast DAS signals. Reasons follow. (i) Noisy. DAS data can
be quite noisy, with many spurious and random signals that don’t correspond to any predictable
events, making it difficult to train through point-wise loss used in all baselines. (ii) Lack of spatial
awareness. All of these baselines treat different variates as independents, which ignores the spatial
coherence of DAS data. Some of them utilize GNN to learn such correlations, however, the graph
cannot accurately capture the way seismic signals propagate along the spatial axis, which is implied
in the order of variates.

Reconstruction-based methods also failed for the following reasons. (i) Lack of causal awareness.
Causal relations are crucial because we detect the anomalies based on the assumption that P/S phases
are inherently unpredictable along the time axis. However, these methods ignore time direction
and causality when reconstructing signals. (ii) Scalable anomaly. The generative methods such as
ConvAE, VAE, and GAN are only sensitive to small abnormal areas. However, P-phase and S-phase
can last for a long time, resulting in a large abnormal area.
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Table 2: The results for P and S phases separately. The best results for each phase are in bold.

Phase AE EMD sliced EMD

AUC F1 AUC F1 AUC F1

P-phase 0.860 0.335 0.830 0.302 0.843 0.327
S-phase 0.908 0.577 0.947 0.561 0.959 0.586

Both 0.886 0.552 0.890 0.527 0.906 0.565

Table 3: Comparison results for ablation studies.

AE EMD sliced EMD

AUC F1 AUC F1 AUC F1

Replace convolutional patching w/ linear patching 0.826 0.435 0.770 0.341 0.663 0.299
Replace DASFormer w/ Swin-Trans block 0.869 0.428 0.782 0.335 0.748 0.316
Replace high-level loss w/ Point-wise MSE loss 0.880 0.435 0.839 0.499 0.743 0.314
Remove noise injection in Discriminator 0.856 0.523 0.857 0.540 0.830 0.443

DASFormer (Ours) 0.886 0.552 0.890 0.527 0.906 0.565

Benefiting from (i) the high-level reconstruction loss, (ii) the ability of Swin U-Net and convolutional
U-Net to learn spatio-temporal patterns, and (iii) the causal forecasting-based anomaly detection
mechanism, our DASFormer overcomes all of the above challenges.

S/P Phase Analysis The results of DASFormer for P-phase and S-phase detection respectively are
shown in Table 2. Our method performs better on S-phase than P-phase, which is within our expecta-
tions as earthquakes typically generate stronger S-phase due to their underlying physics. Intriguingly,
AE and sliced EMD demonstrate superior performance on P-phase and S-phase, respectively. So in
practice, we recommend the use of different distance functions for detecting P-phase and S-phase.

More Downstream Tasks In Figure 4 (Left and Middle), we manually select and visualize 3 out of
180 feature maps from the outputs of the last DASFormer block in the pretrained coarse generator.
These feature maps are surprisingly well-structured and informative, and already contain the patterns
of P/S phases and malfunctioning sensors, demonstrating the fine-tuning ability of our DASFormer.

We attempt to fine-tune DASFormer for the precise P/S phase-picking task in a semi-supervised
setting. We follow the data processing scheme in Zhu & Beroza (2019) which extends every picking
to a region. Then we apply the simple linear probing fine-tuning scheme on the last two convolutional
layers. A case study is shown in Figure 4 (Right). Moreover, the results of applying DASFormer to
submarine DAS data are illustrated in Appendix D.3.

Ablation Study To explore the role of each module in our proposed framework, we conduct
ablation studies with the following comparisons: (i) convolutional patching v.s. linear patching, (ii)
DASFormer block v.s. vanilla Swin Transformer blocks, and (iii) high-level encoder-based generative
loss v.s. point-wise MSE generative loss. The results are shown in Table 3, where we conclude that
all of the proposed modules could strengthen the performance of the model consistently.

6 CONCLUSION

This paper presents the DASFormer as a self-supervised framework for earthquake monitoring using
DAS data. DASFormer leverages a well-designed coarse-to-fine framework with Swin U-Net and
Convolutional U-Net architectures to effectively learn spatial and temporal correlations in DAS
data. The proposed modules, such as convolutional patching, DASFormer blocks, and noise-injected
discriminator, enable better adaptation of visual models to multi-variate time series data. Extensive
comparisons demonstrate the superiority of our method in the task of unsupervised earthquake
detection and other downstream tasks like semi-supervised P/S phase picking, submarine pattern
extraction, etc. DASFormer opens the pathway for applying self-supervised learning to large-scale
unlabeled seismic datasets for improving earthquake monitoring.
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REPRODUCIBILITY STATEMENT

Datasets We illustrate the detailed statistics of our datasets in Appendix B. The download link to
one month of our data is given in the footnote in 5.1.

Implementation Details We illustrate the implementation details in Appendix B, including bench-
mark description, hardware details, training setup, hyper-parameters setup, and training and inference
speed.
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A RESULTS WITH CONFIDENCE INTERVALS

Table 4 presents the average performances and ±95% confidence intervals for our results in Table 1
with five individual runs.

Table 4: Results with ±95% confidence intervals (1.959× σ).

Distance Metrics

AUC F1

AE 0.886 ± 0.0028 0.552 ± 0.0008
EMD 0.890 ± 0.0025 0.527 ± 0.0008
sliced EMD 0.906 ± 0.0039 0.565 ± 0.0006

B IMPLEMENTATION DETAILS

Datasets We only use segments in the testing set to evaluate the performance of DASFormer and all
baselines. Unlike the pretraining, we adopt a shift window in 128× 128 with a stride of 10 time steps
(1 second) to obtain the segments for evaluation. After that, we have 14, 688 segments for evaluation.

We show the statistics of datasets in Table 5.
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Table 5: Statistics of datasets.

Descriptions Training Validation Testing Evaluation

# of seconds 11370 1800 2250 2250
# of sensors 1250 1250 1250 1250
Frequency rate 10Hz 10Hz 10Hz 10Hz
# of earthquakes 45 20 25 25
# of segments 21672 4352 5440 14688
Size of segments 128× 128 128× 128 128× 128 128× 128
Stride of segments 64 64 64 10

Table 6: Complete comparison results between state-of-the-art methods of time series forecasting,
anomaly detection, and foundation models. We measure the distance by absolute error (AE), Earth-
Mover Distance (EMD), and sliced EMD. For forecasting methods, the look-back and forecasting
window sizes are set to 100 and 10, respectively. Method-specific denotes the distance proposed by
the specific method. For reconstruction methods, we reconstruct all 110 time steps and use the last 10
for distance measuring. We use ROC-AUC score (AUC) and F1 score (F1) as metrics. The best and
second-best results are in bold and underlined, respectively. ‘-’ denotes not available.

Methods Distance AE EMD sliced EMD Method-specific

Metric AUC F1 AUC F1 AUC F1 AUC F1

Traditional
method

Aggregation-0 0.730 0.246 0.692 0.277 0.709 0.246 - -
Aggregation-inf 0.509 0.014 0.501 0.006 0.497 0.009 - -

Forecasting

LSTM 0.726 0.243 0.691 0.277 0.709 0.253 - -
TCN 0.730 0.240 0.701 0.277 0.7 0.253 - -
Transformer 0.736 0.245 0.695 0.276 0.702 0.251 - -
Crossformer 0.730 0.246 0.702 0.275 0.712 0.251 - -
Reformer 0.730 0.247 0.694 0.277 0.709 0.253 - -
Pyraformer 0.726 0.245 0.693 0.278 0.707 0.254 - -
Non-Trans 0.727 0.238 0.697 0.277 0.710 0.252 - -
Informer 0.729 0.241 0.698 0.275 0.709 0.252 - -
FEDformer 0.522 0.071 0.492 0.130 0.508 0.131 - -
DLinear 0.729 0.233 0.690 0.272 0.703 0.247 - -
Autoformer 0.727 0.233 0.691 0.265 0.707 0.246 - -
MICN 0.739 0.247 0.699 0.277 0.705 0.256 - -
FiLM 0.735 0.245 0.694 0.278 0.702 0.250 - -

Anomaly
detection

LSTM-VAE 0.727 0.241 0.698 0.273 0.707 0.251 - -
LSTM-GAN 0.732 0.245 0.697 0.277 0.705 0.252 - -
ConvNet-VAE 0.734 0.247 0.701 0.280 0.711 0.257 - -
ConvNet-GAN 0.724 0.244 0.695 0.270 0.707 0.249 - -
Deep-SVDD 0.726 0.234 0.694 0.277 0.702 0.251 0.564 0.176
GDN 0.732 0.247 0.698 0.279 0.708 0.255 0.618 0.114
Anomaly-Trans 0.730 0.245 0.694 0.275 0.710 0.252 0.543 0.156

Foundation
model

TimesNet 0.733 0.243 0.699 0.277 0.708 0.255 - -
j-DAS 0.754 0.249 0.703 0.272 0.698 0.263 - -
Dasformer (Ours) 0.886 0.552 0.890 0.527 0.906 0.565 - -

Benchmarks We briefly introduce all baselines as follows:

• Aggregation-0 Zhu & Beroza (2019) averages the absolute values across all variables within
a specific time window on DAS data.

• Aggregation-inf Zhu & Beroza (2019) serves like a random detector that assigns random
labels without any specific pattern or criteria.

• LSTM Hochreiter & Schmidhuber (1997b), namely Long Short-Term Memory model,
is a variant of recurrent neural networks (RNNs) that are capable of learning long-term
dependencies.
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• TCN Lea et al. (2017), namely Temporal Convolutional Networks, is a variant of convolu-
tional neural networks (CNNs) that leverage convolutional operations to capture and model
temporal dependencies in sequential data.

• Transformer Vaswani et al. (2017) embeds self-attention mechanism to capture cross-token
dependency (cross-time dependency in time series) and demonstrates remarkable perfor-
mance in sequence modeling tasks.

• Reformer Kitaev et al. (2020) is a variant of Transformer improving the computation
efficiency by locality-sensitive hashing.

• Crossformer Zhang & Yan (2023) is a Transformer-based method utilizing cross-dimension
dependency for multi-variate time series.

• Pyraformer Liu et al. (2021a) is a Transformer-based method learning multi-scale represen-
tation by the pyramidal attention module.

• Nonstationary Transformer Liu et al. (2022) is a Transformer-based method utilizing Series
Stationarization and De-stationary Attention to address the over-stationarization issue for
time series.

• Informer Zhou et al. (2021) is a Transformer-based method using ProbSparse self-attention
to capture cross-time dependency for time series.

• FEDformer Zhou et al. (2022b) is a Transformer-based method utilizing the seasonal-trend
decomposition to capture cross-time dependency for time series.

• DLinear Zeng et al. (2022) is a simple linear model with seasonal-trend decomposition for
time series, which challenges Transformer-based methods.

• Autoformer Wu et al. (2021) is a Transformer-based method using the proposed Auto-
correlation mechanism to capture cross-time dependency for time series.

• FiLM Zhou et al. (2022a), namely Frequency improved Legendre Memory model, proposes
Legendre Polynomials projections to approximate historical information for time series.

• MICN Wang et al. (2023), namely Multi-scale Isometric Convolution Network, proposes iso-
metric convolution for local-global correlations to capture the overall view (e.g., fluctuations,
trends) for time series.

• LSTM-VAE Lin et al. (2020) and ConvNet-VAE Kingma & Welling (2014) are VAE-
based generative methods using LSTM and convolutional networks as the encoder/decoder,
respectively.

• LSTM-GAN Goodfellow et al. (2014) and ConvNet-GAN Goodfellow et al. (2014) are
GAN-based generative methods using LSTM and convolutional networks as the generator,
respectively.

• Deep-SVDD Ruff et al. (2018b) is an AE-based anomaly detection method built on a
minimum volume estimation by finding a data-enclosing hypersphere to compute anomaly
scores. We use convolutional networks as the backbone in experiments.

• GDN Deng & Hooi (2021) is an anomaly detection method utilizing graph neural networks
to capture cross-dimension dependency for multi-variate time series.

• Anomaly Transformer Xu et al. (2022) is a Transformer-based anomaly detection method
utilizing the proposed Anomaly-Attention mechanism to capture the cross-time association
discrepancy for time series.

• j-DAS van den Ende et al. (2021b) is a foundation model with a self-supervised learning
scheme for denoising of DAS data.

• TimesNet Wu et al. (2022) is a Transformer-based foundation model for time series, which
achieves state-of-the-art performance in a variety of time series tasks.

The complete comparison results are shown in Table 6.

Hardware All experiments are conducted on a Linux server with 4× Nvidia RTX A5000 GPUs.
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Table 7: The setup of hyper-parameters

Notation Value Description

V 128 Number of variates in a segment.
L 128 Number of time-steps in a segment.
h 8 Number of heads in attention mechanism.
K 2 Dimension of kernels for dynamic mask updating.
α 1 Trade-off hyperparameter in loss function.
β 0.1 Trade-off hyperparameter in loss function.

Training Setup We use Adam Kingma & Ba (2015) optimizer with a learning rate of 0.001 and an
early stopping strategy in the pre-training of our DASFormer model. The batch size of input segments
is set to 32. We save the pre-trained model with the lowest loss on the validation set, which is evaluated
on the testing set as an earthquake detector. The model is implemented using PyTorch Paszke et al.
(2019). We show the setup of all hyper-parameters in Table 7. All hyperparameters are set empirically
without careful tuning.

Training & Inference Speed Typically, the pre-training of DASFormer takes around 72 hours with
4× Nvidia RTX A5000 GPUs. The inference speed of causally forecasting DAS signals is around
0.02 seconds per segment with 1× Nvidia RTX A5000 GPU.

C ILLUSTRATION OF MASKING

C.1 REGULAR AND IRREGULAR MASKING

Figure 5: Samples of input masks used in DASFormer. From Left to Right: (i) regular-only mask,
(ii) irregular-only mask, (iii) and (iv) a mix of regular and irregular masks. We use all these kinds of
masks in practice.

We utilize the masking generation policy proposed by DeepFillv2 Yu et al. (2019) for segmentation
in the pre-training stage. We visualize four samples of our regular and irregular masks in Figure 5.

C.2 DYNAMIC MASKING

We illustrate an example of the alternating updating strategy for Dynamic Masking in Figure 6, where
the entire updating can be done in two steps. In each step, we apply a convolutional min-pooling
operation over the mask. Usually, the number of updates can be much more than two, if so, we repeat
the first and second updates shown in Figure 6 in the following odd and even steps, respectively, until
all tokens eventually become valid.

For forecasting, the causal updating strategy for Dynamic Masking is illustrated in Figure 7. By
constantly applying 1D convolutional min-pooling operation over the mask, the model can eventually
forecast all masked tokens.

C.3 GAUSSIAN MASKING

We illustrate an example of Gaussian Masking in Figure 8, where the memory table stores the value
of exp

(
−d(p(i),p(j))

2σ2
h

)
at position (p(i)x, p(j)x), where p(i) = (ix, iy) the 2-D absolute position of
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(a) Initial token mask 
(b) 1-st update

(c) 2-nd update

padding

unpadding
If the token mask still has any masked cells

Figure 6: Illustration of the alternating updating strategy for Dynamic Masking in pre-training. The
cells in grey and white mean masked and valid regions, respectively. For simplicity, the kernel size
K is set to 2 in this case. As we can see, all tokens are finally exposed as valid after 2 updates.

update &

padding

update &

unpadding

update

(a) Initial causal mask (b) 1-st update (c) 2-nd update (d) 3-rd update

Figure 7: Illustration of the causal updating strategy for Dynamic Masking in forecasting. We shift a
1D window in size K alongside the temporal axis to causally update the token mask.

token i, and d(p(i), p(j)) = (ix − jx)
2 denotes 1-D Euclidean distance representing time distance

between i and j. The value of Gaussian mask at position (i, j) corresponds to the value of the memory
table at position (ix, jx). Empirically, we apply Gaussian Maskigng to 4 of 8 heads in our experiments,
where the standard deviations σh are set to {D/4, D/2, D, 2D} for 4 heads, respectively, to learn
multi-scale time dependencies, where D is the size of the time axis of the recovered 2-D token space.

D CASE STUDIES

D.1 ADDITIONAL CASES

We show eight additional cases in Figure 9. As we can see, DASFormer accurately captures the
increasing or decreasing patterns of traffic flow over time, as well as artifacts caused by malfunctioning
sensors. By successfully predicting both traffic trends and artifacts caused by broken sensors,
DASFormer produces robust P/S phase detections for earthquake monitoring.

D.2 FAILURE CASES

Recall that our labeling strategy is that a sample is labeled as an anomaly if at least one data point in
the forecasting window is annotated as P/S phase. We show 2 failure cases in Figure 10. As we can
see, the reasons for these failures are:

• Annotations are inaccurate.

• Annotations are ambiguous. Samples with insufficient earthquake signals in their forecasting
windows are labeled as anomalies.

Therefore, some cases correctly detected by DASFormer are counted as false detections in the
evaluation. This suggests that the practical performance of DASFormer should be better than what the
metrics (i.e., ROC-AUC scores and F1 scores) reflect due to the inevitably inaccurate and ambiguous
labeled samples.
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(a) Memory table for (b) Gaussian Mask

Query the corresponding value via 

the recovered 2-D absolute position

and

Return the value at  

𝑝(𝑖) = (𝑖𝑥 , 𝑖𝑦)

(𝑖𝑥 , 𝑗𝑥)

𝑝(𝑗) = (𝑗𝑥 , 𝑗𝑦)

exp −
𝑑(𝑝(𝑖), 𝑝(𝑗))

2𝜎ℎ2

Figure 8: Illustration of Gaussian mask for better locality perception. For simplicity, we take a token
space in size 3× 3 as an example, so the size of the Gaussian mask is 9× 9 (32 × 32). The standard
deviation σh in the Gaussian distribution is set to 3/2.

D.3 DASFORMER FOR SUBMARINE DAS DATA

Except for the Ridgecrest DAS example on land, DAS is also promising for deploying large-aperture
and long-term monitoring networks at logistically challenging places. For instance, deploying DAS
in the harsh ocean. We take advantage of a four-day community submarine DAS experiment offshore
central Oregon Wilcock et al. (2023) to examine the robustness of our DASFormer. Between Nov.
1st and 5th, 2021, two fiber-optic backbone cables were temporarily converted to submarine DAS
arrays (referred to as OOI North and OOI South) Wilcock et al. (2023). In this study, we use the OOI
North as an example. It was connected to an Optasense QuantX interrogator to continuously record
ground vibrations up to the first optical repeater located at ∼65 km from the shore. With a sensor
spacing of ∼2 m, the OOI North array has a total of 32600 sensors2.

We pre-train an Ocean-DASFormer on this submarine DAS data and visualize four cases in Figure 11:

• (Upper Left) Ocean gravity waves.
• (Upper Right) Land-ocean boundary (land on top and ocean at bottom).
• (Lower Left) and (Lower Right) Noise in the ocean at different water depths.

Ocean-DASFormer effectively captures the spatial and temporal patterns of all examples in various
environments, indicating its potential for submarine DAS data in the future.

D.4 TIME SERIES VIEW

We illustrate the results in a time series view in Figure 12. As we can see, DASFormer effectively
captures the temporal trends and patterns for normal cases. And for anomaly cases, the difference
between the forecast and real values becomes larger indicating an earthquake comes.

2The data is publicly available at http://piweb.ooirsn.uw.edu/das/
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Real DASFormer

Magnitude: M3.20 444

Real DASFormer

Magnitude: M2.44 3251

Magnitude: M2.33 57522 Magnitude: M3.13 53313

Magnitude: M2.30 50499 Magnitude: M2.00 46383

Magnitude: M3.10 32451 Magnitude: M3.66 29873

P-phase S-phase

Figure 9: Visualization of forecasting results. The dashed frame and the blue arrow in the first
case denote the forecasting window and direction, respectively, which are omitted in the rest of
the cases for clarity. Our pre-trained DASFormer successfully detects all of these earthquake
phases with high anomaly scores. Magnitude is from Southern California Earthquake Data Center
https://scedc.caltech.edu/.
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(a)  Magnitude: M2.98          Label: Normal (no Earthquake)

Real Real

with Annotation
DASFormer DASFormer

with Annotation

(b) Magnitude: M2.00           Label: Anomaly (Earthquake)57522

Real Real

with Annotation
DASFormer DASFormer

with Annotation

Figure 10: Visualization of failure cases. The dashed frame and the blue arrow in the first case
denote the forecasting window and direction, respectively. The orange points indicate the data points
annotated as P phase. (a) Inaccurate annotation. The sample should be labeled as an anomaly with
earthquake. (b) Ambiguous annotation. The time period of earthquake signals in this sample is
negligible to be labeled as an anomaly with earthquake.

Real DASFormer Real DASFormer

Figure 11: Visualization of applying DASFormer to submarine DAS data. The dashed frame and
the blue arrow in the first case denote the forecasting window and direction, respectively, which are
omitted in the rest of cases for clarity.
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Normal

Anomaly
(Earthquake)

Figure 12: Illustration of results in a time series view. We randomly select 4 channels from normal
cases and anomaly cases, respectively. The look-back and forecasting sizes are set to 103 and 25,
respectively.
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