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ABSTRACT

Graph Contrastive Learning (GCL) typically relies on Graph Neural Networks
(GNNGs) for full-precision representation learning, which results in high compu-
tational overhead and energy consumption. Recently, integrating Spiking Neural
Networks (SNNs) with GNNs has emerged as a promising energy-efficient alter-
native. However, existing approaches often treat spiking neurons merely as binary
encoders to produce 1-bit representations, ignoring the rich structural information
inherent in graph data. Also, the usage of a fixed initial membrane potential (IMP),
which is usually set to 0, restricts the diversity of spiking patterns and limits the
expressive power of spiking neurons. To address these issues, we propose a novel
Spectrum-enhanced Spiking Graph Contrastive Learning (S?GCL) framework by
integrating graph spectral information into spiking dynamics. Specifically, we
first develop a novel Spectrum-aware Membrane Potential (SaMP) mechanism
for SNNs by injecting eigenvalue-based biases into membrane potential learning
to capture global graph structure and enhance SNN’s expressive power. Then, we
introduce an Overlapped Channel Grouping (OCG) strategy to construct sequence
spikes for the graph and simultaneously reinforce correlations in spike trains based
on overlapped feature channels. Finally, we adopt the dual-level contrastive ob-
jective to achieve both node-wise and channel-wise alignments. Extensive ex-
periments on several benchmark datasets show the effectiveness of our proposed
S2GCL. The code of our method will be released upon acceptance.

1 INTRODUCTION

Graph Contrastive Learning (GCL) is a mainstream research direction in self-supervised graph rep-
resentation learning. It aims to learn graph encoders by maximizing consistency between different
augmented graphs (Ju et al., |2024). Recently, GCL methods have shown state-of-the-art perfor-
mance on many downstream tasks and many variants have been developed from the perspective of
graph augmentation (Zhu et al., 2020; 2021; |Xu et al.,[2025) and contrastive objective (Zhang et al.,
2021;|{Zheng et al., 2022)). Despite promising results, the growing scale of real-world graphs (Zhang
et al., 2024} 2025) has posed new challenges to GCL beyond the context of label-free learning. It
is known that current GCL methods mainly require large hidden dimensions to learn full-precision
representations, leading to high computational and memory overhead (L1 et al.| 2024)). This ineffi-
ciency critically bottlenecks resource-constrained applications, such as edge devices, where energy
consumption and storage cost are critical concerns.

For energy-efficient alternatives, Spiking Neural Networks (SNNs) have gained attention due to their
event-driven computation and inherent sparsity (Han et al.,[2020). Recent studies have explored the
integration of SNNs and GNNs and developed Spiking Graph Neural Networks (SGNNs) (Zhu
et al., [2022; L1 et al.| [2023; [Zhao et al.| [2024; [Sun et al. [2024; |Li et al} [2024). However, existing
SGNN:Ss suffer from the following two main limitations. First, Spiking GNNs often regard SNNs as
a binarized learning model, directly converting the continuous representation to 1-bit spikes. This
design fails to exploit the intrinsic properties of graph data (e.g. spectral or positional information)
which are crucial cues for GCL process (Figure[I{a)). Second, SNNs generally adopt a fixed initial
membrane potential (IMP) for each firing step, which limits the diversity of SNNs firing patterns
and thus has limited discriminative and expressive capacity (Shen et al., 2024). Recent studies
demonstrate that adjusting IMP can enable more pattern mappings (Shen et al.| [2024)), as shown
in Figure [I(b). Therefore, an intuitive idea naturally arises: can we develop a novel spiking graph
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Figure 1: (a) Existing SGNNs simply use spike neurons for binary encoding. (b) All firing patterns
(16 total) that IF model can generate under 4 time steps, where the blue boxes indicate the patterns
can be fired, while the gray ones represent the patterns cannot be fired. New patterns emerge by
adjusting IMP under constant intensity input. (c) Motivated by (a)-(b), we develop a novel Spectrum-
aware SGNN by introducing graph spectral property to guide IMP dynamic learning.

contrastive learning framework by introducing spectral information to induce membrane potential
dynamics?

In this paper, we propose to explicitly incorporate graph information into spiking neural dynamics
and develop a novel Spectrum-inspired Spiking Graph Contrastive Learning (S?GCL) framework.
Specifically, we first design a novel SNN based on Spectrum-aware Membrane Potential (SaMP) by
introducing graph spectral encoding for IMP dynamic learning. The core aspect of SaMP is that we
achieve the membrane potential dynamic by embedding spectral-based inductive biases to capture
global structural information of graph data and simultaneously enhance SNN’s expressive capacity.
Then, we design a new Overlapped Channel Grouping (OCG) strategy to construct spike trains in
the channel space. The overlapped design can model the dependencies of channels and enhances
feature interactions among different spike sequences. Finally, we develop a dual-level contrastive
objective by combining node-wise and channel-wise contrastive alignment together. Overall, the
main contributions of this paper are summarized as follows:

» We propose Spectrum-enhanced Spiking Graph Contrastive Learning (S?GCL), a novel
framework that integrates graph spectral information into spiking membrane dynamics, to
bridge the gap between SNNs and graph-based contrastive learning.

* We develop a Spectrum-aware Membrane Potential (SaMP) mechanism by enriching mem-
brane potentials based on eigenvalue encoding. Based on SaMP, we then derive a new SNN
to encourage global structure-aware and more expressive spike learning.

* We introduce Overlapped Channel Grouping (OCG) to construct spike trains from static
data with enhanced cross-channel dependencies. A dual-level contrast is used to enforce
cross-view node-wise alignment and channel-wise alignment via group correlations.

Experiments on several benchmark datasets demonstrate the effectiveness, efficiency and high ex-
pressive capacity of our proposed S?GCL.

2 RELATED WORKS

2.1 TRADITIONAL GRAPH CONTRASTIVE LEARNING

Graph contrastive learning (GCL) has emerged as a powerful paradigm for self-supervised represen-
tation learning on graph-structured data (Ju et al., [2024)). Existing methods are generally designed
around two key dimensions, augmentation strategies and contrastive objectives. For data augmenta-
tion, GRACE (Zhu et al., 2020) presents a hybrid scheme to augment graph views from both node
attribute and structure levels. GCA (Zhu et al. 2021) develops adaptive edge perturbation based
on centrality measures for contrastive learning. EPAGCL (Xu et al.| 2025)) reveals the superiority
of dropping edges over adding edges for preserving structural semantics. For contrastive objective,
CCA-SSG (Zhang et al.| | 2021) employs canonical correlation analysis to align embeddings instead
of maximizing mutual information. SUGRL (Mo et al.| 2022)) designs two triple losses to increase
inter-class variation and reduce intra-class variation. GGD (Zheng et al., 2022) reformulates con-
trastive learning as group discrimination to enhance computational efficiency.
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2.2  SPIKING NEURAL NETWORKS ON GRAPH

SNNs have gained significant attention in graph learning as an energy-efficient alternative. For
example, SpikingGCN (Zhu et al., [2022) first integrates spiking neurons with graph convolution by
treating SNNs as a simple binary module. SpikeNet (Li et al.l 2023)) adopts SNNs to efficiently
capture the evolving dynamics of temporal graph data. COS-GNN (Yin et al., 2024)) incorporates
SNNs with Continuous Graph Neural Networks (CGNNs) to enhance information preservation and
reduce information loss during SNN's propagation. DRSGNN (Zhao et al.| 2024]) introduces dynamic
reactive spiking for temporal graphs by leveraging random-walk positional encoding as additional
node features. MSG (Sun et al.||2024) explores spiking GNNs on Riemannian manifolds and designs
a new training algorithm based on manifold differentiation. SPIKEGCL (Li et al.| [2024) adopts the
integrated encoder of GNN and SNN to learn binarized representations for contrastive learning.

3 PRELIMINARIES

Graph Neural Networks (GNNs). Let G(A, X) be an input graph, where X = [z1,22...2,] €
R™*4 denotes the node features and A € {0, 1}"*" represents the adjacency matrix. The goal
of GNNss is to learn node or graph-level representations by aggregating the information from its
neighbors. Formally, the message aggregation at the [-th layer can be generally formulated as

h{") = AGGREGATE(" (hf.l*”, pi, Aij) , jEN) (1)
where hl(-l) is the hidden representation with h§°> = x;. N (%) represents the neighborhood of node ;.
By stacking multiple layers, GNNs can capture multi-hop structural patterns for node classification,
link prediction and graph-level representation learning.

Graph Contrastive Learning (GCL). Given two contrastive views G and G generated by augmen-
tation function 7, GCL aims to learn graph encoder fy by maximizing the following objective,

mgix I(fe(@%fe(@) 2)

where I(-) denotes the mutual information. For instance, let z; and Z; be the node representation,
we can compute the contrast loss between positive and negative pairs as follows (Xie et al., 2022),
e®(zi,%) /T
- — 3
e?(zi,2:) /T + Zj;éi e?(ziz;)/T —+ e?(zi %)/ )

Econ(ziv 21) = - lOg

where ¢ denotes the metric function and 7 is a temperature constant.

Spiking Neuron Models. SNNs transmit information based on sparse spike trains, which generally
contain integrate, fire and reset operations (Fang et al.l 2021). To be specific, spike neurons first
integrate current ¢(*) in the capacitor to accumulate potential, which can be formally written as
u(t) — I(U(tfl)7 C(t)), u(t) c RnXd, ,U(O) c {O}nxd 4)

where v(*~1) is the membrane potential of time step ¢ — 1 and u(*) is the membrane potential after
integration at the time step ¢ . For example, the Integrate-and-Fire (IF) model simply defines the
integration process as u(*) = v(*=1) 4 ¢(t)_ Then, fire operation can be triggered when u(*) exceeds
a preset threshold vy,

s = F(u(t) — v, NON= {0’ 1}n><d )
where F'(-) is usually defined as the Heaviside function to fire a spike, i.e., F'(z) = 1if z > 0 and 0
otherwise. Finally, we need to reset the membrane potential, which can be expressed as

v = Ru® s vy,), v® e R"¥4 (6)
There are two types of reset, i.e., hard-reset (Fang et al., |2021) and soft-reset (Zhu et al., |[2022). In
this paper, we adopt the hard-reset defined as u**1) =« (1 — s(V)) with v,¢se; = 0.

4 METHODOLOGY

In this section, we will introduce a novel spectrum-enhanced spiking graph contrastive learning
(S2GCL) method, as shown in Figure[2| Similar to regular GCL architecture (Xie et al., [2022), our
S2GCL contains three components, including data augmentation, spectrum-aware SGNN encoder
and contrastive objective.
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Figure 2: The architecture of S?GCL framework, which contains three components: (1) Data
augmentation that generates different views; (2) Spectrum-aware SGNN encoder with Overlapped
Channel Grouping (OCG) and Spectrum-aware Membrane Potential (SaMP) mechanisms; (3) Dual-
level contrastive objective combining node-wise and channel-wise alignment.

4.1 DATA AUGMENTATION

Given an input graph G = (A, X), we then generate the contrastive view G = (A, X) by aug-
mented function 7 (). For structural augmentation, we randomly remove edges to perturb graph
connectivity while preserving global topology. Specifically, for adjacency matrix A, we sample a
masking matrix M4 € {0, 1}"*" where each entry m;; ~ Bernoulli(p) and p represents the drop
probability. The function 7 (A, X) on structural augmentation is defined as

A = Totruc(A,X) = A O My (7)

where © denotes Hadamard product. For feature augmentation, we randomly permute node features
along the channel dimension to change local feature semantics. The function 7 (A, X) on feature
augmentation is formulated as

X = Treat (A, X) = X[, P] (8)

where P is the random permutation indicator to shuffle channels. Using the above augmentations
in Eqs., we obtain two contrastive views, denoted as G = (A, X) and G = (A, X). Next, we
adopt the proposed spectrum-aware SGNN as graph encoder to conduct representation learning.

4.2 SPECTRUM-INDUCED SGNN ENCODER

To obtain binary representations, we first construct spiking sequences via overlapped channel group-
ing. Based on sequential inputs, we then transform continuous features into spike trains via a novel
SGNN encoder by integrating spectral information into membrane potential learning.

4.2.1 OVERLAPPED CHANNEL GROUPING

SNNss typically process sequential data based on a time-step mechanism. Consequently, a key ques-
tion arises: how to construct sequential inputs for graph data to meet the sequential nature of SNNs.
One commonly used approach is to directly repeat graph features multiple times, as employed in
previous works (Zhu et al.| [2022; Zhao et al.,2024). Another solution in SPIKEGCL (Li et al., 2024)
is to partition node features into different groups. However, the former way inevitably leads to high
computational and memory costs, while the latter fails to preserve cross-channel dependencies and
weakens feature interactions.

We design an Overlapped Channel Grouping (OCG) strategy to construct spike trains across channel
space. OCG explicitly preserves feature continuity across time steps, capturing temporal dependen-
cies while enhancing intrinsic feature interactions among spike sequences. Specifically, we apply a
sliding window approach to achieve overlapping division. Let 7" be the time steps or the number of
windows, features X € R™*? can be divided into the following T groups,

, XW R p=1...T )
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where w denotes the window size and w << d. T' is computed as T" = LdijJ + 1 with the sliding

stride cv. Then, for views G and G, we can have sequential inputs based on 7" subgraphs as follows,
T T

LG =[gW(A,X0)] (10)

t=1

G = [g(t)(A,X(t))}

t=1
Note that, the overlap between consecutive groups (i.e., G®) N G+ £ () establishes temporal
dependencies in spike trains, enabling the input graph data to benefit from SNN’s sequential pro-
cessing.

4.2.2 SPECTRUM-GUIDED SNN

SNNs typically set the initial membrane potential (IMP) v(%) to zero (in Eq.), limiting spike
diversity (Shen et al., [2024). Figure [T(b) shows the spike firing patterns generated by IF (Abbott,
1999) model under constant input intensity. Here, the new patterns emerge by adjusting IMP from 0
to 0.25, which shows that the number of spiking patterns varies and thus pattern diversity increases
depending on the IMP. Moreover, it is crucial for graph representation learning to take advantage of
graph information (such as spectral or positional information). However, existing SNN-based GNNs
usually regard SNNs as binary encoders, ignoring the exploration of graph information in spiking
neuron dynamic learning. Therefore, an intuitive question naturally arises: can we develop a novel
SNN by leveraging spectrum to adaptively adjust IMP and thus induce SNN membrane dynamics?

In this paper, we consider to integrate the spectrum of graph into SNN learning, which encourages
the model to capture global structural information of graph. To be specific, let L be the Lapla-

cian matrix of graph G with L = I — D_%AD_%, we obtain the eigenvalues of L, denoted as

A1, A2, ..., A, for n nodes. We then use positional encoding p()\;) to map eigenvalues to high-
dimensional vectors as follows (Bo et al., [2023)),
p(Ni,2j) = sin (eAi/100002j/f> : p(Ni, 25 + 1) = cos (e/\i/l()OOOQj/f) (11)

where j € {0,1,..., f/2 — 1}. e scales the frequency and f is the channel dimension. Then, the
learnable initial membrane potential {)EO) for node ¢ can be obtained as,

0% = i (Nallp(\)) (12)

where ¢ is a linear projection. Finally, Eq.(5) can be reformulated based on the learnable IMP as

u® = 14D Oy o e RS 50 ¢ RrxS (13)

where ¢(9) continuously injects spectral biases during integration and extends from zero to the real

number space R. In this paper, we call the definition Eq.(I3)) as Spectrum-aware Membrane Potential
(SaMP). Based on SaMP, we can derive our Spectrum-guided Spiking GNN as follows,

Learnable IMP: 9” = ¢ini(Ai | p(X)) s Ginit € RUFD Y

_ 1 _
I(t) : ugt) = ’lAJl(t 2 aty g (h(t7L) - (f]l(t V) 'UTeset)>

i

Ft): s = Low > o, (14)
¢ 0, otherwise.

R@): 80 = (1 -5D) ul? 4+ vpeger - 87

3

O@t) : ven = Bvup, + 78

®

%

where 7 is time constant. O(t) is the threshold update function (Li et al.,2023) and s
output at time step .

is the spike

Remark. Here, we can also exploit some other graph information for dynamic membrane learning,
such as positional or structural information (Rampasek et al., 2022), as shown in Table
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4.2.3 BINARY GRAPH REPRESENTATION LEARNING

Based on the above spiking sequences of two views, we further adopt the proposed spectrum-aware
SGNN as graph encoder for binary representation learning. Due to the same learning process of each
view, we temporarily omit the view G and provide the representation learning process defined on G.
For [G) .-~ G)], we construct a set of T GNNs fg(-) = | g&)]le with @ = {01 ...},
Here, we adopt a L-layer Graph Convolutional Network (Kipf & Welling, 2017)) to conduct neigh-

borhood aggregation. Thus, the message propagation in Eq.(I) is formulated as follows,

t,l O x g (tl-1
h" =ReLU( 3" 0®WA;n{H™Y) (15)
JEN(3)

where hgt’o) = zgt) and A =D 2AD 2. () ¢ R**/ jsa layer-inter shared network parameter,
w << d. Then, we adopt spectrum-aware SNN to achieve binary representation learning. Specifi-
cally, the output H(*:£) = [hgt@ o n ’L)] € R™*/ serves as input to the spectrum-induced SNNs
module at time-step t. Then, we transform continuous signals hl(t’L) into binary spikes sgt) by using
the above proposed SNN model in Eq.(T4). By collecting historical outputs across all time steps, we
obtain binary spike trains of all groups/steps {s(!) - - s(T)}. Finally, we merge all groups together
to obtain final representation S = [s(1)|| - - - ||s()], where || denotes concatenation operation.

4.3 DUAL CONTRASTIVE OBJECTIVE WITH PROJECTION

In this section, we introduce a dual-level contrastive loss to align node representations and channel
groups across views, including node-wise contrast and channel-wise contrast. Note that, we adopt
the parametric estimator by incorporating a shared predictor head to compute the contrastive objec-
tive (Xie et al.l[2022). The predictor head based on a fully connected layer (FC) maps embeddings
to latent space for contrastive loss computation, e.g., 20 = FC(s(t)) for the view G.

4.3.1 NODE-WISE CONTRAST

For node-wise contrast, we compute intra-group contrastive loss by using margin ranking. Let
{z0 ... 2(MY and {21 ... (1)} be the final output sets of G and G, the node-wise contrastive
learning can be achieved as ,

Liode = % zT: z": max (0, 0 (zi(t), ZZ-(t)) -9 (zgt), Z;t)) + m) (16)
t=1 i=1

where §(-) is the metric function, and m is the margin constant. This contrast pulls positive pairs
(zi(t)7 52@) closer while pushing negatives (zi(t), éj(-t)) apart within ¢-th group.

4.3.2 CHANNEL-WISE CONTRAST

Since feature augmentation re-permutes node feature by channel shuffling, we conduct intra-
group and inter-group contrast by concatenating node embeddings of 1" groups. Then, let Z =

[z ]]z2M]and Z = [ZV)]| - - - ||2(T)] be the collection of final outputs for G and G, the channel-
wise contrast (Zhuo & Tanl [2022) can be defined as follows,
k . _
ex Z.,,Z.;)]T ex Z.;,Z.;)T
Lomma =13 - <1og 02BNy en(e(Ezr) ) -
i ‘ Z# exp(d)(Z.i,ZAj)/‘r) ) 1Z¢‘exp(¢(z,j,z.i)/7)
Jj=1,#1 j=1,j#i

where k is the channel dimension of Z and Z. The subscript -¢ represents the i-th channel of all
nodes. ¢(-) denotes the metric function such as cosine similarity and 7 is temperature parameter.
This aligns corresponding channel groups across views while distinguishing mismatched groups.

Finally, the total unsupervised training objective that combines both node-wise and channel-wise
contrast can be written as follows,
L = Luode + 1+ Lehannel (18)

where 7 is a hyper-parameter to balance two terms.
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4.4 COMPARISON WITH RELATED WORKS

We briefly discuss the differences between S2GCL and related works that focus on the integra-
tion of SNNs and GNNss, including SpikingGCN (Zhu et al.} 2022)), DRSGNN (Zhao et al., |[2024),
MSG (Sun et al.| 2024)) and SpikeGCL (Li et al., [2024). First, SpikingGCN and SpikeGCL simply
adopt SNNs as binary models, which fail to explore the characteristics of graph data to improve
SNN dynamics. Differently, S?GCL exploits spectral information to meet the spiking dynamics
from the perspective of membrane potential. Second, MSG (Sun et al., [2024) introduces random-
walk positional encoding as auxiliary node features to enhance temporal awareness. However, this
spiking design relies on external positional features rather than being explicitly tied to graph struc-
ture. Beyond directly regarding it as auxiliary features, S?GCL embeds spectral information into the
initial membrane potential, allowing SNNs to naturally encode global structural information. DRS-
GNN (Zhao et al., 2024)) explores spiking GNNs on Riemannian manifolds by transmitting manifold
projections into SNNs. In contrast, S?GCL naturally injects eigenvalue-based spectral biases into
IMP learning and thus encourages global structure-aware spiking dynamics without any manifold
projection.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Dataset Settings. We conduct experiments on six benchmark datasets, including three citation
graphs (Cora, CiteSeer, PubMed) (Sen et al. 2008)), two co-purchase graphs (Photo, Comput-
ers) (Shchur et al.l |2018)) and one co-author graph (CS) (Shchur et al.l |2018). For all datasets,
we randomly partition the nodes into 80% for training, 10% for validation, and the rest 10% for test
to construct data splits. For each dataset, we report the average results across five splits.

Parameter Settings. We adopt a two-layer model for binary graph representation learning, where
GCN (Kipf & Welling| [2017) is used for message aggregation and PLIF model (Fang et al. [2021)
is used for spike learning. We vary the window size w within the range [22,122] and the stride «
within the range [10, 100] to fit the differences in channel number for different datasets. The initial
fire threshold is tuned within [3e — 4, 1] and the decay parameters 3 and -y are set to 0.2 and 0.7. In
addition, the temperature 7 is set to 0.1. The coefficient 7 in Eq. is tuned within [0.2, 0.5] and
the learning rate of training model is set to 1e — 3 for all datasets. All experiments are conducted on
an NVIDIA RTX 3090 GPU with 24 GB memory.

5.2 COMPARISONS

Baselines. We compare S?GCL against some state-of-the-art methods, which can be divided into
the following five types: full-precision GNNs: GCN (Kipf & Welling, 2017) and GAT (Velickovi¢
et al.| [2018)); spiking-based GNNs: SpikingGCN (Zhu et al., |2022), DRSGNN (Zhao et al.| [2024)
and MSG (Sun et al., [2024); 1-bit quantized GNNs: BANE (Yang et al., [2018), Bi-GCN (Wang
et al.,|2021) and BinaryGNN (Bahri et al., 2021); full-precision GCL methods: GRACE (Zhu et al.,
2020), CCA-SSG (Zhang et al., [2021), SUGRL (Mo et al., 2022)), GGD (Zheng et al.| |2022) and
EPAGCL (Xu et al.|[2025); one spiking GCL method SpikeGCL (Li et al.| 2024)).

Main Results. Table |1| reports the comparison results of all methods. Overall, S2GCL achieves
the best performance on all datasets. Specifically, we have the following observations: (1) S?GCL
outperforms traditional GNNs, which shows that spectrum-aware spiking dynamics enables more ef-
fective graph representation learning. (2) S?GCL obtains higher performance than binarized GNNs,
which shows the advantage of spiking-driven mechanism on binary representation learning. (3)
Compared to pure SNN-based models (SpikingGCN and SpikeGCL), S?GCL shows consistent im-
provement. This shows that it is helpful for GCL by explicitly injecting graph spectrual information
rather than treating SNNs as generic binary encoders. (4) Compared with DSRGNN and MSG,
which use graph information as auxiliary feature-level input , S?GCL achieves better results on all
datasets. This shows that integrating graph information into dynamic membrane learning is superior
to merely conducting feature-level enhancement or concatenation on the original features.

Other Results. In Eqgs.(12}{13)), we propose SaMP by introducing the spectrum of eigenvalue into
IMP learning. While graph data also contain other rich information, such as local or global posi-
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Table 1: Comparison results of node classification. U: Unsupervised GNNs; S: Spiking GNNs; B:
Binary GNNs.

Method | U S B| Cora CiteSeer PubMed Photo Computers cs

GCN 86.8141.06 73.49+0.45 83.08+1.09 93.17+0.38  83.40+047  88.39+0.42
GAT 8348+1.33  76.14£1.93  84.90+0.59  90.38+0.81 82.57+1.13  91.75£0.52
BANE V] 79.19£1.61  68.01+2.74 82404113  8220+0.53  77.3741.62  88.50+£0.65
Bi-GCN /| 8640121  75.48+2.08 86.61+£052  94.52+0.79  90.38+031  90.12:0.78
BinaryGNN V| 84524157 73474194  86.65+£047 94.09+0.66  90.09+043  93.52+0.22
SpikingGCN 8644127  75.66+0.01 85154049  90.60+£0.82 83244087  92.05:+0.58
DRSGNN v 86.96+139 7295+1.84 76.06+0.01 92.15+0.64 85904038  92.82:0.33
MSG 87.04£139  75.60+1.26 85414038 93.75+0.73  86.85:026  94.09:+0.73
GRACE | v 86.89+0.80  76.57£1.71  86.25+0.49  93.99+0.67 89.2840.49  91.56:£0.85
CCA-SSG | v 8644149  75.06+1.99 84814092 93.41+081  89.70+0.67  93.16:+0.32
SUGRL | v 86.59+1.20  73.91£1.70  8553+0.76  93.90£0.66  89.12+0.52  93.99+0.57
GGD v 85.1841.60  74.66£1.53  85374+0.62  93.02+£0.25 88.68+0.26  92.76+0.11
EPAGCL | v 84304047  71.24+045 8385+0.25 91.88+£020 87.95+0.26  89.17-£0.34
SPIKEGCL | v v 87.36+1.00  7547+2.60 87.61+032 94.01£0.62 90.90+028  93.80:£0.57

OURS | v 88.12+0.57  76.63+£2.30  87.63+0.60 94.79+0.80  91.29+0.25  94.244-0.70

tional/structural information. Therefore, we can naturally extend IMP by injecting different forms
of graph information to guide SNN membrane dynamics. Table [2]reports the results of SaMP with
three types of graph information (raw and encoding versions): eigenvalues (Eig), Laplacian feature
(Lap) and random walk (RW). The results show that our method is flexible and thus can incorporate
diverse graph information to enhance SNNs’ learning.

Table 2: Results of different graph information (Graph Info.).

Graph Info. \ Raw Lap Raw RW Lap encoding RW encoding Eig encoding
Cora 87.83£1.15 87.59+0.96 87.99 + 1.38 88.07 £ 0.61 88.12 + 0.57
Photo 94.24 £0.75 94.10£0.54 94.36 £ 0.47 94.58 £0.91 94.79 £ 0.80

Citeseer 76.33 +£1.85 76.38 £2.08 76.04 + 2.05 75.90 + 2.60 76.63 + 2.30
Computers 91.25£0.26 91.11£0.35 91.14 £ 0.50 91.13 £0.49 91.29 £0.25

Ablation Study. We conduct ablation study to evaluate the effectiveness of core components in
S2GCL. There are four variants: S2GCL w/o SaMP, S?GCL w/o OCG, S2GCL w/o Channel con-
trast and S2GCL w/o All. From Figure |3 one can find that: (1) Removing the SaMP mechanism
leads to a clear performance degradation, demonstrating the benefits of spectral information in im-
proving SNNs’ expressive capacity. (2) Removing OCG and channel contrast also degrades model
performance, which shows their effectiveness in enhancing discriminative feature learning.

‘ -SZGCL -wlo SaMP l:lw/o 0oCG -wln Channel contrast -wlo All ‘
77

91.5

Cora

Citeseer Photo

Computers

95.5

95

90.5
94.5

74 9% 90

Figure 3: The ablation study of S?GCL. w/o denotes removing a component from S2GCL.

Parameter Analysis. We first analyze the time step 7" and overlapping scale 7, as shown in Figure[d]
Figure Eka)-(b) show the effect of time step 7". One can note that as T increases, the classification
accuracy gradually improves while the running time also increase. Therefore, we adjust 7" to achieve
a balance between performance and efficiency. Figure [ffc) reports the classification results with
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different ratio 7 (defined as “—=). Lower ratios weaken temporal correlations while higher ratios
increase computation. Therefore, we take an appropriate ratio for balance.

1 ./'—_—'\.—‘
401 .___./I—.\./'
’/0—-—0—"’—_‘ 901
— - —y A,
8 8 '\._*/4———0_0
= = <
2 > 85 9
£ o c
F 257 3 3 80
—— szra o —s— Cora o] —8— Cora
Citeseer < Citeseer < Citeseer
—#— Photo 754 —e— Photo —— Photo
—4— Computers —e— Computers —A— Computers
10 15 . T . . T T T u T 70 T T T T T
10 15 20 25 30 10 15 20 25 30 0.2 0.3 0.4 0.5 0.6 0.7
Time steps Time steps Overlap Ratio

(a) Running time with different T (b) Test accuracies with different 7' (c) Test accuracies with different
Figure 4: Parameter analysis of time step 7" and overlap ratio 7.

Efficiency Analysis. In this section, we follow SPIKEGCL (Li et al., [2024) and report the com-
parisons of energy consumption on Photo and Computers datasets, as shown in Figure [5] One
can observe that SNN-based methods generally require less energy consumption than ANN-based
methods. S2GCL achieves the lower energy cost than most SNN-based models. Besides, com-
pared with SpIkEGCL, S?GCL can obtain competitive energy cost with better performance.

Mcrace [licca-ssG [suGRL - Gep [llEPaceL  Bi-GeN [llBinaryGNN [l spikinggeN [llorsann [imsc [lispikeGeL [llours
10° T T

Ig(Energy Consumption, mJ)

Photo Computers

Figure 5: Comparison results of energy consumption on Photo and Computers datasets.

Intuitive Demonstration. Here, we follow the
previous work (Shen et al., 2024) and provide a
toy example to show the advantage of spectrum-
aware IMP. Given a node z; € R*, we divide z;
into 4 groups along channel space to construct the
spike inputs of 4 time steps. As shown in Fig-
ure[6} the horizontal and vertical axes respectively
correspond to all possible spike patterns accepted
and fired by IF model (Abbott, [1999). The white
square denotes a pattern mapping, meaning that
the neuron accepts a spike pattern from the hori- (a) Fixed IMP (b) Spectrum-aware IMP
zontal axis and fires correspond spike pattern on

the vertical axis. We note that spectrum-aware Figure 6: A toy visualization of pattern map-
IMP obtain more diverse pattern mappings than ping by IF model with 4 time steps.

fixed IMP (usually set to zero), which demon-

strates that our proposed spectrum-aware IMP can enhance the expressive power of spiking neurons.

6 CONCLUSION

This paper proposes a novel S2GCL method, which embeds graph spectral information into spik-
ing membrane dynamics. The core of S?GCL is to develop a new spectrum-aware SNN by using
eigenvalue-based membrane learning to improve the expressive capacity of spiking neurons. Also,
we introduce overlapped channel grouping to construct spike trains for graph data and adopt channel-
wise contrast to enhance cross-view representation learning. Extensive experiments validate the ef-
fectiveness of S?GCL. In the future, we will further explore more perspectives for the integration of
spiking dynamics and graph structure information to develop new spiking graph neural networks.
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ETHICS STATEMENT

This research does not involve human subjects, personally identifiable information, or sensitive
data. All datasets used in our experiments are publicly available and widely used in graph-based
representation learning field. The proposed method is intended for academic research purposes and
does not pose foreseeable risks of misuse. We confirm that our study complies with the ICLR Code
of Ethics.

REPRODUCIBILITY STATEMENT

Detailed descriptions of dataset settings, model architecture and parameter settings are provided in
Section 5.1. More detail information is listed in Appendix.
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APPENDIX

A  OVERALL ALGORITHM FLOW

Here, we provide the pseudocode of our S?GCL framework in Algorithm 1 to facilitate understand-
ing.

Algorithm 1 Learning process of S?GCL

Require: Graph G = (A, X), the window size w, the sliding stride a, the time steps T'; the encoder

fo() =] fg()l) JE_, and the predictor head FC(-) with learnable parameter 2
Ensure: Optimized encoder fg

while not converged do

1:
2 G(A,X)=T(G) ;
3 G=[GW(A, X“))LT_l . G = {g(t)(A, X (1)
b= t=1
4 fort =1to7 do
5. s(t) — fg()t) (G1)
6 2() — FCo (s)
7 st — fggt) (G1)
8 7z = FCq(s®)
9: Calculate dual-wise contrastive loss £ based on z(*), z(*)

10: Update © = {01 ...0M1} O
11: end for

12: end while

13: return fg(-)

B EXPERIMENTAL SETUP

Datasets. We conduct experiments on six benchmark datasets, including three citation graphs (Cora,
CiteSeer, PubMed) (Sen et al., 2008)), two co-purchase graphs (Photo, Computers) (Shchur et al.,
2018) and one co-author graph (CS) (Shchur et al., |2018). The detailed information is listed in
Table [3] We randomly partition the nodes into 80% for training, 10% for validation, and the rest
10% for test to generated five data splits for each dataset.

Table 3: Dataset statistics.

Dateset Cora  CiteSeer PubMed Photo  Computers CS

Features 1,433 3,703 500 745 767 6,805
Nodes 2,708 3,327 19,717 7,650 13,752 18,333
Edges 10,556 9,104 88,648 238,162 491,722 163,788
Classes 7 6 3 8 10 15

Implement details. We follow the previous work (Li et al., [2024) and implement our model with
PyTorch platform and PyTorch Geometric library (Fey & Lenssen, |[2019). All datasets used in this

12
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paper are also publicly available in the PyTorch Geometric library. All experiments are conducted
on an NVIDIA RTX 3090 Ti GPU with 24 GB memory unless specified. For comparison methods,
all the results are obtained according to the experimental settings provided by the authors and then
tuned in our experiments to achieve better performance.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, Large Language Models (LLMs) are used exclusively as auxiliary aids for language
refinement. In particular, we utilize LLMs to improve the phrasing and clarity of the manuscript
without modifying any technical content or experimental findings. To achieve this, we employ
a simple prompt, such as "Please revise this statement for better clarity
and fluency.", to enhance readability. No LLM-generated content related to methodology
design, implementation or experimental results is included in this paper.
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