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ABSTRACT

Graph Neural Networks (GNNs) have gained large popularity in various applica-
tions, with their vulnerability against adversarial attacks also being brought up.
Despite the numerous graph attacks proposed, few have focused on the Restrict
Black-box attack, where attackers only have access to node features and the graph
structure. Existing works in this setting aim to perform destructive attacks by
degrading the quality of victim graphs yet imposing the homophily assumption
or requiring high computational complexity. To address these challenges, we
propose the Modified Silhouette Score (MSS) as a measure of a graph’s quality,
and demonstrate its generalizability across graphs of different homophily levels
through theoretical analysis. Using MSS as the objective, we present SheAttack, an
efficient attack that effectively reduces the distinguishability of nodes. We conduct
experiments on both synthetic and real-world graphs to validate the effectiveness of
SheAttack in both homophilic and heterophilic settings. We find that even without
prior knowledge of labels or the victim model, our method shows comparable
performance to split-unknown white-box attacks.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool in various graph learning tasks (Hu
et al., 2020) and found applications in a wide range of fields (Gasteiger et al., 2021; Wu et al.,
2023; Senior et al., 2023). However, recent studies have revealed that GNNs are also vulnerable
to adversarial attacks (Dai et al., 2018; Zügner et al., 2018; Zügner & Günnemann, 2019). Unlike
most attacks that target features in vision and language data, graph-specific attacks enable structural
modifications that add or delete edges from the graph, which can have a devastating impact on GNNs’
performance. In node classification, such structural perturbations can even cause GNNs to perform
worse than simple Multilayer Perceptrons (MLPs), which use only node features as inputs (Zügner &
Günnemann, 2019; Xu et al., 2019).

The vulnerability of GNNs has sparked significant interest in developing structural attacks under
different settings. Generally, attacks on graphs can be classified into white-box, grey-box, and black-
box attacks based on the available information to attackers, in descending order of knowledge (Jin
et al., 2020). The powerful white-box and grey-box attacks have access to training/test splits but are
overly dependent on this split information. When the training/test sets are resplit, these attacks only
show a marginal advantage over black-box attacks (Zhan & Pei, 2021). Furthermore, the splits, node
labels, and models are often defined by defenders according to their personal needs. For example,
in a social media friendship network, users’ properties and relations are public, but the downstream
tasks and models used are up to defenders’ preferences. To design more general attacks that poison
the whole graph, the Restrict Black-box attack (RBA) setting is proposed (Chang et al., 2020), where
only training inputs excluding node labels, are known to attackers. Although several attempts at
designing RBAs have been made, existing methods often rely on prior assumptions, such as the
low-rank property of node embeddings (Chang et al., 2020) or the homophily assumption of the
graph (Li et al., 2022). While research on heterophilic graphs has received increasing attention,
current RBAs are not guaranteed to maintain desirable performance when transferred to heterophilic
graphs. Currently, it is still unknown how to design an RBA that is applicable to heterophilic graphs.

To shed light on the limitations of current RBAs against heterophily, we take a step back and look
at how GNNs work. In node classification, GNNs excel at leveraging message passing to denoise
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raw features. On informative graphs, GNNs push node representations of different classes to stay far
away from each other. Recent studies have found that, as long as the graph structure is predictive
for node labels, GNNs successfully achieve the goal on graphs either of high homophily or high
heterophily Ma et al. (2022b). Since GNNs do not rely on graph homophily to have outstanding
performance, current RBAs, which primarily try to reduce the similarity between connected nodes,
fail to cover all the cases.

Although GNNs can handle both homophilic and heterophilic graphs, if node embeddings of different
classes fail to be separated after message-passing, GNNs will generally underperform. For example,
when the over-smoothing phenomenon occurs, even GNNs with heterophilic designs tend to fail Yan
et al. (2022). Therefore, it would be wiser to consider the closeness between node embeddings as the
objective of the attack. To quantify the separation of node embeddings, we introduce the Silhouette
Score, which is typically used to measure intra-class and inter-class distances in clustering tasks
where a higher score indicates better clustering. By lowering the score for propagated embeddings,
our approach poses a substantial challenge to all GNNs. We further enhance the Silhouette Score
to make it more robust and applicable in the context of attacks. Based on the enhanced score, we
present SheAttack and its approximate version, which effectively push inter-class node embeddings
closer. During optimization, we employ Greedy Randomized Block Coordinate Descent, ensuring
the scalability of SheAttack in both time and space. Our contribution can be summarized as follows:

1. We investigate graph structural attacks under the RBA setting and highlight the limitations
of previous methods in terms of generalizability to heterophilic settings.

2. We introduce a novel restricted black-box attack framework, SheAttack and its scalable
version, which attacks the graph structure by leveraging distances between node embeddings.

3. We provide a theoretical analysis of the change in class-wise distances of SheAttack,
demonstrating its ability in both homophilic and heterophilic settings.

4. We conduct extensive experiments on diverse datasets, verifying the effectiveness of SheAt-
tack. Notably, we compare the performance of SheAttack with shuffled white-box attacks,
demonstrating their comparable performance and the necessity of studying the RBA setting.

2 PRELIMINARIES

Notations. Denote an undirected graph as G = (V,E), where V is the node set with |V | = n, and
E is the edge set with |E| = m. The graph structure can also be represented by adjacency matrix
A ∈ {0, 1}n×n. The node degree matrix is a diagonal matrix defined as D = diag{d1, · · · , dn},
where dj =

∑
i Aij . Let Â = D−1/2AD−1/2 be the normalized adjacency matrix. Similarly, we

define the normalized adjacency matrix with self-loops as Ã. In node classification tasks, nodes are
assigned node features and node labels. We denote node features as X ∈ Rn×d, and node labels as
Y ∈ {0, 1, . . . , c− 1}n, where c is the number of classes.

GNN architechture. Given node features X and adjacency matrix A, we denote a GNN model with
parameters θ as fθ(X;A). A GNN model usually comprises multiple GNN layers and follows a
message-passing scheme. In each layer, node representations h(l)

i ∈ Rhl are recursively updated as:

h
(l)
i = σ

(
AGGR

(
αijh

(l−1)
j W(l) | j ∈ N (i) ∪ {i}

))
,

where N (i) is the set of node i’s neighbors, W(l) ∈ Rhl−1×hl is the linear transformation, σ
is the activation function, and AGGR is the aggreation function, e.g., SUM or MEAN. The
term αij is a normalization coefficient, which is set as αij = 1/

√
didj in Graph Convolutional

Network (GCN) Kipf & Welling (2017) and calculated using attention in Graph Attentional Network
(GAT) Velickovic et al. (2018). The output embeddings can be later used in downstream tasks.

Problem definition. In this paper, we focus on non-targeted graph structural attacks. These
attacks aim to decrease the prediction accuracy of all test nodes by modifying the graph structure.
The graph structure can only be perturbed within a limited budget, denoted as ∆, to make the attack
unnoticeable. Formally, given loss function L, the objective of the attacker is:

max
A′
L (fθ (X,A′)) , s.t. ∥A′ −A∥0 ≤ ∆,

2



Under review as a conference paper at ICLR 2024

0

1
1

2

2
1 2

1

0

1

0
0

3

33

3 3

0

3

3

4

45

0

0

6

6

6

6
6

1

6

6

6

6
66

6

6
6

6

6

6

66

6

6

6

6

66

6
6

6

6

6

6

66
6

6

6

6

6
66 6

6
6

6
6

6
6

66
6

6

6

6

6
6

6

6

0

6

6

6

6

6

6

6

66
6

6

6

6

6

6
6

6

6
6

6

6
6

66

6
6

6

6

6

6

6

6
6

6
6

6

6

66
6

6

6

66

6
6

6

6

6

6

66
6

6

6

6

6

66

6

6

6
6

6

6

6
6

6

0

6
666

6

6

6

6

6

6

6

4

66
6

66

6

6
6

6

6

6

6

6

6

6

6

6

6

66

6

2

6

6 6
6
6

6

0

6

6

6

6 66

6

6

6

2 2
2

22
2

22

222

2

62

2

2

2

2

2

2

2

2

2

2

2 2
2 2

2

2

2

2

2

2
2

2

6
2

2
2

2

2

4

2

2
2

2

22

2

2

2

2

2

2
22

2

2

2

2

2

2

2
22

2

2

222
22

2

2

2

2

2

2

1

0

2

2

2

2

22

6

2

2
2

2

2

2

2

2

22

2

2
2

22

2
2 2

2

2
2 2

2

2

2

2

2

22
22

22

2
2

22

2

2

2

2

2
2

2

22

2

2

4

2

2 22

2

4
2

2

2

2

2

2

2

2
2

2

2
2 2

22
2

2

2

2

0

2

2 2
2

2

2

22
2

2
2

2

2

222

2

5

2

2
2

2

2

2

2

2

2

2

2

2
2

2

2

22

2

2

2
2

2

6

2
2

2

2

2

2

22
2
2

2

2
2

2

22

2

2

22

2

2

22
2

2
22

22

222

2

22 2
2

22
2
2

2
2

2

2222

2

22

6

2

222
2

2

2
22

22

2

2 2
22

5

22 2
2

22 2
2 2

22

2
2

2
2 2

2
2

2 222

2

0

2

2

2

2
4

4

3

3

3

3

3

4

3

1

3

13

3 3

3

3

3

3

3
3

3

33

3

3

33

33

3

3

3

3

6

3 3
33

3
3

3

33

3
33

3

3

3
3

3

3

3

3

0

3
3

3

3

3

3

3
3

3

3

3333
3
3

3

3

3
3

3 3

3

3
3

3
3

3

3

3

3

3

333

3

333 3333

3

3 3

3

3
3

6

3

6

3
33

3

3
3

3

3

3

3

3
3

3

3

3

4

3

3

4

4

4

4

4

4

2

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

6

2

44

3

6

4

4

4

4

4

4

4

4

4

4
4

4

0

4
4

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1
4

4

44

4

3

4

4

4

4

4

3 4
4 4

4

4

4

4

4

4

1

4

2

44
4

4

4

4

4
44

4

4

4

4

6

4

4

4 4

4

4

4

5

6
2

4
4

4

4

4

44

4

4

4

4

4

4
4

4

4

4

4

4

4
4

4

4

4

1

4
4

4

4

4

6

4 4

4
4

4

6

4

4

4

4

4

4

4

4

4

4

2

2

44

4

44

2

44

4

4

44

4

4
43

4

1

4

4

4

4

4
4

4

4
4

4

4

4

44

4

4

4

4

4

444
4
4

4

2

4
4

4

4

4

4

4
4

4

4

4

4

4

4
4

4

4 4

4

444

4

44

4

4

4

4

4

4

2

4

4

4

4

2

4
4

2
4

4

4

1

4

4

4 4

4

4

4

4

4

4

4

4

44

4

4

3

4

4

4

6

4

4
4

4

4

4

4

4
1

4

4

4

4

4

4

44

4

4

4444

4

4

2

6

4

4

2

4

4
4

4

1

4

4 4

4

4

4

1

4

1

4

3

5

4

2 4

4
4

4

4

4

4
4

4

4

4

4
4

4

4

4

4

4
4

4

1

4
4

4

0

4

4

4

2

4

3

4

4

4

4

2

3

4

2

4

4

4

44

4 4

4

4

4

4

6

4

4

4

4

2

4 4

6

4

4

4

4

1

4

1

4

4
4

4

4

4

4

6

44
4

44

4
4

44

4

4

4

4

4

4

4

1

1

1

1

1 1
11

1

1
1

1

1

1

1

1

1 1

1

1
11
1 1

1 1

5

1

11

1

5
1

1
1

1

1

1

1

1
1 111
1

1

1

1
11

11
1

1

111

1
1 1

1

1

1

1

1

5

1

11

1

5

1

1

1

1

1

1

1
11

1

1

1

1

6

1 1

1

1

1

1

11

5

1

1

1

1

1

1

1

11

1

1

1
1

1

1

00

1

1

1

1

6

1

1

1

3

1

1

1

11

11

1

1

1
1

1

1

1

1

1
1

1

1

1
1

1

1
1 1

1

11

1

1

1

1

1
1

1
1

1
1

1

1

5

5

0

5

5 5

5

5

5

5

5

5555

55 55
5

5
5

55

5

5
5

5

5
55

5

5

5

5

5 55

55
5

5

5

5
5

5

5

5

5

5

0

0

0

0

0

0

0

0
0

0

00
0

0

0 0

0 0

00

0
0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

00

0

0

0

0

00

000

0

0

00

0

0

0

0
0

0

00

0

0

0

0

00

0

0

0

0

00
0

0

0
0 0

0 0

0

0

0

0

0

0

0

00

0

0
0

0

0 0

0

0
0

00

0

0

0

00

0
0

0

0

0

0

0
0

00
0

0
0

0

0

0

0

0

00

0

0

0

0

0000

0

0
0

0

0

0
0

0

0

00 0

5

00

0

00 0

6

0

0

4

0

6

0

00

0

6

0

4

4

44

22

6

1

6
2 2

6

3

2

2

6

6

6

6

0

4

6
6

6
4

224
2

6

66

6

4
1

4

3

4
44

1

6

4

4

5 0

3

1

4

5

4

4

4

3

0 55

3

1

0

3

0

0

6

0

4

0 0

6

0

0

5

3

6

0

6

0

6

3

2

6

6 2

1

6

2

6

2

3

3

4

3

2

6
6

3

6
6

6

6

2

2
2

6

1

0

4

2
2

0

2
2

33

5
5

4

5
55
5

55
5555

5

5

5
5

5
0

5

1

666
2

2

0

5

2

1
2

4

0

0

1

1

4

4

6

6

6

4

44
4

1
4

2

3

4

4

1

3

4

1

0
0
000

0

4

4

44

4

0

4

44

4 4
4

6

4
44

2

6

4

1
0

1

4

4

0

44

0 4
5

4

4

4

444

4

4

2
4

4

2
2

4
4

44
4

44

4

1

141

1 444

4
4

0

4

3

22

1

1

5
55

00

4

1

5

5

2

5

2

0

0

00
00

0

0

0

00
00

6

4
1

1

4

4
4

43

3

4 444

444

4
4

4
4

5

2
2

2

222

1

11

0

1

00 4

1

4

5

6

6

66 6

4
4

44

1

4

3
3

3

4

1

411 4

11

44

1
4

1 1

0000

1

3
33

4

4

4

4
3

4

6

11

3
3 3

3

33
33 3

3

3333333
333333

4

6

6

4

4

3

4

4

1

1

0

1

4

4

00
0

5

1

5 3

2

3

3

3

3

3

3

4

3

3

1

1

4

4

4

44
4 24

4

444

4

4
4

50

0

1

4

1

4

44

3

3

333

3

333

2

000

4

555

3

1
4

4

4

1

4

4

4

44

1

2
2

4

4

2

43

4

44

4

6

4

44
6

4

44

6

66

33

3
3

3

3

44

2
2

3

4

4

3

1

1

334
33333343

33
433
3

44

44

41

3

2

24444

0

4

5

2

0

4

4

3
3

333333

5

3

3

333

33333

3

3

3

6

3
333
3

3

333

4

4

4

4

3
3

4

1

4 44
4

44

11

0
4

11

3

3

4

3
3

1

4

33
3

4

3

4

4444

1

4

0

4

2022
11

33

3

1

3

1 1

0
555 55

5

555

1

3

2

4

1

6

1

0

1
4

0

4

2

40

11

4

1

6

2

2

3

3

1

4

4

1

1

3

5 1

1

5

0

1

6

3

66

2
2

4

0

0

1

0

0

43

4

0

0

0

0

4

3

4

1

4
4

5
3
3

2

1
1

1
0

1
1

3
3 1

1
3

1
1

1

3

1

4

1
1

3

33

1

4

0

1

4

6

1

1

1
3

4

3

4

3

3
2

3

1

5

5

2

6

11

2

2

1

4

2

4

4

2

1000

3

4
0

0

4

1
1

33

2

4

1

4

4

4

2

4

2
2

2

4

4
4

1

4
44

4

44

6

3

4

3

1

0
1

0
0

5
5

1

5

0

2

1

5

0
4

0

0

0

0

6
0

1

2

22

1

0

0

5

1

4

1

4

4

2

2 2

3

444
4

000
00

0
0

3

3

33

3
3

4

3

44

4

2

4

0

4

4

4

4

1

1

4

6

1

5

1

3
1

1 111
11

4
4

4

4

1 1
6

11

2

444

1 2
2

2

33

4

3

1

4

33
3

3

3

3

6

3

1

3

2

2
2

2

4

42

0

6

4

6 63
66

11

1

5

4

3

5
5

1

1
1

2
1

4

6
64

6

6

1

1

2

4
3

0

6

6

1

6

0

6 66

4

6

4

1

44 4

6

4

3

4

1

0

3

3

6

6

0

2

2

2

2

3

1

3

3

33

1

4

4444

0

0
0

0

1

1

4

44

1

4
4 4

2

2

22

5

5

5

5

1
11

1

33133

1

4

4

5

1

1

61

4 22

2
2

4

2

200

4

1

6 60

3

3
3 4

1

1

1

4

0

2
2

1

33

3

00

22

33

2
5

4444

1

4

0

05

5

5 6

4

4

0

1

3

1

4

4
4

2

2
444

1
11

1

1
4

4

44

4

4
4

4

10

1

0

4

2

4

5

4

4
1

4

6

4

2

2

5555

4

4

4

111
2

6

0

0

4

3

0

0
1

0
0

1
1

1

0
0

1

4

4

44

1
1

0 1

0

0

1

0
0

5 5
5

3 0

5
1 5

10
1

0

44
4

44

4

3

0

1

000

444444444
4

4

4

4

1
1
1

11 1

0

00

3

0

0

1

0

1

0

0

6
1
1

00

3

3

4

3

3

33

1

44

0

3

44 44

4

44

4

4
4

4

4

4

4

4
4

4

4

4

4 4
4

44
4

4

1
1

1

3

4

333
3

2

4

0

5

0

55

11

5
5

0

550

0

4

6
22

3

34

0000

1

1

3

1

1

1

1

1

0

1

4

1

1

4
6

4

4

2
2

2

1

4

1

3
3

3
3

33

3

3

33

33333
3
3 333 3

4

33333

3

3

3

3
33

333
33
3

3
33

4
4

4
4
4444444

4
4

4

444

4

0

0000

3

3

33

4

2
4

2
2

2
2

22
2

4

3
3

4

4

4

6

3

0

1 1

2

2

1

2

1

0
1

0

0

3

3

3

3

3

0

3

3

4 4
5

0

0

6

6

6

6

61

6

6

6

6 666

6

6

6

6
6

6
6

6

6

6
6

66

6 6

6

6
6

6

6 6 66

6
6

6
66

6

6

6

6
6

6

6

6

6

6

6

6

6

666

6

0

6

6

6 66

6

66
6 6

6

6

6

6

6

6

6

6

6

6

6
6

66
6

6

6

6

6

6
66 666

6

6

66
6

6

6

6

6 6

6

6

6

6

6
6

6 6

6

6

6

6

6
6

6

6

6

6
6

6

6
6

6

0

6

6

6

6

66
6

6
6

6

6

4

6
6

6

66

6

6

6
6

6

666

6

6

6

6
6

6
6

6

2

6

66 6
6

6

0

6

6

6
6

6

6
6

6 6

2

2

2

2

2
2

22

222

2

6

2

2

2
2

2

2

2

22

2

2
2 2

2

2

2

2

2

2

2

2

2

2

6

2

2

2

2

2

4

2

2
2

2

2

22

2
2

2

2

2

2

2

2
2

2

2

2

2

222

2

2

2
2

2

2

2

2

2

2

2

22

1

0

2

2

2

2

2

2

6

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

22

2

2

22
2

2

2

2

2

22

2

2
2

2

2

2

2

2

2
2
2

2

2

2

2

2

2

2

4

2

2

2

2
2

4

2

2

2

2
2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

0

2
2

2

2

2

2

2

2

22

2

2

2

2
2

2

2

5

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2

22

22
2

2

6

2

2

2

22

2

2

2

2

2
2

2
2

2

2

2
2

2

2
2
2

2
2

22

2

2
2

2

2

22
2

2

2

2

2 222 22

2

2

2

22

2

2

2

2

2

6

2

2

2

2

2

2

2

2

2
2
2

2

2

2

2

2

5

2

2

2

2

2

2

2

2 2

2

2

2

2

2

2

2

2
2

2

2

2
2

2

0

2

2

2

2

4

4

3

33

3

3

4

3

1

3

1

3

3

3

3

3

3

3 33

3
3

3

3

3

3
3

3

3

3

3

3

3
6

33

3
3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3 0

3

3
33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3
3

3

3

3

3
33

3

3
3

3

3

3

3

3

3

6

3

6

3

3

3
3

3

3

33
3

3

3

3

3

3

3

4

3

3

4
4

4 4

4

4

2

4
4

4

4

4

4

4

4

4
4

4

4 4

4

4

4

4 4

6

2

4
4

3

6

4

4
4

44

44

4

4
4

4

4

0

4

4

3

4

4

4

4

4

4

4
4

4
4

4

4 44
1

4

4

4
4

4 3

4

4 4

4

4

3

44

4

4

4

4

4

4
4

1

4

2

4

4

4

4

4

4
4

4
4

4

4

4

4

6

4

4
4

4

4

4
4

5

6

2

4

4

4

4

4

4

4

4
4

4 4
4

4

4
4

4

4

4

4

4

4

4

4

4

1

4

4

4

44

6

4 4
4

4

4

6

4
4

4

4
4

4
4

4
4

4

2

2

4

4

4

4

4

2

4

4

44
4

44

4
4

3 4

1

4

4

4 4

4

4
44

4
4

4 4
4 4

4

4

4

4

4

4

4
4

4
4

4

2
4

4
444

4

4

4
4

4

4

4

4

4

4
4

4

44

4
44

4

4

4
4
4

4

4

4

4

2

4

4

4

4

2

4
4 2

4

4

4

1

4

4

4

4
44 4 4

4

4

4
4

4

44
4

3

4 4

4

6

4

4

4

4

4

4

4

4

1

4

4 4
4

4
4

4

4

44

4

4

4

4 4
4

2

6

44

2

4

4

4
4

1

4

4

4

4

4

4

14

1

4

3

5

4

2

4

4

4

4 4

4

4
4

4

4

4

4

4

4

4

44
4

4

4

1

44

4

0

4

4
4

2

4

3

4
44

4

2

3

4

2

4

4

4

4

4 4

4
4

4

4

4

6

4
4

4

4

2

4

4

6

4

4

4

4

1

4

1

4

4

4

4

4

4

4

6

4

4

4

4

4
4

4

4

4

4

4

44

44

4

1
11

1

1 11 1 1

1

1

1

1

1

1

1

1

1

1

1
111

1

11

5
1

111

5

1
1

1

1

1
1

1

1 1

1

1 11 1

1

1

1
1

1

1
1

1

1

11

1

1

1

1

1

1

1 1

5

1
1 1

1

5

11
1

1

11

1

1 1

1

1 1

1

6

1

1

1

1

1

1

11

5

1

1
1

1

1

1

1

1
1

1

1

1

1

1

1

0
0

1

1

1
1

6

1

1

1

3

11 1

1

1

1
1

1

1
1

1 1
1

1

1 1
1

1

1

1

1
111

1

1

11

1

1

1

11 11

1

1

1

1

1

5

5

0

5

5

5

55 5

5 5
5555 5

5 55
55

5

555 5
555

5
5

55 5
5 5

55 5
5

5
55

5

5 555 5

5

0

0

0
00

0

0
0

0

000
0

0

0

0

0

0 0
0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

00

0

0

0

0

0
0

0
0 0

0

0

0
0

0

000

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

00
0

0

00
0

0

0

0

0
0

0

0
0

0

0

0

0
0

0

0

00

0

0

0

0

0

00
00

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

0

0 00

0

0000

0
0

0

0
0

0

0

0

0
0 0

0

5

0
0

0
0
0

0

6

0

0

4

0

6

0

0

0

0

6

0

4

4

4

4

22

6

1

6

2

2

6

3

2

2

6

6

6
6

0

4

66

6

4

2
2

4

2

6

6
6

6

4

1

4

3

4

4

4

1

6
4

4

5

03

1

4

5

4

4

4

3

0

55

3

1

0

3

0

0

6

0

4

0
06

0

0

5

3

6

0

6

0

6

3

2

6
6

2 1

6

2

6

2

3

3

4

3

2

6
6

3

6
6

6

6

22

2

6

1

0

4

2

2

0

22

3

3

5
5

4

5
5 55

5

555

5
5

5 5
55

5
0 5

1

6

6

6

2

2

05

2

1

2
4

00

1

1

4

4

6

6

6

44

4

4

1

4

2

3

4
4

1

3

4

1

0

0

00

0

0

4
44

4
4

0

4

4

4

4 4

4

6

4

4

4

2

6

4

1

0

1

4

4

0

4
4

0

4

5

4

4

4

4

4

4

4

4

2

4

4

2

2

4

4

4
4

4

4

4

4

1

1

4

11

4

4
4

4

4

0

4

3

2
2

1

1

5

55
0 0

4

1

5

5

2

5

2

0

0

0

0

0

0

0

0

0

0

0

0

0

6

4

1

1

4

4

4

4 3

3

4

44

4

4

4

4

4

44

4

5

2

2

2

2

2

2

11

1

0

1

0

0

4

1

4

5

6

6

6
6

6

4

4

4
4

1

4

3

3

3

4

1

4

1

1

4

1

1

4

4

1

4

1

1

00
0

0

1

3
3

3

4

4

4

4
3

4

6

1
1

3

3
3

3

3
3

3

3
3

3

333
3

3
33

333
3

33

4

6

6

4

4

3

4

4

1

1

0

1

4 4

00

05

1

5

3

2

3

3

3

3

3

3

4

3

3

1

1

4

44
4

44

2

4

4

4

44
44

4

5
0

0

1

4

1

4

4

4

3

33
3

3

3

3

3

3

2

0

0

0

4
55

5

3

1

4

4

4

1

4

4

4

4
4

1

2
2

4
4

2

4

3

44
4

4

6

4

4

4

6

4

4
4

6

6
6

33

3

3 3

3

4

4

2

2

3

4

4

3

1

1

3
3

43
3

3 33

3

43

33

4

3

3

3

44

4
4

4

1

3

2

2

4

44

4

0

4

5

2

0

4

4

3

33
3

33
3

3

5

3

3

3

33

333

33

3

3

3
6

3

333

3

3

3

3
3

4
4

4

4

3

3

4

1

4

4
4

4

4 4 1
1 0

4

11

3

3
4

3

3

1
4

3
3

3

4

3

4

4

4

4
4

1

4

0

4

2

0

2

2

11

33

3

1

3

1
1

05 5 5

5

5

5

555

1

3

2

4

1 6

1

0

1

4

0

4 2

4

0
1

1

4

1

6

2

2

3

3

1

4

4
1

1

3

51

1

5
0

1

6

3

6

6

2

2

4

00
1

0

0

43

4

0

0

0

0

4

3

4

1

4

4

5

33

2

1

1

1 01
13

3
1

1

3

1

1

1

3

1

4

1

1

3
33

1

4

0

1

4

6

1

1 1

34

3

4

3

3

2

3

1

5

5

2

6

11

2

2

14

2

4

4

2

1

00
0

3

4

0 0

4

11

3

3

2

4

1

4

4

4

2

4

2

2

2

4 4 4

1

4

4

4

4

4

4

6

3

4

3

1

0

1

0 0

55

1 5

0

2

1

5

0

4

0
0

0 0

6

0

1

2

22

1

0

0

5

1

4

1

4

4

2

2

2

3

4

4

4

4

0

0
0
0

0
00

3

3

33

3
3

4

3

4

4

4

2

4

0

4

4

4

4

1

1

4

6

1

5

1

3

1
1 11

1

11

4

4

4

4

1

1

6

11

2

4

4

4

1

2

2

2

33

4

3

1

4

3

3

3

3

3

3

6

3

1

3

2

2
2

2

4

42

0

6

4

6

6

3

6
6

1
11

5

4

3

5

5
1

1

1

2

1

4

6

6
4

6

6

1

1

2

4

3

0

6

6

1

6

0

6

66

4

6

4

1

4

44

6

4

3

4

1
0

3
3

66

0

2

2

2
2

3

1

3

3

3

3

1

4
4

4 4

4

0

0

0

0

1

1

4

44

1

4 4
4

2
2

2

2

55

55

1

1 1

1

33
1

3
3

1

4

4

5

1

1

6

1

4

2

2

2

2

4

2

2

0
0

4

1

6

6

0

3

3

3

4

1
1

1

4

0

2

2

1

3

3

3

0

0

2

2

33

2

5

4

44

4

1

4

0

05

5

5

6

4

4

0

1

3

1

44
4

2

2

4
4

4

1 11

1

1
4

4

4

4

44

4

4

1

0

1 0

4

2

4

5

4

4

1

4

6

4

2
2

55 55
4

4

4

11 1

2

6

0

0

4

3

0

0

1

00
11 1

0

0

1
4

4
44

1
1

0

1

0
0

1

0

0 55
5

3

0

5

1
5

1

0

1
0

4 4

4

4

4
4

3

0

1

0

00

4444
4

44444

4

4

4

1 11 111

0

00

3

0

0

1
0

1

0

0

6

1

1 00

3

3

4

3

3

3

31

4

4

0

3

4 4
4

44

44
4

4 4

4

4

4
4

4

4

44

44

4

4
44 44

1

1
1

3

4

3

3
33 2

4

0

5

0

55

1
1

5

50

55

0

0

4

6

22

3

3
4

0

0

0

0

1

1

3

1

11 1

1

0

1

4
1

1

4

6

4

4

2

2

2

14

1

3

3
3

3

333

3

33
3

3

3
3

33

3

33

3

3

4

3
3

3
3

3

3

33

3

3
3

3

3

3

3

3

3

3

3
3

4
4

4

4

4

4

4

4

4

44

4
4

4

44

4

4

0
0

0
0

0

3

3

33

4

2

4

2

2
2

2

2

2

2

4

3

3

4

4

4

6

3

0

1
1

2

2

1

2

1

0

1

0

0

3

3

33

3

0 3

3

4

4

5

0

0

6

6

6

6

6

1

6

6

6

66
6

6

6

66

6

6

6

6

6

6

6

6

66

6

6

6

6

6

6

6
6

6

6

6
6

666
6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

0

6

6

6

6

6

6

6

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6
6

66

6

6

6

6
6

6

6

6

6

6

6

66
6

6

6

6

6

6

6

6

6

6

6

6

6

6

66

6

6

6

6

6

6

6

6

66

6
6

6

0

6

66

6

6

6

6

6
6

6

6

4

6

6

6

6
6

6

6

6

6

6

6

6
6

6

6

6
6

6

6

6

6

2

6

66

66

6

0
6

6

6

6
6

6

6

6
6

2 2

2

22

2
2

2

222
2

6

2

2

2

2

2
2

2

22

2

2

2

2 2

2

2 2
2

2

2

2

2

2

6

2

2

2

2

2

4

2

2
2

2

22

2

2

2 2

2

2
2

2

22

2

2

2

2

2
22

2

2

2 2

2

22

2

2

2

2
2

2

1

0

2

2

2

2

2
2

6

2

2

2

2

2

2

2

22
2

2

2
2

2

2 2

2

2
2

2
2

222

2

2 2

2

2

2
2 222

2
2

22

2 2

2

2

22
2

2

2

2
4

2

2 22

2

4

2

2

2

2

2

2

2
2

2

22

2

2 22
2

2

2

2
0

2

22

2

22

2

2 2
22

22

22

2
2

5

2

2
22

2
2

2

2

2

2

2

2

2
2

2

2

22
2

22

2

6

2

2

2
2

2

2

2

22
2
2

2

2

2

2 2
22

22

2

2

2

2 22

2
2

2
2

2
2

2

2

2

2

2
22

2
22

2
2

2 22

2

2
2

2

2

6

2

2
2

2

2

2

2

2

2
2

2

2
2

2

2 25

2

2

2

2
2

22 2

2 22
2

2

2

2

2
2
22

2

2

2

2

0

2
2

2

2

4
4

3

3
3

3

3

4

3

1

3

1
3

3

3

3

3

3

3

3
3

3

3

3

3
3

3

3

3

3

3

3

3

3
6

3

33
3

3

3

3

3

3

3

33

3

3

3
3

3

3

3

3

0

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3 3

3
3

333

3

3
333

3

33

3

3

3

3

3

3

6

3

6

3

3

3

3
3

3

33

3

3

3

3

3

3

3

4

3

3

4

4

4

4

4

4

2

4

44

4

4

4

4

4
4

4

4

4

4

4 4 4

4

4

6

2

4
4

3

6

4
4

4

4

4

4

4

4

4

4

4

4

0

4
4

3

4

4

4

4 4

44

4

4

4

4

4

4

4

1

4

4

44

4

3

4

4

4

4

4

3

4

4

4

4

44

4

4

4

1

4

2

4
4 4

4

4

4

4

4

4

4

4

4

4

6

4

4

4

4

4

4

4

5

6

2

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1

4

4

4

4

4

6

4

4

4
4

4 6

4

4
44

4
44

4

4

4

22

44

4

4

4

2

4
4

4

4

44

4

4

4

3

4

1

4

4

4

4

4

4

4

4

44

4

4

4

4

4

4

4

4

4

4 4

4

4

4

4

2

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4

4

4

4
4

4

4
2

4

4

4

4
2

4
4

2

4

4

4

1

4
4

4
4

4

4
4

4
4

4

4

4

4
4

4

4

3

4

4

4

6

4

44

4

4

4
4

4

1

4

4

4

4

4
4

4

4 4

4

4
4

4

4

4

4
2

6

4

4

2

4

4

4

4

1

4

4

4

4

4

4

1

4

1

4

3

5

4

2

4

4

4

4

4

4

44

4

4

4

4

4

4

4

4

4

4

4
4

1

4

4

4

0

4
4

4

2

4

3

4

44
4

2

3

4

2

4

4

4

4

4

4 4

4

4

4

4

6

4

44

4

2

4

4

6

4

4

4

4

1

4

1

4

4

4

4

4

4

4

6

4 4

4

4
4

4

4

4

4
4

4
4

4

44

4

1 1

1

1

1

1

1

1
1 1

1

1

1

1

1

1
1

1

11

1
11

1

11

5
1

1

1

1
5

1

1
1

1

1

1

1

1 1
1

1

1

1

1

1
1

11

1

1

1

1

1

11

1
1

1

1

1
1

1

1

5

11

1

1
5

11

1

1

1

1

1

1

11

1

1

1

6

1

1

1

1

1

1
1

1

5

1

11

1
1

1

1
1

1

1

1

1

1

1

1

0

0

1

1

1

1

6

1

1

1

3

1
1

1

11

1

11

1

1

1
1

1
1

1

1

1
1

1

1

1
111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

5

0

5

5

5

5
5

5

5

5

5

5

55

5 5

5

5
5

5

55

5

5

5

5

5

5 55
5

5
5

5

5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

00 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0
0

0

0

0

0

0

00

0

0

00

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0
0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0
0

0

0

0

0

0000

0

0

0

0

0

0

0

0

0

0 0

0

5

0

0

0

0

0

0

6

0

0

4

0

6

0 0

00

6
0

4
4

4
4

2
2

6

1

6

2 2

6

3

2

2

6

6

6

6

0

4

6

6

6

4

2
2

4

2

6

6

6

6

4

1

4

3

4

4

4

1

6

4

4

5

0

3

1

4

5

4

4

4

3

0

5

5

3

1

0

3

0

0
6

0

4

0

0

6

0

0

5

3

6

0

6

0

6

3

2

6

6

2

1

6

2

6

2

3

3

4

3

2

66

3

6
6

6

6

2

2

2

6

1

04

2
2

0
2

2
3 3

5

5

4

5

5

5

5

5

5

555

5
5

5

5

5

5

0
5

1

6

6

6

220

5

2
1

2

4

0

0

1
1

4

4

6

6

6

44

4

4

1

4

2

3

4

4

1

3

4

1

0

0
0

0

0

0

4

4

4

4

4

04

4

44

4

4

6

4

4

4

2

6

4

1

0

1

4

4

0

44

0

4

5

4

4

4

4

4

4 4

4

2

4

4

2

2

4

444

4

4

4

4

1

1
41

1

4

4
4

4

4

0

4

3

2 21

1

5

5

5
00

4

1

5
5

2

5
2

0

0

0

0

0
0

0

00

0

0

0

0

6

4

1

1

4

4
4

4

3

3

44

4

4

4

4

4

4

4
4

4

5

2 2

2

2

2

2

1

1
1

0

1

0

0

4

1

4

5

6

6

6

66
4

4

4
4

1

4

3

3

3

4

1

4

1

1

4

1
1

4

4

1

4

1

1

0

0

0

0

1

3

3

34

4
4

4
3

4

6
1

1

3

3

3

3

33

3

3
3

3

3333333

3

3

3

3

33

4

6

6

44

3

4

4

1

1

0

1

4

4

0

0 0

5

1 5

3

2
3

3

3

3

3

3

4

3

3

1

1

4

4

4

4

4
4

2
44

4
4

4

4

4

4

5
0

0

1 4

1

4

4
4

3

3 3

3

3
3

3 3
3

2

0

0

0

4

55
5

3

1

4

4

4

1

4

4

4

44

1

22

4

4
2

4

3

4

44

4

6

4

4

4

6

4

4

4

6

6
6

33

33

3
3

4
4

2

2

3

4

4

3

1

1

3

3

4 33333
3

4
3

33 4
3

3
3

4

4

4

4

4

1

3 2

2

4

4

4

4

0

4

5

2

0

4

4

3

3

3
3

3
3

3

3

5

3

3

3

3

3

33

3

3

3

33

3
6

3
3
3

33

3

33 3

4
4

4

4

3

3

4

1

4

4

4

44

4

1

1

0

4

1 1

3

3

4

3

3

1

4

3

3

3

4

3

4

4

4

4

4

1

4

0

4

20

2

2
1

1

33

3

1

3

1 1

0

5

5

5

5

5

5

555
1

3

2

4

1

6
1

0

1

4

0

4

2

4

0

1
1

4

1

6

2

2

3

3

1

4
4

1

1

3

5

1

1

5

0

1

6

3

6
6

2

2

4

0

0

1

0

0

4

34

0

0

0

0

4

3

4

1

4

4

5

3
3

2

1

1

10

1

1

3 3
1

1

3

1

1

1

3
1

4

1
1

3

3

3
1

4

0

1

4

6

1
1

1

3

4

3

4

3

3

2

3

1

5
5

2

6

11

2
2

1

4
2

4

4

2

1 0

0

0

3

4
0

0

4

1

1

3

3

2

4 1

44

4

2

4

2

2
2

4

4

4

1

4

4

4

4

4

4

6

3

4

3

1

0

1

0

0

5

51
5

0

2

1
5

0

4

0

00

0

6

0
1

2

2

2

1

0

0

5

1

4

1

4

4

2

2 2

3

4
4

4

4

0

0

0

0

0

0

0

3
3

3

3

3 3

4

3

4
4

4

2

4

0

4

4

4

41

1

4

6

1
5

1

31

1

11

1

11

4

4

4

4

1

1
6

1
1

2

4
4

4

1

2

2

2

33

4

3

1
4

3

3

33

3

3

63

1

3

2
2

2

2

4

4

2

0

6

4

6

6

3

6

6

1

1

1

5

43

5 5

1

1
1

2

1

4

6

6

4

6

6

11
2

4

3

0

6

6

1

6

0 6

6

6

4

6

4

1

4

4

4

6

4

3

4

1

0 33

6

6
0

2 2
22

3

1

3

3

3

3

1

4

4
4

4

4

0

0

0

0

11

4

4

4

1

4

4

4

2 2

2

2

55

5

5

1

1

1
1

3

3 1 3
3

1

4

4

5

1

1

6

1

4

22

2
2

4

2

2

0 0

4

1

6

6

0

3

3

3
4

1 1

1

4

0

2

2

1

3

33

0
0

2
2

33

2

5

4
44

4

1

40

0
5

5

5

6

4

4

0

1
31

4

4

4
2

2

4

4

4

1
11

1

1

4

4

4

4

4

4

4

4

1

0
1

0

4

2

4

5

4

4

1

4

6

4

2

2

5

5

55
4

4
4

11
1

2

6

0

0

4

3

0

0

1

0

0

1

1 1

0

0

1

4

4

4

4

1

1

0

1

00

1

0

0

5

5

5

3

0

5

1

5

1

0

1

0

4

4

4

4

4

4

3

0

1

00
0

44

4

4

44

44

4

4

4

4

4

1 1
1

1
1

1 00

0

3

0

0 1

0

1
0

0

6

1

1

0

0

3

3

4

3
3

3

3

1

4

4

0

3

4

4

4
4

4

4
4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

1 1
1

3
4

3

3

3

3

2

4

0

5

0

5

5

11

5

5

0

5
5

0

0

4

6

22

3

3

4

0

0

0

0

1

1

3

1

11
1

1

0

1

4

1

1

4

6

4

4
2

2

2

1

4

1

3

3

3

3

3

3

3

3

3

3

3
3

33
3

3

3

3

3

3

34
3

3 3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3
3

4

4

4

4

4
4

4

4

4

4
4

4

4

4
44 4

4

0

0

0

0

0

3

3

33

4

2

4

2

22
2

222

4

3

3

4

4

4

6

3

Figure 1: The t-SNE visualization of raw features (left), GCN outputs on the clean graph (middle),
and GCN outputs on the perturbed graph (right) in dataset Cora-ML.

where A′ is the perturbed adjacency matrix. If θ is trained before perturbations, the attacks are
referred to as poison attacks and otherwise evasion attacks. Although we do not focus on the time
of occurrence of RBA, we transfer the poisoned graph to both settings during evaluation. Based on
the attacker’s knowledge, graph structural attacks can be classified into white-box Xu et al. (2019);
Geisler et al. (2021), grey-box Zügner & Günnemann (2019), and black-box attacks Dai et al. (2018);
Chang et al. (2020); Lin et al. (2022). Among them, the RBA setting is the most strict, in which only
node features and the graph structure are available for the attackers.

3 MEASURING DIFFICULTY OF NODE CLASSIFICATION

To effectively carry out black-box attacks, it is crucial for attackers to establish a clear definition of a
successful attack. When node labels and victim models are known, the quality of graphs can be easily
determined using the victim models’ accuracy on the test set. However, the task becomes nontrivial
when labels and victim models are unavailable. Previous RBAs address this problem by imposing
prior assumptions, like the low-rank Bojchevski & Günnemann (2019); Chang et al. (2020) property
of node embeddings or homophily assumption Li et al. (2022), yet limits the applicability of RBAs to
different tasks. Therefore, we raise the question: ”Can we create a challenging classification task
that targets all classifiers on all graphs?”

3.1 SILHOUETTE SCORE

In node classification, GNNs outperform previous methods by utilizing message passing to denoise
node embeddings. Ideally, GNNs separate node embeddings of different classes to stay far away
from each other in the embedding space. However, if this process is hindered, the performance of
GNNs will suffer from significant degradation. In Figure 1, we present the t-SNE Van der Maaten &
Hinton (2008) visualization of raw features and node embeddings generated by GCN on the clean
and perturbed graphs. On clean graphs, GCN obtains node embeddings that are well separated for
different classes. Yet, on the poisoned graph, node embeddings of all classes get suppressed closer,
which makes GCN lose its expressiveness in classifying nodes. The significant differences in the two
scenarios inspired us to use distances between nodes to reflect the quality of the graph.

To formally measure the proximity of node embeddings, we introduce Silhouette Score Rousseeuw
(1987). Silhouette Score captures distances between intra-class and inter-class instances to quantify
the difficulty of a clustering problem. In node clustering, denote the cluster of nodes as CI = {i |
yi = I}. The average intra-class distance and smallest average inter-class distance for node i in
cluster I are:

ai =
1

|CI | − 1

∑
j∈CI ,i̸=j

D(i, j), bi = min
J ̸=I

1

|CJ |
∑
j∈CJ

D(i, j). (1)

Here D(i, j) is a distance metric, which can be calculated using the embeddings of node i and j.
Then, Silhouette Scores for node i and graph G are

si =
bi − ai

max (bi, ai)
, sG =

1

n

∑
vi∈V

si.
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By definition, Silhouette Score lies in the range of [−1, 1]. A larger Silhouette Score represents a
larger relative inter-class distance and an easier node clustering problem.

3.2 MODIFICATIONS TO SILHOUETTE SCORE

To attack a graph, a straightforward idea is to minimize its Silhouette Score. However, we have
several concerns if directly using it as the objective in attacks.

Quality of clusters. Since node labels are inaccessible, we must first conduct node clustering to
define the Silhouette Score. Because clustering results are hard to be ideal in all cases, we risk
mistakenly pushing the attacked node away from nodes in different classes. To provide a safeguard
for this situation, we introduce Shift Loss as a robust alternative for intra-class distance ai, which
is defined as: Lshift = ∥h′

i − hi∥. Here, h′
i is the embedding of i after the attack. Shift loss makes

sense if we consider node i itself as the representative of its cluster. By maximizing Shift, we can
robustly create a larger intra-class distance and therefore reduce its Silhouette Score.

Limit of scope. For the original Silhouette Score in Equation equation 1, minimum inter-class
distance is used to describe the closeness of a node to other clusters. However, this metric may be
too strict as the objective for attacks. Generally, a node becomes more indistinguishable as long as
its distance to nodes in other clusters is shortened. However, when using the minimum inter-class
distance as the objective, only nodes in its nearest neighboring cluster are taken into account. If we
choose perturbations based on the gradients of the Silhouette Score with respect to edge flips, distant
clusters are disregarded. For example, in Figure 2, the embedding of the attacked node is shifted under
attacks. Shifts towards either red nodes or green nodes decrease the distinguishability of the attacked
node. However, when using the original Silhouette Score, the inter-class distance of the attacked
node is influenced only by red nodes, which are closer to the blue cluster. To expand the scope of
attackers, we consider average inter-class distances instead of the minimum in Equation equation 1:

b̂i =
1

n− |CI |
∑

j∈CJ ,J ̸=I

D(i, j).

Here, we compute the average distance of node vi to nodes in other clusters. We refer to the Silhouette
Score calculated with b̂i as the Modified Silhouette Score (MSS). This metric puts more possibly
harmful choices into consideration during attacks and is also effective in measuring the quality of a
graph. In Figure 3, we plot the change in MSS, which is calculated using clusters from Kmeans and
ground-truth labels, under a greedy white-box attack GRBCD Geisler et al. (2021) and the random
attack. GRBCD greedily adds/deletes the most influential edges to/from the graph to decrease the
performance of victim models. From the figure, we see that the attack adaptively flips edges that
lower the MSS of the graph. Compared with Random Attack, which randomly flips edges on the
graph, GRBCD results in a larger drop in MSS.

:  Attacked Node

:  Boundary

:  Shift

Figure 2: Shift of node embedding under
attacks. Mixing the attacked node with
either red or green nodes makes it indis-
tinguishable.
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Figure 3: Change of MSS under GRBCD and Random
Attack with respect to epoch. GRBCD results in a
larger change in MSS than Random Attack.

4 SHEATTACK

In this section, we provide the complete algorithm of SheAttack (Silhouette Score Based Attack).

4
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4.1 THE ALGORITHM

Given node attributes X and adjacency matrix, we first conduct Principal Component Analysis
(PCA) to raw features and obtain the projected node features Xproj ∈ Rn×p. Then, we incorporate
graph structure information by computing message propagation on graphs. Similar to GCN, we
propagate projected features twice on the normalized adjacency matrix with self-loops, obtaining X̃ =
Ã2Xproj. To obtain node clusters, we apply Kmeans (Lloyd, 1982) with Kmeans++ seeding (Arthur
& Vassilvitskii, 2007) to X̃. Denote the number of clusters as k, the algorithm returns node clusters
Ĉ = {Ĉ0, Ĉ1, · · · , Ĉk−1} and corresponding centroids. (We use Ĉi for clusters generated by
clustering algorithms and Ci for ground-truth classes). After that, we calculate the intra/inter-class
distances as

a′i =
1∣∣∣ĈI

∣∣∣− 1

∑
j∈ĈI ,i̸=j

D(i, j), b′i =
1

n−
∣∣∣ĈI

∣∣∣
∑

j∈ĈJ ,J ̸=I

D(i, j).

Here, D(i, j) is a distance metric calculating the distance between X̃i and X̃j . The Silhouette
Score-based loss and its combination with shift loss are:

Lshe = −sG = − 1

n

∑
vi∈V

b′i − a′i
max (b′i, a

′
i)
, Latk = Lshe + λLshift, (2)

where λ ≥ 0 is a hyperparameter. Denote the perturbed graph structure as A′, the inputs of Shift Loss
are X̃ calculated using A and A′ during attacks. The objective can then be written as Latk(X,A′, Ĉ).

After defining the loss term, we use the Greedy Randomized Block Coordinate Descent for opti-
mization (Geisler et al., 2021). We adopt this optimization technique for its linear time and space
complexity w.r.t the block size while enjoying a desirable performance. Specifically, during each
epoch, we calculate the gradients of the objective function w.r.t possible edge flips in a randomly
sampled block. We conduct the top-K edge flips with the largest gradients to obtain the modified
adjacency matrix A′, and repeat the process until a given budget is met. The pseudocode of our
algorithm is given in the Appendix B.

4.2 APPROXIMATION TO SCALE UP

The procedure of SheAttack comprises PCA, Kmeans, loss computation, and optimization, whose
corresponding time complexities are O(nd2 + d3), O(npk), O(n2), and O(b) (b is the block size
linear to the number of edges), respectively. On large graphs, the bottleneck of SheAttack in time
complexity is O(n2) in computing node-wise distances. To improve the scalability, we introduce
an approximate version that computes distances between nodes and cluster centroids. Let the k
centroids returned by clustering be {µ1, · · · ,µk}, where each µi stands for the center of cluster I .
The node-wise intra-class and inter-class distances for node i of cluster I are:

âi = D(i, µI), b̂i =
1

k − 1

∑
J ̸=I

D(i, µJ).

By substituting âi and b̂i into loss equation 2, we obtain an approximate version of the loss. The time
complexity in computing distances is now O(nk), which is highly scalable. All operations can be
done using the sparse matrix, so the space complexity of SheAttack is O(b) as well.

4.3 INTERPRETATIONS OF SHEATTACK

In this section, we study the behavior of SheAttack on graphs generated by the Contextual Stochastic
block model (cSBM) (Deshpande et al., 2018). As a classical graph generation model, cSBM and its
variants are widely used for analyzing graph clustering (Fortunato & Hric, 2016) and GNNs (Chien
et al., 2021; Ma et al., 2022b). Here, we consider a two-class node classification problem with classes
written as c1 and c2. Edges are formed between intra-class nodes with probability p and between
inter-class nodes with probability q. The node feature xi in class ci follows Gaussian distribution
N(µi, I), where µi ∈ Rd is the class centroid. Similar to (Ma et al., 2022b), we focus on the message
passing and disregard the linear transformation. The embedding of a node vi is hi =

1
di

∑
j∈N (i) xj ,

5
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where di is the node degree. Suppose node vi belongs to class c1. Denote intra-class perturbations
as ∆1 and inter-class perturbations ∆2. A positive ∆1 (∆2) stands for adding edges and otherwise
deleting. Denote the propagated embedding after perturbations as h′

i, then

hi ∼ N

(
pµ1 + qµ2

p+ q
,

1√
di
I

)
,h′

i ∼ N

(
(pdi +∆1)µ1 + (qdi +∆2)µ2

pdi + qdi +∆1 +∆2
,

1√
di +∆1 +∆2

I

)
.

Theorem 4.1. (Ma et al., 2022b) (Informal) For any node i in the cSBM graph, the linear classifier
defined by the decision boundary P =

{
x | w⊤x−w⊤ (µ1 + µ2) /2

}
has a lower probability of

misclassifying hi than xi when d > (p+ q)2/(p− q)2.

The above theorem clarifies when a linear classifier has better distinguishability. On graphs of high
homophily or heterophily, node vi has a higher probability of being correctly classified. In other
words, homophily loss (Li et al., 2022) which aims to lower the homophily level, could fail to improve
attack performance if the victim graph is heterophilic. In contrast, the objective of SheAttack is able
to handle both cases. Denote the propagated centroids of the two classes as µ′

1 = pµ1+qµ2

p+q and
µ′

2 = pµ2+qµ1

p+q . The intra-class and inter-class distances satisfy the following theorem:

Theorem 4.2. Let ai = ∥h′
i − µ′

1∥
2 be the square of intra-class distance under perturbation,

bi = ∥h′
i − µ′

2∥
2 be the square of inter-class distance under perturbation, then

E [ai] =

(
∆1q −∆2p

(p+ q)(pdi + qdi +∆1 +∆2)

)2

∥µ1 − µ2∥2 + c,

E [bi] =

(
pmp − qmq

(p+ q) (pdi + qdi +∆1 +∆2)

)2

∥µ1 − µ2∥2 + c,

where c = Tr (Cov (h′
i)) = d√

di+∆1+∆2
, and mp = pdi + ∆1 and mq = qdi + ∆2 are the

homophilic and heterophilic edges after perturbations.

The proof and more explanation are included in Appendix D.1. To minimize bi, SheAttack would
prefer to enlarge mq if p > q, or enlarge mp if p < q, which results in a tougher classification task as
shown in Theorem 4.1. Note that shift loss which only focuses on maximizing ai fails to fit in both
settings. On heterophilic graphs where q > p, a negative ∆1 would result in larger shifts while the
homophily level goes up at the same time. This phenomenon occurs as the direction of shift is not
provided, and node embeddings could shift to a position far away from other classes. So in practice,
SheAttack combines both objectives to ensure generalizability and effectiveness.

5 EXPERIMENT

5.1 SETTINGS

Datasets. We generate cSBM graphs following the setting in (Chien et al., 2021). For small real-world
datasets, we adopt homophilic graphs Cora-ML (McCallum et al., 2000), Citeseer, and PubMed (Sen
et al., 2008), and heterophilic datasets Chameleon, Squirrel (Pei et al., 2020; Rozemberczki et al.,
2021), and Roman-Empire (Platonov et al., 2023). We transfer graphs into undirected and select the
largest connected components on small real-world datasets following (Zügner & Günnemann, 2019).
We also include large datasets ogbn-arxiv and ogbn-products (Hu et al., 2020) with fixed split to test
the efficiency of attacks. Details of datasets and splits are given in the Appendix C.2.

Baselines. Random: Randomly add or delete edges on the graph; DICE (Waniek et al., 2018): Ran-
domly add edges between inter-class nodes or delete edges between intra-class nodes. Note that DICE
is not a strict black-box attack, and we introduce a hyperparameter threshold for Random and DICE
attacks that controls the proportion of add and delete operations for enhancement. GFAttack (Chang
et al., 2020): A targeted RBA. We modify it into an untargeted attack by transferring the objective to
the untargeted setting. SPAC (Lin et al., 2022): A loss-based RBA and its approximated variant that
maximizes the spectral distance during perturbation. SelfAttack: A self-attack algorithm that adopts
a two-layer GCN as the surrogate similar to (Zhan & Pei, 2021). The surrogate model is trained using
clusters given by Kmeans. PEEGA (Li et al., 2022): An RBA that combines shift loss and homophily
loss as the objective. The variant without “-Comb” means only homophily loss is included. For SPAC

6
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Table 1: Performance of GCN on perturbed cSBM graphs with perturb ratio 0.20. The datasets are
named cSBM(Φ ∗ 100). The best results are bold, and the second-best results are underlined.

cSBM+25 cSBM-25 cSBM+50 cSBM-50

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 81.25±0.32 57.42±1.00 93.39±0.18 74.11±0.30

Random 79.68±0.41 78.99±0.78 56.74±0.83 56.34±0.65 91.09±0.21 90.51±0.54 71.46±1.02 70.18±0.71
DICE 72.51±0.93 69.06±0.67 63.33±1.39 68.88±0.71 84.38±1.32 82.10±1.30 83.07±0.53 84.93±0.69
SPAC-A 80.59±0.27 80.64±0.21 57.66±0.73 59.25±0.89 93.15±0.47 92.90±0.56 76.35±0.44 76.48±0.30
GFAttack 79.84±0.26 79.28±0.53 57.97±1.13 58.43±1.61 91.92±0.38 91.46±0.36 73.81±1.25 73.39±0.87
SelfAttack 78.11±0.88 77.06±1.05 58.18±1.19 58.40±1.00 90.34±0.57 90.21±0.61 74.62±0.59 74.75±0.44
PEEGA 81.54±0.22 80.54±0.49 57.71±0.45 56.10±0.34 92.18±0.33 91.68±0.58 70.54±0.77 68.53±1.26
PEEGA-Comb 77.62±0.61 75.82±0.77 59.10±1.18 58.38±0.71 88.48±0.61 86.99±1.15 75.87±1.14 74.58±0.86

She 67.94±0.94 62.69±0.93 49.76±0.46 48.62±1.48 88.27±1.88 87.07±2.15 67.01±0.92 63.82±1.29
She-Comb 69.30±0.33 64.43±0.76 51.17±0.57 48.74±1.29 87.70±0.85 86.24±1.54 68.91±1.08 65.95±1.35
She-A 68.18±0.77 62.37±0.42 50.70±0.65 49.09±1.51 89.10±1.61 88.48±1.86 68.30±0.71 65.84±1.33
She-A-Comb 68.77±0.92 62.75±0.57 50.34±1.45 48.94±0.93 89.42±1.48 88.02±2.03 68.61±1.27 66.22±0.83

and GFAttack, we use PGD (Xu et al., 2019) for optimization following (Lin et al., 2022). Otherwise,
methods are optimized using greedy block gradient descent. All approximated variants are attached
with the suffix “-A”, and the variants including shift loss are attached with the suffix “-Comb”.

Victim models. We use a two-layer GCN as the victim model in evasion and poisoning settings. We
also test the performance of attacks against other GNN variants and defense models in Appendix F.4
Full results, training details, and hyperparameters are left in the Appendix C.3.

5.2 EXPERIMENT RESULTS

Results on cSBM graphs. To validate the generalizability of SheAttack, we conduct experiments
on graphs generated using cSBM. Similar to (Chien et al., 2021), we use Φ ∈ [−1, 1] to control the
homophily of generated graphs, where a positive Φ homophily indicates a homophilic graph and vice
versa. We use raw features for clustering in SheAttack as they are powerful enough in cSBM graphs.
The results are summarized in Table 1.

We see DICE and PEEGA help GCN enjoy a performance improvement after the attack on heterophilic
datasets, which verifies the restriction by relying on homophily assumption. Random attack is a
relatively strong baseline on heterophilic graphs, given that it does not impose wrong prior knowledge.
But it is not compatible with other attacks on homophilic graphs. Among all methods, SheAttack
generally holds superiority.

Results on real-world datasets. We conduct untargeted structural black-box attacks on chosen
datasets and test the performance of GCN under both evasion and Poisoning settings. We repeat
experiments five times over different random seeds and splits without additional specifications. All
results are reported using mean accuracy ± standard deviation. Results are summarized in Table 2,
Table 3 and Table 4. SheAttack and its variants generally outperform other baselines with desirable
efficiency to scale up.

Table 4: Performance of GCN on ogbn-
products with perturb ratio 0.10. Experi-
ments are repeated once on the fixed split.

Attack Evasion Poisoning

Clean 75.80

Random 68.67 70.29
She-A 63.84 67.40
She-A-Comb 62.93 67.28

Ablation Study. To better analyze the influential compo-
nents of SheAttack, we conduct an ablation study about
the objective in Table 5. Here “Shift” corresponds to shift
loss as the objective, and “She-min” corresponds to the
original Silhouette score as the objective. We see that the
She loss and shift loss both contribute to the attack perfor-
mance, while the unmodified Silhouette score performs
worse because of its limited scope.

6 RELATED WORKS

We classify black-box attacks into Candidate Node-based, Reinforcement learning-based (RL-based),
and loss-based methods.
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Table 2: Performance of GCN on homophilic graphs with perturb ratio 0.20. The best results are
bold, and the second-best results are underlined. Entries marked with “*” take too much time.

Cora-ML CiteSeer PubMed

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 85.94±0.74 74.09±1.47 86.59±0.26

Random 81.95±1.27 81.73±1.14 71.50±1.43 69.80±1.03 82.57±0.33 83.03±0.22
DICE 79.63±1.34 79.72±0.97 69.37±1.31 66.91±1.72 77.70±0.46 78.42±0.14
SPAC 83.09±0.91 82.63±0.70 72.23±1.22 70.83±1.65 * *
SPAC-A 82.55±1.05 82.80±0.77 72.80±1.74 72.35±1.54 * *
GFAttack 82.28±1.09 82.06±1.30 72.07±1.72 71.40±1.74 * *
SelfAttack 81.50±1.00 80.34±0.49 73.42±1.52 72.65±1.33 81.79±0.73 82.09±0.37
PEEGA 83.49±1.13 83.23±0.66 71.47±1.46 70.47±1.01 85.48±0.34 85.35±0.28
PEEGA-Comb 75.74±1.55 74.44±1.00 65.79±1.50 61.61±1.83 77.27±0.75 79.68±0.28

She 74.72±1.46 73.20±0.94 66.02±1.34 62.67±0.94 77.79±0.70 79.70±0.13
She-Comb 74.46±1.54 71.91±1.49 65.73±1.83 62.10±1.31 76.89±0.75 79.64±0.11
She-A 75.54±1.24 73.91±1.11 67.44±0.90 65.06±1.17 80.20±0.30 80.80±0.14
She-A-Comb 73.78±1.45 71.46±1.07 65.39±1.63 60.84±1.85 77.30±0.37 79.12±0.29

Table 3: Performance of GCN on heterophilic graphs with perturb ratio 0.20. The best results are
bold, and the second-best results are underlined. Entries marked with “*” take too much time.

Chameleon Squirrel Roman-Empire

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 67.59±2.48 53.22±1.80 49.85±0.54

Random 59.65±0.81 56.45±1.17 38.42±2.23 35.02±2.12 49.64±0.55 50.38±0.32
DICE 60.26±1.37 58.99±1.37 41.65±1.30 44.40±2.15 48.74±0.74 49.74±0.40
SPAC 58.46±1.59 57.76±2.27 38.54±1.92 38.44±1.71 * *
SPAC-A 60.04±1.07 61.45±2.13 38.33±1.39 41.23±1.24 * *
GFAttack 61.84±2.22 60.31±2.91 40.83±0.53 42.17±1.12 * *
SelfAttack 59.30±1.65 61.40±2.06 37.85±0.81 42.25±1.24 47.77±0.66 48.69±0.57
PEEGA 58.82±1.07 63.95±2.44 44.78±2.18 47.92±1.95 50.42±0.43 53.31±0.95
PEEGA-Comb 57.68±2.15 60.44±2.88 37.14±1.56 42.11±1.23 45.66±0.59 48.64±0.35

She 58.46±1.93 60.18±1.94 40.92±1.82 40.96±1.93 45.00±0.53 47.25±0.44
She-Comb 54.69±2.52 58.20±1.84 39.62±1.57 40.44±1.42 44.97±0.50 47.61±0.24
She-A 53.16±0.74 60.44±0.88 34.79±1.92 40.94±1.14 46.11±0.24 47.65±0.26
She-A-Comb 53.11±1.17 60.48±0.79 34.85±1.25 41.25±2.65 45.47±0.78 48.32±0.75

Candidate node-based methods. This line of work selects candidate nodes on the graph and perturbs
their features. RWCS (Ma et al., 2020) chooses the candidate nodes based on random walks. The
authors in InfMax (Ma et al., 2022a) formulate the problem as a misclassification maximization
problem and connect it to a linear threshold Model in influence maximization. While also categorized
into black-box attacks, these methods do not consider structural modifications.

RL-based methods. Reinforcement learning was first applied to black-box graph adversarial attacks
in RL-S2V (Dai et al., 2018). The attack process is formulated using a Markov Decision Process
(MDP). It focuses on targeted attacks and is applicable in both node-level and graph-level settings.
ReWatt (Ma et al., 2021) is proposed as a rewiring strategy for graph-level untargeted attacks, which
is more local and less noticeable. RL-based algorithms possess desirable theoretical complexity, but
the output of victim models is required, and the running time is usually not ideal in practice.

Loss-based methods. Loss-based methods first define a target loss under the black-box setting
and then view perturbation as parameters to be optimized. Several works propose loss terms in the
spectral domain. Embedding attack (Bojchevski & Günnemann, 2019) first analyzes the vulnerability
of graph embedding models, yet node attributes are not included. GF-attack (Chang et al., 2020) as
a targeted attack assumes node embeddings to be low-ranked and maximizes the distance between
node embeddings and their low-rank approximation. SPAC (Lin et al., 2022) considers a more
straightforward objective function by maximizing spectral distance before and after perturbation. The
above methods 1) require specific assumptions and 2) require eigendecomposition, which is of high
computational complexity. PEEGA (Li et al., 2022) focuses on the shift loss and a regularized loss
term minimizing the result homophily. Yet the space complexity is still O(n2), and the homophily
assumption is required on victim graphs.
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Table 5: Performance of GCN against attacks using different loss terms.
Cora-ML CiteSeer PubMed

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Shift 75.48±1.69 73.55±1.24 65.77±1.15 61.84±1.42 77.71±0.63 79.97±0.25
She-min 78.81±1.09 78.16±0.69 67.77±1.41 66.72±1.62 79.01±1.07 80.64±0.78
She 74.72±1.46 73.20±0.94 66.02±1.34 62.67±0.94 77.79±0.70 79.70±0.13
She-Comb 74.46±1.54 71.91±1.49 65.73±1.83 62.10±1.31 76.89±0.75 79.64±0.11

Chameleon Squirrel Roman-Empire

Shift 59.08±1.75 61.05±1.47 36.77±1.26 40.73±1.95 45.58±0.79 48.77±0.54
She-min 60.61±1.96 62.68±2.57 42.98±1.99 42.31±3.36 46.08±0.33 47.79±0.48
She 58.46±1.93 60.18±1.94 40.92±1.82 40.96±1.93 45.00±0.53 47.25±0.44
She-Comb 54.69±2.52 58.20±1.84 39.62±1.57 40.44±1.42 44.97±0.50 47.61±0.24

7 DISCUSSION & LIMITATION

How strong is the white-box attack? Comparing the experiment results of SheAttack with those
under white-box attacks, a large performance gap still exists (Zügner & Günnemann, 2019; Xu et al.,
2019). However, as mentioned by (Zhan & Pei, 2021; Li et al., 2023), the performance of white-box
attacks heavily relies on the utilization of train/test splits. To erase the unfairness introduced by
additional knowledge, we test white-box attacks GRPCD and PRBCD (Geisler et al., 2021) given
shuffled splits. More concretely, we generate white-box attacks on a given split and transfer them to
other splits. The results are shown in Table 6. Interestingly, SheAttack is now competitive to split
shuffled white-box attacks, even if they are given ground-truth labels and model parameters. Based on
this result, we are proud to say that SheAttack is not far behind the optimal we can possibly achieve.

Table 6: Performance of white-box attacks given shuffled splits.
Cora-ML CiteSeer PubMed

Attack Evasion Poison Evasion Poison Evasion Poison

She-A-Comb 73.78±1.45 71.46±1.07 65.39±1.63 60.84±1.85 77.30±0.37 79.12±0.29
PRBCD-shuffle 71.26±1.29 71.89±0.79 65.15±2.93 63.03±1.87 66.48±0.53 70.59±0.73
GRBCD-shuffle 73.73±1.67 73.87±1.28 64.98±2.69 62.67±2.18 66.47±0.79 71.59±0.70

Chameleon Squirrel Roman-Empire

She-A-Comb 53.11±1.17 60.48±0.79 34.85±1.25 41.25±2.65 45.47±0.78 48.32±0.75
PRBCD-shuffle 56.14±2.85 56.84±2.36 35.06±1.80 36.10±1.18 43.64±0.71 44.41±0.57
GRBCD-shuffle 56.10±1.91 58.90±2.32 34.43±0.81 38.44±1.17 42.24±0.57 44.94±0.54

Clustering matters. Revisiting SheAttack, a key bottleneck of its performance is the clustering
process. In our implementation, we adopt Kmeans for its simplicity and efficiency. However, Kmeans
requires an additional hyperparameter k, which could be tricky to set. And there is still room for
improvement as Kmeans could be suboptimal in node clustering (Tsitsulin et al., 2020; Bo et al.,
2020). To see the relationship between node clustering and the performance of SheAttack, we add
two baselines She-Soft and She-White. She-Soft uses node embeddings generated by supervised
GCN as input to generate clusters. She-White directly uses ground-truth labels as clusters. The
results are given in the Appendix. On the three citation datasets, especially PubMed, the performance
of SheAttack is heavily related to the quality of clusters. This observation motivates us to use
advanced node clustering algorithms for improvement, which we leave to future work. We provide
the robustness analysis of our method by offering a sensitivity analysis of k in the Appendix F.3.

8 CONCLUSION

We study non-targeted graph structural attacks under the RBA setting. To conduct general and effec-
tive attacks, we introduce Silhouette Score to measure the difficulty of node classification on graphs.
We proposed SheAttack based on a modified Silhouette Score that better fits the attack scenario.
We theoretically analyze the change in distances between nodes, verifying the generalizability of
SheAttack. We examine the effectiveness of SheAttack on synthetic and real-world datasets with
different homophily levels. Our results verify that SheAttack is powerful when compiled with a
proper clustering algorithm, and the gap between SheAttack and white-box attacks is narrow when
the knowledge of attacks is limited.
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A CODE FOR REPRODUCIBILITY

We provide code in the following link: https://anonymous.4open.science/r/
SheAttack-App--85D4/. Code excluding datasets is provided in the supplementary mate-
rial.

B PESUDOCODE OF SHEATTACK

Algorithm 1: SheAttack
Input: Graph (X,A), Loss function Latk, Budget B
Parameter :Project dimension p, Num of clusters k, Block size b, Num of Epochs E
Output: Perturbed adjacency matrix A′

1 Compute projected features Xproj = PCA(X)

2 Compute propagated features X̃ = Ã2Xproj

3 Obtain Clusters Ĉ =
{
Ĉ0, · · · , Ĉk−1

}
= Kmeans(X̃)

4 Initialize A′ ← A

5 Draw w/o replacement i0 ∈ {0, 1, · · · , n2 − 1}b // Random block index
6 Set ∆t = B/E // Number of flips per epoch
7 for t← 1 to E do

/* A⊙ i0 means flipping edges in A whose flattened index is
in i0 */

8 Flip top ∆t edges with largest∇it−1Latk(X,A′ ⊙ it−1, Ĉ)

9 Resample it ∈ {0, 1, · · · , n2 − 1}b
10 end
11 return A′

C MORE ABOUT EXPERIMENT SETTINGS

Our implementation is based on Pytorch Geomertric Fey & Lenssen (2019) and GreatX (https:
//github.com/EdisonLeeeee/GreatX).

On small graphs, we implement Kmeans based on scikit-learn https://scikit-learn.
org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.
cluster.KMeans. For Kmeans on large graphs, we use kmeans pytorch with cosine similarity
as distance metric for acceleration (https://github.com/subhadarship/kmeans_
pytorch).

C.1 DEVICE INFORMATION

All our experiments are conducted on a machine with an NVIDIA A100-SXM4 (80GB memory),
Intel Xeon CPU (2.30 GHz), and 512GB of RAM.

C.2 DATATSET STATISTICS

Dataset information is summarized in Table 7. The homophily metric is the edge-homophily de-
fined in Zhu et al. (2020). The edges are reported on undirected versions, with each undirected
edge counted twice. For cSBM datasets, we use a dense split that train/val/test is 60%/20%/20%
following (Chien et al., 2021). For homophilic datasets, we generate splits following (Zügner et al.,
2018) with train/val/test being 10%/10%/80%. For heterophilic datasets, we choose train/val/test to
be 60%/20%/20% for Chameleon and Squirrel following (Chien et al., 2021) and 50%/25%/25% for
Roman-Empire following (Platonov et al., 2023).
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Table 7: Dataset statistics.
Dataset Cora-ML CiteSeer PubMed Chameleon Squirrel Roman-Empire Ogbn-arxiv Ogbn-products

Nodes 2,810 2,110 19,717 2,277 5,201 22,662 169,343 2,449,029
Edges 15,962 7,336 88,648 62,792 396,846 65,864 1,166,243 123,718,280
Features 2,879 3,703 500 2,325 2,089 300 128 100
Classes 7 6 3 5 5 18 40 47
Homophily 0.78 0.74 0.80 0.23 0.22 0.05 0.66 0.81

C.3 HYPERPARAMETERS & TRAINING DETAILS

In this section, we report the hyperparameters of attacks and defense models.

General Settings. For methods that adopt Greedy Randomized Block Coordinate Descent for
optimization, we project raw features into p = 32 dimensions. On ogbn-products, the number is set
to 16 to avoid out-of-memory issues. The block size is set to be 250, 000 for graphs with less than
10, 000 nodes, 500, 000 for graphs whose number of nodes is between 10, 000 and 100, 000. For
large graphs, the block size is set to be 1, 000, 000 in ogbn-arxiv and 2, 000, 000 in ogbn-products.
The edges are greedily flipped over 125 epochs. For methods that rely on clustering, the number of k
is set to the ground truth number of classes. (We provide a discussion of the choice of k in F.3.)

For the victim model, GCN, we carefully follow the empirical results in the mentioned datasets and
tune GCN to have better performance on clean graphs. In all datasets, we set 0.5 the dropout rate
and use Adam optimizer Kingma & Ba (2015). We set the number of convolutional layers to be 2 on
small graphs and 3 on large OGB graphs. In Cora-ML, CiteSeer, and PubMed, we set learning rate
0.01, weight decay 5e− 4, and hidden size 16. In Chameleon, Squirrel, and Roman-Empire, we set
learning rate 0.05, weight decay 0.0, and hidden size 64. In Ogbn-arxiv and Ogbn-products, we set
learning rate 0.01, weight decay 0.0, and hidden size 256. For other defense models, the number of
heads of GAT is set to 8, and other hyperparameters are set the same as GCN.

Random and DICE: We use the implementation in GreatX for random attacks. These two attacks as
random methods include no hyperparameters by default and are generally set to add and delete edges
with equal probability. As suggested by Zügner & Günnemann (2019); Li et al. (2023), white-box
attacks show a strong tendency to add edges rather than delete. So we include a hyperparameter θ as
the threshold to control the proportion of add/delete in modifications, which is empirically shown
useful in improving the performance of random methods. The threshold is chosen from {0.5, 1.0},
corresponding to the default setting and insertions only. In the experiments, we find that insertions
outperform delete in most datasets.

SPAC and SPAC-A: We implement these two methods following the original paper Lin et al. (2022).
We optimize the attack objective for 100 iterations and set adaptive step size for as lr = η ∗ T/

√
t,

where η is the base learning rate, T is the number of epochs and t is the number of the current epoch.
For SPAC-A, we choose 128 lowest eigenvalues and 64 highest eigenvalues.

GFAttack: GFAttack Chang et al. (2020) originates as a targeted attack. We transfer it into an
untargeted attack following Lin et al. (2022). We select the top 128 lowest eigenvalues following the
original paper and optimize it similarly to SPAC.

SelfAttack: SelfAttack uses a two-layer GCN with a hidden size 16 as a surrogate model. We use
Adam Kingma & Ba (2015) as the optimizer with the learning rate being 0.01 and weight decay
being 5e− 4 in all datasets. The dropout rate is set to be 0.5. We train the surrogate model on clusters
defined by Kmeans similar to SheAttack (details about clustering are discussed later.). We train the
surrogate model on the full graph with 200 epochs and select the best model with the lowest training
loss. We use Greedy Randomized Block Coordinate Descent for optimization.

PEEGA: PEEGA Li et al. (2022) originally modifies both features and the graph structure with a
O(n2) time and space complexity in optimization. To ensure fairness, we use Greedy Randomized
Block Coordinate Descent for optimization and only allow structure perturbations. The vector norm
in Shift Loss is set to 2 following the original paper. The regularization term λ for Shift loss is tuned
between {0.0, 1.0, 5.0}, where λ = 0.0 corresponds to the PEEGA version, which only includes
homophily loss.
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SheAttack: For SheAttack, we tune λ in the same way in PEEGA. Euclidean distance is applied to
measure the distance of embeddings. The clustering is conducted using Kmeans given propagated
features on real-world datasets and given raw features on cSBM datasets. Other hyperparameters are
specified in the General Settings above.

D PROOF

D.1 PROOF OF THEOREM 4.2

To proof Theorem 4.2, we first introduce the following lemma:
Lemma D.1. Given random vectors x ∼ N(µx,Σx) and y ∼ N(µy,Σy), denote their covariance
as Σxy , the distance between x and y satisfies:

E
[
∥x− y∥2

]
= ∥µx − µy∥2 +Tr(Σx) + Tr(Σy)− 2Tr(Σxy).

Proof.

∥x− y∥2

= ∥(x− µx)− (y − µy) + µx − µy∥2

= ∥(x− µx)− (y − µy)∥2 + 2 ⟨(x− µx)− (y − µy) ,µx − µy⟩+ ∥µx − µy∥2

Take the expectations of both sides. Note that the expectation of the second term of the right side is 0.
Let x′ = x− µx and y′ = y − µy , we have

E
[
∥x− y∥2

]
= ∥µx − µy∥2 + E

[
∥x′ − y′∥2

]
= ∥µx − µy∥2 + E

[
x′⊤x

]
+ E

[
y′⊤y′]− 2E

[
x′⊤y′

]
= ∥µx − µy∥2 +Tr(Σx) + Tr(Σy)− 2Tr(Σxy)

If y is a constant vector, Lemma D.1 can be written as

E
[
∥x− y∥2

]
= ∥µx − y∥2 +Tr(Σx)

. Now, we can obtain Theorem 4.2 via direct calculation:

Proof. After propagation, the embedding hi in expectation is:

E[hi] =
pdµ1 + qdµ2

pd+ qd

=
pµ1 + qµ2

p+ q
.

After perturbation, the expectation of embedding h′
i becomes:

E[h′
i] =

(pd+∆1)µ1 + (qd+∆2)µ2

pd+ qd+∆1 +∆2
.

Let ai = ∥h′
i − µ′

1∥
2, bi = ∥h′

i − µ′
2∥

2
, c = Tr (Cov (h′

i)) =
d√

di+∆1+∆2
. By Lemma D.1, we

have:

E [ai] = ∥h′
i − µ′

1∥
2
+Cov(h′

i)

=

∥∥∥∥ (pd+∆1)µ1 + (qd+∆2)µ2

pd+ qd+∆1 +∆2
− pµ1 + qµ2

p+ q

∥∥∥∥2 + c

=

(
∆1q −∆2p

(p+ q)(pd+ qd+∆1 +∆2)

)2

∥µ1 − µ2∥2 + c.
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E [bi] = ∥h′
i − µ′

2∥
2
+Cov(h′

i)

=

(
p(pd+∆1)− q(qd+∆2)

(p+ q) (pd+ qd+∆1 +∆2)

)2

∥µ1 − µ2∥2 + c

D.2 EXTENSION TO MULTI-CLASS CLASSIFICATION

In the main body of the paper, we focus on perturbations in the 2-class classification task. In this
section, we offer a discussion about intra-class distance and the preferences of attackers in multi-class
classification.

Suppose the number of classes is c, and the attacked node i we focus on belongs to class 1 with
centroid µ1. We denote the inter-class probabilities as q for all inter-class pairs following Zhu et al.
(2020); Ma et al. (2022b). The centroids and corresponding perturbations are µ2,µ3, · · · ,µc and
∆2,∆3, · · · ,∆c. For intra-class probability and corresponding perturbations, we adopt p and ∆1 as
notations. The average node degree is d as in the 2-class case.

After propagation, the embedding hi in expectation is:

E[hi] =
pdµ1 +

∑c
j=2 qdµj

pd+ (c− 1)q

=
pµ1 + q

∑c
j=2 µj

p+ (c− 1)q
.

The propagated cluster centroid µ′
0 becomes:

µ′
1 =

pµ1 + q
∑c

j=2 µj

p+ (c− 1)q
.

For class t ̸= 1, its propagated centroid µ′
t is:

µ′
t =

pµt + q
∑c

j=2 µj

p+ (c− 1)q
.

After perturbation, the expectation of embedding h′ becomes:

E[h′
i] =

(pd+∆1)µ1 +
∑c

j=2(qd+∆j)µj

pd+ (c− 1)qd+
∑c

j=1 ∆j
.

Let cns = d√
di+

∑t
i=1 ∆i

, the intra-class distance after perturbations is:

E
[
∥h′

i − µ′
1∥

2
]
=

(
(pd+∆1)µ1 +

∑c
j=2(qd+∆j)µj

pd+ (c− 1)qd+
∑c

j=1 ∆j
−

pµ1 + q
∑c

j=2 µj

p+ (c− 1)q

)2

+ cns

=

p
(∑c

j=2 ∆j (µj − µ1)
)
+ q

(
(c− 1)

∑c
j=1 ∆jµj −

∑c
j=1 ∆j

∑c
j=2 µj

)
(p+ (c− 1) q)

(
pd+ (c− 1)qd+

∑c
j=1 ∆j

)
2

+ cns.

When c = 3, the above equality becomes:

E [∥h′
i − µ′

1∥] =
(
(p∆2 − q∆1)(µ1 − µ2) + (p∆3 − q∆1)(µ1 − µ2) + (q∆2 − q∆3)(µ2 − µ3)

(p+ 2q) (pd+ 2qd+∆1 +∆2 +∆3)

)2

+ cns.

From the above equation, we see that removing intra-class edges is still preferred by the attacker
to enlarge intra-class distances. Still, low-degree nodes are more fragile. The results for adding
edges are more complex as more distance terms between centroids are included. Defining inter-class
distance faces the same challenge in dealing with a growing number of cluster centroids. Following
previous works addressing heterophily and class-wise distances Ma et al. (2022b); Chen et al. (2022);
Platonov et al. (2022), we infer that attacks minimizing inter-class distances seek for perturbations
that better disturb the class-wise neighborhood distribution. For example, in a 2-class classification
task on heterophilic graphs, the neighborhood distribution of nodes reflects a high preference for
inter-class neighbors. As we discussed in the main body of the paper, attacks that shorten inter-class
distances on these graphs result in a homophily increase, which can be regarded as a perturbation to
nodes’ neighborhood distribution. A complete theoretical analysis of this case is left to future work.
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E MORE ABOUT CSBM DATASETS

We generate cSBM datasets following Deshpande et al. (2018); Chien et al. (2021). Denote a cSBM
graph as G ∼ cSBM(n, f, λ, µ), where n is the number of nodes, f is the dimension of features and
λ and µ are hyperparameters controlling the proportion of helpful information between the graph
structure and node features.

For a two-class cSBM model with equal class size, denote the node labels as yi ∈ {−1,+1}. Node
features are generated following Gaussian distribution xi =

√
µ
nyiu + Zi√

f
, where u ∼ N(0, I/f)

and Z is a random noise term. Given an average degree d, the graph structure of the cSBM graph is:

P [Aij = 1] =

{
d+λ

√
d

n if yiyj > 0
d−λ

√
d

n otherwise.

Let Φ = arctan
(

λ
µ

√
n
f

)
∗ 2

π . A larger |Φ| implies a larger λ over µ, and the information comes more

from the graph structure. A positive Φ suggests a homophilic graph generated, and a heterophilic
graph if Φ is negative. Note that in this setting, both homophilic and heterophilic graphs have the
same amount of useful information as long as the |Φ| are the same.

In this experiment, we consider a two-class cSBM model with equal class size, where n = 5000,
f = 2000, and d = 5 following Chien et al. (2021). We test the attack performance on graphs
generated by this model with Φ ∈ {−0.50,−0.25, 0.25, 0.50} on GCN. The statistics of these models
about edge homophily are summarized in the following table: Additional attack results with 0.10 the

Table 8: Statistics of cSBM datasets.
Φ -0.50 -0.25 0.25 0.50

Homophily 0.17 0.33 0.67 0.82

perturb ratio are presented in Table 9.

Table 9: Performance of GCN on perturbed cSBM graphs with perturb ratio 0.10. The datasets are
named cSBM(Φ ∗ 100). The best results are bold, and the second-best results are underlined.

cSBM+25 cSBM-25 cSBM+50 cSBM-50

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 81.25±0.32 57.42±1.00 93.39±0.18 74.11±0.30

Random 80.50±0.91 79.73±1.14 56.56±0.76 57.68±0.28 92.03±0.53 91.76±0.52 72.83±1.10 72.00±0.89
DICE 76.72±0.48 75.01±0.73 59.74±0.81 62.26±0.67 88.98±0.61 88.08±0.40 79.36±0.21 80.13±0.32
SPAC-A 80.90±0.23 81.07±0.34 57.41±1.13 57.52±0.29 93.26±0.50 93.50±0.22 75.50±0.17 75.39±0.28
GFAttack 81.10±0.39 80.30±1.03 58.00±0.78 57.89±0.95 92.45±0.49 92.21±0.45 73.78±0.41 74.00±0.75
SelfAttack 79.12±0.57 78.54±0.43 57.58±0.64 58.66±0.90 91.87±0.36 91.73±0.47 74.90±0.52 74.88±0.70
PEEGA 81.58±0.34 81.22±0.59 58.06±0.62 57.49±0.89 93.09±0.43 93.20±0.43 73.28±0.59 72.42±0.48
PEEGA-Comb 79.10±0.66 77.95±0.77 57.07±0.75 57.04±0.56 90.72±0.50 89.52±0.67 75.44±0.33 75.14±0.54

She 74.05±0.98 70.62±0.71 51.62±0.83 49.90±0.50 90.48±1.12 89.54±1.35 70.86±1.07 69.71±0.84
She-Comb 74.64±0.51 70.91±0.52 53.50±0.81 52.26±0.53 90.34±1.07 89.42±0.55 71.90±0.65 70.50±1.12
She-A 73.60±0.51 70.27±0.64 51.97±1.12 49.79±1.12 90.86±1.27 90.40±1.30 71.31±0.56 70.10±0.81
She-A-Comb 73.82±0.55 70.72±1.00 52.53±0.81 49.90±0.55 91.06±0.77 90.54±1.07 71.41±0.64 69.90±0.85

F ADDITIONAL EXPERIMENT RESULTS

F.1 ATTACK LARGE OGB DATASETS

We conduct experiments on large datasets ogbn-arxiv and ogbn-products Hu et al. (2020). Notably,
ogbn-products includes more than 2,000,000 nodes and more than 60,000,000 edges. The results are
provided in Table 10 and Table 11, verifying both the effectiveness and efficiency of SheAttack.
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Table 10: Performance of GCN on ogbn-arxiv with perturb ratio 0.10. The experiment is repeated
only once on the fixed split.

Attack Evasion Poisoning

Clean 69.60

Random 66.04 65.34
DICE 64.78 64.59
PEEGA 66.92 67.38
PEEGA-Comb 63.52 64.65
She-A 63.37 63.63
She-A-Comb 61.64 62.72

Table 11: Performance of GCN on ogbn-products with perturb ratio 0.10. Experiments are repeated
once.

Attack Evasion Poisoning

Clean 75.80

Random 68.67 70.29
PEEGA 70.28 72.77
PEEGA-Comb 63.80 67.76
She-A 63.84 67.40
She-A-Comb 62.93 67.28

F.2 PERFORMANCE OF SHEATTACK UNDER DIFFERENT SETTINGS

In Table 12, we provide the performance of SheAttack given different clusters. She-Soft uses node
embeddings generated by supervised GCN as input to generate clusters. Specifically, we use the
output of the victim two-layer GCN, denoted as Z ∈ Rn×c, as the input of Kmeans algorithms. Since
GCN output embeddings are highly distinguishable, we believe it yields better clustering results
than inputting the propagated projected features. She-White directly uses ground-truth labels as
clusters, utilizing the same amount of available information as DICE, where only victim models and
training/test splits are unknown. From Table 12, we see that She-White leads to surprisingly high
performance, even outperforming results in shuffled white-box attacks. If we use advanced clustering
methods or apply unsupervised learning methods to obtain better inputs for Kmeans, SheAttack is
possible to obtain further performance improvement.

Table 12: Performance of SheAttack under different settings
Dataset Cora-ML CiteSeer PubMed

Evasion Poisoning Evasion Poisoning Evasion Poisoning

She-Black 74.72±1.46 73.20±0.94 66.02±1.34 62.67±0.94 77.79±0.70 79.70±0.13
She-Soft 75.23±1.48 72.91±1.66 65.75±1.26 60.83±1.76 73.28±1.02 76.93±0.39
She-White 72.27±1.46 70.34±0.92 64.56±1.62 59.30±1.37 69.71±0.82 74.92±0.10

F.3 SENSITIVITY ANALYSIS OF k IN KMEANS

In Figure 4, we offer a sensitivity analysis for SheAttack w.r.t the number of clusters k in Kmeans.
In all four datasets, the performance of SheAttack is stable as long as k is not too small compared
with the number of classes. For example, the performance of SheAttack is stable after k exceeds 4 in
Cora-ML. In ogbn-arxiv, SheAttack even benefits when k grows larger than the ground-truth number
of classes. In the experiments, we did not detailedly tune the number of k in Kmeans for fairness.
But we can determine k by choosing a proper k with a larger Silhouette Score or using other adaptive
clustering methods for improvement as discussed in F.2.
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Figure 4: Attack performance with different k.

F.4 TRANSFER TO OTHER DEFENSE MODELS

We transfer the attack results to other defense models, including GAT Velickovic et al. (2018),
RobustGCN Zhu et al. (2019), MedianGCN Chen et al. (2021) and GNNGuard Zhang & Zitnik
(2020). All experiments are conducted on datasets with a 0.20 perturb ratio. We only report the
results on homophilic datasets as these methods do not provide guarantees in defending heterophilic
graphs. The authors in GNNGuard suggest using embeddings based on structural roles to handle
heterophilic settings, yet being impractical for its complexity and neglecting original node features.
In fact, we discover that these methods perform inferior to GCN in clean heterophilic datasets and
therefore perform even worse than GCN under attacks. We believe the attacks and defenses under
heterophily are still topics that are in progress.

The results are summarized in Table 13, Table 14, Table 15 and Table 16. Generally, SheAttack is
effective in lowering the performance of all defense models. As the perturbed graphs are transferred
from attacking GCN for white-box attacks, we see that black-box attacks are not far behind white-box
attacks. In Cora-ML and CiteSeer, SheAttack even outperforms white-box attacks (not shuffled)
when attacking GNNGuard.

Table 13: Performance of GAT on perturbed graphs with perturb ratio 0.20.
Cora-ML CiteSeer PubMed

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 85.88±0.46 73.59±1.20 85.67±0.27

Random 81.11±1.35 81.48±0.86 69.73±0.95 68.79±0.89 80.90±0.55 81.71±0.33
DICE 78.62±1.44 77.96±1.32 67.51±0.92 66.37±1.01 75.44±0.83 76.71±0.20
SPAC 82.68±0.72 81.97±0.39 72.49±1.10 72.00±1.45 * *
SPAC-A 81.67±1.07 82.94±0.44 71.20±1.30 71.49±0.79 * *
GFAttack 81.71±1.23 81.45±0.67 70.77±0.88 70.27±2.24 * *
SelfAttack 81.25±0.57 80.97±0.48 73.55±0.93 73.92±0.91 81.27±0.47 81.63±0.39
PEEGA 82.82±0.79 82.64±0.61 69.35±0.72 70.24±1.15 84.68±0.31 84.65±0.47
PEEGA-Comb 75.56±1.27 73.89±0.88 65.33±1.03 62.35±1.36 76.74±1.06 79.05±0.52

She 76.41±1.02 75.71±0.59 65.50±1.26 63.68±2.09 77.70±1.03 79.91±0.40
She-Comb 74.69±1.07 73.07±1.11 65.21±1.20 62.12±1.03 76.40±1.38 79.26±0.67
She-A 76.83±0.99 75.58±0.73 66.74±0.98 64.91±1.42 80.06±0.70 81.37±0.47
She-A-Comb 73.91±0.90 71.76±0.48 65.06±1.27 61.61±1.80 76.88±0.82 79.20±0.79

PRBCD 64.55±1.35 60.93±1.79 59.89±2.64 56.48±2.70 59.38±0.62 59.70±0.47
GRBCD 70.90±1.78 67.75±0.91 60.81±2.21 57.58±1.81 60.38±0.79 60.20±0.46
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Table 14: Performance of RobustGCN on perturbed graphs with perturb ratio 0.20.
Cora-ML CiteSeer PubMed

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 83.59 ± 6.01 74.75 ± 0.58 86.04±0.26

Random 79.76±5.60 79.63±5.79 71.03±0.63 70.00±1.83 82.66±0.20 79.82±5.44
DICE 77.54±5.91 76.20±6.18 68.68±1.10 67.84±0.72 78.07±0.40 71.08±5.73
SPAC 81.01±5.76 78.54±5.94 73.23±0.57 72.26±0.73 * *
SPAC-A 80.20±5.59 79.71±5.66 73.61±0.72 73.13±0.96 * *
GFAttack 80.27±6.00 78.90±7.20 71.50±1.34 70.89±1.74 * *
SelfAttack 78.96±5.68 77.72±6.42 74.21±0.62 74.63±0.60 81.73±0.69 78.80±4.93
PEEGA 80.95±5.95 79.67±5.38 71.50±0.82 70.28±1.75 85.02±0.32 84.74±0.30
PEEGA-Comb 73.88±6.36 70.37±6.20 65.05±1.99 62.70±0.93 78.32±0.67 72.53±5.73

She 73.51±4.81 71.62±4.12 65.30±1.57 63.58±1.58 78.27±0.73 75.34±5.02
She-Comb 73.19±4.78 70.34±4.46 64.62±1.89 62.95±1.42 77.79±0.77 72.70±5.47
She-A 74.23±5.00 71.74±4.62 67.56±1.04 65.65±1.64 80.24±0.19 78.33±4.40
She-A-Comb 72.68±5.15 69.88±4.78 64.59±2.32 61.29±2.03 77.86±0.36 72.51±5.00

PRBCD 59.87±4.00 57.56±3.67 60.28±2.62 56.47±2.54 62.59±0.71 62.24±0.75
GRBCD 65.55±4.06 62.78±5.11 59.48±2.81 58.41±2.60 62.09±0.78 62.24±0.99

Table 15: Performance of MedianGCN on perturbed graphs with perturb ratio 0.20.
Cora-ML CiteSeer PubMed

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 85.55 ± 0.39 74.44±1.87 84.97±0.25

Random 82.17±0.80 81.33±0.71 72.52±1.02 70.98±1.60 82.36±0.37 82.02±0.51
DICE 80.02±0.49 78.23±0.70 70.77±1.11 67.88±0.85 77.38±0.33 76.76±0.25
SPAC 82.00±0.69 81.10±0.59 72.57±1.73 70.59±1.58 * *
SPAC-A 79.86±0.64 80.20±0.43 71.64±1.20 70.78±1.31 * *
GFAttack 82.59±0.47 81.75±0.51 72.90±1.18 73.19±0.68 * *
SelfAttack 81.57±0.59 80.20±0.84 74.18±1.75 73.74±1.39 80.78±0.32 80.77±0.37
PEEGA 83.73±0.53 82.23±0.63 71.95±1.31 70.49±0.53 83.90±0.16 84.01±0.29
PEEGA-Comb 78.83±0.44 75.82±1.37 70.84±1.70 66.53±1.62 80.22±0.33 79.99±0.41

She 75.12±0.86 73.56±0.90 69.11±1.20 65.55±0.65 78.34±0.24 78.39±0.25
She-Comb 76.09±1.06 73.02±1.02 70.40±1.59 66.65±1.47 78.67±0.40 78.35±0.20
She-A 75.59±0.94 74.00±1.08 68.66±1.13 65.60±1.72 80.00±0.28 79.84±0.20
She-A-Comb 75.34±0.86 71.61±1.87 70.36±1.71 65.26±1.43 78.80±0.35 78.76±0.19

PRBCD 66.23±0.43 62.09±1.42 61.62±1.66 56.71±2.14 67.95±0.33 67.67±0.44
GRBCD 68.44±1.29 66.95±1.79 61.02±1.73 58.34±2.22 66.56±0.38 66.10±0.40

20



Under review as a conference paper at ICLR 2024

Table 16: Performance of GNNGuard on perturbed graphs with perturb ratio 0.20.
Cora-ML CiteSeer PubMed

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 79.19±1.06 71.75±1.65 86.71±0.39

Random 78.84±1.18 79.09±1.68 71.32±1.55 70.82±1.37 85.82±0.37 85.62±0.32
DICE 78.24±0.90 77.96±1.36 70.69±1.39 69.61±0.94 84.63±0.36 84.37±0.33
SPAC 78.50±0.99 78.33±1.79 70.57±1.51 70.33±0.89 * *
SPAC-A 78.67±1.16 79.01±1.47 71.11±1.74 70.66±1.54 * *
GFAttack 79.15±0.99 79.56±1.28 71.60±1.87 71.04±1.26 * *
SelfAttack 78.60±1.04 78.50±1.22 71.55±1.76 70.92±1.37 85.52±0.39 85.41±0.30
PEEGA 79.27±0.97 79.50±1.18 71.30±1.63 71.00±1.46 86.08±0.37 86.04±0.34
PEEGA-Comb 79.18±1.06 79.40±1.17 71.69±1.68 71.69±1.63 86.31±0.36 86.32±0.26

She 77.31±1.05 77.33±1.20 69.16±1.69 67.86±1.46 84.26±0.37 84.47±0.22
She-Comb 77.94±1.18 78.04±1.43 71.68±1.70 71.78±1.18 84.87±0.36 85.09±0.20
She-A 76.39±1.38 76.34±1.52 69.17±1.45 67.17±1.46 83.38±0.31 83.52±0.28
She-A-Comb 77.60±1.10 77.51±1.53 71.66±1.69 71.48±1.81 83.67±0.41 83.70±0.17

PRBCD 78.19±1.07 78.65±1.43 69.93±1.34 70.20±0.77 82.58±0.36 82.61±0.28
GRBCD 78.55±1.10 79.17±1.39 69.40±1.40 69.63±1.47 82.09±0.33 82.14±0.35

F.5 RESULTS UNDER DIFFERENT PERTURB RATES

We report the performance of attacks with perturb rates to be 0.10 and 0.15 in the small datasets. The
results are summarized in Table 17, Table 18, Table 19 and Table 20.

Table 17: Performance of GCN on perturbed graphs with perturb ratio 0.10.
Cora-ML CiteSeer PubMed

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 85.94±0.74 74.09±1.47 86.59±0.26

Random 83.85±1.12 83.81±1.08 72.69±1.32 71.16±1.32 84.51±0.24 84.54±0.29
DICE 82.78±1.31 82.48±1.07 71.61±1.32 70.17±1.12 81.66±0.42 81.92±0.19
SPAC 84.55±0.80 84.26±0.60 73.00±1.34 72.76±1.10 * *
SPAC-A 84.40±0.83 84.07±0.89 73.34±1.41 73.21±1.45 * *
GFAttack 83.76±0.97 84.25±0.76 73.27±1.49 72.63±1.46 * *
SelfAttack 83.40±0.85 82.72±0.62 73.87±1.41 73.83±2.11 83.69±0.40 83.82±0.09
PEEGA 84.92±0.76 84.84±0.65 73.05±1.63 72.89±1.55 86.00±0.30 85.89±0.24
PEEGA-Comb 80.18±0.87 79.21±1.24 69.04±1.45 66.90±1.60 81.23±0.44 81.99±0.20

She 79.23±1.19 78.06±1.52 69.79±1.25 66.88±1.36 81.52±0.49 82.42±0.23
She-Comb 79.14±1.17 77.46±0.96 69.06±1.61 66.45±1.80 80.57±0.46 81.83±0.39
She-A 80.12±1.17 78.78±1.00 70.44±1.26 68.83±1.66 82.89±0.28 83.21±0.12
She-A-Comb 78.99±1.22 76.99±0.97 69.21±1.65 66.46±0.99 81.11±0.28 81.92±0.26

F.6 RUNNING TIME

In the main body of the paper, we present the complexity analysis of SheAttack. We also offer experi-
ment results on large graphs ogbn-arxiv and ogbn-products, verifying the scalability of SheAttack.
In ogbn-products, SheAttack with the approximate version finishes in 586.74(s), with the version
including shift loss finishing in 750.84(s). In Table 21, we provide the running time of SheAttack on
cSBM datasets. We see that attacks are much faster if eigendecomposition is not required. Even on
graphs with 5, 000 nodes, spectral methods take around 100 seconds to finish, which is about 20x
times slower than other baselines. SheAttack conducts clustering only once and is, therefore, more
efficient.
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Table 18: Performance of GCN on perturbed graphs with perturb ratio 0.15.
Cora-ML CiteSeer PubMed

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 85.94±0.74 74.09±1.47 86.59±0.26

Random 83.03±1.12 83.01±1.10 71.94±1.27 70.59±1.15 83.50±0.30 83.62±0.30
DICE 81.18±1.26 80.88±0.54 70.55±1.33 68.70±1.24 79.54±0.32 80.02±0.08
SPAC 83.64±0.79 83.20±0.70 72.62±1.20 71.45±1.32 * *
SPAC-A 83.63±1.42 84.10±1.11 73.14±1.48 72.68±0.98 * *
GFAttack 83.36±1.20 83.46±0.82 72.83±1.67 71.95±1.12 * *
SelfAttack 82.52±0.98 81.37±0.50 73.60±1.57 73.25±1.89 82.74±0.46 83.05±0.10
PEEGA 84.09±0.98 83.91±1.14 72.27±1.46 71.23±0.96 85.72±0.30 85.61±0.33
PEEGA-Comb 78.33±1.14 76.73±1.46 67.73±1.37 64.47±1.21 79.33±0.87 80.92±0.16

She 76.98±1.54 75.24±1.48 68.05±1.25 65.41±0.70 79.45±0.62 80.98±0.25
She-Comb 76.73±1.53 74.72±1.60 67.68±1.48 63.73±0.30 78.76±0.56 80.62±0.15
She-A 77.94±1.67 76.17±1.16 68.66±0.99 66.72±0.48 81.41±0.37 81.77±0.41
She-A-Comb 76.64±1.50 73.74±1.45 67.35±1.51 63.93±1.80 79.11±0.38 80.22±0.31

Table 19: Performance of GCN on heterophilic graphs with perturb ratio 0.10.
Chameleon Squirrel Roman-Empire

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 67.59±2.48 53.22±1.80 49.85±0.54

Random 64.17±2.10 61.58±2.36 43.11±2.70 41.02±2.03 49.63±0.66 50.11±0.56
DICE 62.37±1.69 60.13±1.70 43.19±1.86 43.23±1.00 49.33±0.57 49.56±0.37
SPAC 62.46±0.98 61.27±2.16 42.75±1.46 41.08±1.63 * *
SPAC-A 64.78±0.63 63.90±1.88 45.28±1.91 45.57±1.23 * *
GFAttack 64.12±1.52 62.15±1.85 44.65±1.65 44.36±1.76 * *
SelfAttack 63.11±1.47 64.82±1.80 44.78±0.66 46.74±1.61 48.50±0.55 48.77±0.29
PEEGA 62.50±1.74 66.10±2.66 48.86±2.66 50.30±1.86 50.57±0.44 51.84±0.66
PEEGA-Comb 61.71±1.57 62.85±1.25 41.59±1.79 45.42±2.23 47.48±0.63 49.21±0.31

She 60.18±2.07 62.06±2.32 44.07±2.01 43.84±1.89 46.78±0.64 48.27±0.45
She-Comb 60.39±0.84 62.59±2.49 43.80±1.56 43.69±1.28 47.32±0.33 48.58±0.60
She-A 58.73±1.83 61.84±3.36 41.23±1.09 44.59±2.21 47.29±0.37 48.33±0.40
She-A-Comb 59.47±1.27 63.55±1.43 40.50±2.15 45.21±1.39 47.30±0.55 48.22±0.43

Table 20: Performance of GCN on heterophilic graphs with perturb ratio 0.15.
Chameleon Squirrel Roman-Empire

Attack Evasion Poisoning Evasion Poisoning Evasion Poisoning

Clean 67.59±2.48 53.22±1.80 49.85±0.54

Random 62.02±2.31 59.30±1.62 41.04±2.24 37.68±1.70 49.70±0.72 50.44±0.53
DICE 60.92±2.14 60.26±1.02 41.25±1.43 42.73±1.50 49.11±0.75 50.22±0.20
SPAC 59.96±0.95 58.68±1.63 40.86±1.75 39.10±1.99 * *
SPAC-A 62.72±1.03 63.86±1.70 40.50±1.62 43.90±0.76 * *
GFAttack 63.07±1.31 60.57±2.61 42.92±1.39 43.69±1.74 * *
SelfAttack 61.84±1.07 62.02±1.26 41.25±0.86 44.50±0.66 48.17±0.33 49.10±0.64
PEEGA 60.18±2.05 65.09±2.87 46.59±2.30 50.72±1.68 50.57±0.43 53.11±0.61
PEEGA-Comb 60.22±2.08 60.44±1.64 38.73±1.79 42.59±1.44 46.39±0.63 49.09±0.26

She 59.12±2.00 61.67±3.02 42.27±1.51 41.38±2.61 45.97±0.29 47.61±0.24
She-Comb 57.68±1.01 61.10±1.85 41.11±1.68 42.48±1.93 46.21±0.49 48.65±0.78
She-A 56.10±1.13 61.45±1.58 37.87±1.76 42.86±2.41 46.42±0.57 47.86±0.47
She-A-Comb 56.18±0.80 62.15±2.05 37.68±1.75 42.94±2.48 46.28±0.41 48.46±0.60
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Table 21: Time cost of attacks over 5 repeated experiments.
Attack Time (s)

Random 0.24±0.00
DICE 0.95±0.04
SelfAttack 2.91±0.18
PEEGA 1.99±0.11
PEEGA-Comb 3.12±0.11
SPAC-A 89.51±17.51
GFAttack 109.90±2.01

SheAttack 2.82±0.18
SheAttack-Comb 4.06±0.21
SheAttack-A 2.61±0.16
SheAttack-A-Comb 3.71±0.18

G UNNOTICABILITY

Unnoticability is important for an attack to be effective, but the definition is quite vague currently.
Here, we calculate unnoticability from four perspectives: change of degree, homophily, spectral
difference, and node focus.

The degree change is the first aspect to be studied in terms of unnoticeability in graph structural
attacks, and a homophily change is also observed in most attacks (Zügner & Günnemann, 2019; Zhu
et al., 2022). Denote the node degree of node i before and after the attack as di and d′i. We measure
degree change using the relative degree shift which is 1

n

∑
vi∈V

d′
i−di

di
. For homophily, we use edge

homophily as the metric to measure the homophily change before and after the attack. The spectral
difference has been a major part of spectral methods to work. For spectral change, we calculate the
spectral difference following (Lin et al., 2022). And (Li et al., 2023) show that white-box attacks
focus on specific parts of nodes which is highly related to the training/test splits.

We summarize the statistics on the Cora-ML dataset with 0.20 the perturb ratio. We choose random
attacks that only add edges as the baseline, as white-box attacks and SheAttack all show a tendency
to add edges rather than delete in practice. The node focus calculates the proportion of modifications
that happen among different node sets. The results are summarized in 22.

Table 22: Comparision about Unnoticability for different attacks. The homophily level after the
attack is presented. Node focus is presented as (Train-Train / Train-Test / Test-Test).

Attack Degree Homophily Spectral Focus

Random (Only-add) 0.42 0.683 2.56 0.01 / 0.17 / 0.63
SPAC -0.19 0.745 7.43 0.01 / 0.16 / 0.63
GRBCD (White) 0.63 0.654 2.50 0.00 / 0.09 / 0.85
SheAttack 0.61 0.661 2.19 0.01 / 0.16 / 0.63
SheAttack-Comb 0.59 0.657 2.33 0.01 / 0.17 / 0.64

We see that SheAttack and white-box prefer low-degree nodes, and this could result in an increase in
the average degree. The homophily level is generally lowered as Cora-ML is homophilic. Spectral
methods introduce larger spectral differences, while other methods do not. White-box attacks have a
strong tendency to focus on modification related to node splits, while RBAs do not. To conclude, the
unnoticability of SheAttack is in an acceptable range.

23
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