
Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

OPTIMIZED COUPLINGS FOR WATERMARKING LARGE
LANGUAGE MODELS

Carol Xuan Long∗
Harvard University

Dor Tsur∗
Ben Gurion University

Claudio Mayrink Verdun
Harvard University

Hsiang Hsu
Harvard University

Haim Permuter
Ben Gurion University

Flavio P. Calmon
Harvard University

ABSTRACT

Large language models (LLMs) are now able to produce text that is indistinguish-
able from human-generated content. This has fueled the development of water-
marks that imprint a “signal” in LLM-generated text with minimal perturbation
of an LLM’s output. This paper provides an analysis of text watermarking in a
one-shot setting. Through the lens of hypothesis testing with side information,
we formulate and analyze the fundamental trade-off between watermark detection
power and distortion in generated textual quality. We argue that a key compo-
nent in watermark design is generating a coupling between the side information
shared with the watermark detector and a random partition of the LLM vocabulary.
Our analysis identifies the optimal coupling and randomization strategy under the
worst-case LLM next-token distribution that satisfies a min-entropy constraint.
We provide a closed-form expression of the resulting detection rate under the pro-
posed scheme and quantify the cost in a max-min sense. Finally, we numerically
compare the proposed scheme with the theoretical optimum.

1 INTRODUCTION

A large language model (LLM) is a generative model that, given a string of input tokens, outputs
a probability distribution QX for the next token X in the sequence. The emergence of LLMs that
generate text that is largely indistinguishable from humans has led to the creation of trustworthy
text generation algorithms Huang et al. (2024) that create safe Bai et al. (2022), interpretable Geva
et al. (2021), and authentic Lin et al. (2022) content. This work focuses on watermarking: the pro-
cess of embedding a “signal” at the token level in LLM-generated text. The goal of a watermark is
to enable automated detection of AI-generated content, providing proof of its authenticity (or lack
thereof) and potentially of its origin. The past two years have witnessed the creation of increas-
ingly sophisticated LLM watermarking schemes Kirchenbauer et al. (2023); Christ et al. (2024);
Kuditipudi et al. (2023); Zhao et al. (2024a); Aaronson (2023); He et al. (2024); Bahri et al. (2024);
Dathathri et al. (2024); Yang et al. (2023); Ren et al. (2024); Hu et al. (2024); Zhao et al. (2024c);
Chao et al. (2024); Qu et al. (2024); Xie et al. (2024); Liu & Bu (2024); Fernandez et al. (2023).

A hallmark of existing LLM watermarks is their reliance on either distorting or coupling the next-
token distribution QX with a random variable S drawn from a known distribution PS . Here, S
represents shared randomness known both by the watermark generator and detector. For instance,
Kirchenbauer et al. (2023) – which ignited the recent interest in LLM watermarking in the machine
learning community – distorts QX by randomly choosing a set of tokens (as determined by S) to
be on a “green list,” i.e., a subset of tokens that are favored during generation, and increasing the
mass of those tokens accordingly. The detector then counts the number of tokens in a sequence that
appears on the green list and declares the text watermarked (i.e., AI-generated) if this count exceeds
a threshold. However, such a distortion of the LLM distribution may impair the textual quality.
Alternative approaches include Aaronson (2023); Kuditipudi et al. (2023); He et al. (2024); Chao
et al. (2024), which instead couple QX with the distribution PS . Such couplings enable “distortion-
free” watermarks that (averaged over PS) do not change the expected next-token distribution, yet
are still detectable.
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The exact nature of the shared randomness S between the model and the detector varies across
watermark implementations. S can be, for example, generated from the hash of previous tokens
in a sequence Kirchenbauer et al. (2023) (where a hash function converts the token history into a
fixed-size value that deterministically produces pseudo-random bits) or sophisticated tournament-
like sampling strategies Dathathri et al. (2024). For our theoretical analysis, we abstract away the
exact generation process of the shared randomness S.

At a high level, existing LLM watermarks perform two steps when generating a sequence of tokens
{Xi}ni=1 given shared randomness {Si}ni=1:

1. Watermark Generation: For the i-th generated token and given Si and the predicted next
token distribution QX , draw the next token by sampling from Xi ∼ Q̃X|Si

.

2. Detection: Given a sequence {(Xi, Si)}ni=1, compute the statistic Tn = 1
n

∑n
i=1 f(Xi, Si)

for some function f : X × S → [0, 1], and declare that the sequence {Xi}ni=1 is water-
marked if Tn ≥ τ .

Importantly, a crucial assumption of current LLM watermarking schemes is that the function f
does not assume knowledge of the token distribution QXn . This allows watermarks that are directly
detectable from the sequence {(Xi, Si)}ni=1, i.e., directly from generated text, without accessing
the underlying LLM. If the distribution of the generated tokens QXn was known, then a standard
likelihood ratio test (LRT) would suffice for watermark detection. What makes LLM watermark-
ing distinct from existing information-theoretic watermarking schemes (e.g., Gel’Fand & Pinsker
(1980); Willems (2000); Chen (2000); Moulin & O’Sullivan (2003); Martinian et al. (2005); Villán
et al. (2006)) are the assumptions that (i) the source distribution is unknown to the watermark detec-
tor and (ii) watermarking is performed on a per-token (vs. sequence) level.

1.1 MAIN CONTRIBUTIONS

Motivated by the success of token-level schemes for LLM watermarking, we provide an in-depth
analysis of a single-token watermarking process, i.e., when n = 1. Specifically, we study how to
generate a coupling Q̃X,S and the corresponding detection function f that maximizes the probability
of detection of the watermark, while controlling the quality of the text. The latter is controlled
through the distortion relative to QX – a quantity we call perception, following recent trends in
the information theory literature on the source coding problem Blau & Michaeli (2019); Theis &
Wagner (2021); Chen et al. (2022). We refer to this setting as one-shot watermarking. We jointly
optimize Q̃X,S and f given a perception constraint, with the case Q̄X = QX corresponding to the
perfect perception setting. We focus on one-shot watermarking since, as mentioned above, existing
schemes are constrained to watermark on a token-by-token basis. Moreover, small gains in single-
token watermark detection compound to exponential gains in detection accuracy in threshold tests
applied across multiple tokens.

We begin with an information-theoretic formulation for one-shot watermarking. We quantify the
fundamental trade-off between watermark detection vs. perception when the underlying next-token
distribution QX is known with the side information PS uniformly distributed. This analysis yields a
fundamental upper bound on one-shot watermark performance; see Theorems 1 and 2. Interestingly,
when the watermark does not change the next-token probability (i.e., perfect perception), optimizing
a one-shot watermark is equivalent to maximizing the TV-information TV (QX,S∥QXPS) across
the coupling QX|S – a non-convex optimization problem (Polyanskiy & Wu, 2024, Section 7). This
formulation embeds TV-information with a new operational interpretation.

We optimize one-shot watermarks when QX is unknown to the detector but satisfies a min-entropy
constraint, i.e., ∥QX∥∞≤ λ (Eq. (6)), which corresponds to H∞(QX) ≥ − log(λ). Operationally,
lower values of λ correspond to higher entropy token distributions with greater uncertainty, while
higher values of λ indicate more concentrated distributions where the next token is more predictable.
Moreover, we optimize for detection tests of the form 1[f(X) = S], where f : X → S forms a
partition of X .

Motivated by the fact that deterministic token partitions lead to low detection probabilities, we in-
troduce randomness to f . In Theorem 3, we analyze the probability of detection of such detec-
tion tests under the worst-case token distribution. We pair our analysis with a characterization of
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Figure 1: Watermarking problem as a hypothesis test with side information.

the optimal design of the partition randomization. In Theorem 4, we consider a simplified token
partition strategy and show that it yields a near-optimal detection probability. Together, we pro-
vide a complete characterization of the minimax detection rate for a given vocabulary size, side
information, and min-entropy constraint under the optimal and near-optimal partition randomiza-
tion strategies. Lastly, we provide numerical results of the Correlated Channel (CC) benchmarked
against Gurobi-based optimum couplingGurobi Optimization, LLC (2024) and the red/green water-
markKirchenbauer et al. (2023).

Related Work. Watermarking has been extensively studied in information theory Chen (2000);
Moulin & O’Sullivan (2003); Martinian et al. (2005), particularly through the Gelfand-Pinsker (GP)
channel Gel’Fand & Pinsker (1980); Villán et al. (2006); Willems (2000). These approaches typ-
ically focus on watermarking sequences via joint typicality and assume perfect knowledge of the
underlying source distribution. The work of Kirchenbauer et al. (2023) led to various developments
in watermarking schemes Aaronson (2023); He et al. (2024); Bahri et al. (2024); Dathathri et al.
(2024); Yang et al. (2023); Ren et al. (2024); Hu et al. (2024); Zhao et al. (2024c); Chao et al.
(2024); Qu et al. (2024); Xie et al. (2024); Liu & Bu (2024), with several approaches focusing on
distortion-free methods, e.g., Kuditipudi et al. (2023); Hu et al. (2024); Zhao et al. (2024c); Christ
et al. (2024). In particular, Chao et al. (2024) proposes a watermark using error-correcting codes
leading to correlated channels similar to the ones we find via optimizing couplings. In Huang et al.
(2023), the optimal Type-II error for bounded Type-I error is analyzed by comparing watermarking
schemes to the uniformly most powerful watermark with knowledge of QX . The authors of He
et al. (2024) characterize the universal Type II error while controlling the worst-case Type-I error
by optimizing the watermarking scheme and detector. While these works operate on a token-level
basis, they focus on the effect of a given strategy along a sequence. In contrast, we focus on a pre-
liminary step and aim to answer the simple yet important question – What is the optimal coupling
when watermarking a single token?

2 OPTIMAL ONE-SHOT WATERMARKING

In this section, we formulate the watermarking problem, derive the resulting optimization problem,
and discuss the optimal solution structure. We focus on the fundamental trade-off between detection
probability and perceptual quality. As mentioned above, while the optimal approach to watermark-
ing considers sequence-to-sequence schemes, due to the autoregressive nature of token generation
in LLMs most popular schemes focus on token level strategies Kirchenbauer et al. (2023); Aaronson
(2023); He et al. (2024); Dathathri et al. (2024). As a first step towards token-level watermarking of
sequences, we provide an extensive analysis of the one-shot setting. We discuss the extension to a
token-level scheme in the sequential case in Section 4.

2.1 PROBLEM SETTING

We consider a hypothesis test using the private side information setting and textual quality of the
model as the ability of an external observer to detect the watermark without access to the side
information. Formally, let QX be the LLM distribution over some finite vocabulary of |X |= m
tokens. We consider Alice (the watermarker), whose goal is to convey a single token to Bob (the
detector), which, in turn, tries to detect whether the token is watermarked or not. Alice and Bob
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share some random side information1 S ∼ PS with |S|= k. Furthermore, we consider Charlie
(average observer), which tries to detect the existence of the watermark but does not have access to
the side information. The setting is depicted in Figure 1.

On Alice’s end, the watermark design boils down to the construction of the conditional distribution
QX|S . We consider a Bayesian setting, in which Alice transmits a token according to a uniform
prior:

A =

{
X ∼ QX if C = 0,

X̃ ∼ QX|S if C = 1.
, C ∼ Ber

(
1

2

)
(1)

where C ⊥⊥ (X, X̃, S). To detect the watermark, Bob performs the following hypothesis test

H0 : A ∼ QX

H1 : A ∼ QX|S .

We assume that Charlie is aware of the watermarking mechanism but is not aware of the specific
sample of S. Therefore, Charlie performs an hypothesis test with a corresponding alternative hy-
pothesis, i.e.

H0 : A ∼ QX

H1 : A ∼ Q̄X ,

where Q̄X ≜ ES [QX|S ] is the watermark distribution averaged w.r.t. the side information S.

2.2 A DETECTION-PERCEPTION PERSPECTIVE

Given the hypothesis test formulation, we recast the problem of watermarking as a trade-off between
two measures: Bob’s detection and Charlie’s perception probabilities. Motivated by recent advances
in lossy source-coding Blau & Michaeli (2019); Theis & Wagner (2021); Chen et al. (2022), we
adopt the notion of perceptual qualities of the data, which is quantified through a discrepancy mea-
sure between the two distributions, e.g. f -divergences, rather than a metric calculated directly on
the random variables.

We define two fundamental metrics that capture the trade-off between detection capability for Bob
and imperceptibility for Charlie. For Bob’s detection capability, we weigh true negative (TN) detec-
tions with prior π0 and true positive (TP) detections with prior π1 = 1 − π0. The tests are defined
as follows:

Definition 1 (Watermark Tests and Error Probabilities) A watermarking scheme comprises of a
detection test gd : X × S → {0, 1}, such that for (A,S) ∈ X × S , we respectively define the
detection probability with prior π = (π0, π1) as

Rd ≜ Eπ [Pr(gd(S,A) = C)] .

Perception probability Rp is similarly defined with a test gc : X → {0, 1} and a uniform prior
π0 = 1/2.

Optimally, we aim to optimize detection Rd while lowering Rp, which indicate Charlie’s low per-
ception of the watermark. The metrics detection and perception are formalized next.

2.3 CHARACTERIZING OPTIMAL TRADE-OFF

Following the Neyman-Pearson Lemma Lehmann et al. (1986), the likelihood ratio gives the optimal
test statistic, and (Rd,Rp) have a simple form in terms of Eγ (or hockey-stick) divergence. The next
proposition is a direct result of the well-known connection between Eγ and hypothesis testing; see,
e.g., Polyanskiy (2010); Polyanskiy et al. (2010); Liu et al. (2016).

1Side information often corresponds to a secret shared key; see, e.g., Kuditipudi et al. (2023); Zhao et al.
(2024b).
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Proposition 1 Fix (PS , QX , Q̃X|S) and error prior π. Let γ = π1

π0
. Using the LRT, the optimal

detection and perception probabilities are given by

Rd = π1 + π0Eγ

(
Q̃X|SPS , QXPS

)
, (2)

Rp =
1

2
+

1

2
TV
(
Q̃X , QX

)
. (3)

Remark 1 The Eγ divergence characterizes the error of hypothesis tests with specified priors on
TP and TN rates. It can be defined as2 in Liu et al. (2016)

Eγ(P,Q) ≜ max
A

[P (A)− γQ(A)],

where A are rejection regions, P (A) and Q(A) are 1−TN rate and TP rate, respectively. When.
π0 = π1 and γ = 1, detection probability boils down to the total variation (TV) distance, in which
case, we have Rd = 1

2+
1
2TV(Q̃X|S , QX |PS), where TV(Q̃X|SPS , QXPS) = TV(Q̃X|S , QX |PS).

Our hypothesis testing framework employs priors π0 and π1 to explicitly weight the importance
of different error types in the detection process. Setting π0 = π1 = 1

2 gives equal importance
to both errors, whereas asymmetric values prioritize either minimizing false positives (incorrectly
flagging human content as AI-generated) or false negatives (failing to detect AI-generated content).
This Bayesian framework provides a principled approach to designing watermark schemes with
detection rates optimized for specific operational requirements, where the relative costs of different
error types may vary significantly across applications.

Due to Jensen’s inequality, for any fixed (PS , Q̃X|S), we have Rp ≤ Rd, i.e., Bob’s access to the
shared side information allows for a potentially higher detection probability. Generally, for any
perception constraint αp ∈ [1/2, 1], the optimal detection probability is given by the solution to the
following optimization:

sup
Q̃X|S

Eγ

(
Q̃X|S , QX |PS

)
, s.t. TV

(
Q̃X , QX

)
≤ αp. (4)

We are interested in characterizing the (Rd, Rp) trade-off region, which amounts to solving (4) as a
function of αp.

Note that (4) is a non-convex optimization problem. However, in what follows, we characterize the
several corner points of the optimal curve (i.e., Rp = 0.5), which, in turn, gives insight into the
structure of the (Rd, Rp) region within the box [ 12 , 1]

2.

We provide a complete characterization of the fundamental limits of detection probability under
zero perception (where Q̃X = QX ). The following result establishes tight bounds on the optimal
detection probability in this regime

Theorem 1 (Zero perception bounds) Fix QX and let PS be uniform over S, |S|≤ |X | and let
π1 = 1

2 . Then, for Rp = 1
2 , we have

1

2
≤ sup

Q̃X|S

Rd ≤ max

(
1

2
, 1− γ

2k

)
. (5)

The upper bound emerges from jointly optimizing over both the coupling Q̃X|S and QX . This
optimization reduces to a convex problem over the probability simplex, which we recast as counting
the optimally assigning elements of X . The lower bound is achieved when QX is a singleton.

Beyond characterizing the zero-distortion endpoints, we derive an upper bound on the detection
probability that holds across all perception levels. The bound is given as follows:

Theorem 2 (Uniform Detection Upper Bound) Let Qmin ≜ minx∈X QX(x). For any Rp ≥ 0 we
have Rd ≤ 1− γQmin

2 .

2Some works include a residual term (1− γ)+ Asoodeh et al. (2020), which we omit for convenience as it
does not affect the optimization problem.
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This bound emerges from analyzing a simple strategy of replacing each token with the least likely
symbol in the LLM’s vocabulary. The structure of the optimization (4) results in a nonconvex region,
which generally lacks a closed form. This non-convexity is demonstrated in our experimental results,
see Section 5, where exact solvers are used to compute the trade-off region. In light of this challenge,
we will next derive a simple and tractable watermarking scheme.

3 A ONE-SHOT WATERMARKING SCHEME

While the optimal test that maximizes Bob’s detection accuracy is the LRT, it is infeasible in prac-
tical scenarios where Bob is not assumed to have access to QX . To make use of the shared side
information, Bob and Alice look for a mechanism that couples S with the token distribution. This
can be done by applying a map f : X → S. Alice uses (f(X), S) to construct a watermarked
distribution, and Bob uses (f(A), S) to detect its presence. We note that a map f creates a par-
tition of X into S bins. When k = 2, this can be interpreted as a partition of X into a rejection
region and its complement. We note that considering deterministic mappings is insufficient, as for
S ∼ Unif([1 : k]), the detection probability is 1

k , independent of the choice of (f,QX). Therefore,
we introduce randomness into our partitioning approach by making the function f stochastic rather
than deterministic. Specifically, we define a randomized mapping that varies the way tokens are
assigned to each partition based on additional random variables that both Alice and Bob can access.

3.1 OPTIMAL RANDOMIZED PARTITION – CORRELATED CHANNEL

We randomize f by introducing a set of m S-valued random variables denoted Bm. We assume
that Bm is publicly available to all parties and is therefore not considered a part of the private side
information S. Our goal is therefore to couple the side information with the randomized mapping
f(X,Bm). This boils down to finding a coupling of QX and S through the design of partition
randomness PBm and conditional distribution QX|S . We look for such (PBm .QX|S) that are optimal
under the worst choice of token distribution QX within a given class. Our problem is therefore
formally given by the following max-min expression

R⋆
d(λ) ≜ max

PBm
min

QX∈∆m

∥QX∥∞≤λ

E [Rd(QX , Bm)] , (6)

where ∥QX∥∞= maxx∈X Q(x). As discussed in Section 1.1, we consider the constraint {QX ∈
∆m, ∥QX∥∞≤ λ} which enables a more comprehensive analysis by allowing us to adjust the pa-
rameter λ. This flexibility provides insights across various scenarios: smaller λ values yield higher
entropy token distributions with greater uncertainty, while larger λ values produce more determin-
istic distributions with reduced uncertainty about the next token.

According to (6), given a fixed pair (PBm , QX), we maximize Rd(QX , Bm) by designing the cou-
pling of (f(X,Bm), S). We consider the mapping of the form3 f(x, bm) = bx under which, the
partition’s probabilities are characterized by the distribution of the random variable Y ≜ f(X,Bm).
To this end, we first solve the following optimization problem:

sup
PS,Y

Pr(S = Y ), S ∼ Unif (S) , Y ∼ PY . (7)

This is a maximum coupling problem whose closed-form solution is given below. It is a direct
consequence of the inf-representation of TV distance Polyanskiy & Wu (2022).

Proposition 2 Let S ∼ Unif[1 : k] and PY = {p1, . . . , pk} ∈ ∆k, t = TV(PS , Y ) and let Π be the
set of all couplings of (PS , PY ). Then, argmaxπ∈Π Pr(S = Y ) is given by

π(Y = i, S = j) =


min( 1k , pi), i = j,
1
t (

1
k − pi)(pj − 1

k ), (i ∈ A) ∩ (j ∈ Ac),

0, otherwise,

where A = {i : pi ≥ 1
k}, and Ac = [k] \A.

3We consider a vocabulary X = [1 : m], which can be thought of as the enumeration of the tokens.
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Algorithm 1 Correlated Channel Watermark (CC)

Require: LLM distribution QX , Side information S, shared randomness Bm.
1: Alice:
2: Generate Q̃X|S,Bm according to (8)
3: Flip a coin C ∼ Ber( 12 ) and sample A according to (1).
4: Bob:
5: if S = f(A,Bm) – Declare Watermarked
6: else – Declare Not watermarked

Y

0

1

p̃0

p̃1

S

0

1

1
2

1
2

1 − β(p̃0)

β(p̃0)

1
Y

0

1

p̃0

p̃0

S

0

1

1
2

1
2

1

β(p̃1)

1 − β(p̃1)

Figure 2: Optimal coupling between side information S and random partition Y = f(X,Bm) for
p̃1 ≤ 0.5 (left), p̃0 ≤ 0.5 (right), with β(p) = 2p−1

2p .

The resulting coupling can be thought of as a transition kernel that maps PY to PS under maximum
acceptance probability. When k = 2, the optimal coupling boils down to a binary asymmetric
channel, known in information theory as the Z-channel Cover & Thomas (2006). That is, when
S = 0, the mapping always outputs Y = 0, but when S = 1, the mapping may output either
Y = 1 or Y = 0 with certain probabilities. This asymmetric structure is particularly effective
for watermark detection because it creates a distinctive pattern that appears only in watermarked
content. We therefore term this method as the correlated channel (CC) watermark. We note that CC
was previously considered, for example, in Chao et al. (2024).

The CC scheme consists of the following steps: Both Alice and Bob observe (s, bm). Alice samples
C ∼ Ber( 12 ). If C = 0, she samples a ∼ QX and sends it. Otherwise, she samples and sends
a ∼ Q̃X|S=s, which is given by the CC:

Q̃X|s,bm(x) = QX(x)
PS|Y (s|f(x, bm))

PS(s)
. (8)

Bob performs the detection test by declaring that a is watermarked if s = f(a, bm). The complete
list of steps is summarized in Algorithm 1. Note that by coupling (PY , PS), we result with a cou-
pling of (QX , PS). Consequently, we have QX = ES [QX|S ] = Q̄X , which implies that the CC
watermark has zero perception.

3.2 THEORETICAL ANALYSIS OF THE CC SCHEME

We provide a complete analysis of the CC scheme under k = 2. Given the optimal coupling, we give
a closed-form expression for Rd in terms of the TV surrogate of mutual information in the resulting
channel.

Proposition 3 The CC watermark detection is given by

Rd =
1

2

(
1 + TV

(
PS , PS|Y |PY

))
= 1− 1

2k
− 1

2
TV (PY , PS) . (9)

Proposition 3 provides a closed-form characterization of Bob’s detection probability as a function.
Specifically, for k = 2, we have Rd = 1

2 (1 + p̃), where p̃ ≜ min (p̃0, p̃1). This term is maximized
when Y ∼ Ber( 12 ), with maximum value of 3

4 . A consequence of Proposition 3 is that we are
interested in designing a partition that is as close as possible to PS as possible. As PS is uniform
over {1, . . . , k}, our aim is to obtain a uniform distribution, i.e., a balanced partition of the token
vocabulary X , given the token distribution QX and the partition randomness PBm .

Remark 2 (Equivalence to the likelihood ratio test) When we consider the indicator test
1{f(x, bm) = s}, the decision region obtained by the CC watermark is equivalent to the one
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attained by the LRT with threshold value of τ = 1. This follows from the observation that
Pr[S|f(S,Bm)] ≥ 1

2 , if and only if S = f(X,Bm).

Next, we discuss the design of randomness. Specifically, we analyze the dependence of the CC
watermark detection probability on the distribution of Bm and propose an optimal design of PBm .

3.3 OPTIMIZING THE PARTITION

As seen in Equation (9), the distribution of the resulting partition governs the detection power of
the CC watermark. The partition distribution is determined by the token distribution QX and the
distribution of Bm. As QX cannot be controlled by the watermark designer, we aim to characterize
the class of distributions PBm that maximizes Rd under the worst-case adversarial distribution QX .
Due to the symmetry of the CC, we can restrict the optimization over permutation classes of PBm .
First, we show that the optimal distribution PBm is permutation invariant.

Lemma 1 Let F (PBm) ≜ min QX∈∆m

∥QX∥∞≤λ

EPBm [Rd(QX , Bm)]. Let P ⋆
Bm be a distribution that

maximizes F (PBm). Consider a permutation ϕ : Sm → Sm and define P̃ϕ(B
m) = P ⋆

Bm(ϕ ◦Bm).
Then, F (P ∗

Bm) = F (P̃ϕ).

Next, let Pm = {B1, ...,BK} be the partition of Sm into K sets of sequences that are identical up to
a permutation. We refer to each Bi as a permutation class. We proceed to characterize the optimal
mean detection probability R⋆

d and the corresponding distribution P ⋆
Bm .

Theorem 3 (Optimal max-min Detection) Let |S|= k and X = m, and assume that m is divisible
by k. Given min-entropy constraint λ ∈ [0, 1], and let t =

⌊
1
λ

⌋
. The optimal minimax detection

probability from Equation 6 is given by:

R∗
d(λ) = 1− 1

2k
− 1

4
E[g(Q∗

λ, B
m)], (10)

where

E[g(Q∗
λ, B

m)] = k

t∑
c=0

(
m/k
c

)(
m−m/k

t−c

)(
m
t

) ((
(m/k)− c

m− t

) ∣∣∣∣cλ+ (1− λt)− 1

k

∣∣∣∣
+

(
1− (m/k)− c

m− t

) ∣∣∣∣cλ− 1

k

∣∣∣∣) .

Furthermore, the optimal detection probability is achieved for P ∗
Bm corresponding to uniform sam-

pling over the permutation class of the sequence with an equal number of each element. For |S|= 2,
PBm = Unif(B⋆), where B⋆ = {bm ∈ {0, 1}m|bm has equal number of 1’s and 0’s}.

Under additional assumptions, we can further simplify the optimal detection.

Corollary 1 Under the setting of Theorem 3, assume that λ = 1
k . Then, we have

R∗
d(λ) = 1− 1

2k
− 1

2

(
(k−1)m/k

k

)(
m
k

) . (11)

Furthermore, if k = 2 and λ ∈ [ 13 , 1] we have

R⋆
d(λ) =


3

4
− mλ− 1

4(m− 1)
, for

1

2
≤ λ ≤ 1

3

4
− m− 2

8(m− 1)
, for

1

3
≤ λ <

1

2
.

(12)

Here, we have characterized detection for the worst-case distributions Q⋆
λ, which lie at the extreme

point of the feasible set — probabilities with bounded inf norm ∥QX∥∞≤ λ). For example, for
λ ∈ [0.5, 1], the above minimax detection probability corresponds to token distributions with only
two nonzero entries, i.e., QX takes the form [λ, 1− λ, 0, ..., 0]; for λ ∈ [ 13 ,

1
2 ], the worst-case token

8
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Figure 3: Optimal detection probability of CC in one-shot on the adversarial token distribution (Eq.
6) is plotted against the inf-norm constraint λ (or equivalently, an entropy constraint) on QX

3. When
λ = 1 (entropy H(QX) = 0) , QX is deterministic, and detection is random. As entropy of QX

grows (moves to smaller λ values), single-token optimal detection probability reaches a maximum
of around 0.75 for binary side information. If the side information one transmits contain a larger
set of values, CC achieves a higher detection probability correspondingly. The actual detection rate
(solid lines) and approximate solutions (dotted lines) overlap for large enough vocabulary size4, and
their exact forms are provided in Theorem 3 and 4.

distribution have 3 non-zero elements and has the form [λ, λ, 1− 2λ, 0, ..., 0]. Furthermore, we note
that due to Equation (9), when k = 2, Rd is upper bounded by 3

4 . Thus, the second term in (12)
serves as a penalty when considering the max-min setting. Notably, for λ ∈ [0.5, 1] and when m is
large, this penalty equals λ

4 , which implies that the cost of considering worst-case token distributions
is lower bounded by 1

8 .

In addition to characterizing the minimax detection rate, Theorem 3 shows that the optimal sam-
pling strategy for token partition Bm is to sample uniformly from a collection of sets with an equal
number of each element in k. Next, we show that we can adopt a much simpler sampling strategy,
sampling i.i.d. Bernoulli variables with probability 1

k and arrive at a near-optimal detection proba-
bility. In Figure 3, we plot the probability of detection of both sampling strategies and show that the
Bernoulli sampling strategy results in negligible approximation error. To motivate i.i.d. Bernoulli
sampling, we start with an alternative view of the optimal sampling strategy in Theorem 3. Sam-
pling a bm uniformly over B∗ — containing sequences with equal numbers of each element in k —
can be equivalently defined as the following process: given m elements with predefined proportions
[ 1k , ...,

1
k ], sample m times with replacement. In the following theorem, we obtain an approximation

of R⋆
d for any λ by sampling without replacement. We also show that, by applying de Finetti’s theo-

rem on finite exchangeable sequencesDiaconis & Freedman (1980), the approximation error decays
with O( 1

m ).

Theorem 4 (Approximation of Max-min Detection Rate) Given |S|= k, |X |= m, and the inf-
norm constraint λ ∈ [0, 1]. Let t = ⌊ 1

λ⌋, and Y ∼ Bin(t, 1
k ) An approximation of the optimal

minimax detection probability is given by:

R̃⋆
d(λ) = 1− 1

2k
− 1

4

[
t∑

c=0

Pr[Y = c]

(∣∣∣∣(c− t)λ+ (1− 1

k
)

∣∣∣∣+ (k − 1)

∣∣∣∣cλ− 1

k

∣∣∣∣)
]

(13)

The approximation error decays as O( 1
m ). Specifically:∣∣∣R̃⋆
d(λ)−R⋆

d(λ)
∣∣∣ ≤ 2k⌈ 1

λ⌉
m

(14)

3For discrete probability QX , inf-norm and entropy are connected via H(QX) ≥ − log∥QX∥∞, and we
have λ = ∥QX∥∞.

4We take m = 100k. Hence, existing LLMs with much larger vocabulary size would produce negligible
approximation error.

9
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We plot the results of Theorem 3 and 4 in Figure 3. For all λ and k values, the approximated maxmin
detection coincides with the closed-form R⋆

d(λ). We choose m = 100 ∗ k. The overlap between the
actual and approximated R⋆

d(λ) in the plot testifies our result that the approximation error decays
with m. In practice, since LLMs have a much large vocabulary, where m ≈ 100, 000Grattafiori
et al. (2024), the approximation error will be negligible.

4 SEQUENTIAL WATERMARKING

While this paper focused on a single-shot analysis of token distribution watermarking, general text
generation involves sequential prediction of long token sequences. A common approach involves
applying a token-level watermarking of the next token distribution and designing token-level test
statistics. This approach was shown to benefit from favorable performance Kirchenbauer et al.
(2023); Aaronson (2023), albeit being theoretically suboptimalHe et al. (2024). We note that our
one-shot method readily extends to a sequential token-level scheme as we can treat each step as a
one-shot problem, and considering an average test 1

n

∑
1[fi(Ai, B

m
i ) = Si] which we them com-

pare with some threshold τ ∈ [0, 1]. We leave the theoretical analysis of the token-level extension
of our scheme to future work, while showing empirical results in Section 5. In the simplified case
when Xn are i.i.d., we provide the following bounds on the detection probability (a related result
was given in Chao et al. (2024) bounding mismatch proportion using entropy):

Proposition 4 Let Qn = Q⊗n
X be the an i.i.d. token distribution, let Sn ∼ P⊗n

S and apply the
one-shot CC on each step i ∈ [1 : n], then

1− 2−(
n
2 +1) (g(p̃))

n ≤ Rd ≤ 1

2

1 +

√√√√1−

(
(g(p̃))

2

2

)n
 ,

where p̃ = min(p̃0, p̃1) is similarly defined as in the on-shot case, and g(p) ≜ p +√
1−p
2

(
1 +

√
1− 2p

)
, p ∈ [0, 0.5].

The proof utilizes bounds on TV in terms of the Hellinger distance, which benefits from a tensoriza-
tion.

5 EXPERIMENTAL RESULTS

We numerically evaluate the CC watermark on synthetic distributions with various inf-norm con-
straints. We compareCC with the solution of an exact GUROBI-based numerical solution Gurobi
Optimization, LLC (2024) of Eq. (4) and the red/green watermark Kirchenbauer et al. (2023). 5

5.1 ONE-SHOT PERFORMANCE ANALYSIS

Detection-Perception Tradeoff: We present the (Rd, Rp) trade-off region for the one-shot water-
marking setting. We consider the worst-case distribution within {Qx, ∥QX∥∞≤ λ}. When λ = 1

m ,
the resulting distribution is simply the uniform distribution over X and when λ ≥ 1

2 it is given by
a distribution with two nonzero entries valued (λ, 1 − λ). This distribution is representative of a
next-token distribution in the low entropy regime (highly predictable next token). As seen in Figure
4a, for uniform QX , when we apply the CC scheme with PBm sampled over balanced partitions,
we obtain a gain of ≈ 0.07 over sampling Bm i.i.d.∼ Ber( 12 ), meeting the upper bound from (4). In
contrast, the red-green detection coincides with ours in the limit of δ → ∞, intersecting with the
suboptimal i.i.d. Bernoulli sampling method at δ ≈ 7.6. When δ = 1

2 we observe a decrease in
the gain of sampling from the balanced partition sets. Effect of k: Next, we analyze the effect of
the side information alphabet size on the CC scheme performance. We present a plot for m = 10
which serves as an extension of the performance we present in Figure 4a and a plot for m = 60,
which allows us to further understand the effect. As seen in Figure 5, as k increases, the detection

5Full implementation details and code are given in https://github.com/Carol-Long/CC_
Watermark.
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(a) QX = Unif[1 : m]
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(b) QX = [0.5, 0.5, 0, . . . ]

Figure 4: One-shot watermark detection results on QX = Unif(X ). For αp = 0, CC achieves
a detection probability of 0.75 and 0.7 with balanced and Bernoulli partitions, respectively. CC
Balanced achieves the optimal detection (Eq. 4 with γ = 1 and |S|= 2). Standard deviations plotted
as two-sided bars.

rate of the CC watermark increases. However, the gain from increasing k decreases as k grows (or
alternatively, as the ratio m/k decreases). Furthermore, we note that the performance depends on
the divisibility of m by k; when m/k is not an integer, we experience a degradation of performance.
This follows from the inability to construct equally sized partitions of X , which, in turn, decreases
the probability to result with a balanced partition.
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(b) m = 60

Figure 5: Detection probability vs. k for two values of m and a uniform token distribution QX .

5.2 SEQUENTIAL WATERMARKING

We now present the performance of the CC watermark on a sequence level scheme. We present
preliminary results on synthetically generated data, with the purpose of demonstrating the applica-
bility of our method to a sequence-level test. To that end, we consider the generation of n tokens
An, which are generated from a sequence of tokens Xn i.i.d.∼ QX using from n i.i.d. samples of
side information sn and randomness (Bm(i))ni=1. We apply the token-level watermarking scheme
to each element Xi to generate Ai and apply the following sequence-level threshold test

r(An, Sn) =

{
1

n

n∑
i=1

1 (f(Ai, B
m(i)) = Si) ≥ τ

}
for some threshold τ ∈ [0, 1]. To understand the performance of the proposed sequence-level gener-
alization, we analyze the ROC of the results scheme. In out experiment, we consider k = 2, m = 20
and a sequence of n = 50 tokens. Figure 6 compares the ROC of the CC scheme (sampling from
balanced sets) with the red-green scheme for a range of δ values. We note that, while the CC method
is perceptionless, it results in a better ROC than the red-green method. Specifically, for λ = 0.5,
the CC method demonstrated better detection than the red-green method for the considered range of
δ values. However, when λ = 0.8, i.e., when the distribution is spikier, the red-green method with
higher δ values result in a better ROC than the CC method, but at the cost of nonzero perception.
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(a) λ = 0.8
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(b) λ = 0.5

Figure 6: ROC of the sequence-level watermarking scheme. We compare the red-green method
Kirchenbauer et al. (2023) with the CC scheme (Section 3). We consider a range of δ. An increase
of δ increases detection, at the expense of higher perception (lower textual quality), while the CC
method has fixed zero perception.

Finally, we analyze the effect of k on performance in the sequential setting by observing the ROC
for a range of k values. Specifically, we consider m = 20 and apply the sequential generalization
of the CC watermark for k ∈ {2, 3, 4, 5}. We consider two distributions within the bounded infinity
norm set with λ = 0.8. As can be seen in Figure 7, as k increases, the ROC improves.
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(a) QX has two nonzero values of
Q1 = 0.8 and Q2 = 0.2.
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(b) QX has a spike of λ = 0.8 and is
uniform on the rest of its entries.

Figure 7: ROC of the sequence-level watermarking scheme under CC method for a range of k values.

6 CONCLUSION

This work presents a rigorous analysis of text watermarking in a one-shot setting through the lens of
hypothesis testing with side information. We analyze the fundamental trade-off between watermark
detection power and distortion in generated textual quality. A key insight of our approach is that
effective watermark design hinges on generating a coupling between the side information shared
with the watermark detector and a random partition of the LLM vocabulary. We develop a perfect
perception watermarking scheme – the Correlated Channel Watermark (CC). Our analysis identifies
the optimal coupling and randomization strategy under the worst-case LLM next-token distribution
that satisfies a min-entropy constraint. Under the proposed scheme, we derive a closed-form expres-
sion of the resulting detection rate, quantifying the cost in a max-min sense. The CC scheme offers
a framework that can potentially accommodate additional objectives of LLM watermarking, such
as robustness against adversarial manipulations and embedding capacity. Additionally, we envision
future work implementing the scheme for sequential watermarking and extending it to the positive-
perception regime, where minor adjustments to token probabilities are permitted in exchange for
superior detection.
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A PROOFS OF THEORETICAL RESULTS

In this appendix, we include comprehensive overview of related works, as well as detailed proofs of
our theoretical results, which are presented in the main body of the paper.

A.1 RELATED WORKS

Given the extensive volume of work in LLM watermarking, we focus our discussion on works that
inform and contrast with our main contribution: theoretical frameworks for analyzing the limits of
LLM watermarking.

Classical Information-Theoretic Approaches. Post-process watermarking, where watermarks are
embedded after content generation, has been extensively studied through information-theoretic
lenses Chen (2000); Moulin & O’Sullivan (2003); Martinian et al. (2005), particularly through the
Gelfand-Pinsker (GP) channel Gel’Fand & Pinsker (1980); Villán et al. (2006); Willems (2000),
which treats the LLM token X ∼ QX as the channel state for constructing the watermarked token.
The GP scheme constructs auxiliary random variables U ∼ P (U |X) and encodes the watermarked
token as A = f(U,X). These approaches differ from our approach in two key aspects: (1) they typi-
cally require long sequences for joint typicality to hold, which leads to schemes that are intractable in
the online setting with a large token vocabulary, while we focus on optimizing the one-shot minimax
setting motivated by auto-regressive generation; and (2) they generally assume perfect knowledge
of the underlying distributions, whereas our scheme is designed to work with the assumption that
the underlying distribution is unknown, only the sampled token and side information are available.

Modern LLM Watermarking. Kirchenbauer et al. Kirchenbauer et al. (2023) introduced the first
watermarking scheme for LLMs, which divides the vocabulary into green and red lists and slightly
enhances the probability of green tokens in the next token prediction (NTP) distribution. This sem-
inal work sparked numerous developments Aaronson (2023); He et al. (2024); Bahri et al. (2024);
Dathathri et al. (2024); Yang et al. (2023); Ren et al. (2024); Hu et al. (2024); Zhao et al. (2024c);
Chao et al. (2024); Qu et al. (2024); Xie et al. (2024); Liu & Bu (2024), with several approaches
focusing on distortion-free methods that maintain the original NTP distribution unchanged, e.g., Ku-
ditipudi et al. (2023); Hu et al. (2024); Zhao et al. (2024c); Christ et al. (2024). Unlike these methods
which primarily focus on implementation strategies, our work provides a theoretical framework that
characterizes optimal detection-perception trade-offs. Most related to our approach, Chao et al.
Chao et al. (2024) propose a watermark using optimal correlated channels, though our work differs
by providing a complete characterization through joint optimization of the randomization distribu-
tion in the one-shot setting.

Theoretical Analysis of LLM Watermarking. Recent work has advanced our theoretical understand-
ing of LLM watermarking limitations. Huang et al. Huang et al. (2023) designed an optimal water-
marking scheme for a specific detector, but their approach requires knowledge of the original NTP
distributions of the watermarked LLM, making it model-dependent. Li et al. Li et al. (2024) pro-
posed detection rules using pivotal statistics, though their Type II error control relies on asymptotic
techniques from large deviation theory and focuses on large-sample statistics, whereas our analysis
addresses the fundamental one-shot case including explicit characterization of corner point cases and
the development of an optimal correlated channel scheme. Most recently, He et al. He et al. (2024)
characterizes the universal Type II error while controlling the worst-case Type-I error by optimizing
the watermarking scheme and detector. In contrast to these approaches, we analyze optimal mean
detection by formulating a minimax framework while balancing Type I and Type II errors through
the use of an Eγ-information objective. In the minimax formulation, we provide the optimal mean
detection in closed form and characterize the optimal distribution of randomness under adversarial
token distributions.

The development of the field is tracked through comprehensive benchmarks Piet et al. (2023); Tu
et al. (2023); Pan et al. (2024); Qiu et al. (2024) and surveys Zhao et al. (2024b); Liu et al. (2024).

A.2 PROOF FOR PROPOSITION 1

Fixed (PS , QX , Q̃X|S) and priors (π0, π1).
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Eve’s hypothesis testing problem can be formulated as distinguishing between H0 : A ∼ QX and
H1 : A ∼ Q̃X . By the Neyman-Pearson Lemma, the optimal test statistic is given by the likelihood
ratio L(a) = QX(a)/Q̃X(a). The optimal decision rule takes the form δ(a) = 1{L(a) > η} for
some threshold η. The probability of correct detection for Eve can be expressed as:

Pr(ĤE = C) =
1

2
Pr(δ(A) = 1|H1) +

1

2
Pr(δ(A) = 0|H0)

For the optimal threshold η = 1, this probability becomes:

Pr(ĤE = C) =
1

2
+

1

2

∑
a∈X

|Q̃X(a)−QX(a)|

=
1

2
+

1

2
TV(Q̃X , QX)

Now, we turn to Bob’s detection probability. Bob’s hypothesis testing problem differs from Eve’s
due to his access to the side information S. His testing problem can be formulated as distinguishing
between H0 : (A,S) ∼ QX|S × PS and H1 : (A,S) ∼ Q̃X|S × PS .

By the Neyman-Pearson Lemma, the optimal test statistic in this case is L(a, s) =

QX|S(a|s)/Q̃X|S(a|s). Given priors (π0, π1) and let γ = π1

π0
, the conditional probability of correct

detection given S = s is:

Pr(ĤB = C|S = s) = π0 Pr(δ(A) = 0|H0) + π1 Pr(δ(A) = 1|H1) (15)

= π0QX|S [L(a, s) ≥ γ] + π1Q̃X|S [L(a, s) ≤ γ] (16)

= π1 + π0QX|S [L(a, s) ≥ γ]− π1Q̃X|S [L(a, s) ≥ γ] (17)

= π1 + π0

[
QX|S [L(a, s) ≥ γ]− π1

π0
Q̃X|S [L(a, s) ≥ γ

]
(18)

= π1 + π0Eγ(QX|S ||Q̃X|S). (19)

The last equality comes from the alternative formula for Eγ where Eγ(P ||Q) = maxA[P (A) −
γQ(A)], and supremum is attained with A = {a|L(a, s) ≥ γ}.

A.3 PROOF OF THEOREM 1

By the assumption of a uniform prior, we are looking for bounds on the quantity 1
2 (1 +

Eγ(Q̃X|S∥QX |PS)), which boils down to bounding Eγ(Q̃X|S∥QX |PS) = ES

[
Eγ(Q̃X|S∥QX)

]
.

First, note that under a uniform prior, this quantity is lower bounded by the performance of a random
guess, i.e., 1

2 ≤ Rd. In what follows, we develop an upper for Eγ(Q̃X|S∥QX |PS). For simplicity,
denote |X |= d and |S|= m. Let QX|S=si = pi such that p1, ..., pm ∈ ∆d, where ∆d denotes
the d-dimensional simplex. Assume that S ∼ Unif[m]. Following the zero perception assumption,
we have Q̃X = QX , i.e., 1

m

∑m
i=1 pi = QX . Consequently, our TV-optimization, when jointly

optimized also over the marginal distribution QX is of the form:

max
p1,...,pm∈∆d

1

m

m∑
i=1

∥∥∥∥∥pi − γ

m

m∑
i=1

pi

∥∥∥∥∥
+

, (20)

where ∥x∥+≜
∑

i(xi)+ for d ≥ m. We are maximizing a convex function over a polytope, so the
optimal solution lies on the extreme points. Thus pi = ej for some j ≤ d, where ej is the indicator
vector with j-th entry equal to one. The problem boils down to determining how many times each
vector ej shows up.

Denote with q the probability vector corresponding to the distribution QX . We note that q can be
rewritten as

q ≜
1

m

m∑
i=1

pi =
1

m

d∑
j=1

njej , (21)
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where
∑

j nj = m and nj ∈ N. Denote the j-th entry of q by qj . We have ∥ej − q∥+= (1− qj)+ =
1− qj . Therefore:

1

m

m∑
i=1

∥pi − γq∥+
a
=

1

m

d∑
j=1

nj ∥ej − γq∥+

=
1

m

d∑
j=1

nj(1− γqj)+

b
=

d∑
j=1

qj(1− γqj)+

where (a) follows from from rewriting the sum in terms of ej and (b) follows from the relation
qj =

nj

m , as can be seen from (21) and by the definition of the indicator. Out optimization problem
had therefore boiled down to maximizing on the quantity

d∑
j=1

qj(1− γqj)+ such that qj = k/m, k ∈ Z,
d∑

j=1

qj = 1. (22)

To solve (22), we will examine various settings of the value of γ.

γ ≤ 1 First, note that when γ = 0 the objective sums up to 1 by the constraints. Otherwise, note
that whenever γ ≤ 1, we have (1− γqj)+ = 1− γqj . Thus, we have

d∑
j=1

qj(1− γqj)+ = 1− γ

n∑
j=1

q2j .

Thus, maximization of the objective, boils down to the minimization of the sum of squares. We note
that as q is a probability vectors, the sum of square minimizes under the uniform distribution, with
the minimum being 1

m . Thus, we have the upper bound

1

2
(1 + Eγ(Q̃X|S∥QX |PS)) ≤

1

2

(
1 + 1− γ

m

)
= 1− γ

2m
.

γ > 1 In this case, we are not guaranteed with the positivity of (1 − γqj). We will look for a
strategy to choose the values of (qj)j such that the considered sum is maximized, while not passing
the threshold that nullifies the terms (1 − γqj). For each j, denote each summand as f(qj), whose
value is

f(qj) =

{
qj − γq2j , qj ≤ 1

γ

0, else.

Consequently, as qj is constrained to the set ( k
m )mk=0, whenever γ ≥ m, no positive value of qj will

result in a positive value of f(qj). Thus, the resulting sum is 0, which implies that Rd = 1
2 . Thus

we will focus on γ ∈ (1,m). In this case, there is at least one possible value for each qj that results
in a nonnegative value of f(qj). First, we note that the mapping x 7→ x− γx2 is a concave function
of x for γ > 0, whose maximum is obtained in x⋆ = 1

2γ . Therefore, we would like to set qj = 1
2γ as

this will maximize a single summand. However, in most cases 1
2γ /∈ ( k

m )mk=1. To that end, we will
set the closes possible value to 1

2γ within the allowed set. Second, we we would like to set as many

qj’s to the value 1
2γ while following the constraint

∑d
j=1 qj = 1, we will choose the lower value.

To summarize, for each interval k
m ≤ 1

2γ ≤ k+1
m , we will set qj = k

m . The maximal amount of such
qj we can set while following the sum constraint is ⌊m

k ⌋. Thus, we have the following

Eγ(Q̃X|S∥QX |PS) =
⌊m
k

⌋( k

m
− γ

(
k

m

)2
)

≤ 1− γk

m
.
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The corresponding bound on Rd is 1 − γk
2m . The bound is achievable whenever m is divisible by

k within the resulting interval. Note that the interval k
m ≤ 1

2γ ≤ k+1
m corresponds to the interval

m
2(k+1) ≤ γ ≤ m

2k . However, we already know the resulting bounds for γ ≥ m and γ ≤ 1. Thus, the
relevant values of k that correspond to this case are k ∈ [1 : m

2 ]. Finally, when 1
2m < 1

2γ < 1
m we

cannot take the lower value (k = 0), and will therefore take higher value k = 1. However, note that
1

2m < 1
2γ corresponds to γ > m. Thus, this sub-case ( 1

2m < 1
2γ ≤ 1

m ) boils down to γ < m
2 with

corresponding upper bound of 1− γ
m , which will merge with the interval γ ≤ 1. This concludes the

proof □

A.4 PROOF OF THEOREM 2

Let Qi ≜ QX|S=si The proof follows from analyzing the following steps:

sup
Q̃X|S

∑
s∈S

PS(s)Eγ(Q̃X|S=s, QX) = sup
Q̃X|S

1

2|S|

|S|∑
i=1

∥Qi − γQx∥1

=
1

2|S|
sup

f :S→X

|S|∑
i=1

∥Qf(i) − γQx∥1

≤ 1

2
sup
i∈X

∥Qi − γQx∥1

= sup
i∈X

|1− γQx(i)|

= 1− γQmin

Therefore,

Rd ≤ 1

2
(1 + 1− γQmin) = 1− γQmin

2

For the second equality, note that argmax of a convex function lies in the corner of the probability
simplex. □

A.5 PROOF OF CORRELATED CHANNEL (CC) WITH PERFECT PERCEPTION

We prove that CC is a perfect perception scheme, i.e. ES

[
Q̃X|S

]
(x) = QX(x). Recall that

S = (Y,Bm).We have the following

ES

[
Q̃X|S

]
(x) =

∑
y,bm

µBm(bm)PY (y)QX(x)
PY |Ỹ (y|f(x, bm))

PY (y)

= QX(x)
∑
y,bm

µBm(bm)PY |Ỹ (y|f(x, b
m)).

Denote by B1(x) ≜ {bm : f(x, bm) = 1} and denote B0(x) by the same token. We have

ES

[
Q̃X|S

]
(x)

= QX(x)


∑

bm∈B1(x)

µBm(bm)
∑
y=0,1

(bm)PY |Ỹ (y|1)︸ ︷︷ ︸
=1

+
∑

bm∈B0(x)

µBm

∑
y=0,1

µBm(bm)PY |Ỹ (y|0)︸ ︷︷ ︸
=1


= QX(x).

This concludes the proof. □
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A.6 PROOF OF PROPOSITION 2

By the dual representation of the total variation
TV(P,Q) = min

PXY

{P[X ̸= Y ] : PX = P, PY = Q}, (23)

Given S ∼ Unif[k] and PỸ = {p1, ..., pk} ∈ ∆k. We have TV(PS , PỸ ) = 1−
∑k

i=1 min( 1k , pi).

We propose a coupling and shows that it achieves TV(PS , PỸ ).

To simplify notation, let the distribution of S and Ỹ be P and Q. Let t = TV(P,Q). Assume that
0 < t < 1. Define three probability distributions R = P∧Q

1−t , P ′ = P−P∧Q
t and Q′ = Q−P∧Q

t .
Construct PXY as follows:

1. Generate B ∼ Bernoulli(t).

2. If B = 0, draw Z ∼ R and set S = Ỹ = Z.
3. If B = 1, draw S ∼ P ′ and Ỹ ∼ Q′ independently.

To show that this is a valid coupling, we verify the marginal distribution is kept the same. We have:
PS(a) = P(B = 0)R(a) + P(B = 1)P ′(a)

= (1− t)

(
P ∧Q

1− t

)
(a) + t

(
P − P ∧Q

t

)
(a)

= P (a)

Similarly,
PỸ (a) = P(B = 0)R(a) + P(B = 1)Q′(a)

= (1− t)

(
P ∧Q

1− t

)
(a) + t

(
Q− P ∧Q

t

)
(a)

= Q(a)

Therefore PSỸ is a valid coupling.

Lastly, we show that for the specific coupling, P(Ỹ ̸= S) = TV(PS , PỸ )

P(Ỹ ̸= S) = 1−P(Ỹ = S)

= 1− (1− t)

= t

= TV(PS , PỸ )

Thus, we have constructed a coupling PSỸ that minimizes P(Ỹ ̸= S), which means that it maxi-
mizes P(Ỹ = S). □

A.7 PROOF OF REMARK 2

The hypothesis test is the following: H0 : X ∼ QX and H1 : X ∼ Q̃X|S,Bm , where Q̃X|S,Bm

is the CC-watermark distribution shown in equation (8), and side information S ∼ Ber(0.5). We
show H0 is rejected by the CC detection test S = f(X,Bm) if and only if it is also rejected by the
likelihood ratio test (LRT).

If H0 is rejected by CC detection test, then S = f(X,Bm). Then, consider the likelihood ratio:
QX(X)

Q̃X|Bm,S(X)
=

Q(X)

QX(X) 1
PS(S)PS|Ỹ (S|f(X,Bm)

(24)

=
2

PS|Ỹ (S|f(X,Bm)
(25)

< 1, (26)
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The density of Q̃X|Bm,S(X) follows from the CC-watermark, side information PS(S) = 0.5. The
last inequality come from the Z-S channel construction: PrS|Ỹ (S|f(S,Bm) ≥ 1

2 , if and only if
S = f(X,Bm). Since the likelihood ratio is less than 1, H0 is rejected by the LRT.

If H0 is rejected by the LRT with threshold 1, then we have

QX(X)

Q̃X|Bm,S(X)
< 1.

Expanding the likelihood ratio as above, this implies: PS|Ỹ (S|f(X,Bm) < 1
2 . By construction of

the Z-S channel, S = f(X,Bm). Hence, H0 is rejected by CC detection test.

A.8 PROOF OF PROPOSITION 3

We start by proving the following identity:

TV
(
QX , Q̃X|(S,Bm)|PS,Bm

)
= TV

(
PS , PS|Ỹ |PỸ

)
Proof: Recall that in the correlated channel watermark we have side information S and partition bits
Bm. By definition, we have

TV(QX , Q̃X|S,Bm |PS,Bm) =
∑
bm

∑
s=0,1

µ(bm)PS(s)TV(QX , Q̃X|bm,s). (27)

Next, we simplify the TV expression within the sum. For any (bm, s) we have

TV(QX , Q̃X|(bm,s)) =
∑
x

∣∣∣∣∣QX(x)−QX(x)
PS|Ỹ (s|f(x, bm))

PS(s)

∣∣∣∣∣
= 2

∑
x

QX(x)

∣∣∣∣12 − pS|Ỹ (s|ỹ)
∣∣∣∣ ,

where recall that Ỹ = f(X,Bm), pS|Ỹ (s|ỹ) is the corresponding coupling channel parameter, and
S ∼ Ber( 12 ). We define the pre-image of f for a fixed bm as f−1(·, bm) : {0, 1} → 2X , with
f−1(0), f−1(1) ⊆ X . Plugging the simplified TV expression back into (27), we have

TV(QX , Q̃X|(bm,s))

=
∑
bm

µ(bm)
∑
s=0,1

∑
x

QX(x)

∣∣∣∣12 − pS|Ỹ (s|ỹ)
∣∣∣∣

=
∑
bm

µ(bm)
∑
s=0,1

 ∑
x∈f−1(0,bm)

QX(x)

∣∣∣∣12 − pS|Ỹ (s|0)
∣∣∣∣+ ∑

x∈f−1(1,bm)

QX(x)

∣∣∣∣12 − pS|Ỹ (s|1)
∣∣∣∣


=
∑
bm

µ(bm)

(
PỸ (0)

∑
s=0,1

∣∣∣∣12 − pS|Ỹ (y|0)
∣∣∣∣+ PỸ (1)

∑
s=0,1

∣∣∣∣12 − pS|Ỹ (s|1)
∣∣∣∣
)

= TV
(
PS , PS|Ỹ |PỸ

)
,

where the randomness of Ỹ is determined by the pair (QX , µ). This concludes the proof. □

With this, we proceed to showing CC’s detection rate. By Theorem 2, CC’s detection rate is equal
to that of likelihood ratio test. By Proposition 1 and under equal priors on TPR and TNR, we have

Rd =
1

2
(1 + TV(QX , Q̃X|S,Bm |PS,Bm)) (28)

=
1

2

(
1 + TV(PS , PS|Ỹ |PỸ )

)
, (29)

where the last equality is due to the identity above.
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Next, we obtain a closed form for TV(PS , PS|Ỹ |PỸ ). By definition, we have

TV
(
PS , PS|Ỹ |PỸ

)
= p̃0TV

(
PS , PS|Ỹ=0

)
+ p̃1TV

(
PS , PS|Ỹ=1

)
.

Following Proposition 2, the nature of the TV terms depends on wether p̃1 ≤ 1
2 or p̃0 ≤ 1

2 . For
p̃0 ≤ 1

2 , the optimal coupling is given by a Z-channel, whose parameter is 2p̃1−1
2p̃1

. The TV terms are
therefore given by

TV
(
PS , PS|Ỹ=0

)
=

1

2

∣∣∣∣12 − 1

∣∣∣∣+ 1

2

∣∣∣∣12
∣∣∣∣ = 1

2

TV
(
PS , PS|Ỹ=1

)
=

1

2

(∣∣∣∣12 − 2p̃1 − 1

2p̃1

∣∣∣∣+ ∣∣∣∣12 − 1

2p̃1

∣∣∣∣)
=

1

2

(∣∣∣∣1− p̃1
2p̃1

∣∣∣∣+ ∣∣∣∣ p̃1 − 1

2p̃1

∣∣∣∣)
=

p̃0
2p̃1

.

Thus, we have

TV
(
PS , PS|Ỹ |PỸ

)
= p̃0.

By the symmetry of the optimal coupling, for p̃1 ≤ 1
2 we have

TV
(
PS , PS|Ỹ |PỸ

)
= p̃1.

Hence, CC’s detection rate is given by Rd = 1
2 (1 + min(p̃0, p̃1)) . □

A.9 PROOF OF THEOREM 3

We begin by proving Lemma 1.

A.9.1 PROOF OF LEMMA 1

Let S = [k] and X = [m]. For a given QX = q = (q1, . . . , qm) ∈ ∆m and an m-length sequence
b = (b1, . . . , bm) ∈ Sm, we define the function f : X × Sm → S as

f(i,b) = bi. (30)

A sequence b induces a probability distribution P̂ (q,b) over S denoted as (with a slight abuse of
notation)

P̂ (s,q,b) =

m∑
i=1

qi1 [bi = s] ∀s ∈ [k]. (31)

For a fixed b and q and assuming that Alice uses the optimal coupling, Bob’s probability of detection
is given by the quantity

Rd(q,b) ≜ 1− 1

2
TV
(
QS∥P̂ (q,b)

)
− 1

2k

k∑
s=1

P̂ (s,q,b) (32)

= 1− 1

2k
− 1

4
g(q,b), (33)

where

g(q,b) ≜
k∑

s=1

∣∣∣∣P̂ (s,q,b)− 1

k

∣∣∣∣ (34)
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where QS is the uniform distribution. Our goal is to find a distribution over P ∗
Bm that maximizes

the worst-case value of Rd given a set of constraints on q. Specifically, we analyze:

R∗
d(λ) ≜ max

PBm
min
q∈∆m

∥q∥∞≤λ

E [Rd(q, B
m)] (35)

= 1− 1

2k
− 1

4
min
PBm

max
q∈∆m

∥q∥∞≤λ

∑
b∈Sm

PBm(b)g(q,b). (36)

The function
H(PBm) ≜ max

q∈∆m

∥q∥∞≤λ

E [g(q, Bm)] (37)

is convex in the distribution PBm , since it is the maximum of linear functions. Let P ∗
Bm be a

distribution that minimized H and consider the permutation π : Sm → Sm, define P̃π(b) =
P ∗
Bm(π ◦ b).

Since EP∗
Bm

[g(q, Bm)] = EP̃π
[g(π ◦ q, Bm)] for all q, H(P̃π) = H(PBm) from the sym-

metry of the maximum. Hence, from the equality in (36) F (P̃π) = F (PBm) for F (PBm) ≜
min q∈∆m

∥q∥∞≤λ

EPBm [Rd(QX , Bm)]. □

Next, we proceed with the proof of Theorem 3.

Let C = m! be the number of permutations of an m-length sequence, we have

F

(
1

C

∑
π

P̃π

)
≤ F (P ∗

Bm). (38)

Consequently, it is sufficient to restrict the minimization in PBm to distributions that assign equal
probability mass to sequences that are identical up to a permutation.

Denote by Pm the partition of Sm into sets of sequences that are equal up to a permutation, with
|Pm|= K. For simplicity, we denote Pm = (B1, . . . ,BK) and refer to Bi as a permutation class
(alternatively, we could have named it orbits or type classes). Then

min
PBm

F (PBm) = min
w∈∆K

max
q∈∆m

∥q∥∞≤λ

K∑
i=1

wi

|Bi|
∑
b∈Bi

g(q,b). (39)

Observe that g(q,b) is convex in q (since it is the absolute value of a linear function in q), and
thus the inner maximum is achieved at a vertex of the feasible set. The vertices of the polytope
{q ∈ ∆m | ∥q∥∞≤ λ} are permutations of the vector

q∗
λ = (λ, . . . , λ, 1− tλ, 0, . . . , 0),

where q∗ has (i) exactly t entries equal to λ and t is the largest integer such that tλ ≤ 1 (assuming
λ ≤ 1), (ii) one entry equal to 1− tλ, and (iii) the remaining entries equal to 0.

Since the vertices are identical up to a permutation, and for any permutation π∑
b∈Bi

g(q,b) =
∑
b∈Bi

g(π ◦ q,b), (40)

it is sufficient to select a vertex of the form q∗
λ. Thus,

min
PBm

F (PBm) = min
w∈∆K

K∑
i=1

wi

|Bi|
∑
b∈Bi

g(q∗
λ,b), (41)

and it sufficient to consider the optimal distribution P ∗
Bm as a distribution that selects a b uniformly

over a single permutation class in Pm; namely the one that maximizes 1
|Bi|

∑
b∈Bi

g(q∗
λ,b).

Next, we aim to characterize R∗
d(λ) for different values of λ. We denote by PB the distribution

resulting from drawing a sequence at random from the permutation class B ∈ Pm.
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Our goal is to compute

E [g(q∗
λ, B

m)] =

k∑
s=1

E
[∣∣∣∣P̂ (s,q∗

λ, B
m)− 1

k

∣∣∣∣] (42)

Recall that the optimal choice of PBm is to draw sequences uniformly from a single permutation
class. Assuming w.l.o.g. that S = [k], fix a sequence b ∈ Sm with ni entries equal to i, i ∈ [k]. For
example, if k = 2, n1 is the number of entries equal to 1 and n2 is the number of entries equal to 2.
Naturally,

∑k
i=1 ni = m.

Now, for a fixed s ∈ S, we can write

P (s,q∗
λ, B

m) = λ

t∑
i=1

Xi + (1− tλ)Xt+1, (43)

where t = ⌊1/λ⌋ and Xi ≜ 1 (Bi = s). We can expand the expectation in the lhs of (42) as

E
[∣∣∣∣P̂ (s,q∗

λ, B
m)− 1

k

∣∣∣∣] = E

[
E

[∣∣∣∣P̂ (s,q∗
λ, B

m)− 1

k

∣∣∣∣
∣∣∣∣∣

t∑
i=1

Xi

]]
(44)

=

t∑
c=0

Pr

(
t∑

i=1

Xi = c

)(
Pr

(
Xt+1 = 1

∣∣∣∣∣
t∑

i=1

Xi = c

)∣∣∣∣cλ+ (1− λt)− 1

k

∣∣∣∣
(45)

+ Pr

(
Xt+1 = 0

∣∣∣∣∣
t∑

i=1

Xi = c

)∣∣∣∣cλ− 1

k

∣∣∣∣
)
.

(46)

For our sampling without replacement strategy, we have

Pr

(
t∑

i=1

Xi = c

)
=

(
ns

c

)(
m−ns

t−c

)(
m
t

) ,

Pr

(
Xt+1 = 1

∣∣∣∣∣
t∑

i=1

Xi = c

)
=

ns − c

m− t
.

Plugging these expressions in, we have:

E [g(q∗
λ, B

m)] =

k∑
s=1

t∑
c=0

(
ns

c

)(
m−ns

t−c

)(
m
t

) ((
ns − c

m− t

) ∣∣∣∣cλ+ (1− λt)− 1

k

∣∣∣∣+ (1− ns − c

m− t

) ∣∣∣∣cλ− 1

k

∣∣∣∣)
(47)

When we have an equal number of elements of each kind in the permutation class and m is divisible
by k, i.e., n1 = · · · = nk = m/k, the expression simplifies to:

E [g(q∗
λ, B

m)] = k

t∑
c=0

(
m/k
c

)(
m−m/k

t−c

)(
m
t

) ((
(m/k)− c

m− t

) ∣∣∣∣cλ+ (1− λt)− 1

k

∣∣∣∣+ (1− (m/k)− c

m− t

) ∣∣∣∣cλ− 1

k

∣∣∣∣)
(48)

We can simplify this even further in the special case that λ = 1/k. In this case, t = k, and we
don’t have to consider the special case of Xt+1 – q∗

λ has k entries equal to λ. In this case, denoting
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Zk =
∑k

i=1 Xi (46), simplifies to:

E
[∣∣∣∣P̂ (s,q∗

λ, B
m)− 1

k

∣∣∣∣] = 1

k

k∑
c=0

Pr (Zk = c) |c− 1| (49)

=
1

k

(
Pr (Zk = 0) +

k∑
c=1

Pr (Zk = c) (c− 1)

)
(50)

=
1

k
(2Pr (Zk = 0)− 1 + E[Zk]) (51)

=
2

k
Pr (Zk = 0) (52)

=
2

k
×
(
(k−1)m/k

k

)(
m
k

) (53)

and, consequently, we arrive at the elegant expression

E [g(q∗
λ, B

m)] = 2×
(
(k−1)m/k

k

)(
m
k

) . (54)

Hence, for any given m, k, λ, that satisfies λ = 1
k and m divisible by k, we have (following Eq.

(36)):

R∗
d(λ) = 1− 1

2k
− 1

4
E [g(q∗

λ, B
m)] (55)

= 1− 1

2k
− 1

2

(
(k−1)m/k

k

)(
m
k

) (56)

For 1/2 ≤ λ < 1, q∗
λ has two non-zero entries equal to λ and 1−λ. Consequently, P̂ (q∗

λ,b) assigns
probability 1 to one value of S if b1 = b2, otherwise assigns mass 1−λ and λ to two separate values
of s. Thus for a fixed distribution PB

EPB [Rd(q
∗
λ, B

m)] = 1− 1

2k
−Pr(B1 = B2)×

k − 1

2k
−1

4
Pr(B1 ̸= B2)×

(
1− 2

k
+

∣∣∣∣λ− 1

k

∣∣∣∣+ ∣∣∣∣1− λ− 1

k

∣∣∣∣) .

(57)
We need to select the set B that maximizes Pr(B1 ̸= B2). For m even and k = 2 (i.e., S binary), B
is the permutation class of the sequence of equal number of each element, we have Pr(B1 = B2) =
m−2

2(m−1) , Pr(B1 ̸= B2) =
m

2(m−1) , which simplifies Rd(λ)
∗ to

R∗
d(λ) =

3

4
− mλ− 1

4(m− 1)
for k = 2,

1

2
≤ λ ≤ 1. (58)

As m → ∞, R⋆
d(λ) → 3

4 − m
4 .

Remark 3 We make precise why in the case for 1
2 ≤ λ < 1, k = 2 and m even, B∗ = {bm :

equal number of 0’s and 1’s}. For S = {0, 1}, i.e. k = 2, permutation classes are characterized by
the number of 1′s. Let α be the number of 1′s in B and m− α be the number of 0’s. From Eq (57),
we need to select the set B that maximizes Pr(B1 ̸= B2):

α∗ = argmax
α∈[m]

Pr[B1 ̸= B2] = argmax
α∈[m]

2
α(m− α)

m(m− 1)
=

m

2
. (59)
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Next, we consider the case for 1
3 ≤ λ < 1

2 . q∗
λ has three non-zero entries: q∗

λ = (λ, λ, 1 −
2λ, 0, ..., 0). Consequently, there are 4 cases with the corresponding P̂ (q∗

λ,b) and g(q∗
λ,b):

a.B1 = B2 = B3 : P̂ = [1, 0, ..., 0] g(q∗
λ,b) = 2(1− 1

k
)

b.B1 = B2, B3 : ̸= B1 P̂ = [2λ, 1− 2λ, 0..., 0] g(q∗
λ,b) = (2λ− 1

k
) + |1− 2λ− 1

k
|+1

k
(k − 2)

c.B1 ̸= B2, B3 = (B1 ∨B2) : P̂ = [1− λ, λ, 0..., 0] g(q∗
λ,b) = |λ− 1

k
|+|1− λ− 1

k
|+1

k
(k − 2)

d.B1 ̸= B2 ̸= B3 : P̂ = [λ, λ, 1− 2λ, 0..., 0] g(q∗
λ,b) = 2|λ− 1

k
|+|1− 2λ− 1

k
|+1

k
(k − 3)

Recall that to maximize EPB [Rd(q
∗
λ, B

m)], we need to minimize EPB [g(q∗
λ, B

m)].

For k=2, case d is invalid and case c produces the minimum g(q∗
λ,b). Hence, we select the set B

that maximizes Pr[B1 ̸= B2, B3 = (B1 ∨ B2)], which is equivalent to maximizing Pr[B1 ̸= B2].
Following (59), B∗ = {bm : equal number of 0’s and 1’s}. We have Pr[B1 = B2 = B3] =

m−4
4(m−1) ,

Pr[B1 = B2, B3 ̸= B1] =
m

4(m−1) and Pr[B1 ̸= B2, B3 = (B1 ∨B2)] =
m

2(m−1) .

The resulting Rd(λ)
∗ is:

R∗
d(λ) =

3

4
− m− 2

8(m− 1)
for k = 2,

1

3
≤ λ <

1

2
. (60)

As m → ∞, R∗
d(λ) → 5

8 .

A.10 PROOF OF THEOREM 4

Our results so far have been based on the discussion that it is sufficient to consider the optimal
distribution P ∗

Bm as one that selects b uniformly over a single permutation class B∗ ∈ Pm. Recall
that b is a sequence of m elements each take a value in S: |b|= m and S = k. Recall as well that
B can be characterized by the proportion of each element of S: for i ∈ [k], denote the proportions
as [p1, ..., pk], where

ps =

∑m
i=1 1[bi == s]

m
∀b ∈ B.

Hence, sampling an b uniformly over B∗ can be equivalently defined as the following process: given
m elements with predefined proportions [p1, ..., pk], sample m times with replacement.

To generalize the analysis for other ranges of λ, k, and m, we consider an alternative process in
which rather than fixing the proportions over m elements, we take [p1, ..., pk] as probabilities. b

amounts to m i.i.d samples from a categorical distribution: bi
i.i.d∼ CATEGORICAL(p1, ..., pk). Re-

call that optimal B∗ amounts to having an equal number for each element in S. Hence, for all
i ∈ [k], p∗i = 1

k .

Furthermore, recall that the adversarial distribution for a given min-entropy constraint λ is: q∗ =
[λ, λ, ..., 1 − tλ, 0, ..., 0], where t = ⌊ 1

λ⌋. For the purpose of characterizing EPBg(q
∗,b), only the

color of the first t+ 1 draws matter, because the rest have 0 probabilities.

Let Xi ≜ 1 (Bi = s), for a fixed s ∈ S . Xi
i.i.d∼ BER( 1k ). We can compute EPBg(q

∗,b) in closed
form. Following (42) and (46), for sampling with replacement, we have:
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E [g(q∗
λ, B

m)] =

k∑
s=1

E
[∣∣∣∣P̂ (s,q∗

λ, B
m)− 1

k

∣∣∣∣] (61)

=

k∑
s=1

t∑
c=0

Pr

(
t∑

i=1

Xi = c

)(
Pr

(
Xt+1 = 1

∣∣∣∣∣
t∑

i=1

Xi = c

)∣∣∣∣cλ+ (1− λt)− 1

k

∣∣∣∣
(62)

+ Pr

(
Xt+1 = 0

∣∣∣∣∣
t∑

i=1

Xi = c

)∣∣∣∣cλ− 1

k

∣∣∣∣
)

(63)

= k

t∑
c=0

Pr[Y = c]

(
1

k

∣∣∣∣cλ+ (1− λt)− 1

k

∣∣∣∣+ (1− 1

k
)

∣∣∣∣cλ− 1

k

∣∣∣∣) (64)

=

t∑
c=0

Pr[Y = c]

(∣∣∣∣(c− t)λ+ (1− 1

k
)

∣∣∣∣+ (k − 1)

∣∣∣∣cλ− 1

k

∣∣∣∣) (65)

where Y ∼ Bin(t, 1
k ), and hence Pr[Y = c] =

(
t
c

)
( 1k )

c(1− 1
k )

t−c

By Eq. 36, the approximated minimax detection is given by:

R̃⋆
d(λ) = 1− 1

2k
− 1

4

[
t∑

c=0

Pr[Y = c]

(∣∣∣∣(c− t)λ+ (1− 1

k
)

∣∣∣∣+ (k − 1)

∣∣∣∣cλ− 1

k

∣∣∣∣)
]

(66)

Finally, we analyze the approximation error of R̃⋆
d(λ). Define Hb and Mb as the distribution of b

when we sample without (which yields R⋆
d(λ)) and with replacement (which yields R̃⋆

d(λ)). First,
notice that g(q∗,b) ≤ 2(k−1)

k ≤ 2 by considering the TV between singleton distribution and uni-
form. Then, by triangular inequality, we have:

∣∣∣R̃⋆
d(λ)−R⋆

d(λ)
∣∣∣ = 1

4
|(Eb∼Hb

g(q∗,b)− Eb∼Mb
g(q∗,b))| (67)

=
1

4

∣∣∣∣∣∑
b

g(q∗,b)(Hb(b)−Mb(b))

∣∣∣∣∣ (68)

≤ 1

4
∗ 2

∣∣∣∣∣∑
b

(Hb(b)−Mb(b))

∣∣∣∣∣ (69)

≤ 1

2

∑
b

|(Hb(b)−Mb(b))| (70)

= TV(Mb, Hb) (71)

≤
2k⌈ 1

λ⌉
m

(72)

The last inequality follows from de Finetti’s Finite Exchangeable SequencesDiaconis & Freedman
(1980).

A.11 PROOF OF PROPOSITION 4

Let n < ∞ and assume that Xn ∼ Q⊗n, Sn ∼ P⊗n and (Bm
i )ni=1 ∼ P⊗n

Bm . Consequently, the CC
watermarked distribution is also i.i.d. distributed according Q̃ = QX|S . On Bob’s end, the detection
probability is given by the expression

Rd =
1

2

(
1 + TV

(
(PQ)⊗n, (PQ̃)⊗n

))
,
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where PQ̃(S,X) = P (S)Q̃(X|S) To that end, we focus on obtaining bounds on the aforemen-
tioned TV term. For a pair of distributions P,Q, we have the following Hellinger bounds on the TV
distance Polyanskiy & Wu (2024):

1

2
H2(P,Q) ≤ TV(P,Q) ≤ H(P,Q)

√
1− 1

4
H2 (P,Q), (73)

where, for two measures P,Q on a finite alphabet X , the squarred Hellinger divergence is given by
the following equivalent forms

H2(P,Q) ≜ EQ

(1−√P

Q

)2
 =

∑
x∈X

(√
P (x)−

√
Q(x)

)2
= 2− 2

∑
x∈X

√
P (x)Q(x).

For a pair of product distributions (P⊗n, Q⊗n), the squarred Hellinger divergence benefits from the
relation Polyanskiy & Wu (2024)

H2
(
P⊗n, Q⊗n

)
= 2−

(
1− 1

2
H2(P,Q)

)n

.

Our problem therefore boils down to characterize H2
(
PQ,PQ̃

)
. We have

H2
(
PQ,PQ̃

)
=
∑
x,s

P (s)

(√
Q(x)−

√
Q̃(x|s)

)2

= ES

[
H2(Q(X), Q(X|S))

]
.

For a given s, bm),we have

H2(Q(X), Q(X|S = s) = 2− 2
∑
x

√
Q(x)Q̃(x|s)

= 2− 2
∑
x

Q(x)

√
PS|Y (s|y(x, bm))

P (s)

= 2EX

[
1−

√
PS|Y (s|Y (X, bm))

P (s)

]
,

where P (S|Y ) is the correlated channel. Assuming S ∼ Ber
(
1
2

)
, we have

H2
(
PQ,PQ̃

)
= 2ES,X

[
1−

√
PS|Y (S|Y (X, bm))

P (S)

]
= EY

[
1−

√
2P (0|Y )

]
+ EY

[
1−

√
2P (1|Y )

]
= 2−

√
2EY [P (0|Y ) + P (1|Y )]

= 2−
√
2
(
p̃0

(√
p(0|0) +

√
p(1|0)

)
+ p̃1

(√
p(0|1) +

√
p(1|1)

))
,

where Y ∼ Ber(p̃0, p̃1). Due to the symmetry of the correlated channel, we have for p̃ ≜
min(p̃0, p̃1)

H2
(
PQ,PQ̃

)
= 2−

√
2f(p̃)

where

f(p̃) ≜ p̃+

√
1− p̃

2

(
1 +

√
1− 2p̃

)
,

which implies that
H2
(
P⊗n, Q⊗n

)
= 2− 21−

n
2 (f(p̃))

n
.

The bounds on the detection probability then follow by plugging the squarred Hellinger distance
into (73). □
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