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ABSTRACT

End-to-end autonomous driving has emerged as a promising research trend aimed
at achieving autonomy from a human-like driving perspective. Traditional so-
lutions often divide the task into four sub-tasks—tracking-by-detection, online
mapping, prediction, and planning—with several interactions to polish planning.
However, this modular approach disrupts the cohesion of autonomous driving by
decomposing these processes and then linking them through interactions, leading
to suboptimal and inefficient practical applications. To address this limitation,
we propose ADDI, a simple and efficient end-to-end autonomous driving method.
First, ADDI integrates tracking-by-detection and online mapping through a uni-
fied detection module paired with distinct expert designs, enabling simultaneous
output of detection and mapping elements. Second, ADDI employs a unified
motion planning model with distinct experts to jointly predict agent trajectories
and ego planning trajectories. With this unified model structure, most interac-
tions required by previous methods are rendered unnecessary. ADDI implements
two implicit (resource-free) and two explicit interactions to associate the different
components. Experimental results demonstrate that ADDI achieves state-of-the-
art performance on both open-loop and closed-loop benchmarks while running
significantly faster than prior end-to-end methods.

1 INTRODUCTION

Autonomous driving is a complex system that requires precise environmental perception and reli-
able driving behaviors. Traditional methods decompose the autonomous driving system into four
sub-tasks—detection, online mapping, prediction, and planning—to accomplish the overall task.
However, these methods face challenges related to scalability, cumulative errors, and extensive post-
processing. Recently, end-to-end autonomous driving approaches Hu et al. (2023); Jiang et al.
(2023); Sun et al. (2024) have introduced a novel framework, enabling autonomous driving to be
managed by an end-to-end model. These end-to-end approaches simplify the conventional system,
marking the start of a new era in data-driven autonomous driving.

Existing end-to-end methods Hu et al. (2023); Jiang et al. (2023); Jia et al. (2023a); Sun et al. (2024);
Jia et al. (2023b) are influenced by traditional autonomous driving pipelines. UniAD Hu et al.
(2023) developed end-to-end autonomous driving, it integrates all sub-tasks into a cascade model.
Furthermore, VAD Jiang et al. (2023) utilizes a vectorized presentation to eliminate the need for
hand-crafted post-processing. Inspired by Lin et al. (2023a), Sun et al. (2024) uses sparse feature
extraction to construct 3D features, avoiding the computationally expensive generation of bird’s eye
view (BEV) features. DriveAdapter Jia et al. (2023a) trains adapters in a frozen reinforment learning
teacher model with imitation learning. Given that planning trajectory is the final target of end-to-
end autonomous driving, several methods have improved performance by designing more reasonable
planning strategies Ye et al. (2023); Song et al. (2024). Previous methods typically utilize four sep-arate modules to perform tracking-by-detection, online mapping, prediction, and planning tasks.
These methods rely on six interactions (Agent-Map, AgentTrajectory-Agent, AgentTrajectory-
Map, EgoTrajectory-Agent, EgoTrajectory-Map, AgentTrajectory-EgoTrajectory), and an addi-
tional Motion-Temporal interaction to facilitate information exchange between current and previ-
ous elements. As shown in fig. 2(Appendix A). They overlook that end-to-end autonomous driving
models input comprehensive environmental data, maintaining the integrity of these elements (agents,
map elements, agent trajectories, ego planning trajectories, etc.). Disassembling these elements can
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Figure 1: Overview of our newly introduced ADDI. The pipeline of ADDI is composed of Track-
ing&Perception and Motion Planning. The Tracking&Perception module utilizes a unified model to
simultaneously detect agents and map elements. Similarly, the Motion Planning module uses one
entity model to export agent predictions and ego motion planning concurrently. ADDI simplifies
four parts of traditional end-to-end AD methods into two parts, and utilizes two implicit interactions
(without additional resource consumption) and two explicit interactions (Motion Perception Inter-
action and extra Motion Temporal Interaction) to outweigh the traditional complex interactions.

compromise coherence and disrupt the overall system’s integrity. Moreover, the extensive use of
sequential models often results in lower inference speeds and higher resource consumption.

In this paper, we propose an efficient and simple end-to-end autonomous driving method, named
ADDI, the principle is shown in fig. 2(Appendix A). Since online mapping can be treated as a
DETR-like detection method Liao et al. (2023), we manage the online mapping task as track-
ing&mapping, similar to tracking-by-detection. We combine the detection and mapping tasks with
a novel detection module equipped with distinct experts, called Tracking&Perception, which outputs
detection and mapping elements simultaneously. Additionally, since both prediction and planning
involve trajectory forecasting, we use a unified Motion Planning model with integrated motion ex-
perts to predict agent trajectories and ego planning trajectories simultaneously. In summary, our
method utilizes only two models to achieve the functionality of four models used in traditional ap-
proaches, as illustrated in fig. 1. Our approach also simplifies the complex interactions inherent
in traditional end-to-end autonomous driving methods. We replace the six interaction modules and
one extra motion-temporal interaction of existing methods with two implicit interactions and two
explicit interactions. The two implicit interactions are embedded within the self-attention of Track-
ing&Perception and Motion Planning, adding no additional resource demands. One explicit inter-
action is the Motion-Perception Interaction, while the other is a Motion-Temporal interaction that
aggregates historical motion information, reflecting the inherent temporal interrelations of vehicle
movement. This streamlined design enables our model to accomplish these tasks with two-seventh
of the resources, operating more efficiently than previous methods without any performance degra-
dation.

To summarize, the contributions of our paper are as follows:

• We explore task modules for end-to-end autonomous driving and propose an efficient
paradigm named ADDI, which unifies multiple tasks with only two modules: Track-
ing&Perception and Motion Planning. Combined with distinct expert designs, these unified
models effectively enhance final results.

• We simplify the complex and cumbersome interaction operations by introducing two im-
plicit interactions and two explicit interactions, replacing traditional interactions and en-
hancing the temporal feature representation.
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• Experiments on the open-loop and closed-loop evaluations demonstrate that our method
achieves state-of-the-art performance, showing significant improvements over existing
methods and running faster than previous end-to-end approaches.

2 RELATED WORK

2.1 2D-TO-3D FEATURE TRANSFORMATION

Given surrounding images P ∈ RN×3×H×W , end-to-end autonomous driving systems extract fea-
tures using specific encoders, which produce features in either Bird’s-Eye-View (BEV) or sparse
feature form.

2.1.1 BEV ENCODER

BEV-based feature extractors are widely used in autonomous driving Philion & Fidler (2020); Li
et al. (2022b); Reiher et al. (2020). Early methods normally convert 3D Euclidean space features to
a 2D Euclidean planar surface using the Inverse Perspective Mapping (IPM) Bertozzi et al. (1998);
Zhang et al. (2014); Jeong & Kim (2016); Can et al. (2021); Reiher et al. (2020). However, IPM
assumes that the height of all objects is zero, which restricts the accurate representation of the
surrounding environment. To eliminate the fatal flaw of IPM, LSS Philion & Fidler (2020) implic-
itly unprojects image features to 3D space with calibrated camera intrinsics and extrinsics. Bev-
Former Li et al. (2022b) treats BEV feature extraction as a 3D-to-2D projection task, presenting
BEV feature scalars as queries to learn the feature transformations.

2.1.2 SPARSE SAMPLING

Different from dense BEV-based methods, sparse-based algorithms Wang et al. (2021) directly sam-
ple sparse features from images. However, their capacity is limited; for example, DETR3D Wang
et al. (2021) samples features from single 3D reference points, which restricts its ability to learn
representations from a global perspective. Similarly, PETR Liu et al. (2022) transfers the 2D fea-
tures into the 3D representation by encoding 3D position embedding without complex 2D-to-3D
projection and feature sampling. In addition, Sparse4D Lin et al. (2023a) utilizes multiple sparse
keypoints distributed across 3D anchor box regions for feature sampling.

2.2 MULTI-TASK DECODER

End-to-end autonomous driving task consists of multiple decoders.

2.2.1 DETECTION DECODER

3D object detection is a foundational task in end-to-end autonomous driving. Early methods Wang
et al. (2021); Liu et al. (2020); Duan et al. (2019) typically detect 3D objects from a single image.
Recently, multi-view 3D detection has gained popularity and significantly advanced the field of
perception. Philion & Fidler (2020); Li et al. (2022b); Huang & Huang (2022) detect objects from
BEV features with anchor-free strategies or DETR-like detection heads Yin et al. (2021); Tian et al.
(2019); Wang et al. (2021). Liu et al. (2022); Wang et al. (2023); Lin et al. (2023a) utilize 3D
positional encodings and detection queries to learn object features via attention mechanisms.

2.2.2 ONLINE MAPPING

Online mapping provides static environmental perception. HDMapNet Li et al. (2022a) predicts
semantic segmentation results on BEV features; however, it requires complex post-processing to
generate vectorized HD maps. VectorMapNet Liu et al. (2023) was the first method to predict
sequential sampling points of map elements. Subsequently, Liao et al. (2023); Liu et al. (2024);
Zhou et al. (2024); Zhang et al. (2024); Hu et al. (2024) utilize DETR-like transformer structures
that sample map elements as point sets using a group of fixed permutations, then the hierarchical
queries are responsible for extracting structured map elements. Additionally, Yuan et al. (2023);
Chen et al. (2024a) associate tracked HD map elements from historical frames to achieve more
accurate map constructions.
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2.2.3 TRACKING

Recently, transformer-based attention mechanisms with track queries are widely adopted in end-to-
end multi-object tracking to associate instances across frames Meinhardt et al. (2022); Sun et al.
(2021); Cai et al. (2022); Gao & Wang (2024). These methods achieve significant performance
improvements in tracking tasks. Inspired by these methods, Lin et al. (2023b); Sun et al. (2024)
extend tracking queries by incorporating memory mechanisms to enhance performance further.

2.2.4 PREDICTION

As a crucial part of autonomous driving, motion prediction is used to forecast the future trajectories
of detected objects. Early works predict future trajectories with simple neural networks Luo et al.
(2020); Casas et al. (2021a). in addition, Liu et al. (2021); Gao et al. (2020) introduce sparse repre-
sentations to predict the dynamic object behavior. Recently, PnPNet Liang et al. (2020) introduced a
novel learnable process to address both data association and trajectory estimation. Gu et al. (2023);
Jiang et al. (2022) predict future trajectories by interacting with tracked objects and vectorized maps,
showing significant improvements in experimental results.

2.2.5 PLANNING

With the support from previous tasks, the ultimate goal of end-to-end methods is to predict planning
trajectories or control signals. Early works predict trajectories directly without interacting with per-
ception and motion prediction Pomerleau (1988); Prakash et al. (2021), resulting in unsatisfactory
performance. Subsequently, Casas et al. (2021b); Cui et al. (2021); Sadat et al. (2020); Hu et al.
(2022) achieve significant progress by utilizing dense cost maps constructed from perception and
motion predictions. However, these methods required hand-crafted rules to select the optimal tra-
jectory based on cost maps. Additionally, reinforcement learning is used to predict planning trajec-
tories Toromanoff et al. (2020); Chekroun et al. (2022); Chen et al. (2021). Notably, recent research
introduces unified frameworks that integrate perception, prediction, and planning Hu et al. (2023).
Furthermore, Jiang et al. (2023); Ye et al. (2023) predict agent motion by interacting with dynamic
tracking objects and static map elements, refining the planning with several constraints. In contrast
to prior methods, SparseDrive Sun et al. (2024) constructs a multi-task with sparse feature sampling,
it also utilizes a hierarchical planning selection strategy that incorporates a collision-aware rescore
module to obtain a rationality and safety planning result. Recent studies have noted that open-loop
data cannot adequately simulate vehicle interactions in autonomous driving contexts. Consequently,
several methods use closed-loop datasets to evaluate and optimize each module, assessing perfor-
mance based on Driving Score, Route Completion, and Infraction Score Li et al. (2024); Jia et al.
(2023a;b); Chen et al. (2024b).

3 METHOD

3.1 OVERVIEW

The end-to-end autonomous driving framework of ADDI is depicted in fig. 1. Our DETR-like net-
work is simplified with three components: Tracking&Perception, Motion Planning, and Constraint
Loss. Specifically, given a series of surrounding images, our Tracking&Perception module, abbre-
viated as the perception module, extracts features from these images and projects them into a 3D
sparse space to represent perception queries (for dynamic agents and static map elements). These
queries are then fed into our perception expert module to enforce the feature representation, followed
by a refinement module for further processing. Next, these perception queries are passed to the mo-
tion planning module, which generates motion trajectories (for both agents and the ego vehicle) by
interacting with historical motion features and perception outputs. In addition, the motion planning
module uses a motion expert design similar to the perception expert, to finetune the ego planning
trajectories and agent predictions. Finally, we use the constraint loss to optimize the overall network.

Notably, our method utilizes two implicit interactions (self-attention in Tracking&Perception and
Motion Planning) and two explicit interactions (Motion-Temporal Interaction, Motion-Perception
Interaction) to outweigh the six traditional interactions (Agent-Map, AgentTrajectory-Agent,
AgentTrajectory-Map, EgoTrajectory-Agent, EgoTrajectory-Map, AgentTrajectory-EgoTrajectory)
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and the extra Motion-Temporal interaction of existing methods, achieving a more streamlined and
efficient approach.

3.2 TRACKING&PERCEPTION

Prior works Hu et al. (2023); Jiang et al. (2023); Sun et al. (2024), normally divide the perception
task into two sub-tasks: tracking-by-detection and mapping. In our perception task, we propose
tracking&perception with two improvements: we conduct the map construction to tracking tasks,
similar to tracking-by-detection; we use a single module to simultaneously predict dynamic objects
and static map elements.

3.2.1 PERCEPTION QUERIES INITIALIZATION

We first initialize the perception queries and perception anchors based on their unique charac-
teristics. Specifically, perception anchors are composed of agent anchors and map element an-
chors. Agent anchors (N x 11) are formatted with position, dimension, direction, and velocity:
x, y, z, w, h, l, sin(yaw), cos(yaw), vx, vy, vz . Map element anchors (N x 40) are composed by
N sampled vector points: x1, y1, x2, y2, . . . , x20, y20. These anchors are then added to perception
queries, with each anchor encoded through a unique embedding layer. The simplified expression of
this process is given by:

Qu = Qp + concat(EBa(Anchora), EBm(Anchorm)) (1)

where Qu denotes the unified perception queries, Qp is the initialized query features, EBa and EBm

are the agent embedding encoder and map element embedding encoder respectively, Anchora is the
agent anchors, Anchorm is the map element anchors.

3.2.2 PERCEPTION MODEL UNIFICATION

After extracting image features using ResNet and FPN He et al. (2015); Lin et al. (2017), we
designed our perception module with four components: Temporal Aggregation, Spatial Aggregation
with Implicit Interaction, Perception Expert, and Perception Refinement.

Temporal Aggregation. Historical features play a crucial role in understanding temporal scenes.
Therefore, we design a perception memory bank to cache historical features. Our perception mem-
ory bank is based on the memory bank design from Lin et al. (2023b), differently, we cache both
historical agent features and map elements features. In addition, we use cross-attention to aggregate
the historical information into the current frame.

Qta = cross-atten(Qu, Qt) (2)

where, Qu is the unified perception queries, Qt denotes the historical queries, and Qta presents the
temporally aggregated output.

Spatial Aggregation with Implicit Interaction. Spatial Aggregation is composed of self-attention
and cross-attention. Since unified perception queries consist of agent queries and map element
queries, self-attention implicitly captures the interaction between agents and map elements, allowing
it to replace traditional agent-map interactions. This design not only provides a more coherent
representation of agent-map relationships but also conserves resources. Cross-attention is used to
extract spatial features from regions of interest across image features using intrinsics and extrinsics.
The process is described as follows:

Qsa = cross-atten(self -atten(Qta), Fimg) (3)
where, Qta is the previous temporally aggregated output, Fimg denotes the image features, and Qsa

is the spatially aggregated output.

Perception Expert. Since we use a unified model to predict both agents and map elements simulta-
neously, using an identical approach to fit both agents and map elements with significantly different
structural dimensions, is inherently imprecise. Inspired by Mixture of Experts Shazeer et al. (2017),
which selects different parameters for each incoming example, we have designed perception experts
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to separately enforce agent and map element features. The overview of the perception expert is
illustrated on the left side of fig. 1. This design is composed of rooters and agent-map experts.
Concretely, our router primarily directs the representation from the previous module to the best-
determined top-K experts selected from a set {Ei(x)}N−1

i=0 , where N is the total number of experts,
and Ei is the i-th expert. Typically, we skip computing outputs from experts with zero routes, which
reduces computational costs. The router operation normalizes the selection via a softmax distribu-
tion over the top-K logits, as illustrated below:

y =

N−1∑
i=0

SoftMax(TopK(Wr · x))i · Ei(x) (4)

Where x is the perception queries from the previous module. Ei(x) is the i− th sparse map element
expert. The router variable Wr produces logits via Wr ·x. The value K of top-K is a hyper-parameter
that modulates the number of experts used for process perception queries. This design has a notable
success in computational efficiency, which means that even if we increase N while keeping K
fixed, the model’s parameter count increases while the computational cost remains constant. This
motivates a distinction between the model’s total parameter count and the number of parameters
used for processing an individual active parameter count. As shown in fig. 1, we design two types
of experts: the agent expert and the map element expert. The outputs from these perception experts
enable simultaneous regression of dynamic agents and map elements.

Perception Refinement. Finally, we utilize a perception refinement module to further refine the
predictions of agent anchors and map element anchors. Selected features are also stored in a percep-
tion memory bank. This refinement module is conducted with a convolution and batch-norm layer
(Conv-Bn), followed by the addition of the perception anchors, as illustrated below:

Po = Conv-Bn(yp) +Anchora+m (5)

where Po is the refinement output, yp is the output of last module, Anchora+m is the anchor of
perception.

3.3 MOTION PLANNING

Existing methods often address motion prediction and motion planning independently, treating each
task as a standalone process, overlooking the similarity of these two tasks, both of which involve
future trajectory prediction, and leading to inefficient use of computational resources. In this work,
we use a unified motion trajectory model to simultaneously predict the agent trajectories and ego
planning trajectories. Since we use the unified model to predict agent trajectories and ego planning
trajectories, we introduce unified queries, named motion queries, to integrate agent trajectory queries
and ego planning queries.

3.3.1 MOTION QUERIES INITIALIZATION

In our unified motion model, different queries must be harmonized. Our Motion queries are com-
posed of agent trajectory queries and ego planning queries. Specifically, agent trajectory queries
inherit the perception agent queries with the addition of anchor embeddings. Ego planning queries
are different, we encode surrounding image features using a convolutional layer and incorporate
features extracted from historical ego trajectories. Given the fixed dimensions, position, and vehicle
dynamics of the ego vehicle, the ego anchor is embedded through an embedding layer and added to
the ego queries. This process can be formulated as:

Qp = concat(Qa, Qe + embeddinge(anchore)) (6)

Here, Qp denotes the motion queries, Qa is the agent trajectory queries inherited from the per-
ception agent features, Qe is the ego query extracted from surrounding image features and history
trajectories, anchore is the ego vehicle information embedded with anchor encoder embeddinge.

3.3.2 PLANNING MODEL UNIFICATION

As depicted on the right of fig. 1, our motion model is composed of multiple stacked motion layers.
Each motion layer includes the Motion-Temporal Interaction, Motion-Perception Interaction with
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Implicit Interaction, Motion Expert, and Refinement, collectively performing temporal modeling,
interaction, and result refinement.

Motion-Temporal Interaction. The Motion-Temporal Interaction is designed to progressively in-
tegrate temporal information to improve the trajectory continuity and smoothness. This integration
is essential, as historical information significantly influences the understanding of temporal motion
behaviors of motion queries. We use a memory bank to store two types of information: historical
motion query features and historical motion trajectories. The historical motion query features gather
information about the historical surrounding environment, thereby reinforcing diverse scene repre-
sentations. The historical motion trajectories serve as the successful routes to improve the accuracy
of current trajectory predictions. Our memory bank maintains a set of n historical records projected
onto current coordinates. Unlike Li et al. (2022b); Chen et al. (2024a), which directly stacks the
historical features and current features, we aggregate historical information with a cross-attention
transformer, which extracts and integrates core information for current features. This procedure is
defined as follows:

Fmt = cross-atten(Fc, CM(Fh, Th)) (7)
where Fmt is the output of Motion-Temporal Interaction, cross-atten refers to cross attention trans-
former, CM is the confidence mask, Fc denotes the current motion query features, Fh and Th are
historical motion query features and historical trajectories respectively.

Motion-Perception Interaction with Implicit Interaction

Similar to our Tracking&Perception module, our motion planning module integrates agent trajectory
queries with ego planning queries, implicitly modeling the interaction between agent trajectories and
the ego trajectory using a self-attention mechanism. Our Motion-Perception Interaction enables us to
streamline conventional operations, such as Agent-Map, AgentTrajectory-Agent, AgentTrajectory-
Map, EgoTrajectory-Agent, EgoTrajectory-Map, and AgentTrajectory-EgoTrajectory interaction
with one interaction module. In effect, this design allows us to accomplish these tasks with one-sixth
of the resources. Our Motion-Perception Interaction progressively extracts information from the per-
ception module, thereby enhancing motion trajectories. This interaction is implemented through a
cross-attention transformer module, the process is formulated as

Fmp = cross-atten(Fmt +AEmt, Fp +AEp) (8)

where Fmp presents the output of Motion-Perception Interaction, cross-atten is the multi-head
cross attention, Fmt is the result from previous module Motion-Temporal Interaction, Fp denotes
the feature of perception module, AEmt and AEp are Motion-Perception Interaction anchor embed-
dings and perception embeddings respectively.

Motion Expert. To distinguish between agent trajectories and the ego trajectory, we use a special-
ized expert module similar to the Perception Expert module, but with distinct hyper-parameters. We
design two types of experts: the agent trajectory expert and the ego trajectory expert.

Motion Refinement. Finally, a motion trajectory refinement module is employed to fine-tune tra-
jectory predictions. Concretely, we use a decoupled MLP head to generate offsets and update initial
predictions. The procedure is defined as follows:

Ta, Te = DH(Qt +REt) (9)

Here, Ta and Te denote the predicted agent trajectory and ego trajectory planning, DH is our decou-
pled MLP head, Qt presents the output of previous Motion Expert module, REt is the refinement
embedding.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our ADDI on the nuScenes Caesar et al. (2020) for open-loop evaluation and the
CARLA dataset adopted from the CARLA simulator Dosovitskiy et al. (2017) for closed-loop eval-
uation. The nuScenes dataset is a real-world autonomous driving dataset consisting of 1000 scenes,
annotated at 2 Hz. Each frame collected data from six synchronized surrounding cameras, a Li-
DAR, etc. The CARLA dataset is based on CARLA Leaderboard v2. To reduce the differences
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Table 1: Open-loop evaluation of planning performance on the nuScenes dataset. ADDI notably
outperforms other methods across evaluation metrics. Furthermore, ADDI achieves the efficient
inference speed compared with other methods. The best results of our method are highlighted in
bold. LiDAR-based methods are indicated with †. *: Reproduced with official checkpoint. The
inference speed is measured with NVIDIA Tesla A800 GPU.

Methods L2 (m) ↓ Collision Rate (%) ↓ FPS ↑1s 2s 3s Avg. 1s 2s 3s Avg.
FF† Hu et al. (2021) 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43 –

EO† Khurana et al. (2022) 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33 –
ST-P3Hu et al. (2022) 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71 1.6
UniADHu et al. (2023) 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31 1.8
VADJiang et al. (2023) 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 4.5

UniAD* 0.45 0.70 1.04 0.73 0.62 0.58 0.63 0.61 1.8
VAD* 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22 4.5

AD-MLP Zhai et al. (2023) 0.53 0.91 1.48 0.97 0.17 0.46 0.83 0.49 –
FusionADYe et al. (2023) – – – – 0.02 0.08 0.27 0.12 1.6
PPADChen et al. (2024c) 0.30 0.69 1.26 0.75 0.03 0.22 0.73 0.33 2.6

ParaDrive Weng et al. (2024) 0.26 0.59 1.12 0.66 0.00 0.12 0.65 0.26 –
SparseDriveSun et al. (2024) 0.29 0.63 0.97 0.63 0.03 0.09 0.19 0.10 5.5

Proposed-small 0.30 0.60 0.98 0.63 0.03 0.10 0.20 0.11 7.4
Proposed 0.29 0.53 0.90 0.57 0.02 0.06 0.14 0.07 6.2

Table 2: Closed-loop evaluation of planning performance on CARLA dataset. Comparison
with existing methods. ADDI notably outperforms other methods across all metrics. The best
results of our method are highlighted in bold. C presents the camera and L denotes the LiDAR.
All experiments are reproduced with our collected CARLA dataset. DS: Driving Score, RC: Route
Completion, IS: Infraction Score.

Methods Modality DS ↑ RC ↑ IS ↑
UniADHu et al. (2023) C 36.89 51.07 0.73
VADJiang et al. (2023) C 48.26 63.20 0.78

ThinkTwiceJia et al. (2023b) C+L 52.67 69.33 0.75
DriveAdapter+TCPJia et al. (2023a) C+L 58.44 74.64 0.79

SparseDriveSun et al. (2024) C 59.31 74.38 0.80
Proposed C 64.52 78.10 0.82

from nuScenes datasets, we configured sensors similarly to those used in nuScenes (6 surrounding
cameras, 1 LiDAR, 1 GNSS, and HD-Maps). To tackle the problem of multi-vehicle interaction
scenarios, we use Jia et al. (2024) and Krajzewicz et al. (2012) to simulate complex urban trans-
portation scenarios, including scenarios with sudden lane changes, abrupt braking, turns, and traffic
accidents. This strategy could make our simulation scenario similar to the real scenario. We col-
lected the CARLA dataset from 15 towns, each containing multiple scenarios, with each scenario
comprising several clips similar to those in nuScenes.

Table 3: Ablation studies were conducted on the key design elements of ADDI using the CARLA
dataset. The results demonstrate that each modification contributes to an improvement in perfor-
mance. All experiments are reproduced with our collected CARLA dataset.

ID + Implicit + P-M Explicit + M-T Explicit + P Expert + M Expert DS ↑ RC ↑ IS ↑
1 " 40.50 57.63 0.71
2 " " 52.07 67.56 0.75
3 " " " 59.82 76.93 0.80
4 " " " " 62.83 77.32 0.82
5 " " " " " 64.52 78.10 0.82
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4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

We implemented our method based on Jiang et al. (2023); Jia et al. (2024); Sun et al. (2024)
and evaluated it against state-of-the-art methods in both open-loop and closed-loop. table 1 and
table 12 show the open-loop experiment results, table 2 illustrate the closed-loop experiment results.
Furthermore, we tested the inference speed of ADDI and comparison methods using a single A800
GPU.

4.2.1 PERFORMANCE ON OPEN-LOOP

To ensure a comprehensive analysis, we compared ADDI’s performance with existing methods. As
illustrated in table 1, our method achieves significant advantages in both performance and speed
on the nuScenes dataset. Concretely, ADDI reduces the average planning L2 distance error by
0.06m compared to Sun et al. (2024) and outperforms competing methods by over 30% in average
collision rates. Our model’s unified design and implicit and explicit interaction features enable the
fastest inference speed among tested methods, achieving 1.13× faster processing while maintaining
superior planning performance. The ADDI-small variant runs 1.35× faster than the leading method
Sun et al. (2024) while maintaining a comparable performance.

4.2.2 PERFORMANCE ON CLOSED-LOOP

In the CARLA validation benchmarks for closed-loop evaluation, ADDI surpassed state-of-the-art
methods, as illustrated in table 2, ADDI achieves a Drive Score of 64.52, Route Completion of 78.10,
and Infraction Score of 0.82, significantly improving by 5.21, 3.46, and 0.02 respectively, relative to
existing best methods. Differing from the nuScenes scenarios, which primarily feature straight lanes
and simple interactions, CARLA dataset scenarios are more complex, this closed-loop experiment
proved that ADDI achieves superior performance in complex scenarios while maintaining shorter
inference times.

4.3 ABLATION STUDY

4.3.1 KEY COMPONENTS DESIGN

We conducted several ablation studies on the closed-loop CARLA dataset to assess the effectiveness
of the proposed modules. We only cascade the Tracking&Perception and Motion Planning mod-
ule without expert components as our baseline, as illustrated in ID-1 of table 3, then adding key
interaction components and expert components progressively, the influence of each component is
presented in table 3. Notably, the baseline (ID-1) indicates that all experiments integrate the implicit
interaction, the reason is that the implicit interaction is concealed in the self-attention of our unified
modules, which is non-removable. The second row (ID-2) shows that Perception-Motion Interaction
induces Driving Score and Route Completion by approximately 28.6% and 17.2% over the baseline.
As shown in ID-3, the exhaustive utilization of Motion-Temporal Interaction results in a noticeable
improvement, yielding 7.75, 9.37, and 0.05 in terms of Driving Score, Route Completion, and In-
fraction Score. Adding the Perception Expert further enhances feature representation, resulting in a
3.01 increase in Driving Score and 0.39 in Route Completion. Similarly, the last variant shows that
Motion Expert also boosts performance.

We performed additional quantitative and qualitative experiments, for comprehensive details, please
refer to Appendix A and B.

5 CONCLUSION

As an efficient end-to-end autonomous driving method, ADDI simplifies the traditional four
tasks (tracking-by-detection, online mapping, prediction, and planning) into two stages (Track-
ing&Perception and Motion Planning). ADDI also utilizes two implicit interactions and two ex-
plicit interactions, reducing the complexity of existing interactions. Since implicit interactions are
concealed in the self-attention of this model, they incur no additional computational cost. Exten-
sive experiments demonstrate that our method significantly outperforms existing methods in both
inference speed and accuracy.
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6 REPRODUCIBILITY STATEMENT

our method is reproducible, we provide comprehensive instructions and code, reproducing large-
scale experiments. All datasets used are publicly available, and we provide preprocessing scripts
where necessary. Hyperparameters, training details, and evaluation protocols are described in the
paper and included in the code repository. Our experiments can be reproduced on a 8 GPU within
the reported computational budget.
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A APPENDIX A

A.1 COMPARISON OF EXISTING METHODS WITH ADDI
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(a) Previous end-to-end AD pipeline

(b) Proposed end-to-end AD pipeline
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Motion-TemporalMotion Buffer 

Figure 2: Comparison of existing methods with ADDI. (a) Previous popular end-to-end AD pipeline,
like UniAD, VAD, SparseDrive. (b) Proposed end-to-end AD pipeline. Our method uses two mod-
ules—tracking&perception and motion planning with implicit interactions—to replace the original
four modules and utilizes a single explicit interaction instead of the six interactions previously re-
quired. We also introduce a motion-temporal interaction to aggregate historical features. This design
enables our model to achieve efficient and competitive performance.

A.2 LOSS

We use a base loss function similar to Sun et al. (2024); Jiang et al. (2023), adding an extra two
expert balance losses as our training loss. The total loss is defined as follows:

ltotal = ldet + lmap + lmot + lpred + lplan + lbp + lbm (10)

where ldet denote the detection loss, lmap is the map construction loss, lmot is the tracking loss,
lpred and lplan present the agent trajectory prediction loss and ego planning loss, lbp and lbm are
perception expert balance loss and motion expert balance loss.
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The expert balance loss lbp and lbm are identical and encourage balanced contributions from each
expert, preventing scenarios where one expert processes all inputs while others are rarely engaged.
We ensure an even distribution of workload with a simplified formulation as follows:

lb = α ·N ·
N−1∑
i=0

fi · Pi (11)

Here, N denotes the number of experts indexed by i = 0 to N − 1, and T is the number of tokens.
The variable fi represents the percentage of inputs routed to each expert, α is a hyper-parameter,
and Pi denotes the fraction of routing probability assigned to each expert.

A.3 INTERMEDIATE SUB-TASK EVALUATION

To ensure a fair comparison with state-of-the-art methods, we conducted sub-task experiments on
the nuScenes validation set. The evaluation metrics for each task are detailed below.

Detection. The agent detection results from the Tracking&Perception module are presented in ta-
ble 4. ADDI achieves 0.512 mAP and 0.593 NDS, surpassing SparseDrive Sun et al. (2024) by 3%
and 1%, respectively.

Multi-object Tracking. Building on the excellent detection results, the tracking evaluation yields
0.533 AMOTA, 1.052 AMOTP, and 616 IDS, which surpass the existing method by 6%, 3%, 3% in
terms of AMOTA, AMOTP, and IDS. The results are reported in table 5.

Online mapping. As shown in table 11, ADDI delivers expected performance, achieving a 1.5%
improvement in pedestrian Average Precision (APped) compared to SparseDrive Sun et al. (2024).
However, a slight decrease in overall mAP is observed due to the unified model’s equal emphasis on
agents and map elements.

Prediction. For agent prediction derived from motion planning results, table 7 illustrates that our
model outperforms the existing method by 3.3% and 3.4% in minADE and EPA respectively.

In summary, ADDI enforces the implicit representation of various elements, such as agents, map
elements, agent trajectories, and ego-planning trajectories. This interconnected framework enhances
final planning decisions while maintaining competitive performance across intermediate sub-task
evaluations.

Table 4: Detection results on the nuScenes dataset. ADDI achieves the best perfomance on detec-
tion tasks among end-to-end methods.

Methods mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ NDS ↑
UniADHu et al. (2023) 0.380 0.684 0.277 0.383 0.381 0.192 0.498

SparseDriveSun et al. (2024) 0.496 0.543 0.269 0.376 0.229 0.179 0.588

Proposed 0.512 0.537 0.276 0.367 0.210 0.179 0.593

Table 5: Multi-object tracking. Following the evaluation criteria used in Hu et al. (2023)

Methods AMOTA ↑ AMOTP ↓ Recall ↑ IDS ↓
UniADHu et al. (2023) 0.359 1.320 0.467 906

SparseDriveSun et al. (2024) 0.501 1.085 0.601 632

Proposed 0.533 1.052 0.628 616
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Table 6: Online mapping with tracking strategy. Comparison with state-of-the-art method on the
nuScenes dataset.

Methods APped ↑ APdiv ↑ APbound ↑ mAP ↑
VADJiang et al. (2023) 40.6 51.5 50.6 47.6

SparseDriveSun et al. (2024) 53.2 56.3 59.1 56.2

Proposed 54.0 55.7 57.9 55.9

Table 7: Prediction. Split the agent predictions from our motion planning module, and compare
with state-of-the-art methods.

Methods minADE(m)↓ minFDE(m)↓ MR↓ EPA↑
UniADHu et al. (2023) 0.71 1.02 0.151 0.456

SparseDriveSun et al. (2024) 0.60 0.96 0.132 0.555

Proposed 0.58 0.97 0.130 0.574

A.4 EXPERT QUOTA.

To further investigate the impact of our expert, we performed studies focusing on the expert quota.
As shown in Figure 3, we evaluated models with varying numbers of experts per layer. Ablation
studies were performed using a brief training duration of 35 epochs. We considered 12 models with
identical depths, with the number of experts per layer set to 3, 4, 8, and 16. The results showed that
the performance of both the perception and motion experts peaked with 8 experts per layer and 2
routers. The blue line is the result of using FFN in both perception and motion planning modules.
Notably, the 2/4 and 2/8 expert configurations outperformed FFNs on the nuScenes dataset (using
twice the computing resources and time).

A.5 MAP ANCHOR QUOTA

In this study, we vary the number of initialized and cached map anchors. As shown in the table, our
method achieves peak performance on the nuScenes dataset when using 50 initialized map anchors
and 100 cached anchors. This can be attributed to the fact that, in nuScenes scenarios, the number
of map elements typically does not exceed 50. Using more than 50 initialized map anchors may
introduce noise, thereby degrading model performance.

A.6 OPEN-LOOP EVALUATION ON CARLA

Since the nuScenes dataset primarily contains simple driving scenarios, we further evaluated our
method on the CARLA dataset, adopted from the CARLA simulator Dosovitskiy et al. (2017), which
simulates complex urban transportation scenarios, including vehicles suddenly inserting, braking,
turning, and traffic accidents. As shown in table 12, the evaluation metrics results are lower than the
results in table 1. This discrepancy arises from the more complex and varied scenarios in CARLA,
closely resembling real urban environments. Nonetheless, our method outperforms the best existing
method Hu et al. (2023), achieving a 4.1% improvement in L2 distance and an 8.7% reduction in
collision rate.

A.7 EFFICIENCY

To analyze the inference efficiency of ADDI, we experimented, as shown in table 8. Compared to
existing state-of-the-art methods, ADDI delivers superior performance with fewer parameters using
the same backbone. Achieving a processing speed of 6.2 FPS, ADDI is faster and more efficient
than competing methods.
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Table 8: Efficiency comparisons. ADDI notably outperforms other methods in terms of parameters
and FPS. The best results of our method are highlighted in bold. Experiments are measured on 1
NVIDIA Tesla A800 GPU.

Methods FLOPs (G) Params (M) FPS

UniADHu et al. (2023) 1709 125 1.8

VADJiang et al. (2023) – – 4.5

SparseDriveSun et al. (2024) 790 105 5.5

Proposed 763 102 6.2

Table 9: Effectiveness of Model Unification: Experiments on the closed-loop CARLA dataset.
In this experiment, our baseline configuration involves disassembling the two unified modules in
ADDI (perception unification and planning unification) and replacing them with four traditional,
separate modules (detection, mapping, prediction, and planning). “UP” represents unifying the de-
tection and mapping with our Tracking&Perception module. “UM” presents unifying the prediction
and planning with our Motion Planning module. During this experiment, the explicit interactions
are similar to ADDI.

ID UP UM Driving Score ↑ Route Completion ↑ Infraction Score ↑
1 36.03 52.45 0.70

2 " 52.19 67.33 0.75

3 " " 64.52 78.10 0.82

A.8 EFFECTIVENESS OF MODEL UNIFICATION

As shown in table 9, we conducted experiments on the closed-loop CARLA dataset to assess the
effectiveness of model unification. We replaced the two unified modules in ADDI (perception uni-
fication and planning unification) with the traditional four separate modules (detection, mapping,
prediction, and planning) as the baseline (ID-1), while preserving similar explicit interactions to
ADDI. The second row (ID-2) shows that the unified perception module (Tracking&Perception)
increases Driving Score and Route Completion by approximately 45% and 28% over the baseline.
As shown in ID-3, incorporating the unified planning module (Motion Planning) further enhances
feature representation, resulting in a 12.33 increase in Driving Score and a 10.77 improvement in
Route Completion.

A.9 EFFECTIVENESS OF REFINEMENT

We also trained for 35 epochs to verify these two refinements (Perception Refinement and Motion
Refinement) against the baseline (without the convolution operation, only with the concatenate op-
eration), showing a slight improvement in performance, as shown in table 10.

B APPENDIX B

B.1 QUALITATIVE RESULTS

We present additional qualitative results to substantiate the superior performance of our model fur-
ther. Qualitative results from the CARLA closed-loop experiments are presented in fig. 4, fig. 5 and
fig. 6, with the left side displaying six surrounding images and the right side showing the top-down
view of ego vehicles. Our method predicts more accurate planning trajectories overall, with fewer
false negatives and false positives, especially in challenging scenarios such as avoiding pedestrians,
extreme weather, and turnings.
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Table 10: Effectiveness of Refinement: Experiments on the closed-loop CARLA dataset. Our
baseline ID-1 configuration replaces our two refinement modules in ADDI (perception refinement
and trajectory refinement) with the non-convolutional operation (using a simple add operation).
“PR” represents perception refinement. “TR” presents trajectory refinement.

ID PR TR Driving Score ↑
1 29.17

2 " 30.85

3 " " 33.33

Table 11: Studies on the map anchor quota.

Init Num/Cached Num Cached Num—L2(m)avg ↓ Collision Rate avg ↓
50/50 0.68 0.11

50/100 0.57 0.07

50/200 0.70 0.12

100/200 0.64 0.12

C APPENDIX C

C.1 EGO STATUS

Unlike methods such as ParaDrive, which directly encode the ego status (can-bus-info) as features,
we only encode the predicted ego velocity from the previous frame into our ego features. The ego
status is only used as the GT for ego trajectory prediction (as shown in our code). Thus, we added
official experimental results of ParaDrive (without ego status encoded and concatenated) in our Table
1. Compared to PareDrive, we achieved significant improvement.

C.2 IMPLEMENTATION DETAILS

Our baseline utilizes ResNet He et al. (2015) and FPN Lin et al. (2017) as image backbone. We
directly encode the 3D features from image features without constructing BEV hidden features, then
proceed with our cascaded model. We perform our experiments on 8 A800 GPUs, with a total batch
size of 120, aiming to prevent local optima or divergence issues. We also use the AdamW Loshchilov
& Hutter (2019) optimizer with an initial learning rate of 5e-4 and a weight decay of 1e-3.

C.3 EVALUATION MATRIX

For open-loop evaluation, currently, L2 distance and collision rate are adopted to evaluate the
smoothness of the predicted trajectory. The L2 distance is used to calculate the deviation between
the predicted and ground truth trajectories. The collision rate assesses whether the ego vehicle drives
safely within the drivable area, avoiding collisions with surrounding vehicles and road boundaries.
In this study, we conduct several studies to comprehensively assess the performance of our model.

For closed-loop evaluation, to ensure fair comparisons with other methods, official CARLA metrics
are used. Specifically, Route Completion (RC) evaluates the percentage of the route distance com-
pleted by the ego vehicle. Infraction Score (IS) indicates the number of infractions occurring along
the route, including collisions with vehicles, pedestrians, road boundaries, etc. Driving Score (DS)
is a composite evaluation metric.

In this closed-loop evaluation, we use CARLA to simulate realistic traffic situations with different
challenging scenarios, such as obstacle avoidance, complex intersections, and multi-agent inter-
actions. Intermediate results are ignored, and only the final driving outcomes of our method are
evaluated.
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Table 12: Open-loop evaluation of planning performance on CARLA dataset. We evaluate
ADDI in complex CARLA scenarios, where it achieves state-of-the-art performance. Note that,
the Average L2 distance and Collision Rate are averaged over predictions made within a 2-second
horizon at a frequency of 2 Hz. All experiments are reproduced with our collected CARLA dataset.

Methods L2 (m) ↓ CR (%) ↓
Avg. Avg.

UniADHu et al. (2023) 0.73 0.23
VADJiang et al. (2023) 0.91 0.27

ThinkTwiceJia et al. (2023b) 0.95 0.29
DriveAdapterJia et al. (2023a) 1.01 0.34
SparseDriveSun et al. (2024) 0.80 0.27

Proposed-small 0.76 0.25
Proposed 0.70 0.21

Figure 3: Studies on the perception expert quota (planning use FFN), motion expert quota (percep-
tion use FFN) and both FFN.

We use the Bench2Drive benchmark (using leaderboard 2.0). One reason is that when we reproduce
other existing methods, we observed that some approaches, such as DriveAdapter and ThinkTwice,
use 4 cameras. However, in real AD scenarios like nuScenes, 6 cameras are preferred. Moreover,
as discussed in Bench2Drive, existing benchmarks (Town05long and Longest6) evaluate the per-
formance of AD systems by averaging scores across several routes, leading to high variance in the
driving score metric. Besides, existing methods are trained and evaluated on their own collected
data, making direct comparisons challenging. Bench2Drive provides 44 scenarios by designing 5
distinct short routes (around 150 meters in length) per scenario, each featuring different weathers
and towns, which result in a total of 220 routes. Bench2Drive provides a fair and unified benchmark
for closed-loop evaluation.

C.4 CARLA DATASET COLLECTION

The closed-loop CARLA dataset was collected using CARLA Leaderboard v2, which presents sig-
nificant challenges. CARLA Leaderboard v2 spans 15 towns, encompassing over 90 routes coupled
with various scenarios. Each scenario includes several clips comparable to those in nuScenes.

Sensors were configured similarly to those in nuScenes. Six wide-angle cameras were positioned
(front-left, front, front-right, rear-left, rear, and rear-right), each with a resolution of 900x1600.
Since CARLA v2 cameras employ Brown-Conrady distortion, distortion parameters similar to those
of pinhole cameras were simulated. Images were undistorted before being processed by the network.
Additionally, a Lidar sensor operating at 10 Hz was employed.

Ego status parameters, including velocity, acceleration, and yaw angle, significantly benefit the plan-
ning task. GPS and IMU sensors were used to estimate both the ego and global status. Furthermore,
an HD map was simulated for this dataset. The model was trained using the CARLA dataset and
subsequently tested on the CARLA simulator under closed-loop evaluation.
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C.5 INTERACTION OPTIMIZATION

Traditional end-to-end autonomous driving methods typically utilize six interactions: Agent-
Map, AgentTrajectory-Agent, AgentTrajectory-Map, EgoTrajectory-Agent, EgoTrajectory-Map,
AgentTrajectory-EgoTrajectory. These approaches disrupt the cohesion of autonomous driving by
decomposing these processes and then linking them through interactions, leading to suboptimal and
inefficient practical applications.

In the proposed ADDI, agents and map elements are processed jointly using the Track-
ing&Perception module, exhibiting implicit interactions facilitated by self-attention mechanisms.
Similarly, agent and ego trajectories interact implicitly within the Motion Planning module. Then,
we simplify the complex and cumbersome interaction operations by interacting with the out-
puts (agent and map element features) of Tracking&Perception with the outputs (agent trajecto-
ries and ego trajectories) of the Motion Planning module, this simple explicit interaction—agents
+ map elements vs agent trajectories + ego trajectories—replaces four traditional interactions:
AgentTrajectory-Agent, AgentTrajectory-Map, EgoTrajectory-Agent, EgoTrajectory-Map. In ad-
dition, a Motion-Temporal explicit interaction is used to aggregate historical motion information,
reflecting the inherent temporal interrelations of vehicle movement. This Motion-Temporal interac-
tion also can be used in other methods.

C.6 LIMITATIONS AND FUTURE WORKS

Limitations. The unified module predicts agents and map elements simultaneously, which may re-
sult in suboptimal map construction performance. A more effective strategy is required to enhance
the accuracy and reliability of online map construction. Second, during module inference, K ex-
perts are selected from N, leaving the remaining N-K experts inactive, but still consuming memory
resources.

Future Works. Future work will focus on further optimizing the inference speed of ADDI. We also
plan to incorporate additional static elements, such as traffic lights, lane markings, and traffic signs,
to improve the model’s ability to handle complex driving scenarios. Expanding the perception range
will also be prioritized to accommodate high-speed driving and long-range predictions, ensuring the
model’s adaptability to diverse environments.

C.7 THE USE OF LLMS

This project only uses a large language model (LLM) to correct grammatical, morphological, and
syntactic errors in Polish text.

C.8 ETHICS STATEMENT

We followed the ICLR Code of Ethics. Our work uses public datasets with proper attribution. The
proposed approach does not involve experiments on human subjects, personal data collection, or
sensitive attributes.
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Figure 4: Qualitative results on the CARLA closed-loop experiments-Avoiding pedestrians.
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Figure 5: Qualitative results on the CARLA closed-loop experiments-Foggy weather.
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Figure 6: Qualitative results on the CARLA closed-loop experiments-Turning.
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