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Abstract001

Recent years, Large Language Models (LLMs)002
demonstrate superior performance in informa-003
tion extraction tasks. Leveraging these mod-004
els for Document-Level Relation extraction005
(DocRE) will benefits from their powerful gen-006
erative capabilities. However, we observe that007
LLMs still face challenges in DocRE tasks:008
Document Structure Parsing Error, Relation009
Definition Ambiguity, and Entity Boundary010
Recognition Error. To address these issues,011
we propose SDB-DRE, an LLM-based DocRE012
model that does not rely on pre-labeled entities.013
To tackle the Document Structure Parsing Error,014
we introduce a novel Structure-Aware QA train-015
ing approach, enabling LLMs to learn corefer-016
ence relationships and entity types within the017
document. To resolve Relation Definition Am-018
biguity and Entity Boundary Recognition Er-019
ror, we introduce relation definition learning020
and mention boundary learning in the second021
stage of relation extraction training. This im-022
proves the internal document representation of023
the LLM, ensuring the output triples are con-024
sistent with the relation definitions and have025
more accurate entity boundaries. Experimental026
results show that SDB-DRE outperforms LLM-027
based methods using multi-stage inference in028
a single-stage reasoning setup, achieving state-029
of-the-art performance.030

1 Introduction031

Document-level Relation Extraction (DocRE) (Yao032

et al., 2019; Xie et al., 2022) focuses on extracting033

relationships between entities from the given doc-034

ument. Compared to sentence-level task, DocRE035

is more complex due to phenomena like corefer-036

ence and cross-sentence relations, but it more ac-037

curately reflects practical applications. Previous038

research (Tan et al., 2022a) mostly relies on pre-039

annotated entities for entity-pair relation classifica-040

tion, which does not fully capture the complexities041

of real-world scenarios. In light of this, some stud-042

ies(Eberts and Ulges, 2021; Xu and Choi, 2022;043

Vladimir Mitrofanovich Orlov ( July 15, 1895-July 28, 1938 ) was a Russian military 
leader and Commander-in-Chief of the Soviet Naval Forces from July 1931 to July 1937. 
Orlov was born in Kherson and initially studied in the Legal faculty of St Petersburg 
University (although he did not complete his studies). He joined the Baltic Fleet in 1916 
and served as a navigating officer on the cruiser Bogatyr. In 1919-20 he was political 
officer of the Baltic Fleet and fought against the forces of the white General Nikolai 
Yudenich in the defence of Petrograd. ...

(a) Document Structure Parsing Error  

(b) Relation Definition Ambiguity

(c) Entity Boundary Recognition Error

[Baltic Fleet, part of, Soviet Naval]

conflict: entails the event 
(object) in which the subject, 
typically a person, entity or 
military unit, participated. 

Missing Triple 
Kherson Russian

Vladimir Mitrofanovich Orlov 

Orlov

Wrong Triple

coreference

place of birth

country of citizenship

[Orlov, conflict, Nikolai Yudenich]
[Vladimir Mitrofanovich Orlov, conflict, Nikolai Yudenich] 

Relation Definition

Wrong Triple

[Baltic Fleet, part of, Soviet Naval Forces]

Correct Triple

Kherson

country 

Russian

Document Without Pre-annotated Entity

Figure 1: An example of end-to-end DocRE task based
on LLMs and three common errors: Document Structure
Parsing Error, Relation Definition Ambiguity, and Entity
Boundary Recognition Error.

Zhang et al., 2023) shift towards more complex 044

settings document-level joint relation extraction, 045

where the model simultaneously solve entity men- 046

tions recognition, coreference resolution and rela- 047

tion extraction. However, such approaches overly 048

refine the steps involved in DocRE, leading to ac- 049

cumulated errors that degrade relation extraction 050

performance. Recent advancements (Jiang et al., 051

2023; Achiam et al., 2023) in the area of Large 052

Language Models (LLMs) make it feasible to build 053

end-to-end triplet extraction models. Leveraging 054

LLMs for DocRE allows for the utilization of ex- 055

tensive pre-trained knowledge and powerful gener- 056

ative capabilities. This motivates us to explore how 057

LLMs can be better applied to DocRE. 058

Despite promising results from recent LLM- 059

based methods (Xue et al., 2024), current multi- 060

step inference methods increase computational 061

costs. In addition, these methods have three typical 062

problems: (1) Document Structure Parsing Error 063

(2) Relation Definition Ambiguity and (3) Entity 064
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Boundary Recognition Error. As shown in Fig-065

ure 1, we select a document example to more intu-066

itively demonstrate the three phenomena produced067

by LLMs and their underlying causes, when per-068

forming end-to-end triplet extraction.069

Document Structure Parsing Error. The070

trained LLMs can correctly predict that Orlov’s071

birthplace is Kherson and that Vladimir Mitro-072

fanovich Orlov’s country of citizenship is Russian.073

However, due to the lack of document structure074

parsing ability in LLMs for specific scenarios,075

it fails to recognize both Orlov andVladimir076

Mitrofanovich Orlov actually refer to the same077

entity, thus preventing further inference of the078

country relationship between Kherson and Russian.079

This limitation stems from the model not being080

explicitly endowed with document structure081

parsing capabilities during training.082

Relation Definition Ambiguity. From the per-083

spective of document semantics and relation name084

conflicts, the relation [Orlov, conflict, Nikolai Yu-085

denich] appears to be correct. However, the model086

overlooks the specific definition of conflict, which087

requires the object entity to be an event and the088

subject entity to participate in it (e.g., Winston089

Churchill, conflict, World War II). There are nu-090

merous relation categories in DocRE. Therefore,091

how to enable the LLM to accurately understand092

relation definitions in specific scenarios remains a093

critical challenge.094

Entity Boundary Recognition Error. This er-095

rors in triplet prediction represent another typical096

issue. For instance, the LLM’s incorrect bound-097

ary recognition of the Soviet Naval Forces leads to098

erroneous triplets even when the relations and doc-099

ument semantics are correctly understood by LLM.100

Improving the accuracy of entity mentions bound-101

ary recognition in end-to-end output is crucial for102

enhancing LLM performance.103

To address these issues, we propose a single-104

stage inference, LLM-based document-level triplet105

extraction method called SDB-DRE (Structure,106

Definition and Boundary-Document Level Rela-107

tion Extraction). Specifically, in the first-stage108

training, we construct Structure-Aware Question109

Answer (SAQA) data which includes entity cat-110

egories and coreference parsing QA pairs to en-111

hance LLM’s foundational document structure pars-112

ing ability. Building on the second-stage relation113

extraction training, we introduce two additional114

learning mechanisms for LLMs: Relation Defini- 115

tion learning and Mention boundary learning. The 116

former introduces relation definition memory dur- 117

ing training to mitigate the negative impact on the 118

model performance when the number of relation 119

types becomes too large and the model struggles 120

to comprehensively understand relation definitions. 121

The latter enhances the accuracy of LLMs in identi- 122

fying the boundaries of head and tail entities when 123

outputting triples. Notably, our method does not 124

rely on pre-given entity annotations and can di- 125

rectly perform end-to-end triple extraction during 126

inference, offering greater generalizability and po- 127

tential for practical applications. Our contributions 128

can be summarized as follows: 129

• We identify three significant issues in exist- 130

ing LLM-based end-to-end DocRE methods: 131

(1) Document Structure Parsing Error (2) Re- 132

lation Definition Ambiguity and (3) Entity 133

Boundary Recognition Error. 134

• We propose a single-stage Inference DocRE 135

model based on LLMs, called SDB-DRE, 136

which includes the following key components: 137

(1) The SAQA training enhances the LLM’s 138

ability to parser document structure (2) Static 139

relation definition memory learning enables 140

the LLMs to better understand relation def- 141

initions. (3) Mention boundary learning im- 142

proves the LLM’s ability to identify the bound- 143

aries of head and tail entities in triples. 144

• Extensive experiments demonstrate that the 145

SDB-DRE model not only outperforms exist- 146

ing LLM baselines in terms of performance 147

but also achieves better time efficiency due 148

to its single-stage reasoning architecture, sur- 149

passing current methods in this regard. 150

2 Related Work 151

Document Level Relation Extraction. Most ex- 152

isting studies(Xiao et al., 2022; Lu et al., 2023; 153

Jain et al., 2024; Gao et al., 2024) on DocRE rely 154

on pre-labeled entities, which undermines their ro- 155

bustness when they deal with real-world scenarios 156

(Meng et al., 2024). Some works (Eberts and Ulges, 157

2021; Xu and Choi, 2022; Zhang et al., 2023) 158

shift towards exploring joint extraction methods 159

for triplets from documents without relying on pre- 160

defined entities. These approaches focus on men- 161

tion detection and coreference resolution within 162

the triplet extraction process. While refining the 163

2



evaluation metrics, they also introduce additional164

sources of cumulative errors and exposure bias in165

relation extraction. The performance advances of166

LLMs, along with the limitations of existing meth-167

ods, motivate us to explore an end-to-end DocRE168

model that does not rely on pre-labeled entities.169

LLMs and Relation Extraction. Existing LLM-170

based RE models (Wang et al., 2023; Xu et al.,171

2024) typically perform the RE task in a Question-172

Answering (QA) format. A common approach is173

to include a list of relation types in the model’s174

prompt template as options. However, this setup is175

impractical in the DocRE scenario (Wadhwa et al.,176

2023), where it’s not feasible to explicitly define177

the scope of relation types and their detailed de-178

scriptions in the input. For instance, Re-DocRED179

(Tan et al., 2022b) involves 96 relation types. Re-180

cent work (Xue et al., 2024) decomposes document-181

level triple extraction into three steps: relation iden-182

tification, head entity identification, and the extrac-183

tion of entity-relation triples. It provides an LLM-184

based method that integrates relation definitions.185

However, the multi-step training and inference pro-186

cess introduces additional time overhead.187

Despite these advancements, we identify signifi-188

cant room for improvement in single-stage LLMs,189

which still struggle with issues such as Document190

Structure Parsing Error, Relation Definition Am-191

biguity, and Entity Boundary Recognition Errors.192

These challenges motivate our research and the de-193

velopment of a direct LLM-based method for triple194

extraction from documents. Our approach effec-195

tively integrates relation definitions into memory,196

addressing several inherent issues in current single-197

stage paradigms. Additionally, it achieves superior198

performance and efficiency compared to multi-step199

methods.200

3 Methodology201

Figure 2 illustrates the overall architecture of SDB-202

DRE. First, we describe the fine-tuning process that203

equips the LLM with document parsing capability.204

Next, we introduce mention boundary learning and205

relation definition learning in the relation extraction206

training process. Finally, we outline the model’s207

overall training objective and inference process.208

3.1 Problem Fomulation209

Given a document D consisting of n tokens, let210

the training set consist of documents and their cor-211

responding triplet labels, represented as DT =212

{D,Lr}, where Lr denotes the all triplet-based213

answer label, and lr is the length of the label. Each 214

entity e in the document may appear multiple times 215

and have multiple aliases, referred to as mentions 216

m. Unlike prior work on DocRE (Lu et al., 2023; 217

Gao et al., 2024), our model does not rely on pre- 218

labeled entities. Our goal is to use LLMs to di- 219

rectly generate all triplets T contained within the 220

document in an end-to-end manner. Formally, we 221

denote the LLM as fLLM , with QA task’s input 222

instruction represented as I . The output token 223

sequence generated by the model is denoted as: 224

Y = fLLM (I,D) = {yi}lri=1, where Y represents 225

the answer generated by the model based on the 226

input instruction and document content. The sam- 227

pling probability of the tokens in Y is given by: 228

P (Y |I,D) =
∏lr

t=1 P (yt|I,D, y<t), where yt de- 229

notes the t-th token in Y , and y<t represents the 230

tokens generated before yt. 231

3.2 Document Structure Awareness Training 232

To reduce reasoning errors in triples caused by 233

document structure parsing mistakes, we perform 234

pre-finetuning to enhance the document structure 235

comprehension abilities of LLMs. Specifically, we 236

define a QA task to help LLMs learn implicit doc- 237

ument structure closely related to relation extrac- 238

tion: mention coreference and entity types. The 239

former is crucial for reasoning about relationships 240

between entity pairs across sentences, while the lat- 241

ter involves a potential logical connection between 242

specific relation categories Formally, we construct 243

document structure QA pairs based on the annota- 244

tions available in the training documents. The input 245

instruction for the document structure QA is de- 246

noted as Is. The generated output token sequence 247

is Ys = fLLM (Is, D) = {yis}Li=1, where Ys repre- 248

sents the answers generated by the LLM based on 249

the input instruction and document content, includ- 250

ing the co-reference set of entity mentions and the 251

corresponding entity types. The specific format can 252

be found in Appendix F. We fine-tune our model 253

with Parameter-Eficient method QLoRA (Dettmers 254

et al., 2023). The objective loss function used for 255

training is defined as follows: 256

ℓs = −
∑

(D,Ls)∈DT

ls∑
t=1

logPθ+θs(yt|Is, D, y<t) (1) 257

where θ represents the parameters of the LLMs, 258

θs denotes the parameters of QLoRA, and ls is the 259

length of the document structure label Ls. In this 260

training step, we only update the parameters θs of 261

the Structure-Aware QLoRA. 262
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�:  Given a document, please list all triple [head 
entity, relation, tail entity] in the document. 

�:  All non-duplicate valid [head entity, relation, 
tail entity] triples in the document (output form
at:[head entity, relation, tail entity]

Large Language Models

Struct-Aware LoRA

(1) Doc Struct Aware Pre-Tuning (2) DocRE-Tuning with Defination and Boundary

Relation Extraction

Answer(L):[[mention1 of entity1, R1, 
mention1 of entity 2], [mention1 of 

entity1, country, Russia], ...]

Structure-Aware QA Pre-Tuning

(3) End-to-End Relation Triple Inference

Entity Type  Coreference Documents for 
Training

Large Language Models
(w/o llm head)

Struct-Aware LoRA

DocRE LoRA

Two-Stage Trained 
Large Language Models2*

Mention  Boundary Aware 
Contrastive Loss �: Find all the mentions of the sa

me entity in the document and pr
ovide the corresponding entity typ
e. Output in the format: (['mention

1', 'mention2', ...], entity type).   

Documents for TestRelation Names 
and Descriptions

Relation Defination 
Memory

Relation Defination Aware 
Contrastive Loss

Generative Relation Extraction Loss

Documents for 
Training

Document 
Representation

La
ng

ua
g

e 
M

od
el

 H
ea

d

Entity Pairs 
Representation

 Document structure QA

Figure 2: Overview of SDB-DRE. The red arrows indicate the training process and blue arrows indicate the inference
process. The training process consists of two stages. The first stage helps LLMs acquire document structure parsing
capabilities, while the second stage aim to alleviate errors in triples caused by inaccurate entity boundaries and
conflicts between relationship definitions and triples.

3.3 Document Representation263

Different from traditional generative RE training,264

our approach focuses on improving the document265

vector representations seen by the LLM head,266

thereby addressing the issues present in the exist-267

ing single-step paradigm. Given a document D,268

we use the final hidden layer representation of the269

LLM corresponding to the document portion as270

the input document representation H . Following271

previous methods (Zhou et al., 2021), we extract272

the mention representation hm from the positions273

in the document representation. By aggregating274

the representations of mentions belonging to the275

same entity, we obtain the entity representation:276

he = log
(∑|Me|

i=1 exp(hmi)
)

. Given an entity pair277

(eh, et), we obtain the context representation as-278

sociated with the entity pair through the attention279

matrix and the token representations of the entire280

document H:281

ch,t = HT Ah ⊙AT
t

AhAt
(2)282

It is worth noting that, due to the decoder-only ar-283

chitecture of the LLM, the document representation284

encoded by the model cannot access downstream285

information. This is detrimental to the model’s286

ability to obtain sufficiently informative context287

representations for entity pairs. To address this,288

we unmask the document portion of the causal289

mask when computing the attention matrices Ah290

and At, ensuring that the model has visibility to291

downstream context information when calculating292

the key contextual representations for entity pairs.293

Notably, to avoid relying on pre-labeled entities for294

inference, the encoding of critical entity context 295

information is only conducted during the training 296

phase with labeled LLMs. 297

3.4 Relation Defination Learning 298

For each relation r, we use LLMs to encode the 299

rewritten relation names and their corresponding 300

definitions from prior work. We place the gener- 301

ated special start token of each LLM at the end 302

of the document to capture the overall semantic 303

meaning, and use the vector representation of this 304

token from the final hidden layer before the LM 305

head as the representation of the relation type r. By 306

leveraging the enhanced descriptive text for rela- 307

tion types and non-discrete relation labels, we can 308

fully exploit the powerful representational capacity 309

of pre-trained LLMs to generate reliable semantic 310

vector representations of relations. This collection 311

of static vectors is referred to as the "relation def- 312

inition memory" of the LLMs. For performance 313

and computational resource reasons, this memory 314

is not updated during model training. 315

We adopt a sampling strategy that helps the 316

LLMs better distinguish between similar relation 317

categories. Specifically, We define the positive sam- 318

ple pair set as: P = {(ch,t, rp) : (h, rp, t) ∈ T} 319

where the context representation of the entity pair 320

and its corresponding relation defination memory 321

is considered a positive sample pair. Since a can- 322

didate entity pair may correspond to multiple rela- 323

tions, it may be associated with multiple positive 324

pairs. For negative samples selection, we first filter 325

out all entity pairs that do not have any relations. 326

Then, we calculate the similarity between relations 327

based on the LLM’s relation description memory, 328
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selecting the topk most similar relations for each329

category as candidates for negative samples:330

rn = topk(
rp · ro

∥rp∥∥ro∥
) (3)331

where o represents all relations other than r. The332

topk function returns the top k relations ro most333

similar to rp, which are then selected as negative334

samples rn. For each entity pair, we construct335

the negative sample set as: N = {(ch,t, rn) :336

(h, rn, t) /∈ T} using the context representations of337

the entity pairs in the positive sample set and the338

similar relations.339

We design a loss function that encourages LLMs340

to mine documents from a semantic perspective341

based on the entity pair context and relationship342

type definitions. Intuitively, by utilizing the final343

hidden layer representation and attention mecha-344

nism of LLMs, we obtain the contextual representa-345

tion associated with the entity pair. The contextual346

representation of an entity pair should be closer to347

the representation of the specific description of the348

relationship it possesses, while being pushed far-349

ther apart from the representations of relationships350

it does not possess. Specifically, let the set of all351

candidate entity pairs in document D be E:352

ℓrd = −
∑

(h,t)∈E

1

|P |
∑

(h,rp,t)∈P

log
u(c(h,t), rp)∑

(h,rn,t)∈N
u(c(h,t), rn)

(4)353

where u(c(h,t), r) = exp(sim(c(h,t), r)/πer) and354

πer is a temperature hyperparameter. This loss355

function mitigates interference caused by the ab-356

sence of the definition of relationship and further357

aids the model in distinguishing between relation-358

ship categories with similar semantics.359

3.5 Mention Boundary Learning360

We design a mention boundary learning loss to al-361

leviate the errors in head-tail entity boundary iden-362

tification within triples of LLMs. Specifically, let363

M denote the set of all mentions of entities in the364

document D, and m as a single mention of an en-365

tity. We construct positive and negative sample366

pairs based on the entity boundary tokens. the pos-367

itive sample set is defined as: P = {(mb,me−1) :368

m ∈ M}, where b is the start index of the men-369

tion and e − 1 is the end index of the mention.370

In contrast, the negative sample set are defined as371

N = {(mb,mb−1), (me−1,me) : m ∈ M} By uti-372

lizing a fixed ratio of positive to negative samples,373

we design a loss function that helps the model bet-374

ter identify mention boundaries, thereby improving375

the accuracy of triples. Intuitively, the token repre- 376

sentations of mention boundaries should be pushed 377

apart from those of the surrounding external tokens, 378

while the start and end tokens of an entity should 379

be brought closer together. Then the loss is defined 380

as: 381

ℓmb =
1

|M |
∑
m∈M

log
u(mb,me−1)

u(mb,mb−1) + u(me−1,me)
(5) 382

where u(mb,me−1) = exp(sim(c(h,t), r)/πmb) 383

and πmb is the temperature hyperparameter. This 384

loss function mitigates the issue of fuzzy bound- 385

aries in generated triples and further helps LLMs 386

distinguish entity mention boundaries within docu- 387

ment representations. 388

3.6 Training objectives and inference 389

Given a document D and the input instruction for 390

relation extraction QA represented as Ir, we use 391

autoregressive generation loss ℓre to train the model 392

for the final goal of relation extraction: 393

ℓre = −
∑

(D,Lr)∈DT

lr∑
t=1

logPθ+θs+θr(yt|Ir, D, y<t)

(6) 394

where lr denotes the length of the relation extrac- 395

tion label Lr, and θr represents the parameters of 396

the relation extraction QLoRA. Combining entity 397

definition contrastive learning and mention bound- 398

ary learning, the final training objective for the 399

relation extraction QA phase is formulated as fol- 400

lows: 401

ℓ = αℓrd + βℓmb + ℓre (7) 402

where α and β are adjustable hyperparameters. In 403

this training step, the parameters θ of the LLM and 404

the parameters θs of the structural QLoRA, which 405

were pre-trained in the first stage, are frozen. The 406

newly introduced relation extraction QLoRA pa- 407

rameters θr are trainable. After completing the two- 408

stage training, we perform inference using the LLM 409

combined with both QLoRA parameters. Specifi- 410

cally, this is formulated as: 411

P (Y |I,D) =
lr∏
t=1

Pθ+θs+θr(yt|I,D, y<t). (8) 412

The generated tokens are sampled from probabil- 413

ities P and decoding with a fixed output format, 414

we obtain all the triples contained in the document. 415

The specific format of the prompts for relation ex- 416

traction training and inference can be found in Ap- 417

pendix G. 418
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4 Experiments419

4.1 Dataset and Metric420

Dataset. We conduct our experiments using the421

Re-DocRED (Tan et al., 2022b) dataset, refined by422

previous works (Xue et al., 2024). This dataset in-423

cludes a validation set with 498 articles and 17,236424

triplets, ensuring comprehensive and precise eval-425

uation. It also contains a test set with 499 articles426

and 17,448 triplet facts. The dataset originates427

from DocRED (Yao et al., 2019), and Re-DocRED428

addresses the issue of an excessive number of false429

negative samples in the original dataset. Building430

on this, AutoRE (Xue et al., 2024) further mod-431

ifies the relation descriptions and performs data432

cleaning.433

Metric. We adopt the evaluation metric from pre-434

vious work on end-to-end triple extraction using435

LLMs (Xue et al., 2024), which is designed for sce-436

narios that do not rely on pre-labeled entities. This437

metric follows a strict Micro F1 standard, where a438

prediction is considered correct only if it exactly439

matches the relation, as well as both the head and440

tail entities. Notably, in the Re-DocRED dataset,441

a single triple may contain multiple aliases (men-442

tions) for both the head and tail entities. A predic-443

tion is considered correct as long as it identifies444

any valid triplet pair. If the predicted pair matches445

any alias pair for the head and tail entities, it is446

counted as correct. However, other valid aliases are447

not counted in the correct statistics, meaning each448

correct triplet is counted only once. In contrast,449

all incorrect predictions, including entity mentions450

and relations, are considered false positives. This451

approach ensures a rigorous and statistically valid452

evaluation, enhancing the credibility of the final453

results. The implement detals can be found in Ap-454

pendx A.455

4.2 Baselines456

We compare the proposed SDB-DRE method with457

three categories of DocRE baseline methods: (1)458

joint extraction methods based on traditional PLMs,459

(2) LLMs with single-stage inference, and (3)460

LLMs with multi-stage inference. It is important to461

note that most existing relation extraction models462

are tested with pre-defined entities, making their463

performance non-comparable to the method pro-464

posed in this paper.465

PLM Method. This category includes TABLE-466

FILLER (Zhang et al., 2023) and the current state-467

of-the-art (SOTA) model for document-level joint 468

extraction, TAG (Zhang et al., 2023), which is the 469

first to report end-to-end relation extraction results 470

on Re-DocRED. 471

AutoRE. AutoRE (Xue et al., 2024) consists of a 472

series of relation extraction models based on large 473

language models (LLMs), covering various rea- 474

soning paradigms. The D − F paradigm directly 475

extracts factual triples from the document. The 476

D − RS − F paradigm first identifies all rela- 477

tion types present in the document and then ex- 478

tracts the corresponding triples for each relation. 479

The D −R− F paradigm extracts triples sequen- 480

tially for each identified relation. The three-stage 481

D − R − H − F paradigm further decomposes 482

the process by first identifying relation types, then 483

extracting the head entities, and finally generating 484

the full triples. This framework systematically ex- 485

plores how different levels of reasoning granularity 486

affect relation extraction performance. 487

In addition, we also compare the performance of 488

ChatGPT4o1 to further support the superiority of 489

our method. Details can be found in Appendix H. 490

4.3 Main Results 491

The experimental results on the Re-DocRED 492

dataset are presented in Table 1. The results show 493

that our method outperforms all strong baselines 494

and the current SOTA model, AutoRE. Compared 495

to traditional PLM-based methods, our method im- 496

proves 5.05 F1 on the dev set and 4.94 F1 on the 497

test set. When using the same base LLM2 (Jiang 498

et al., 2023), our method outperforms the single- 499

stage inference LLM model AutoRED−F by 15.32 500

on the dev set and 14.67 on the test set. Further- 501

more, compared to the SOTA multi-stage inference 502

LLM-based model AutoRED−R−H−F , our method 503

improves by 1.38 on the dev set and 2.41 on the test 504

set. These improvements demonstrate that our pro- 505

posed two-stage training effectively alleviates typ- 506

ical errors found in single-stage inference LLMs. 507

At the same time, our method achieves superior 508

performance with lower time costs compared to 509

multi-stage inference LLMs. To further explore the 510

upper bound of our method, we replace the base 511

LLM with a more advanced one, Llama3 (Dubey 512

et al., 2024), and observe further performance im- 513

provements. This highlights the robustness and 514

potential of our approach. However, our method 515

1openai.com/api. The version is gpt-4o-2024-11-20.
2The version we use is Mistral-7B-Instruct-v0.2.
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Dev Test

Model/Micro F1(%) Base LM Precision Recall F1 Precision Recal F1

PLM
TABLEFILLER∗ RoBERTa-base - - 48.35 - - 48.94
TAG∗ RoBERTa-base - - 49.34 - - 49.38

LLMs (Multi-Stage)
AutoRE∗

D−RS−F Mistral-7B-Instruct - - 40.30 - - 40.33
AutoRE∗

D−R−F Mistral-7B-Instruct - - 42.52 - - 41.48
AutoRE∗

D−R−H−F Mistral-7B-Instruct 66.60 44.02 53.01 66.24 42.67 51.91

LLMs (Single-Stage)
ChatGPT4o - 17.53 7.24 10.25 17.66 7.27 10.29
AutoRE∗

D−F Mistral-7B-Instruct - - 39.07 - - 39.65
SDB-DREMistral−7B−Instruct Mistral-7B-Instruct 62.73 48.01 54.39 62.85 47.83 54.32
SDB-DRELlama−3−8B−Instruct Llama-3-8B-Instruct 60.90 49.98 54.91 62.60 49.41 55.23

Table 1: Results on the Re-DocRED benchmark. Scores of existing methods marked with a * are from the previous
paper (Zhang et al., 2023; Xue et al., 2024). The best-performing method’s metric values are highlighted in bold.

Model/(%) Precision Recall F1

SDB-DRE 62.60 49.41 55.23
w/o Entity Type 59.89 49.94 54.46
w/o Coreference 60.26 47.82 53.32
w/o Structure Aware QA 57.70 49.09 53.05
w/o RDCL 58.05 49.11 53.21
w/o MBCL 62.10 49.12 54.85
w/o Two-Stage Training 59.13 47.70 52.79

Table 2: Ablation experiment on the ReFREDo test set,
with the base LLM Llama3-8B-Instruct.

also exhibits certain limitations. While it achieves516

an increase in F1 score compared to multi-stage517

inference method, it shows a decrease in precision.518

This suggests that multi-stage inference models are519

better at filtering out incorrect relations, but they520

may also weaken the integrity of correctly identi-521

fied triplets.522

4.4 Ablation Study523

We conduct a comprehensive set of ablation experi-524

ments on the test set to evaluate the effectiveness525

of each component. The results are shown in Table526

2. Below is a detailed analysis of each part:527

w/o Entity Type. In this experiment, we remove528

the entity type determination task from the SAQA529

and instead have the LLM only identify mentions530

in the document and aggregate them into a set531

based on co-reference structure. The model’s per-532

formance shows a noticeable decline, indicating533

that the latent logical relationships between triples534

and entity types are crucial for the LLM’s reason-535

ing about relationship types. 536

w/o Coreference. In this experiment,we remove 537

the co-reference structure parsing from SAQA and 538

modify the instructions and answers to focus on 539

identifying all mentions and their corresponding 540

entity types. The model’s performance declines, 541

showing that explicitly training the LLM to parse 542

co-reference structures improves relationship ex- 543

traction performance. 544

w/o Structure QA. In this experiment, we re- 545

move all the SAQA training and the corresponding 546

modules from the first stage. The model’s per- 547

formance further deteriorates, demonstrating the 548

necessity of the structural parsing ability of LLMs 549

in DocRE. 550

w/o RDCL. In this experiment, we remove the 551

Relation Definition Contrastive Loss from .The 552

results show that learning the relationship defini- 553

tions effectively prevents the model from making 554

incorrect inferences based solely on the relation- 555

ship names, thus significantly improving the LLM’s 556

performance. 557

w/o MBCL. We remove the Mention Boundary 558

Contrastive Loss (MBCL). The performance drop 559

observed here shows that this training is essential 560

for the model to more accurately identify the bound- 561

aries of the head and tail entities in the triples, re- 562

sulting in more precise extraction. 563

w/o Two-Stage Training. we retain both QA 564

tasks and the two contrastive losses, using a sin- 565
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Figure 3: Experimental results of hyperparameters α, β
and k. In single-parameter experiments, the remaining
parameters are fixed at their estimated optimal values.

gle QLoRA module for training. The model per-566

formance decreases, indicating that our two-stage567

training strategy has the following benefits: (1)568

avoids the impact of data distribution imbalance569

for different QA objectives on model performance;570

(2) allows the model to adapt to the frozen structure571

QLoRA parameters during the second-stage train-572

ing; (3) preserves as much of the structural knowl-573

edge learned in the first stage during the second-574

stage training.575

4.5 Analysis and Discussion576

Hyperparameters Study. We investigate the im-577

pact of different hyperparameters on model per-578

formance by conducting experiments on the Re-579

DocRED test set. In the single-parameter exper-580

iments, we fix the remaining parameters to their581

estimated optimal values. As shown in Figure 3,582

the auxiliary coefficient α in relation definition583

learning and the auxiliary coefficient β in entity584

boundary learning play a crucial role in balancing585

the loss function. As these two parameters increase,586

the F1 score exhibits a clear trend of initially ris-587

ing and then decreasing, with the optimal balance588

near 1.0. This suggests that teaching the LLMs to589

learn the relationship definitions and entity bound-590

aries significantly improves the accuracy of triplets.591

However, when the balancing coefficients are too592

large, noise may be introduced due to label errors,593

missing data, and differences in objectives, leading594

to a decrease in triplet extraction performance.595

Regarding the number k of similar relations sam-596

pled in the relationship definition learning’s neg-597

ative sampling, we observe that it has a minimal598

impact on overall performance. However, when599

the number is excessively large, it results in an im-600

balance between positive and negative samples in601

relationship definition learning, as well as an over-602

abundance of similar relations. This hinders the603

model’s ability to effectively distinguish between604
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Figure 4: Performance Changes in Coreference Resolu-
tion and Entity Classification Before and After SAQA
Training in LLM

the definitions of easily confused relations, poten- 605

tially leading to a negative impact on performance. 606

Document Parsing Ability Study. To investi- 607

gate whether the model’s ability to parse document 608

structure genuinely improves after the first stage, 609

we test the performance changes of the model be- 610

fore and after the SAQA training. Specifically, we 611

define two evaluation metrics based on sets of en- 612

tity mentions: (1) Coreference Resolution Metric: 613

A set is considered correct only if all mentions of 614

the entities in the set are classified correctly. (2) 615

Entity Classification Metric: A set is considered 616

correct only if the entire set is assigned the correct 617

entity class. As shown in Figure 4, the experi- 618

mental results indicate that after the first stage of 619

SAQA training, the model’s ability to parse doc- 620

ument structure improves significantly. This lays 621

a solid foundation for implicit document structure 622

analysis and category-based logical reasoning dur- 623

ing the relation extraction phase, effectively en- 624

hancing the performance of triplet extraction. 625

5 Conclusion 626

In this work, we propose an LLM-based DocRE 627

method. First, we train the model to acquire 628

document structure parsing capabilities through 629

Structure-Aware QA. During the relationship ex- 630

traction training, we introduce relation definition 631

learning and mention boundary learning to miti- 632

gate the challenges that LLMs face when extracting 633

triples. Our approach does not rely on pre-existing 634

entity annotations during inference, making it more 635

aligned with real-world application needs. Exper- 636

imental results and further analysis demonstrate 637

that our model outperforms existing methods on 638

the public benchmark Re-DocRED, highlighting 639

the superiority of our approach. 640
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Limitations641

Although our method adopts a novel two-stage642

training approach to enhance the performance of643

single-stage inference LLMs on DocRE, it shows644

a general decline in precision compared to multi-645

stage inference methods. In future work, we plan646

to introduce a more effective implicit reasoning647

process for LLMs to improve the accuracy of the648

generated triples. While SDB-DRE removes the649

reliance on pre-labeled entities during the inference650

phase, potential annotation errors during training651

can still impact the model’s performance, motivat-652

ing us to further explore and develop more robust653

methods. Additionally, SDB-DRE is limited to han-654

dling seen relation categories, which prompts us to655

develop methods (Popovic and Färber, 2022; Meng656

et al., 2023) with better generalization capabilities657

in the future.658
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A Implement Details797

Our model is implemented using the PyTorch798

(Paszke et al., 2019) library and HuggingFace799

Transformers (Wolf et al., 2019). During the train- 800

ing of LLMs, we use a learning rate of 2e-5, a 801

batch size of 1, and a maximum sequence length 802

of 1024. The first 6% of the steps followed a linear 803

warm-up, after which the learning rate decay lin- 804

early to 0. We perform early stopping based on the 805

micro F1 score on the development set. All of our 806

experiments are conducted on a single RTX 4090 807

GPU. In the parameter-efficient fine-tuning tech- 808

nique QLoRA, we follow the settings from prior 809

work, setting the rank to 300 and the merge ratio 810

to 16. The hyperparameters α, β, πrd, πmb and k 811

were set to 1.0, 1.0, 0.5,0.5 and 5.0, respectively. 812

B Error Analysis 813

We randomly select 50 documents from the Re- 814

DocRED test set and use a LLaMA3-8B-Instruct 815

model trained with the single-stage method to gen- 816

erate predictions. Based on the gold labels, we 817

extract all incorrect triplets and ask six annotators 818

(divided into two groups) to label how frequently 819

each of the three error types occurs. Each document 820

is independently annotated by three annotators, and 821

we report both the average and standard deviation 822

to ensure annotation reliability. Additionally, we 823

apply the same annotation process to the predic- 824

tions generated by our proposed SDB-DRE model 825

to further demonstrate its effectiveness in reducing 826

these errors. The changes in the number of the 827

three typical error types are shown in Figure 6. The 828

changes in the proportion of the three typical error 829

types within the total number of errors are shown 830

in Figure 5. We can observe that: (1) These three 831

types of errors are relatively common among the 832

incorrect predictions. (2) Our method substantially 833

reduces the frequency of these errors, both in terms 834

of absolute count and their proportion among all 835

incorrect predictions. 836

C Time Consumption 837

we measure the time required for both models to 838

perform inference on the full Re-DocRED test set 839

using the Mistral-7B-Instruct model on a single 840

RTX 4090 GPU. To ensure fairness, no inference 841

acceleration techniques were used. The results are 842

Shown in Figure 7. We can observe that: our single- 843

stage model significantly reduces inference time 844

while also achieving better performance. Multi- 845

stage methods require repeated document encoding 846

and fine-grained decoding for each triple, which 847

greatly increases computational cost. 848
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Figure 5: The proportion of the three typical error types within the total number of errors.

Figure 6: The variation in the number of three typical
error types

D Case Study849

To more intuitively demonstrate the advantages of850

our proposed SDB-DRE over existing methods,851

we select representative documents from the Re-852

DocRED test set for a case study. We showcase the853

answers of two single-stage LLM-based methods854

to visually highlight the superiority and limitations855

of each paradigm. As shown in Figure 8, com-856

pared to the previous single-stage reasoning model,857

AutoRED−F , we can find that:858

• SDB-DRE correctly predicts the country rela-859

tionship between Kherson and Russian. This860

shows that the SAQA training effectively en-861

hances the document structural parsing capa-862

bility of LLMs, enabling the model to derive863

this triple through further logical reasoning.864

• SDB-DRE eliminates the incorrect prediction865

of [Orlov, conflict, Nikolai Yudenich] made by866

previous methods. This indicates that, with867

the learning of static relationship definitions868

0 5000 10000 15000 20000 25000 30000 35000

SDB-
DRE

AutoRE_
D-R-H-F

Figure 7: Time cost comparison between multi-stage
and single-stage reasoning. The x-axis represents time,
measured in seconds.

in LLMs, the model better understands the 869

specific semantics of different relationships, 870

thereby mitigating the impact of relationship 871

definition ambiguity on LLM performance. 872

• SDB-DRE correctly identifies the mention 873

boundaries of Soviet Naval Forces, making 874

the entire triple accurate. This shows that men- 875

tion boundary learning effectively improves 876

the LLM’s ability to recognize mention bound- 877

aries in triples. 878

E Independent or Synergistic 879

To further examine the synergy among the losses, 880

we carried out an experiment where we decouple 881

the REQA training stage into two separate phases: 882

one with contrastive learning only, and the other 883

with REQA training alone. The comparison results 884

are shown in the table 3. The model trained with 885

contrastive learning and REQA in separate stages 886

did not outperform the jointly trained model. This 887

highlights the importance and effectiveness of the 888
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Vladimir Mitrofanovich Orlov ( July 15, 1895-July 28, 1938 ) was a Russian military leader and Commander-in-Chief of the Soviet Naval 
Forces from July 1931 to July 1937. Orlov was born in Kherson and initially studied in the Legal faculty of St Petersburg University 
(although he did not complete his studies). He joined the Baltic Fleet in 1916 and served as a navigating officer on the cruiser Bogatyr. In 
1919-20 he was political officer of the Baltic Fleet and fought against the forces of the white General Nikolai Yudenich in the defence of 
Petrograd. In the 1920s he was commisar for water transport and in 1923 he became political commissar for all naval academies. Between 
1926 and 1930 he commanded the Black Sea Fleet. In 1931 he was appointed commander of the Soviet Navy and in 1937 he was 
appointed deputy minister of defence. Orlov was arrested on 10 July 1937 and was sentenced to death on 28 July 1938 and executed . He 
was posthumously rehabilitated in 1956.
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Figure 8: A case study of the single-stage reasoning methods AutoRED−F and SDB-DRE. For the sake of brevity
and ease of discussion, only representative prediction results are selected in the figure.

Model Precisi on Recall F1

SDB-DRETwoStage 62.60 49.41 55.23
SDB-DREThreeStage 60.02 49.45 54.30

Table 3: Training Results of Decoupled Contrastive
Learning and Relation Extraction

synergistic interaction between loss terms, and val-889

idates our design choice of balancing these losses890

during joint training.891

F Document Structure QA Prompt892

The input prompts for the first-stage relation QA893

training are presented as follows:894

Find all the mentions of the same entity in the895

document and provide the corresponding entity896

type. Output in the format: ({[mention1, mention2,897

...], entity type)}.898

Document: $Document$899

All non-duplicate valid entity set, where each900

set includes all mentions of the entity in the docu-901

ment and the corresponding entity type. The output902

format is [mention1, mention2, ...], entity type.903

The format of the label Ls in Structure-Aware904

QA during first-stage training is as follows:905

[({mention1 of entity1, mention2 of entity1, ...},906

entity1 type), ({mention1 of entity2, mention2 of907

entity1, ...}, entity2 type), ...]908

G Relation Extraction QA Prompt909

The input prompts for the second-stage relation QA910

training are presented as follows:911

Given a document, please list all triple [head912

entity, relation, tail entity] in the document.913

Document: $Document$914

All non-duplicate valid [head entity, relation, tail 915

entity] triples in the document (output format:[head 916

entity, relation, tail entity], one triple per line, If 917

there are no entities with existing relationships, 918

return None): 919

The format of the label L in Relation QA during 920

second-stage training is as follows: 921

[[mention1 of entity1, relation1, mention1 of en- 922

tity2],[mention2 of entity1, relation1, mention1 of 923

entity2],[mention1 of entity3, relation2, mention1 924

of entity2] .....] 925

H Detail of ChatGPT4o Test 926

The original ChatGPT model does not undergo task- 927

specific instruction fine-tuning, which limits its 928

familiarity with the target relational scope. To ad- 929

dress this limitation, we change the baseline prompt 930

design by explicitly incorporating the relational 931

scope through name-based representations. 932

The input prompts for the relation QA are pre- 933

sented as follows: Given a document, please list 934

all triple [head entity, relation, tail entity] in the 935

document. 936

All candidate relation types are [relation1, rela- 937

tion2, relation3,...] 938

Document: $Document$ 939

All non-duplicate valid [head entity, relation, tail 940

entity] triples in the document (output format:[head 941

entity, relation, tail entity], one triple per line, If 942

there are no entities with existing relationships, 943

return None): 944

In real-world settings, the variety of relation- 945

ships is significantly more diverse, and incorporat- 946

ing their definitions into the prompt would substan- 947

tially increase the computational cost of inference. 948
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