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Abstract

Recent years, Large Language Models (LLMs)
demonstrate superior performance in informa-
tion extraction tasks. Leveraging these mod-
els for Document-Level Relation extraction
(DocRE) will benefits from their powerful gen-
erative capabilities. However, we observe that
LLMs still face challenges in DocRE tasks:
Document Structure Parsing Error, Relation
Definition Ambiguity, and Entity Boundary
Recognition Error. To address these issues,
we propose SDB-DRE, an LLM-based DocRE
model that does not rely on pre-labeled entities.
To tackle the Document Structure Parsing Error,
we introduce a novel Structure-Aware QA train-
ing approach, enabling LLMs to learn corefer-
ence relationships and entity types within the
document. To resolve Relation Definition Am-
biguity and Entity Boundary Recognition Er-
ror, we introduce relation definition learning
and mention boundary learning in the second
stage of relation extraction training. This im-
proves the internal document representation of
the LLM, ensuring the output triples are con-
sistent with the relation definitions and have
more accurate entity boundaries. Experimental
results show that SDB-DRE outperforms LLM-
based methods using multi-stage inference in
a single-stage reasoning setup, achieving state-
of-the-art performance.

1 Introduction

Document-level Relation Extraction (DocRE) (Yao
etal., 2019; Xie et al., 2022) focuses on extracting
relationships between entities from the given doc-
ument. Compared to sentence-level task, DocRE
is more complex due to phenomena like corefer-
ence and cross-sentence relations, but it more ac-
curately reflects practical applications. Previous
research (Tan et al., 2022a) mostly relies on pre-
annotated entities for entity-pair relation classifica-
tion, which does not fully capture the complexities
of real-world scenarios. In light of this, some stud-
ies(Eberts and Ulges, 2021; Xu and Choi, 2022;
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Figure 1: An example of end-to-end DocRE task based
on LLMs and three common errors: Document Structure
Parsing Error, Relation Definition Ambiguity, and Entity
Boundary Recognition Error.

Zhang et al., 2023) shift towards more complex
settings document-level joint relation extraction,
where the model simultaneously solve entity men-
tions recognition, coreference resolution and rela-
tion extraction. However, such approaches overly
refine the steps involved in DocRE, leading to ac-
cumulated errors that degrade relation extraction
performance. Recent advancements (Jiang et al.,
2023; Achiam et al., 2023) in the area of Large
Language Models (LLMs) make it feasible to build
end-to-end triplet extraction models. Leveraging
LLMs for DocRE allows for the utilization of ex-
tensive pre-trained knowledge and powerful gener-
ative capabilities. This motivates us to explore how
LLMSs can be better applied to DocRE.

Despite promising results from recent LLM-
based methods (Xue et al., 2024), current multi-
step inference methods increase computational
costs. In addition, these methods have three typical
problems: (1) Document Structure Parsing Error
(2) Relation Definition Ambiguity and (3) Entity



Boundary Recognition Error. As shown in Fig-
ure 1, we select a document example to more intu-
itively demonstrate the three phenomena produced
by LLMs and their underlying causes, when per-
forming end-to-end triplet extraction.

Document Structure Parsing Error. The
trained LLMs can correctly predict that Orlov’s
birthplace is Kherson and that Vladimir Mitro-
fanovich Orlov’s country of citizenship is Russian.
However, due to the lack of document structure
parsing ability in LLMs for specific scenarios,
it fails to recognize both Orlov andViadimir
Mitrofanovich Orlov actually refer to the same
entity, thus preventing further inference of the
country relationship between Kherson and Russian.
This limitation stems from the model not being
explicitly endowed with document structure
parsing capabilities during training.

Relation Definition Ambiguity. From the per-
spective of document semantics and relation name
conflicts, the relation [Orlov, conflict, Nikolai Yu-
denich] appears to be correct. However, the model
overlooks the specific definition of conflict, which
requires the object entity to be an event and the
subject entity to participate in it (e.g., Winston
Churchill, conflict, World War II). There are nu-
merous relation categories in DocRE. Therefore,
how to enable the LLM to accurately understand
relation definitions in specific scenarios remains a
critical challenge.

Entity Boundary Recognition Error. This er-
rors in triplet prediction represent another typical
issue. For instance, the LLM'’s incorrect bound-
ary recognition of the Soviet Naval Forces leads to
erroneous triplets even when the relations and doc-
ument semantics are correctly understood by LLM.
Improving the accuracy of entity mentions bound-
ary recognition in end-to-end output is crucial for
enhancing LLM performance.

To address these issues, we propose a single-
stage inference, LLM-based document-level triplet
extraction method called SDB-DRE (Structure,
Definition and Boundary-Document Level Rela-
tion Extraction). Specifically, in the first-stage
training, we construct Structure-Aware Question
Answer (SAQA) data which includes entity cat-
egories and coreference parsing QA pairs to en-
hance LLM’s foundational document structure pars-
ing ability. Building on the second-stage relation
extraction training, we introduce two additional

learning mechanisms for LLMs: Relation Defini-
tion learning and Mention boundary learning. The
former introduces relation definition memory dur-
ing training to mitigate the negative impact on the
model performance when the number of relation
types becomes too large and the model struggles
to comprehensively understand relation definitions.
The latter enhances the accuracy of LLMs in identi-
fying the boundaries of head and tail entities when
outputting triples. Notably, our method does not
rely on pre-given entity annotations and can di-
rectly perform end-to-end triple extraction during
inference, offering greater generalizability and po-
tential for practical applications. Our contributions
can be summarized as follows:

* We identify three significant issues in exist-
ing LLM-based end-to-end DocRE methods:
(1) Document Structure Parsing Error (2) Re-
lation Definition Ambiguity and (3) Entity
Boundary Recognition Error.

* We propose a single-stage Inference DocRE
model based on LLMs, called SDB-DRE,
which includes the following key components:
(1) The SAQA training enhances the LLM’s
ability to parser document structure (2) Static
relation definition memory learning enables
the LLMs to better understand relation def-
initions. (3) Mention boundary learning im-
proves the LLM’s ability to identify the bound-
aries of head and tail entities in triples.

* Extensive experiments demonstrate that the
SDB-DRE model not only outperforms exist-
ing LLM baselines in terms of performance
but also achieves better time efficiency due
to its single-stage reasoning architecture, sur-
passing current methods in this regard.

2 Related Work

Document Level Relation Extraction. Most ex-
isting studies(Xiao et al., 2022; Lu et al., 2023;
Jain et al., 2024; Gao et al., 2024) on DocRE rely
on pre-labeled entities, which undermines their ro-
bustness when they deal with real-world scenarios
(Meng et al., 2024). Some works (Eberts and Ulges,
2021; Xu and Choi, 2022; Zhang et al., 2023)
shift towards exploring joint extraction methods
for triplets from documents without relying on pre-
defined entities. These approaches focus on men-
tion detection and coreference resolution within
the triplet extraction process. While refining the



evaluation metrics, they also introduce additional
sources of cumulative errors and exposure bias in
relation extraction. The performance advances of
LLMs, along with the limitations of existing meth-
ods, motivate us to explore an end-to-end DocRE
model that does not rely on pre-labeled entities.

LLMs and Relation Extraction. Existing LLM-
based RE models (Wang et al., 2023; Xu et al.,
2024) typically perform the RE task in a Question-
Answering (QA) format. A common approach is
to include a list of relation types in the model’s
prompt template as options. However, this setup is
impractical in the DocRE scenario (Wadhwa et al.,
2023), where it’s not feasible to explicitly define
the scope of relation types and their detailed de-
scriptions in the input. For instance, Re-DocRED
(Tan et al., 2022b) involves 96 relation types. Re-
cent work (Xue et al., 2024) decomposes document-
level triple extraction into three steps: relation iden-
tification, head entity identification, and the extrac-
tion of entity-relation triples. It provides an LLM-
based method that integrates relation definitions.
However, the multi-step training and inference pro-
cess introduces additional time overhead.

Despite these advancements, we identify signifi-
cant room for improvement in single-stage LLMs,
which still struggle with issues such as Document
Structure Parsing Error, Relation Definition Am-
biguity, and Entity Boundary Recognition Errors.
These challenges motivate our research and the de-
velopment of a direct LLM-based method for triple
extraction from documents. Our approach effec-
tively integrates relation definitions into memory,
addressing several inherent issues in current single-
stage paradigms. Additionally, it achieves superior
performance and efficiency compared to multi-step
methods.

3 Methodology

Figure 2 illustrates the overall architecture of SDB-
DRE. First, we describe the fine-tuning process that
equips the LLM with document parsing capability.
Next, we introduce mention boundary learning and
relation definition learning in the relation extraction
training process. Finally, we outline the model’s
overall training objective and inference process.

3.1 Problem Fomulation

Given a document D consisting of n tokens, let
the training set consist of documents and their cor-
responding triplet labels, represented as Dy =
{D, L,}, where L, denotes the all triplet-based

answer label, and [, is the length of the label. Each
entity e in the document may appear multiple times
and have multiple aliases, referred to as mentions
m. Unlike prior work on DocRE (Lu et al., 2023;
Gao et al., 2024), our model does not rely on pre-
labeled entities. Our goal is to use LLMs to di-
rectly generate all triplets 7' contained within the
document in an end-to-end manner. Formally, we
denote the LLM as frras, with QA task’s input
instruction represented as /. The output token
sequence generated by the model is denoted as:
Y = from(I, D) = {y;}\ |, where Y represents
the answer generated by the model based on the
input instruction and document content. The sam-
pling probability of the tokens in Y is given by:
P(Y|I,D) = [1', P(y:|I, D,y¢), where y; de-
notes the ¢-th token in Y, and y; represents the
tokens generated before y;.

3.2 Document Structure Awareness Training

To reduce reasoning errors in triples caused by
document structure parsing mistakes, we perform
pre-finetuning to enhance the document structure
comprehension abilities of LLMs. Specifically, we
define a QA task to help LLMs learn implicit doc-
ument structure closely related to relation extrac-
tion: mention coreference and entity types. The
former is crucial for reasoning about relationships
between entity pairs across sentences, while the lat-
ter involves a potential logical connection between
specific relation categories Formally, we construct
document structure QA pairs based on the annota-
tions available in the training documents. The input
instruction for the document structure QA is de-
noted as I;. The generated output token sequence
is Yy = from(Is, D) = {yi}L |, where Y repre-
sents the answers generated by the LLLM based on
the input instruction and document content, includ-
ing the co-reference set of entity mentions and the
corresponding entity types. The specific format can
be found in Appendix F. We fine-tune our model
with Parameter-Eficient method QLoRA (Dettmers
et al., 2023). The objective loss function used for
training is defined as follows:

Ls

ba=— Y > 10gPuo, (il Dyy<t) (D)
(D,Ls)eDp t=1

where 6 represents the parameters of the LLMs,

05 denotes the parameters of QLoRA, and [, is the

length of the document structure label L. In this

training step, we only update the parameters 65 of
the Structure-Aware QLoRA.
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3.3 Document Representation

Different from traditional generative RE training,
our approach focuses on improving the document
vector representations seen by the LLM head,
thereby addressing the issues present in the exist-
ing single-step paradigm. Given a document D,
we use the final hidden layer representation of the
LLM corresponding to the document portion as
the input document representation /. Following
previous methods (Zhou et al., 2021), we extract
the mention representation h,, from the positions
in the document representation. By aggregating
the representations of mentions belonging to the
same entity, we obtain the entity representation:

= log (Z' _1 exp(hm
(eh, et), we obtain the context representation as-
sociated with the entity pair through the attention
matrix and the token representations of the entire
document H:

)) Given an entity pair

v Ap © A

=H
Ch,t AnA,

(@3]

It is worth noting that, due to the decoder-only ar-
chitecture of the LLM, the document representation
encoded by the model cannot access downstream
information. This is detrimental to the model’s
ability to obtain sufficiently informative context
representations for entity pairs. To address this,
we unmask the document portion of the causal
mask when computing the attention matrices Ay
and Ay, ensuring that the model has visibility to
downstream context information when calculating
the key contextual representations for entity pairs.
Notably, to avoid relying on pre-labeled entities for

inference, the encoding of critical entity context
information is only conducted during the training
phase with labeled LLMs.

3.4 Relation Defination Learning

For each relation r, we use LLMs to encode the
rewritten relation names and their corresponding
definitions from prior work. We place the gener-
ated special start token of each LLM at the end
of the document to capture the overall semantic
meaning, and use the vector representation of this
token from the final hidden layer before the LM
head as the representation of the relation type r. By
leveraging the enhanced descriptive text for rela-
tion types and non-discrete relation labels, we can
fully exploit the powerful representational capacity
of pre-trained LL.Ms to generate reliable semantic
vector representations of relations. This collection
of static vectors is referred to as the "relation def-
inition memory" of the LLMs. For performance
and computational resource reasons, this memory
is not updated during model training.

We adopt a sampling strategy that helps the
LLMs better distinguish between similar relation
categories. Specifically, We define the positive sam-
ple pair set as: P = {(cp¢,7p) : (h,1p,t) € T}
where the context representation of the entity pair
and its corresponding relation defination memory
is considered a positive sample pair. Since a can-
didate entity pair may correspond to multiple rela-
tions, it may be associated with multiple positive
pairs. For negative samples selection, we first filter
out all entity pairs that do not have any relations.
Then, we calculate the similarity between relations
based on the LLM’s relation description memory,



selecting the topk most similar relations for each
category as candidates for negative samples:

M) (3)
[I7pllfl7oll

where o represents all relations other than r. The
topk function returns the top k relations r, most
similar to 7, which are then selected as negative
samples 7,. For each entity pair, we construct
the negative sample set as: N = {(cpy,7n)
(h,rn,t) ¢ T} using the context representations of
the entity pairs in the positive sample set and the
similar relations.

We design a loss function that encourages LLMs
to mine documents from a semantic perspective
based on the entity pair context and relationship
type definitions. Intuitively, by utilizing the final
hidden layer representation and attention mecha-
nism of LLMs, we obtain the contextual representa-
tion associated with the entity pair. The contextual
representation of an entity pair should be closer to
the representation of the specific description of the
relationship it possesses, while being pushed far-
ther apart from the representations of relationships
it does not possess. Specifically, let the set of all
candidate entity pairs in document D be E:

rn = topk(

u(Cen,),Tp)

brg = — Z ‘%' Z log

(h,)EE (hurp t)EP Z(h,rn,t)eN u(c(hyt)vrn)

@
where u(c,1),7) = exp(sim(c(yy), ) /Ter) and
Ter 1S a temperature hyperparameter. This loss
function mitigates interference caused by the ab-
sence of the definition of relationship and further
aids the model in distinguishing between relation-
ship categories with similar semantics.

3.5 Mention Boundary Learning

We design a mention boundary learning loss to al-
leviate the errors in head-tail entity boundary iden-
tification within triples of LLMs. Specifically, let
M denote the set of all mentions of entities in the
document D, and m as a single mention of an en-
tity. We construct positive and negative sample
pairs based on the entity boundary tokens. the pos-
itive sample set is defined as: P = {(my, me—1) :
m € M}, where b is the start index of the men-
tion and e — 1 is the end index of the mention.
In contrast, the negative sample set are defined as
N = {(mp, mp_1), (Me—1, M) : m € M} By uti-
lizing a fixed ratio of positive to negative samples,
we design a loss function that helps the model bet-
ter identify mention boundaries, thereby improving

the accuracy of triples. Intuitively, the token repre-
sentations of mention boundaries should be pushed
apart from those of the surrounding external tokens,
while the start and end tokens of an entity should
be brought closer together. Then the loss is defined
as:

1 u(mp, Me—1)
bnp = —— ! 5
=TT 2 ) e )
where u(my, me—1) = exp(sim(ci,4),7)/Tmb)

and 7, 1s the temperature hyperparameter. This
loss function mitigates the issue of fuzzy bound-
aries in generated triples and further helps LLMs
distinguish entity mention boundaries within docu-
ment representations.

3.6 Training objectives and inference

Given a document D and the input instruction for
relation extraction QA represented as [,., we use
autoregressive generation loss /... to train the model
for the final goal of relation extraction:

I

bre=— > > 108 Pyig. 4o, (Willr, D,y<)
(D,L,)eDy t=1
(6)

where [, denotes the length of the relation extrac-
tion label L,, and 6, represents the parameters of
the relation extraction QLoRA. Combining entity
definition contrastive learning and mention bound-
ary learning, the final training objective for the
relation extraction QA phase is formulated as fol-
lows:

C=alpg+ Blpp + lre (7

where o and 3 are adjustable hyperparameters. In
this training step, the parameters 6 of the LLM and
the parameters 6, of the structural QLoRA, which
were pre-trained in the first stage, are frozen. The
newly introduced relation extraction QLoRA pa-
rameters 6, are trainable. After completing the two-
stage training, we perform inference using the LLM
combined with both QLoRA parameters. Specifi-
cally, this is formulated as:

I

P(Y|I7 D) - H P9+as+9r(yt‘laDay<t)' (8)
t=1

The generated tokens are sampled from probabil-
ities P and decoding with a fixed output format,
we obtain all the triples contained in the document.
The specific format of the prompts for relation ex-
traction training and inference can be found in Ap-
pendix G.



4 [Experiments

4.1 Dataset and Metric

Dataset. We conduct our experiments using the
Re-DocRED (Tan et al., 2022b) dataset, refined by
previous works (Xue et al., 2024). This dataset in-
cludes a validation set with 498 articles and 17,236
triplets, ensuring comprehensive and precise eval-
uation. It also contains a test set with 499 articles
and 17,448 triplet facts. The dataset originates
from DocRED (Yao et al., 2019), and Re-DocRED
addresses the issue of an excessive number of false
negative samples in the original dataset. Building
on this, AutoRE (Xue et al., 2024) further mod-
ifies the relation descriptions and performs data
cleaning.

Metric. We adopt the evaluation metric from pre-
vious work on end-to-end triple extraction using
LLMs (Xue et al., 2024), which is designed for sce-
narios that do not rely on pre-labeled entities. This
metric follows a strict Micro F1 standard, where a
prediction is considered correct only if it exactly
matches the relation, as well as both the head and
tail entities. Notably, in the Re-DocRED dataset,
a single triple may contain multiple aliases (men-
tions) for both the head and tail entities. A predic-
tion is considered correct as long as it identifies
any valid triplet pair. If the predicted pair matches
any alias pair for the head and tail entities, it is
counted as correct. However, other valid aliases are
not counted in the correct statistics, meaning each
correct triplet is counted only once. In contrast,
all incorrect predictions, including entity mentions
and relations, are considered false positives. This
approach ensures a rigorous and statistically valid
evaluation, enhancing the credibility of the final
results. The implement detals can be found in Ap-
pendx A.

4.2 Baselines

We compare the proposed SDB-DRE method with
three categories of DocRE baseline methods: (1)
joint extraction methods based on traditional PLMs,
(2) LLMs with single-stage inference, and (3)
LLMs with multi-stage inference. It is important to
note that most existing relation extraction models
are tested with pre-defined entities, making their
performance non-comparable to the method pro-
posed in this paper.

PLM Method. This category includes TABLE-
FILLER (Zhang et al., 2023) and the current state-

of-the-art (SOTA) model for document-level joint
extraction, TAG (Zhang et al., 2023), which is the
first to report end-to-end relation extraction results
on Re-DocRED.

AutoRE. AutoRE (Xue et al., 2024) consists of a
series of relation extraction models based on large
language models (LLMs), covering various rea-
soning paradigms. The D — F' paradigm directly
extracts factual triples from the document. The
D — RS — F paradigm first identifies all rela-
tion types present in the document and then ex-
tracts the corresponding triples for each relation.
The D — R — F paradigm extracts triples sequen-
tially for each identified relation. The three-stage
D — R — H — F paradigm further decomposes
the process by first identifying relation types, then
extracting the head entities, and finally generating
the full triples. This framework systematically ex-
plores how different levels of reasoning granularity
affect relation extraction performance.

In addition, we also compare the performance of
ChatGPT4o! to further support the superiority of
our method. Details can be found in Appendix H.

4.3 Main Results

The experimental results on the Re-DocRED
dataset are presented in Table 1. The results show
that our method outperforms all strong baselines
and the current SOTA model, AutoRE. Compared
to traditional PLM-based methods, our method im-
proves 5.05 F1 on the dev set and 4.94 F1 on the
test set. When using the same base LLM? (Jiang
et al., 2023), our method outperforms the single-
stage inference LLM model AutoREp_ by 15.32
on the dev set and 14.67 on the test set. Further-
more, compared to the SOTA multi-stage inference
LLM-based model AutoREp_ p_ g7 i, our method
improves by 1.38 on the dev set and 2.41 on the test
set. These improvements demonstrate that our pro-
posed two-stage training effectively alleviates typ-
ical errors found in single-stage inference LLMs.
At the same time, our method achieves superior
performance with lower time costs compared to
multi-stage inference LLMs. To further explore the
upper bound of our method, we replace the base
LLM with a more advanced one, Llama3 (Dubey
et al., 2024), and observe further performance im-
provements. This highlights the robustness and
potential of our approach. However, our method

' openai.com/api. The version is gpt-40-2024-11-20.
’The version we use is Mistral-7B-Instruct-v0.2.



Dev Test
Model/Micro F1(%) Base LM Precision Recall F1 Precision Recal F1
PLM
TABLEFILLER* RoBERTa-base - - 48.35 - - 48.94
TAG* RoBERTa-base - - 49.34 - - 49.38
LLMs (Multi-Stage)
AutoRE},_pg g Mistral-7B-Instruct - - 40.30 - - 40.33
AutoRE},_p_ 5 Mistral-7B-Instruct - - 42.52 - - 41.48
AutoREL, _p o Mistral-7B-Instruct 66.60 44.02 53.01 66.24 42.67 51091
LLM:s (Single-Stage)
ChatGPT4o - 17.53 7.24  10.25 17.66 7.27 10.29
AutoRE},_ Mistral-7B-Instruct - - 39.07 - - 39.65
SDB-DRE j/istrai—7B—Instruct Mistral-7B-Instruct 62.73 48.01 54.39 62.85 47.83 54.32
SDB-DRE [ j0ma—3-8B—Instruct Llama-3-8B-Instruct 60.90 4998 54.91 62.60 4941 55.23

Table 1: Results on the Re-DocRED benchmark. Scores of existing methods marked with a * are from the previous
paper (Zhang et al., 2023; Xue et al., 2024). The best-performing method’s metric values are highlighted in bold.

Model/(%) Precision Recall F1

SDB-DRE 62.60 49.41 55.23
w/o Entity Type 59.89 49.94 54.46
w/o Coreference 60.26 47.82 53.32
w/o Structure Aware QA 57.70 49.09 53.05
w/o RDCL 58.05 49.11 53.21
w/o MBCL 62.10 49.12  54.85
w/o Two-Stage Training 59.13 4770  52.79

Table 2: Ablation experiment on the ReFREDo test set,
with the base LLM Llama3-8B-Instruct.

also exhibits certain limitations. While it achieves
an increase in F1 score compared to multi-stage
inference method, it shows a decrease in precision.
This suggests that multi-stage inference models are
better at filtering out incorrect relations, but they
may also weaken the integrity of correctly identi-
fied triplets.

4.4 Ablation Study

We conduct a comprehensive set of ablation experi-
ments on the test set to evaluate the effectiveness
of each component. The results are shown in Table
2. Below is a detailed analysis of each part:

w/o Entity Type. In this experiment, we remove
the entity type determination task from the SAQA
and instead have the LLM only identify mentions
in the document and aggregate them into a set
based on co-reference structure. The model’s per-
formance shows a noticeable decline, indicating
that the latent logical relationships between triples
and entity types are crucial for the LLM’s reason-

ing about relationship types.

w/o Coreference. In this experiment,we remove
the co-reference structure parsing from SAQA and
modify the instructions and answers to focus on
identifying all mentions and their corresponding
entity types. The model’s performance declines,
showing that explicitly training the LLM to parse
co-reference structures improves relationship ex-
traction performance.

w/o Structure QA. In this experiment, we re-
move all the SAQA training and the corresponding
modules from the first stage. The model’s per-
formance further deteriorates, demonstrating the
necessity of the structural parsing ability of LLMs
in DocRE.

w/o RDCL. In this experiment, we remove the
Relation Definition Contrastive Loss from .The
results show that learning the relationship defini-
tions effectively prevents the model from making
incorrect inferences based solely on the relation-
ship names, thus significantly improving the LLM’s
performance.

w/o MBCL. We remove the Mention Boundary
Contrastive Loss (MBCL). The performance drop
observed here shows that this training is essential
for the model to more accurately identify the bound-
aries of the head and tail entities in the triples, re-
sulting in more precise extraction.

w/o Two-Stage Training. we retain both QA
tasks and the two contrastive losses, using a sin-
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Figure 3: Experimental results of hyperparameters «, 3
and k. In single-parameter experiments, the remaining
parameters are fixed at their estimated optimal values.

gle QLoRA module for training. The model per-
formance decreases, indicating that our two-stage
training strategy has the following benefits: (1)
avoids the impact of data distribution imbalance
for different QA objectives on model performance;
(2) allows the model to adapt to the frozen structure
QLoRA parameters during the second-stage train-
ing; (3) preserves as much of the structural knowl-
edge learned in the first stage during the second-
stage training.

4.5 Analysis and Discussion

Hyperparameters Study. We investigate the im-
pact of different hyperparameters on model per-
formance by conducting experiments on the Re-
DocRED test set. In the single-parameter exper-
iments, we fix the remaining parameters to their
estimated optimal values. As shown in Figure 3,
the auxiliary coefficient « in relation definition
learning and the auxiliary coefficient 8 in entity
boundary learning play a crucial role in balancing
the loss function. As these two parameters increase,
the F1 score exhibits a clear trend of initially ris-
ing and then decreasing, with the optimal balance
near 1.0. This suggests that teaching the LLMs to
learn the relationship definitions and entity bound-
aries significantly improves the accuracy of triplets.
However, when the balancing coefficients are too
large, noise may be introduced due to label errors,
missing data, and differences in objectives, leading
to a decrease in triplet extraction performance.
Regarding the number & of similar relations sam-
pled in the relationship definition learning’s neg-
ative sampling, we observe that it has a minimal
impact on overall performance. However, when
the number is excessively large, it results in an im-
balance between positive and negative samples in
relationship definition learning, as well as an over-
abundance of similar relations. This hinders the
model’s ability to effectively distinguish between
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Figure 4: Performance Changes in Coreference Resolu-
tion and Entity Classification Before and After SAQA
Training in LLM

the definitions of easily confused relations, poten-
tially leading to a negative impact on performance.

Document Parsing Ability Study. To investi-
gate whether the model’s ability to parse document
structure genuinely improves after the first stage,
we test the performance changes of the model be-
fore and after the SAQA training. Specifically, we
define two evaluation metrics based on sets of en-
tity mentions: (1) Coreference Resolution Metric:
A set is considered correct only if all mentions of
the entities in the set are classified correctly. (2)
Entity Classification Metric: A set is considered
correct only if the entire set is assigned the correct
entity class. As shown in Figure 4, the experi-
mental results indicate that after the first stage of
SAQA training, the model’s ability to parse doc-
ument structure improves significantly. This lays
a solid foundation for implicit document structure
analysis and category-based logical reasoning dur-
ing the relation extraction phase, effectively en-
hancing the performance of triplet extraction.

5 Conclusion

In this work, we propose an LLM-based DocRE
method. First, we train the model to acquire
document structure parsing capabilities through
Structure-Aware QA. During the relationship ex-
traction training, we introduce relation definition
learning and mention boundary learning to miti-
gate the challenges that LLLMs face when extracting
triples. Our approach does not rely on pre-existing
entity annotations during inference, making it more
aligned with real-world application needs. Exper-
imental results and further analysis demonstrate
that our model outperforms existing methods on
the public benchmark Re-DocRED, highlighting
the superiority of our approach.



Limitations

Although our method adopts a novel two-stage
training approach to enhance the performance of
single-stage inference LLMs on DocRE, it shows
a general decline in precision compared to multi-
stage inference methods. In future work, we plan
to introduce a more effective implicit reasoning
process for LLMs to improve the accuracy of the
generated triples. While SDB-DRE removes the
reliance on pre-labeled entities during the inference
phase, potential annotation errors during training
can still impact the model’s performance, motivat-
ing us to further explore and develop more robust
methods. Additionally, SDB-DRE is limited to han-
dling seen relation categories, which prompts us to
develop methods (Popovic and Férber, 2022; Meng
et al., 2023) with better generalization capabilities
in the future.
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A Implement Details

Our model is implemented using the PyTorch
(Paszke et al., 2019) library and HuggingFace
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Transformers (Wolf et al., 2019). During the train-
ing of LLMs, we use a learning rate of 2e-5, a
batch size of 1, and a maximum sequence length
of 1024. The first 6% of the steps followed a linear
warm-up, after which the learning rate decay lin-
early to 0. We perform early stopping based on the
micro F1 score on the development set. All of our
experiments are conducted on a single RTX 4090
GPU. In the parameter-efficient fine-tuning tech-
nique QLoRA, we follow the settings from prior
work, setting the rank to 300 and the merge ratio
to 16. The hyperparameters «, 3, 74, Tmp and k
were set to 1.0, 1.0, 0.5,0.5 and 5.0, respectively.

B Error Analysis

We randomly select 50 documents from the Re-
DocRED test set and use a LLaMA3-8B-Instruct
model trained with the single-stage method to gen-
erate predictions. Based on the gold labels, we
extract all incorrect triplets and ask six annotators
(divided into two groups) to label how frequently
each of the three error types occurs. Each document
is independently annotated by three annotators, and
we report both the average and standard deviation
to ensure annotation reliability. Additionally, we
apply the same annotation process to the predic-
tions generated by our proposed SDB-DRE model
to further demonstrate its effectiveness in reducing
these errors. The changes in the number of the
three typical error types are shown in Figure 6. The
changes in the proportion of the three typical error
types within the total number of errors are shown
in Figure 5. We can observe that: (1) These three
types of errors are relatively common among the
incorrect predictions. (2) Our method substantially
reduces the frequency of these errors, both in terms
of absolute count and their proportion among all
incorrect predictions.

C Time Consumption

we measure the time required for both models to
perform inference on the full Re-DocRED test set
using the Mistral-7B-Instruct model on a single
RTX 4090 GPU. To ensure fairness, no inference
acceleration techniques were used. The results are
Shown in Figure 7. We can observe that: our single-
stage model significantly reduces inference time
while also achieving better performance. Multi-
stage methods require repeated document encoding
and fine-grained decoding for each triple, which
greatly increases computational cost.
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Figure 5: The proportion of the three typical error types within the total number of errors.
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Figure 6: The variation in the number of three typical
error types

D Case Study

To more intuitively demonstrate the advantages of
our proposed SDB-DRE over existing methods,
we select representative documents from the Re-
DocRED test set for a case study. We showcase the
answers of two single-stage LLM-based methods
to visually highlight the superiority and limitations
of each paradigm. As shown in Figure 8, com-
pared to the previous single-stage reasoning model,
AutoREp_ i, we can find that:

* SDB-DRE correctly predicts the country rela-
tionship between Kherson and Russian. This
shows that the SAQA training effectively en-
hances the document structural parsing capa-
bility of LLMs, enabling the model to derive
this triple through further logical reasoning.

* SDB-DRE eliminates the incorrect prediction
of [Orlov, conflict, Nikolai Yudenich] made by
previous methods. This indicates that, with
the learning of static relationship definitions
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Figure 7: Time cost comparison between multi-stage
and single-stage reasoning. The x-axis represents time,
measured in seconds.

in LLMs, the model better understands the
specific semantics of different relationships,
thereby mitigating the impact of relationship
definition ambiguity on LLM performance.

* SDB-DRE correctly identifies the mention
boundaries of Soviet Naval Forces, making
the entire triple accurate. This shows that men-
tion boundary learning effectively improves
the LLM’s ability to recognize mention bound-
aries in triples.

E Independent or Synergistic

To further examine the synergy among the losses,
we carried out an experiment where we decouple
the REQA training stage into two separate phases:
one with contrastive learning only, and the other
with REQA training alone. The comparison results
are shown in the table 3. The model trained with
contrastive learning and REQA in separate stages
did not outperform the jointly trained model. This
highlights the importance and effectiveness of the



was posthumously rehabilitated in 1956.

Vladimir Mitrofanovich Orlov ( July 15, 1895-July 28, 1938 ) was a Russian military leader and Commander-in-Chief of the Soviet Naval
Forces from July 1931 to July 1937. Orlov was born in Kherson and initially studied in the Legal faculty of St Petersburg University
(although he did not complete his studies). He joined the Baltic Fleet in 1916 and served as a navigating officer on the cruiser Bogatyr. In
1919-20 he was political officer of the Baltic Fleet and fought against the forces of the white General Nikolai Yudenich in the defence of
Petrograd. In the 1920s he was commisar for water transport and in 1923 he became political commissar for all naval academies. Between
1926 and 1930 he commanded the Black Sea Fleet. In 1931 he was appointed commander of the Soviet Navy and in 1937 he was
appointed deputy minister of defence. Orlov was arrested on 10 July 1937 and was sentenced to death on 28 July 1938 and executed . He
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Figure 8: A case study of the single-stage reasoning methods AutoREp_ r and SDB-DRE. For the sake of brevity
and ease of discussion, only representative prediction results are selected in the figure.

Model Precisi on Recall F1
SDB-DRET05tage 62.60 4941 55.23
SDB-DRE7};cestage 60.02 49.45 54.30

Table 3: Training Results of Decoupled Contrastive
Learning and Relation Extraction

synergistic interaction between loss terms, and val-
idates our design choice of balancing these losses
during joint training.

F Document Structure QA Prompt

The input prompts for the first-stage relation QA
training are presented as follows:

Find all the mentions of the same entity in the
document and provide the corresponding entity
type. Output in the format: ({[mentionl, mention2,
...], entity type)}.

Document: $Document$

All non-duplicate valid entity set, where each
set includes all mentions of the entity in the docu-
ment and the corresponding entity type. The output
format is [mentionl, mention2, ...], entity type.

The format of the label L, in Structure-Aware
QA during first-stage training is as follows:

[({mention] of entityl, mention2 of entityl, ...},
entity1 type), ({mentionl of entity2, mention2 of
entityl, ...}, entity2 type), ...]

G Relation Extraction QA Prompt

The input prompts for the second-stage relation QA
training are presented as follows:
Given a document, please list all triple [head
entity, relation, tail entity] in the document.
Document: $Document$
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All non-duplicate valid [head entity, relation, tail
entity] triples in the document (output format:[head
entity, relation, tail entity], one triple per line, If
there are no entities with existing relationships,
return None):

The format of the label L in Relation QA during
second-stage training is as follows:

[[mention] of entity1, relation], mentionl of en-
tity2],[mention2 of entity1l, relationl, mention] of
entity2],[mention] of entity3, relation2, mentionl
of entity?2]

H Detail of ChatGPT4o0 Test

The original ChatGPT model does not undergo task-
specific instruction fine-tuning, which limits its
familiarity with the target relational scope. To ad-
dress this limitation, we change the baseline prompt
design by explicitly incorporating the relational
scope through name-based representations.

The input prompts for the relation QA are pre-
sented as follows: Given a document, please list
all triple [head entity, relation, tail entity] in the
document.

All candidate relation types are [relationl, rela-
tion2, relation3,...]

Document: $Document$

All non-duplicate valid [head entity, relation, tail
entity] triples in the document (output format:[head
entity, relation, tail entity], one triple per line, If
there are no entities with existing relationships,
return None):

In real-world settings, the variety of relation-
ships is significantly more diverse, and incorporat-
ing their definitions into the prompt would substan-
tially increase the computational cost of inference.



